WorldWideScience

Sample records for microarray image segmentation

  1. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  2. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  3. Spot detection and image segmentation in DNA microarray data.

    Science.gov (United States)

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  4. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    Science.gov (United States)

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  5. An improved K-means clustering method for cDNA microarray image segmentation.

    Science.gov (United States)

    Wang, T N; Li, T J; Shao, G F; Wu, S X

    2015-07-14

    Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.

  6. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.

    Science.gov (United States)

    Baek, Jangsun; Son, Young Sook; McLachlan, Geoffrey J

    2007-02-15

    We present a new approach to the analysis of images for complementary DNA microarray experiments. The image segmentation and intensity estimation are performed simultaneously by adopting a two-component mixture model. One component of this mixture corresponds to the distribution of the background intensity, while the other corresponds to the distribution of the foreground intensity. The intensity measurement is a bivariate vector consisting of red and green intensities. The background intensity component is modeled by the bivariate gamma distribution, whose marginal densities for the red and green intensities are independent three-parameter gamma distributions with different parameters. The foreground intensity component is taken to be the bivariate t distribution, with the constraint that the mean of the foreground is greater than that of the background for each of the two colors. The degrees of freedom of this t distribution are inferred from the data but they could be specified in advance to reduce the computation time. Also, the covariance matrix is not restricted to being diagonal and so it allows for nonzero correlation between R and G foreground intensities. This gamma-t mixture model is fitted by maximum likelihood via the EM algorithm. A final step is executed whereby nonparametric (kernel) smoothing is undertaken of the posterior probabilities of component membership. The main advantages of this approach are: (1) it enjoys the well-known strengths of a mixture model, namely flexibility and adaptability to the data; (2) it considers the segmentation and intensity simultaneously and not separately as in commonly used existing software, and it also works with the red and green intensities in a bivariate framework as opposed to their separate estimation via univariate methods; (3) the use of the three-parameter gamma distribution for the background red and green intensities provides a much better fit than the normal (log normal) or t distributions; (4) the

  7. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  8. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  9. Unsupervised Image Segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2014-01-01

    Roč. 36, č. 4 (2014), s. 23-23 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : unsupervised image segmentation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/haindl-0434412.pdf

  10. Metrics for image segmentation

    Science.gov (United States)

    Rees, Gareth; Greenway, Phil; Morray, Denise

    1998-07-01

    An important challenge in mapping image-processing techniques onto applications is the lack of quantitative performance measures. From a systems engineering perspective these are essential if system level requirements are to be decomposed into sub-system requirements which can be understood in terms of algorithm selection and performance optimization. Nowhere in computer vision is this more evident than in the area of image segmentation. This is a vigorous and innovative research activity, but even after nearly two decades of progress, it remains almost impossible to answer the question 'what would the performance of this segmentation algorithm be under these new conditions?' To begin to address this shortcoming, we have devised a well-principled metric for assessing the relative performance of two segmentation algorithms. This allows meaningful objective comparisons to be made between their outputs. It also estimates the absolute performance of an algorithm given ground truth. Our approach is an information theoretic one. In this paper, we describe the theory and motivation of our method, and present practical results obtained from a range of state of the art segmentation methods. We demonstrate that it is possible to measure the objective performance of these algorithms, and to use the information so gained to provide clues about how their performance might be improved.

  11. Region segmentation along image sequence

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    A method to extract regions in sequence of images is proposed. Regions are not matched from one image to the following one. The result of a region segmentation is used as an initialization to segment the following and image to track the region along the sequence. The image sequence is exploited as a spatio-temporal event. (authors). 12 refs., 8 figs

  12. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  13. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  14. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. ADVANCED CLUSTER BASED IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    D. Kesavaraja

    2011-11-01

    Full Text Available This paper presents efficient and portable implementations of a useful image segmentation technique which makes use of the faster and a variant of the conventional connected components algorithm which we call parallel Components. In the Modern world majority of the doctors are need image segmentation as the service for various purposes and also they expect this system is run faster and secure. Usually Image segmentation Algorithms are not working faster. In spite of several ongoing researches in Conventional Segmentation and its Algorithms might not be able to run faster. So we propose a cluster computing environment for parallel image Segmentation to provide faster result. This paper is the real time implementation of Distributed Image Segmentation in Clustering of Nodes. We demonstrate the effectiveness and feasibility of our method on a set of Medical CT Scan Images. Our general framework is a single address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The image segmentation algorithm makes use of an efficient cluster process which uses a novel approach for parallel merging. Our experimental results are consistent with the theoretical analysis and practical results. It provides the faster execution time for segmentation, when compared with Conventional method. Our test data is different CT scan images from the Medical database. More efficient implementations of Image Segmentation will likely result in even faster execution times.

  16. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    Science.gov (United States)

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  17. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    2017-06-01

    Full Text Available A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR, a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  18. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...

  19. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  20. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  1. CLG for Automatic Image Segmentation

    OpenAIRE

    Christo Ananth; S.Santhana Priya; S.Manisha; T.Ezhil Jothi; M.S.Ramasubhaeswari

    2017-01-01

    This paper proposes an automatic segmentation method which effectively combines Active Contour Model, Live Wire method and Graph Cut approach (CLG). The aim of Live wire method is to provide control to the user on segmentation process during execution. Active Contour Model provides a statistical model of object shape and appearance to a new image which are built during a training phase. In the graph cut technique, each pixel is represented as a node and the distance between those nodes is rep...

  2. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    International Nuclear Information System (INIS)

    Karaçali, Bilge; Tözeren, Aydin

    2007-01-01

    Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B), percentage occupied by stroma-like regions (P), and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists) as hundreds of tumors that are used to develop an array have typically been evaluated (graded) by different pathologists. The region of interest

  3. Parallel fuzzy connected image segmentation on GPU

    OpenAIRE

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.

    2011-01-01

    Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...

  4. Image Segmentation Using Minimum Spanning Tree

    Science.gov (United States)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  5. Color image Segmentation using automatic thresholding techniques

    International Nuclear Information System (INIS)

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  6. Hierarchical image segmentation for learning object priors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.; Li, Nan [TEMPLE UNIV.

    2010-11-10

    The proposed segmentation approach naturally combines experience based and image based information. The experience based information is obtained by training a classifier for each object class. For a given test image, the result of each classifier is represented as a probability map. The final segmentation is obtained with a hierarchial image segmentation algorithm that considers both the probability maps and the image features such as color and edge strength. We also utilize image region hierarchy to obtain not only local but also semi-global features as input to the classifiers. Moreover, to get robust probability maps, we take into account the region context information by averaging the probability maps over different levels of the hierarchical segmentation algorithm. The obtained segmentation results are superior to the state-of-the-art supervised image segmentation algorithms.

  7. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  8. Unsupervised Performance Evaluation of Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chabrier Sebastien

    2006-01-01

    Full Text Available We present in this paper a study of unsupervised evaluation criteria that enable the quantification of the quality of an image segmentation result. These evaluation criteria compute some statistics for each region or class in a segmentation result. Such an evaluation criterion can be useful for different applications: the comparison of segmentation results, the automatic choice of the best fitted parameters of a segmentation method for a given image, or the definition of new segmentation methods by optimization. We first present the state of art of unsupervised evaluation, and then, we compare six unsupervised evaluation criteria. For this comparative study, we use a database composed of 8400 synthetic gray-level images segmented in four different ways. Vinet's measure (correct classification rate is used as an objective criterion to compare the behavior of the different criteria. Finally, we present the experimental results on the segmentation evaluation of a few gray-level natural images.

  9. Distance measures for image segmentation evaluation

    OpenAIRE

    Monteiro, Fernando C.; Campilho, Aurélio

    2012-01-01

    In this paper we present a study of evaluation measures that enable the quantification of the quality of an image segmentation result. Despite significant advances in image segmentation techniques, evaluation of these techniques thus far has been largely subjective. Typically, the effectiveness of a new algorithm is demonstrated only by the presentation of a few segmented images and is otherwise left to subjective evaluation by the reader. Such an evaluation criterion can be useful for differ...

  10. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  11. Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Praveen Agarwal

    2017-06-01

    Full Text Available Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without texture. The final segmentation is simply achieved by a spatially color segmentation using feature vector with the set of color values contained around the pixel to be classified with some mathematical equations. The spatial constraint allows taking into account the inherent spatial relationships of any image and its color. This approach provides effective PSNR for the segmented image. These results have the better performance as the segmented images are compared with Watershed & Region Growing Algorithm and provide effective segmentation for the Spectral Images & Medical Images.

  12. Colour application on mammography image segmentation

    Science.gov (United States)

    Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.

    2017-09-01

    The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).

  13. Probabilistic segmentation of remotely sensed images

    NARCIS (Netherlands)

    Gorte, B.

    1998-01-01

    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.

    Bayesian image

  14. A new framework for interactive images segmentation

    International Nuclear Information System (INIS)

    Ashraf, M.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image segmentation has become a widely studied research problem in image processing. There exist different graph based solutions for interactive image segmentation but the domain of image segmentation still needs persistent improvements. The segmentation quality of existing techniques generally depends on the manual input provided in beginning, therefore, these algorithms may not produce quality segmentation with initial seed labels provided by a novice user. In this work we investigated the use of cellular automata in image segmentation and proposed a new algorithm that follows a cellular automaton in label propagation. It incorporates both the pixel's local and global information in the segmentation process. We introduced the novel global constraints in automata evolution rules; hence proposed scheme of automata evolution is more effective than the automata based earlier evolution schemes. Global constraints are also effective in deceasing the sensitivity towards small changes made in manual input; therefore proposed approach is less dependent on label seed marks. It can produce the quality segmentation with modest user efforts. Segmentation results indicate that the proposed algorithm performs better than the earlier segmentation techniques. (author)

  15. SALIENCY BASED SEGMENTATION OF SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2015-03-01

    Full Text Available Saliency gives the way as humans see any image and saliency based segmentation can be eventually helpful in Psychovisual image interpretation. Keeping this in view few saliency models are used along with segmentation algorithm and only the salient segments from image have been extracted. The work is carried out for terrestrial images as well as for satellite images. The methodology used in this work extracts those segments from segmented image which are having higher or equal saliency value than a threshold value. Salient and non salient regions of image become foreground and background respectively and thus image gets separated. For carrying out this work a dataset of terrestrial images and Worldview 2 satellite images (sample data are used. Results show that those saliency models which works better for terrestrial images are not good enough for satellite image in terms of foreground and background separation. Foreground and background separation in terrestrial images is based on salient objects visible on the images whereas in satellite images this separation is based on salient area rather than salient objects.

  16. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  17. SVM Pixel Classification on Colour Image Segmentation

    Science.gov (United States)

    Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.

  18. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  19. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  20. Segmentation of liver tumors on CT images

    International Nuclear Information System (INIS)

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  1. Cluster Ensemble-Based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  2. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  3. Field Sampling from a Segmented Image

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-06-01

    Full Text Available This paper presents a statistical method for deriving the optimal prospective field sampling scheme on a remote sensing image to represent different categories in the field. The iterated conditional modes algorithm (ICM) is used for segmentation...

  4. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    Science.gov (United States)

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We

  5. Compound image segmentation of published biomedical figures.

    Science.gov (United States)

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  6. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  7. Natural color image segmentation using integrated mechanism

    Institute of Scientific and Technical Information of China (English)

    Jie Xu (徐杰); Pengfei Shi (施鹏飞)

    2003-01-01

    A new method for natural color image segmentation using integrated mechanism is proposed in this paper.Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the global color information to estimate roughly the distribution of objects in the image, while short ones are merged based on their positions and local color differences to eliminate the negative affection caused by texture or other trivial features in image. Region growing technique is employed to achieve final segmentation results. The proposed method unifies edges, whole and local color distributions, as well as spatial information to solve the natural image segmentation problem.The feasibility and effectiveness of this method have been demonstrated by various experiments.

  8. Retinal Image Preprocessing: Background and Noise Segmentation

    Directory of Open Access Journals (Sweden)

    Usman Akram

    2012-09-01

    Full Text Available Retinal images are used for the automated screening and diagnosis of diabetic retinopathy. The retinal image quality must be improved for the detection of features and abnormalities and for this purpose preprocessing of retinal images is vital. In this paper, we present a novel automated approach for preprocessing of colored retinal images. The proposed technique improves the quality of input retinal image by separating the background and noisy area from the overall image. It contains coarse segmentation and fine segmentation. Standard retinal images databases Diaretdb0, Diaretdb1, DRIVE and STARE are used to test the validation of our preprocessing technique. The experimental results show the validity of proposed preprocessing technique.

  9. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  10. A competition in unsupervised color image segmentation

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Mikeš, Stanislav

    2016-01-01

    Roč. 57, č. 9 (2016), s. 136-151 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA14-10911S Institutional support: RVO:67985556 Keywords : Unsupervised image segmentation * Segmentation contest * Texture analysis Subject RIV: BD - Theory of Information Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/haindl-0459179.pdf

  11. Active Mask Segmentation of Fluorescence Microscope Images

    OpenAIRE

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  12. An unsupervised strategy for biomedical image segmentation

    Directory of Open Access Journals (Sweden)

    Roberto Rodríguez

    2010-09-01

    Full Text Available Roberto Rodríguez1, Rubén Hernández21Digital Signal Processing Group, Institute of Cybernetics, Mathematics, and Physics, Havana, Cuba; 2Interdisciplinary Professional Unit of Engineering and Advanced Technology, IPN, MexicoAbstract: Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In this paper, we present an unsupervised strategy for biomedical image segmentation using an algorithm based on recursively applying mean shift filtering, where entropy is used as a stopping criterion. This strategy is proven with many real images, and a comparison is carried out with manual segmentation. With the proposed strategy, errors less than 20% for false positives and 0% for false negatives are obtained.Keywords: segmentation, mean shift, unsupervised segmentation, entropy

  13. Immunohistochemical analysis of breast tissue microarray images using contextual classifiers

    Directory of Open Access Journals (Sweden)

    Stephen J McKenna

    2013-01-01

    Full Text Available Background: Tissue microarrays (TMAs are an important tool in translational research for examining multiple cancers for molecular and protein markers. Automatic immunohistochemical (IHC scoring of breast TMA images remains a challenging problem. Methods: A two-stage approach that involves localization of regions of invasive and in-situ carcinoma followed by ordinal IHC scoring of nuclei in these regions is proposed. The localization stage classifies locations on a grid as tumor or non-tumor based on local image features. These classifications are then refined using an auto-context algorithm called spin-context. Spin-context uses a series of classifiers to integrate image feature information with spatial context information in the form of estimated class probabilities. This is achieved in a rotationally-invariant manner. The second stage estimates ordinal IHC scores in terms of the strength of staining and the proportion of nuclei stained. These estimates take the form of posterior probabilities, enabling images with uncertain scores to be referred for pathologist review. Results: The method was validated against manual pathologist scoring on two nuclear markers, progesterone receptor (PR and estrogen receptor (ER. Errors for PR data were consistently lower than those achieved with ER data. Scoring was in terms of estimated proportion of cells that were positively stained (scored on an ordinal scale of 0-6 and perceived strength of staining (scored on an ordinal scale of 0-3. Average absolute differences between predicted scores and pathologist-assigned scores were 0.74 for proportion of cells and 0.35 for strength of staining (PR. Conclusions: The use of context information via spin-context improved the precision and recall of tumor localization. The combination of the spin-context localization method with the automated scoring method resulted in reduced IHC scoring errors.

  14. Video-based noncooperative iris image segmentation.

    Science.gov (United States)

    Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig

    2011-02-01

    In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.

  15. Transfer learning improves supervised image segmentation across imaging protocols

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2015-01-01

    with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two MRI brain-segmentation tasks with multi-site data: white matter, gray matter, and CSF segmentation; and white-matter- /MS-lesion segmentation......The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform...... well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore...

  16. Neural network segmentation of magnetic resonance images

    International Nuclear Information System (INIS)

    Frederick, B.

    1990-01-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover, once trained, they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network; by varying imaging parameters, MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. This paper reports that a neural network classifier for image segmentation was implanted on a Sun 4/60, and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter, white matter, cerebrospinal fluid, bone, and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities, and the image was subsequently segmented by the classifier

  17. Flood Water Segmentation from Crowdsourced Images

    Science.gov (United States)

    Nguyen, J. K.; Minsker, B. S.

    2017-12-01

    In the United States, 176 people were killed by flooding in 2015. Along with the loss of human lives is the economic cost which is estimated to be $4.5 billion per flood event. Urban flooding has become a recent concern due to the increase in population, urbanization, and global warming. As more and more people are moving into towns and cities with infrastructure incapable of coping with floods, there is a need for more scalable solutions for urban flood management.The proliferation of camera-equipped mobile devices have led to a new source of information for flood research. In-situ photographs captured by people provide information at the local level that remotely sensed images fail to capture. Applications of crowdsourced images to flood research required understanding the content of the image without the need for user input. This paper addresses the problem of how to automatically segment a flooded and non-flooded region in crowdsourced images. Previous works require two images taken at similar angle and perspective of the location when it is flooded and when it is not flooded. We examine three different algorithms from the computer vision literature that are able to perform segmentation using a single flood image without these assumptions. The performance of each algorithm is evaluated on a collection of labeled crowdsourced flood images. We show that it is possible to achieve a segmentation accuracy of 80% using just a single image.

  18. Coupled dictionary learning for joint MR image restoration and segmentation

    Science.gov (United States)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  19. Parallel fuzzy connected image segmentation on GPU.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W

    2011-07-01

    Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.

  20. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  1. Active mask segmentation of fluorescence microscope images.

    Science.gov (United States)

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  2. Segmentation and Classification of Burn Color Images

    Science.gov (United States)

    2001-10-25

    SEGMENTATION AND CLASSIFICATION OF BURN COLOR IMAGES Begoña Acha1, Carmen Serrano1, Laura Roa2 1Área de Teoría de la Señal y Comunicaciones ...2000, Las Vegas (USA), pp. 411-415. [21] G. Wyszecki and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (New

  3. The semiotics of medical image Segmentation.

    Science.gov (United States)

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Segmentation and Classification of Burn Color Images

    National Research Council Canada - National Science Library

    Acha, Begonya

    2001-01-01

    .... In the classification part, we take advantage of color information by clustering, with a vector quantization algorithm, the color centroids of small squares, taken from the burnt segmented part of the image, in the (V1, V2) plane into two possible groups, where V1 and V2 are the two chrominance components of the CIE Lab representation.

  5. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  6. Image microarrays derived from tissue microarrays (IMA-TMA: New resource for computer-aided diagnostic algorithm development

    Directory of Open Access Journals (Sweden)

    Jennifer A Hipp

    2012-01-01

    Full Text Available Background: Conventional tissue microarrays (TMAs consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE, and image microarray maker (iMAM enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA. We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ algorithm. Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic

  7. NUCLEAR SEGMENTATION IN MICROSCOPE CELL IMAGES: A HAND-SEGMENTED DATASET AND COMPARISON OF ALGORITHMS

    OpenAIRE

    Coelho, Luís Pedro; Shariff, Aabid; Murphy, Robert F.

    2009-01-01

    Image segmentation is an essential step in many image analysis pipelines and many algorithms have been proposed to solve this problem. However, they are often evaluated subjectively or based on a small number of examples. To fill this gap, we hand-segmented a set of 97 fluorescence microscopy images (a total of 4009 cells) and objectively evaluated some previously proposed segmentation algorithms.

  8. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Directory of Open Access Journals (Sweden)

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  9. Transfer learning improves supervised image segmentation across imaging protocols.

    Science.gov (United States)

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  10. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  11. Image Segmentation, Registration, Compression, and Matching

    Science.gov (United States)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  12. Optical coherence tomography in anterior segment imaging

    Science.gov (United States)

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  13. COMPARISON AND EVALUATION OF CLUSTER BASED IMAGE SEGMENTATION TECHNIQUES

    OpenAIRE

    Hetangi D. Mehta*, Daxa Vekariya, Pratixa Badelia

    2017-01-01

    Image segmentation is the classification of an image into different groups. Numerous algorithms using different approaches have been proposed for image segmentation. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. A review is done on different types of clustering methods used for image segmentation. Also a methodology is proposed to classify and quantify different clustering algorithms based on their consistency in different...

  14. Intelligent Image Segment for Material Composition Detection

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan

    2017-01-01

    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  15. Remote sensing image segmentation based on Hadoop cloud platform

    Science.gov (United States)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  16. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  17. Segmentation Toolbox for Tomographic Image Data

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    , techniques to automatically analyze such data becomes ever more important. Most segmentation methods for large datasets, such as CT images, deal with simple thresholding techniques, where intensity values cut offs are predetermined and hard coded. For data where the intensity difference is not sufficient......Motivation: Image acquisition has vastly improved over the past years, introducing techniques such as X-ray computed tomography (CT). CT images provide the means to probe a sample non-invasively to investigate its inner structure. Given the wide usage of this technique and massive data amounts......, and partial volume voxels occur frequently, thresholding methods do not suffice and more advanced methods are required. Contribution: To meet these requirements a toolbox has been developed, combining well known methods within the image analysis field. The toolbox includes cluster-based methods...

  18. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  19. Text segmentation in degraded historical document images

    Directory of Open Access Journals (Sweden)

    A.S. Kavitha

    2016-07-01

    Full Text Available Text segmentation from degraded Historical Indus script images helps Optical Character Recognizer (OCR to achieve good recognition rates for Hindus scripts; however, it is challenging due to complex background in such images. In this paper, we present a new method for segmenting text and non-text in Indus documents based on the fact that text components are less cursive compared to non-text ones. To achieve this, we propose a new combination of Sobel and Laplacian for enhancing degraded low contrast pixels. Then the proposed method generates skeletons for text components in enhanced images to reduce computational burdens, which in turn helps in studying component structures efficiently. We propose to study the cursiveness of components based on branch information to remove false text components. The proposed method introduces the nearest neighbor criterion for grouping components in the same line, which results in clusters. Furthermore, the proposed method classifies these clusters into text and non-text cluster based on characteristics of text components. We evaluate the proposed method on a large dataset containing varieties of images. The results are compared with the existing methods to show that the proposed method is effective in terms of recall and precision.

  20. Automated image segmentation using information theory

    International Nuclear Information System (INIS)

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  1. Performance evaluation of image segmentation algorithms on microscopic image data

    Czech Academy of Sciences Publication Activity Database

    Beneš, Miroslav; Zitová, Barbara

    2015-01-01

    Roč. 275, č. 1 (2015), s. 65-85 ISSN 0022-2720 R&D Projects: GA ČR GAP103/12/2211 Institutional support: RVO:67985556 Keywords : image segmentation * performance evaluation * microscopic images Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.136, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/zitova-0434809-DOI.pdf

  2. DETECTION OF CANCEROUS LESION BY UTERINE CERVIX IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    P. Priya

    2014-02-01

    Full Text Available This paper works at segmentation of lesion observed in cervical cancer, which is the second most common cancer among women worldwide. The purpose of segmentation is to determine the location for a biopsy to be taken for diagnosis. Cervix cancer is a disease in which cancer cells are found in the tissues of the cervix. The acetowhite region is a major indicator of abnormality in the cervix image. This project addresses the problem of segmenting uterine cervix image into different regions. We analyze two algorithms namely Watershed, K-means clustering algorithm, Expectation Maximization (EM Image Segmentation algorithm. These segmentations methods are carried over for the colposcopic uterine cervix image.

  3. Heuristically improved Bayesian segmentation of brain MR images ...

    African Journals Online (AJOL)

    Heuristically improved Bayesian segmentation of brain MR images. ... or even the most prevalent task in medical image processing is image segmentation. Among them, brain MR images suffer ... show that our algorithm performs well in comparison with the one implemented in SPM. It can be concluded that incorporating ...

  4. A NDVI assisted remote sensing image adaptive scale segmentation method

    Science.gov (United States)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  5. FUSION SEGMENTATION METHOD BASED ON FUZZY THEORY FOR COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available The image segmentation method based on two-dimensional histogram segments the image according to the thresholds of the intensity of the target pixel and the average intensity of its neighborhood. This method is essentially a hard-decision method. Due to the uncertainties when labeling the pixels around the threshold, the hard-decision method can easily get the wrong segmentation result. Therefore, a fusion segmentation method based on fuzzy theory is proposed in this paper. We use membership function to model the uncertainties on each color channel of the color image. Then, we segment the color image according to the fuzzy reasoning. The experiment results show that our proposed method can get better segmentation results both on the natural scene images and optical remote sensing images compared with the traditional thresholding method. The fusion method in this paper can provide new ideas for the information extraction of optical remote sensing images and polarization SAR images.

  6. An LG-graph-based early evaluation of segmented images

    International Nuclear Information System (INIS)

    Tsitsoulis, Athanasios; Bourbakis, Nikolaos

    2012-01-01

    Image segmentation is one of the first important parts of image analysis and understanding. Evaluation of image segmentation, however, is a very difficult task, mainly because it requires human intervention and interpretation. In this work, we propose a blind reference evaluation scheme based on regional local–global (RLG) graphs, which aims at measuring the amount and distribution of detail in images produced by segmentation algorithms. The main idea derives from the field of image understanding, where image segmentation is often used as a tool for scene interpretation and object recognition. Evaluation here derives from summarization of the structural information content and not from the assessment of performance after comparisons with a golden standard. Results show measurements for segmented images acquired from three segmentation algorithms, applied on different types of images (human faces/bodies, natural environments and structures (buildings)). (paper)

  7. Brain MR image segmentation using NAMS in pseudo-color.

    Science.gov (United States)

    Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong

    2017-12-01

    Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.

  8. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  9. Microscopy image segmentation tool: Robust image data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  10. Microscopy image segmentation tool: Robust image data analysis

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  11. Microscopy image segmentation tool: Robust image data analysis

    International Nuclear Information System (INIS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-01-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  12. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Directory of Open Access Journals (Sweden)

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  13. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  14. Segmentation of neuroanatomy in magnetic resonance images

    Science.gov (United States)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  15. Applications of magnetic resonance image segmentation in neurology

    Science.gov (United States)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  16. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  17. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration

  18. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  19. SEGMENTATION AND QUALITY ANALYSIS OF LONG RANGE CAPTURED IRIS IMAGE

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-05-01

    Full Text Available The iris segmentation plays a major role in an iris recognition system to increase the performance of the system. This paper proposes a novel method for segmentation of iris images to extract the iris part of long range captured eye image and an approach to select best iris frame from the iris polar image sequences by analyzing the quality of iris polar images. The quality of iris image is determined by the frequency components present in the iris polar images. The experiments are carried out on CASIA-long range captured iris image sequences. The proposed segmentation method is compared with Hough transform based segmentation and it has been determined that the proposed method gives higher accuracy for segmentation than Hough transform.

  20. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  1. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  2. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  3. Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.

    Science.gov (United States)

    Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick

    2017-11-03

    In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.

  4. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  5. Segmentation of knee injury swelling on infrared images

    Science.gov (United States)

    Puentes, John; Langet, Hélène; Herry, Christophe; Frize, Monique

    2011-03-01

    Interpretation of medical infrared images is complex due to thermal noise, absence of texture, and small temperature differences in pathological zones. Acute inflammatory response is a characteristic symptom of some knee injuries like anterior cruciate ligament sprains, muscle or tendons strains, and meniscus tear. Whereas artificial coloring of the original grey level images may allow to visually assess the extent inflammation in the area, their automated segmentation remains a challenging problem. This paper presents a hybrid segmentation algorithm to evaluate the extent of inflammation after knee injury, in terms of temperature variations and surface shape. It is based on the intersection of rapid color segmentation and homogeneous region segmentation, to which a Laplacian of a Gaussian filter is applied. While rapid color segmentation enables to properly detect the observed core of swollen area, homogeneous region segmentation identifies possible inflammation zones, combining homogeneous grey level and hue area segmentation. The hybrid segmentation algorithm compares the potential inflammation regions partially detected by each method to identify overlapping areas. Noise filtering and edge segmentation are then applied to common zones in order to segment the swelling surfaces of the injury. Experimental results on images of a patient with anterior cruciate ligament sprain show the improved performance of the hybrid algorithm with respect to its separated components. The main contribution of this work is a meaningful automatic segmentation of abnormal skin temperature variations on infrared thermography images of knee injury swelling.

  6. Open-source software platform for medical image segmentation applications

    Science.gov (United States)

    Namías, R.; D'Amato, J. P.; del Fresno, M.

    2017-11-01

    Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.

  7. Optimization of Segmentation Quality of Integrated Circuit Images

    Directory of Open Access Journals (Sweden)

    Gintautas Mušketas

    2012-04-01

    Full Text Available The paper presents investigation into the application of genetic algorithms for the segmentation of the active regions of integrated circuit images. This article is dedicated to a theoretical examination of the applied methods (morphological dilation, erosion, hit-and-miss, threshold and describes genetic algorithms, image segmentation as optimization problem. The genetic optimization of the predefined filter sequence parameters is carried out. Improvement to segmentation accuracy using a non optimized filter sequence makes 6%.Artcile in Lithuanian

  8. Integration of speckle de-noising and image segmentation using ...

    Indian Academy of Sciences (India)

    2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,. Surathkal, Mangalore 575 025, India. ... cal images obtained from the satellites are often prone to bad climatic conditions and hence ... (2009) for satellite image segmentation. Mean shift segmentation (MSS) is a non-.

  9. An interactive medical image segmentation framework using iterative refinement.

    Science.gov (United States)

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  11. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  12. GPU accelerated fuzzy connected image segmentation by using CUDA.

    Science.gov (United States)

    Zhuge, Ying; Cao, Yong; Miller, Robert W

    2009-01-01

    Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.

  13. Cellular image segmentation using n-agent cooperative game theory

    Science.gov (United States)

    Dimock, Ian B.; Wan, Justin W. L.

    2016-03-01

    Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.

  14. Dental x-ray image segmentation

    Science.gov (United States)

    Said, Eyad; Fahmy, Gamal F.; Nassar, Diaa; Ammar, Hany

    2004-08-01

    Law enforcement agencies have been exploiting biometric identifiers for decades as key tools in forensic identification. With the evolution in information technology and the huge volume of cases that need to be investigated by forensic specialists, it has become important to automate forensic identification systems. While, ante mortem (AM) identification, that is identification prior to death, is usually possible through comparison of many biometric identifiers, postmortem (PM) identification, that is identification after death, is impossible using behavioral biometrics (e.g. speech, gait). Moreover, under severe circumstances, such as those encountered in mass disasters (e.g. airplane crashers) or if identification is being attempted more than a couple of weeks postmortem, under such circumstances, most physiological biometrics may not be employed for identification, because of the decay of soft tissues of the body to unidentifiable states. Therefore, a postmortem biometric identifier has to resist the early decay that affects body tissues. Because of their survivability and diversity, the best candidates for postmortem biometric identification are the dental features. In this paper we present an over view about an automated dental identification system for Missing and Unidentified Persons. This dental identification system can be used by both law enforcement and security agencies in both forensic and biometric identification. We will also present techniques for dental segmentation of X-ray images. These techniques address the problem of identifying each individual tooth and how the contours of each tooth are extracted.

  15. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    Science.gov (United States)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  16. Multifractal-based nuclei segmentation in fish images.

    Science.gov (United States)

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  17. Improved document image segmentation algorithm using multiresolution morphology

    Science.gov (United States)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  18. Scale selection for supervised image segmentation

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M J; Loog, Marco

    2012-01-01

    schemes are usually unsupervised, as they do not take into account the actual segmentation problem at hand. In this paper, we consider the problem of selecting scales, which aims at an optimal discrimination between user-defined classes in the segmentation. We show the deficiency of the classical...

  19. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  20. AUTOMATIC MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY REASONING

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2011-05-01

    Full Text Available An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.

  1. Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation

    OpenAIRE

    Fu, Chichen; Lee, Soonam; Ho, David Joon; Han, Shuo; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2018-01-01

    Advances in fluorescence microscopy enable acquisition of 3D image volumes with better image quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images and recent 3D segmentation using deep learning has achieved promising results. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for large 3D microscopy volumes. This paper describes a 3D d...

  2. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  3. Graph run-length matrices for histopathological image segmentation.

    Science.gov (United States)

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  4. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  5. An Efficient Evolutionary Based Method For Image Segmentation

    OpenAIRE

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  6. Multilevel segmentation of intracranial aneurysms in CT angiography images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94122 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Zhang, Yue, E-mail: y.zhang525@gmail.com [Veterans Affairs Medical Center, San Francisco, California 94121 and University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France); Navarro, Laurent [Ecole Nationale Superieure des Mines de Saint-Etienne, Saint-Etienne 42015 (France); Eker, Omer Faruk [CHU Montpellier, Neuroradiologie, Montpellier 34000 (France); Corredor Jerez, Ricardo A. [Ecole Polytechnique Federale de Lausanne, Lausanne 1015 (Switzerland); Chen, Yu; Zhu, Yuemin; Courbebaisse, Guy [University of Lyon, CREATIS, CNRS UMR 5220, INSERM U1206, UCB Lyon1, INSA Lyon, Lyon 69100 (France)

    2016-04-15

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part of the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.

  7. COMPARISON OF DIFFERENT SEGMENTATION ALGORITHMS FOR DERMOSCOPIC IMAGES

    Directory of Open Access Journals (Sweden)

    A.A. Haseena Thasneem

    2015-05-01

    Full Text Available This paper compares different algorithms for the segmentation of skin lesions in dermoscopic images. The basic segmentation algorithms compared are Thresholding techniques (Global and Adaptive, Region based techniques (K-means, Fuzzy C means, Expectation Maximization and Statistical Region Merging, Contour models (Active Contour Model and Chan - Vese Model and Spectral Clustering. Accuracy, sensitivity, specificity, Border error, Hammoude distance, Hausdorff distance, MSE, PSNR and elapsed time metrices were used to evaluate various segmentation techniques.

  8. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  9. Image segmentation evaluation for very-large datasets

    Science.gov (United States)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  10. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  11. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    International Nuclear Information System (INIS)

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  12. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  13. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  14. Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation

    Directory of Open Access Journals (Sweden)

    Shuiping Gou, PhD

    2016-07-01

    Conclusions: Our study demonstrated potential feasibility of automated segmentation of the pancreas on MRI scans with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization.

  15. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  16. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  17. Spectral segmentation of polygonized images with normalized cuts

    Energy Technology Data Exchange (ETDEWEB)

    Matsekh, Anna [Los Alamos National Laboratory; Skurikhin, Alexei [Los Alamos National Laboratory; Rosten, Edward [UNIV OF CAMBRIDGE

    2009-01-01

    We analyze numerical behavior of the eigenvectors corresponding to the lowest eigenvalues of the generalized graph Laplacians arising in the Normalized Cuts formulations of the image segmentation problem on coarse polygonal grids.

  18. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  19. CMOS Imaging of Temperature Effects on Pin-Printed Xerogel Sensor Microarrays.

    Science.gov (United States)

    Lei Yao; Ka Yi Yung; Chodavarapu, Vamsy P; Bright, Frank V

    2011-04-01

    In this paper, we study the effect of temperature on the operation and performance of a xerogel-based sensor microarrays coupled to a complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC) that images the photoluminescence response from the sensor microarray. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. A correlated double sampling circuit and pixel address/digital control/signal integration circuit are also implemented on-chip. The CMOS imager data are read out as a serial coded signal. The sensor system uses a light-emitting diode to excite target analyte responsive organometallic luminophores doped within discrete xerogel-based sensor elements. As a proto type, we developed a 3 × 3 (9 elements) array of oxygen (O2) sensors. Each group of three sensor elements in the array (arranged in a column) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a mix of two O2 sensitive luminophores in each pin-printed xerogel sensor element. The CMOS imager is designed to be low noise and consumes a static power of 320.4 μW and an average dynamic power of 624.6 μW when operating at 100-Hz sampling frequency and 1.8-V dc power supply.

  20. Learning normalized inputs for iterative estimation in medical image segmentation.

    Science.gov (United States)

    Drozdzal, Michal; Chartrand, Gabriel; Vorontsov, Eugene; Shakeri, Mahsa; Di Jorio, Lisa; Tang, An; Romero, Adriana; Bengio, Yoshua; Pal, Chris; Kadoury, Samuel

    2018-02-01

    In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving accurate segmentations on a variety of image modalities and different anatomical regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Variational segmentation problems using prior knowledge in imaging and vision

    DEFF Research Database (Denmark)

    Fundana, Ketut

    This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...

  2. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  3. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    Science.gov (United States)

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  4. Image Mosaic Method Based on SIFT Features of Line Segment

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    2014-01-01

    Full Text Available This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.

  5. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  6. Evaluating the impact of image preprocessing on iris segmentation

    Directory of Open Access Journals (Sweden)

    José F. Valencia-Murillo

    2014-08-01

    Full Text Available Segmentation is one of the most important stages in iris recognition systems. In this paper, image preprocessing algorithms are applied in order to evaluate their impact on successful iris segmentation. The preprocessing algorithms are based on histogram adjustment, Gaussian filters and suppression of specular reflections in human eye images. The segmentation method introduced by Masek is applied on 199 images acquired under unconstrained conditions, belonging to the CASIA-irisV3 database, before and after applying the preprocessing algorithms. Then, the impact of image preprocessing algorithms on the percentage of successful iris segmentation is evaluated by means of a visual inspection of images in order to determine if circumferences of iris and pupil were detected correctly. An increase from 59% to 73% in percentage of successful iris segmentation is obtained with an algorithm that combine elimination of specular reflections, followed by the implementation of a Gaussian filter having a 5x5 kernel. The results highlight the importance of a preprocessing stage as a previous step in order to improve the performance during the edge detection and iris segmentation processes.

  7. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  8. Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.

    Science.gov (United States)

    Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui

    2011-11-01

    Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.

  9. Image segmentation by hierarchial agglomeration of polygons using ecological statistics

    Science.gov (United States)

    Prasad, Lakshman; Swaminarayan, Sriram

    2013-04-23

    A method for rapid hierarchical image segmentation based on perceptually driven contour completion and scene statistics is disclosed. The method begins with an initial fine-scale segmentation of an image, such as obtained by perceptual completion of partial contours into polygonal regions using region-contour correspondences established by Delaunay triangulation of edge pixels as implemented in VISTA. The resulting polygons are analyzed with respect to their size and color/intensity distributions and the structural properties of their boundaries. Statistical estimates of granularity of size, similarity of color, texture, and saliency of intervening boundaries are computed and formulated into logical (Boolean) predicates. The combined satisfiability of these Boolean predicates by a pair of adjacent polygons at a given segmentation level qualifies them for merging into a larger polygon representing a coarser, larger-scale feature of the pixel image and collectively obtains the next level of polygonal segments in a hierarchy of fine-to-coarse segmentations. The iterative application of this process precipitates textured regions as polygons with highly convolved boundaries and helps distinguish them from objects which typically have more regular boundaries. The method yields a multiscale decomposition of an image into constituent features that enjoy a hierarchical relationship with features at finer and coarser scales. This provides a traversable graph structure from which feature content and context in terms of other features can be derived, aiding in automated image understanding tasks. The method disclosed is highly efficient and can be used to decompose and analyze large images.

  10. Muscles of mastication model-based MR image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Ong, S.H. [National Univ. of Singapore (Singapore). Dept. of Electrical and Computer Engineering; National Univ. of Singapore (Singapore). Div. of Bioengineering; Hu, Q.; Nowinski, W.L. [Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); National Univ. of Singapore (Singapore). Dept. of Preventive Dentistry; Goh, P.S. [National Univ. of Singapore (Singapore). Dept. of Diagnostic Radiology

    2006-11-15

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  11. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    Science.gov (United States)

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  12. Muscles of mastication model-based MR image segmentation

    International Nuclear Information System (INIS)

    Ng, H.P.; Agency for Science Technology and Research, Singapore; Ong, S.H.; National Univ. of Singapore; Hu, Q.; Nowinski, W.L.; Foong, K.W.C.; National Univ. of Singapore; Goh, P.S.

    2006-01-01

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  13. Nonlinear matching measure for the analysis of on-off type DNA microarray images

    Science.gov (United States)

    Kim, Jong D.; Park, Misun; Kim, Jongwon

    2003-07-01

    In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.

  14. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification ...

  15. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  16. Combining Constraint Types From Public Data in Aerial Image Segmentation

    DEFF Research Database (Denmark)

    Jacobsen, Thomas Stig; Jensen, Jacob Jon; Jensen, Daniel Rune

    2013-01-01

    We introduce a method for image segmentation that constraints the clustering with map and point data. The method is showcased by applying the spectral clustering algorithm on aerial images for building detection with constraints built from a height map and address point data. We automatically det...

  17. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  18. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  19. Objectness Supervised Merging Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Haifeng Sima

    2016-01-01

    Full Text Available Ideal color image segmentation needs both low-level cues and high-level semantic features. This paper proposes a two-hierarchy segmentation model based on merging homogeneous superpixels. First, a region growing strategy is designed for producing homogenous and compact superpixels in different partitions. Total variation smoothing features are adopted in the growing procedure for locating real boundaries. Before merging, we define a combined color-texture histogram feature for superpixels description and, meanwhile, a novel objectness feature is proposed to supervise the region merging procedure for reliable segmentation. Both color-texture histograms and objectness are computed to measure regional similarities between region pairs, and the mixed standard deviation of the union features is exploited to make stop criteria for merging process. Experimental results on the popular benchmark dataset demonstrate the better segmentation performance of the proposed model compared to other well-known segmentation algorithms.

  20. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  1. Semiautomatic segmentation of liver metastases on volumetric CT images

    International Nuclear Information System (INIS)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-01-01

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  2. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.

    Science.gov (United States)

    Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan

    2018-06-01

    Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. FBIH financial market segmentation on the basis of image factors

    Directory of Open Access Journals (Sweden)

    Arnela Bevanda

    2008-12-01

    Full Text Available The aim of the study is to recognize, single out and define market segments useful for future marketing strategies, using certain statistical techniques on the basis of influence of various image factors of financial institutions. The survey included a total of 500 interviewees: 250 bank clients and 250 clients of insurance companies. Starting from the problem area and research goal, the following hypothesis has been formulated: Basic preferences of clients in regard of image factors while selecting financial institutions are different enough to be used as such for differentiating significant market segments of clients. Two segments have been singled out by cluster analysis and named, respectively, traditionalists and visualists. Results of the research confirmed the established hypothesis and pointed to the fact that managers in the financial institutions of the Federation of Bosnia and Herzegovina (FBIH must undertake certain corrective actions, especially when planning and implementing communication strategies, if they wish to maintain their competitiveness in serving both selected segments.

  4. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  5. Segmentation of images for gingival growth measurement

    Science.gov (United States)

    Kim, Dong-Il; Wilson, Joseph N.

    1992-12-01

    The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.

  6. Robust generative asymmetric GMM for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Zheng, Yuhui

    2017-11-01

    Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM

  7. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    Full Text Available Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02, sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08, specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17 and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10 for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification.

  8. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    Science.gov (United States)

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  9. A deep level set method for image segmentation

    OpenAIRE

    Tang, Min; Valipour, Sepehr; Zhang, Zichen Vincent; Cobzas, Dana; MartinJagersand

    2017-01-01

    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types o...

  10. Continuously live image processor for drift chamber track segment triggering

    International Nuclear Information System (INIS)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The first portion of the BaBar experiment Level 1 Drift Chamber Trigger pipeline is the Track Segment Finder (TSF). Using a novel method incorporating both occupancy and drift-time information, the TSF system continually searches for segments in the supercells of the full 7104-wire Drift Chamber hit image at 3.7 MHz. The TSF was constructed to operate in a potentially high beam-background environment while achieving high segment-finding efficiency, deadtime-free operation, a spatial resolution of 5 simulated physics events

  11. ImageSURF: An ImageJ Plugin for Batch Pixel-Based Image Segmentation Using Random Forests

    Directory of Open Access Journals (Sweden)

    Aidan O'Mara

    2017-11-01

    Full Text Available Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to train pixel classifiers which are then applied to image sets of any size to produce segmentations without bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF. Funding statement: This research was supported by an Australian Government Research Training Program Scholarship.

  12. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    Science.gov (United States)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  13. Image Segmentation and Processing for Efficient Parking Space Analysis

    OpenAIRE

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  14. Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images

    NARCIS (Netherlands)

    Lee, K.; Buitendijk, G.H.; Bogunovic, H.; Springelkamp, H.; Hofman, A.; Wahle, A.; Sonka, M.; Vingerling, J.R.; Klaver, C.C.W.; Abramoff, M.D.

    2016-01-01

    PURPOSE: To automatically identify which spectral-domain optical coherence tomography (SD-OCT) scans will provide reliable automated layer segmentations for more accurate layer thickness analyses in population studies. METHODS: Six hundred ninety macular SD-OCT image volumes (6.0 x 6.0 x 2.3 mm3)

  15. Multilevel Image Segmentation Based on an Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-01-01

    Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.

  16. Image Segmentation of Historical Handwriting from Palm Leaf Manuscripts

    Science.gov (United States)

    Surinta, Olarik; Chamchong, Rapeeporn

    Palm leaf manuscripts were one of the earliest forms of written media and were used in Southeast Asia to store early written knowledge about subjects such as medicine, Buddhist doctrine and astrology. Therefore, historical handwritten palm leaf manuscripts are important for people who like to learn about historical documents, because we can learn more experience from them. This paper presents an image segmentation of historical handwriting from palm leaf manuscripts. The process is composed of three steps: 1) background elimination to separate text and background by Otsu's algorithm 2) line segmentation and 3) character segmentation by histogram of image. The end result is the character's image. The results from this research may be applied to optical character recognition (OCR) in the future.

  17. Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Directory of Open Access Journals (Sweden)

    Maciel Zortea

    2011-01-01

    Full Text Available Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low.

  18. Phase contrast image segmentation using a Laue analyser crystal

    International Nuclear Information System (INIS)

    Kitchen, Marcus J; Paganin, David M; Lewis, Robert A; Pavlov, Konstantin M; Uesugi, Kentaro; Allison, Beth J; Hooper, Stuart B

    2011-01-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  19. Hyperspectral image segmentation using a cooperative nonparametric approach

    Science.gov (United States)

    Taher, Akar; Chehdi, Kacem; Cariou, Claude

    2013-10-01

    In this paper a new unsupervised nonparametric cooperative and adaptive hyperspectral image segmentation approach is presented. The hyperspectral images are partitioned band by band in parallel and intermediate classification results are evaluated and fused, to get the final segmentation result. Two unsupervised nonparametric segmentation methods are used in parallel cooperation, namely the Fuzzy C-means (FCM) method, and the Linde-Buzo-Gray (LBG) algorithm, to segment each band of the image. The originality of the approach relies firstly on its local adaptation to the type of regions in an image (textured, non-textured), and secondly on the introduction of several levels of evaluation and validation of intermediate segmentation results before obtaining the final partitioning of the image. For the management of similar or conflicting results issued from the two classification methods, we gradually introduced various assessment steps that exploit the information of each spectral band and its adjacent bands, and finally the information of all the spectral bands. In our approach, the detected textured and non-textured regions are treated separately from feature extraction step, up to the final classification results. This approach was first evaluated on a large number of monocomponent images constructed from the Brodatz album. Then it was evaluated on two real applications using a respectively multispectral image for Cedar trees detection in the region of Baabdat (Lebanon) and a hyperspectral image for identification of invasive and non invasive vegetation in the region of Cieza (Spain). A correct classification rate (CCR) for the first application is over 97% and for the second application the average correct classification rate (ACCR) is over 99%.

  20. Medical image segmentation by means of constraint satisfaction neural network

    International Nuclear Information System (INIS)

    Chen, C.T.; Tsao, C.K.; Lin, W.C.

    1990-01-01

    This paper applies the concept of constraint satisfaction neural network (CSNN) to the problem of medical image segmentation. Constraint satisfaction (or constraint propagation), the procedure to achieve global consistency through local computation, is an important paradigm in artificial intelligence. CSNN can be viewed as a three-dimensional neural network, with the two-dimensional image matrix as its base, augmented by various constraint labels for each pixel. These constraint labels can be interpreted as the connections and the topology of the neural network. Through parallel and iterative processes, the CSNN will approach a solution that satisfies the given constraints thus providing segmented regions with global consistency

  1. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Science.gov (United States)

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  2. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    Directory of Open Access Journals (Sweden)

    Maqlin Paramanandam

    Full Text Available The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP algorithm on a Markov Random Field (MRF. The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012 and Veta et al. (2013, which were tested using their own datasets.

  3. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    Science.gov (United States)

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  4. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Science.gov (United States)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  5. Automatic comic page image understanding based on edge segment analysis

    Science.gov (United States)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  6. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  7. Effect of image scaling and segmentation in digital rock characterisation

    Science.gov (United States)

    Jones, B. D.; Feng, Y. T.

    2016-04-01

    Digital material characterisation from microstructural geometry is an emerging field in computer simulation. For permeability characterisation, a variety of studies exist where the lattice Boltzmann method (LBM) has been used in conjunction with computed tomography (CT) imaging to simulate fluid flow through microscopic rock pores. While these previous works show that the technique is applicable, the use of binary image segmentation and the bounceback boundary condition results in a loss of grain surface definition when the modelled geometry is compared to the original CT image. We apply the immersed moving boundary (IMB) condition of Noble and Torczynski as a partial bounceback boundary condition which may be used to better represent the geometric definition provided by a CT image. The IMB condition is validated against published work on idealised porous geometries in both 2D and 3D. Following this, greyscale image segmentation is applied to a CT image of Diemelstadt sandstone. By varying the mapping of CT voxel densities to lattice sites, it is shown that binary image segmentation may underestimate the true permeability of the sample. A CUDA-C-based code, LBM-C, was developed specifically for this work and leverages GPU hardware in order to carry out computations.

  8. Eliciting Perceptual Ground Truth for Image Segmentation

    OpenAIRE

    Hodge, Victoria Jane; Eakins, John; Austin, Jim

    2006-01-01

    In this paper, we investigate human visual perception and establish a body of ground truth data elicited from human visual studies. We aim to build on the formative work of Ren, Eakins and Briggs who produced an initial ground truth database. Human subjects were asked to draw and rank their perceptions of the parts of a series of figurative images. These rankings were then used to score the perceptions, identify the preferred human breakdowns and thus allow us to induce perceptual rules for h...

  9. Automatic segmentation of cerebral MR images using artificial neural networks

    International Nuclear Information System (INIS)

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-01-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem

  10. Automated segmentation of pigmented skin lesions in multispectral imaging

    International Nuclear Information System (INIS)

    Carrara, Mauro; Tomatis, Stefano; Bono, Aldo; Bartoli, Cesare; Moglia, Daniele; Lualdi, Manuela; Colombo, Ambrogio; Santinami, Mario; Marchesini, Renato

    2005-01-01

    The aim of this study was to develop an algorithm for the automatic segmentation of multispectral images of pigmented skin lesions. The study involved 1700 patients with 1856 cutaneous pigmented lesions, which were analysed in vivo by a novel spectrophotometric system, before excision. The system is able to acquire a set of 15 different multispectral images at equally spaced wavelengths between 483 and 951 nm. An original segmentation algorithm was developed and applied to the whole set of lesions and was able to automatically contour them all. The obtained lesion boundaries were shown to two expert clinicians, who, independently, rejected 54 of them. The 97.1% contour accuracy indicates that the developed algorithm could be a helpful and effective instrument for the automatic segmentation of skin pigmented lesions. (note)

  11. Statistical characterization and segmentation of drusen in fundus images.

    Science.gov (United States)

    Santos-Villalobos, H; Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  12. Statistical Characterization and Segmentation of Drusen in Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Karnowski, Thomas Paul [ORNL; Aykac, Deniz [ORNL; Giancardo, Luca [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Nichols, Trent L [ORNL; Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Age related Macular Degeneration (AMD) is a disease of the retina associated with aging. AMD progression in patients is characterized by drusen, pigmentation changes, and geographic atrophy, which can be seen using fundus imagery. The level of AMD is characterized by standard scaling methods, which can be somewhat subjective in practice. In this work we propose a statistical image processing approach to segment drusen with the ultimate goal of characterizing the AMD progression in a data set of longitudinal images. The method characterizes retinal structures with a statistical model of the colors in the retina image. When comparing the segmentation results of the method between longitudinal images with known AMD progression and those without, the method detects progression in our longitudinal data set with an area under the receiver operating characteristics curve of 0.99.

  13. Imaging QRS complex and ST segment in myocardial infarction

    DEFF Research Database (Denmark)

    Bacharova, Ljuba; Bang, Lia E; Szathmary, Vavrinec

    2014-01-01

    BACKGROUND: Acute myocardial infarction creates regions of altered electrical properties of myocardium resulting in typical QRS patterns (pathological Q waves) and ST segment deviations observed in leads related to the MI location. The aim of this study was to present a graphical method for imaging...... the changes in the sequence of depolarization and the ST segment deviations in myocardial infarction using the Dipolar ElectroCARdioTOpography (DECARTO) method. MATERIAL AND METHODS: Simulated ECG data corresponding to intramural, electrically inactive areas encircled by transmural areas with slowed impulse...... propagation velocity in anteroseptal and inferior locations were used for imaging the altered sequence of depolarization and the ST vector. The ECGs were transformed to areas projected on the image surface so as to image the process of ventricular depolarization based on the orientation and magnitude...

  14. Color image segmentation using perceptual spaces through applets ...

    African Journals Online (AJOL)

    Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. JL González-Pérez, MC Espino-Gudiño, J Gudiño-Bazaldúa, JL Rojas-Rentería, V Rodríguez-Hernández, VM Castaño ...

  15. Improving HOG with image segmentation: application to human detection

    NARCIS (Netherlands)

    Salas, Y.S.; Bermudez, D.V.; Peña, A.M.L.; Gomez, D.G.; Gevers, T.

    2012-01-01

    In this paper we improve the histogram of oriented gradients (HOG), a core descriptor of state-of-the-art object detection, by the use of higher-level information coming from image segmentation. The idea is to re-weight the descriptor while computing it without increasing its size. The benefits of

  16. Contourlet-based active contour model for PET image segmentation

    NARCIS (Netherlands)

    Abdoli, M.; Dierckx, R. A. J. O.; Zaidi, H.

    Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the

  17. General Purpose Segmentation for Microorganisms in Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    In this paper, we propose an approach for achieving generalized segmentation of microorganisms in mi- croscopy images. It employs a pixel-wise classification strategy based on local features. Multilayer percep- trons are utilized for classification of the local features and is trained for each sp...

  18. Image Segmentation Based on Period Difference of the Oscillation

    Institute of Scientific and Technical Information of China (English)

    王直杰; 张珏; 范宏; 柯克峰

    2004-01-01

    A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected.Each group of the neurons that correspond to each object synchronizes while different gronps of the neurons oscillate at different period. Applying this period difference,different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.

  19. Ontology-Based Knowledge Organization for the Radiograph Images Segmentation

    Directory of Open Access Journals (Sweden)

    MATEI, O.

    2008-04-01

    Full Text Available The quantity of thoracic radiographies in the medical field is ever growing. An automated system for segmenting the images would help doctors enormously. Some approaches are knowledge-based; therefore we propose here an ontology for this purpose. Thus it is machine oriented, rather than human-oriented. That is all the structures visible on a thoracic image are described from a technical point of view.

  20. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    Science.gov (United States)

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  1. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  2. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  3. Segmentation of multiple sclerosis lesions in MR images: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Daryoush; Kouzani, Abbas Z. [Deakin University, School of Engineering, Geelong, Victoria (Australia); Soltanian-Zadeh, Hamid [Henry Ford Health System, Image Analysis Laboratory, Radiology Department, Detroit, MI (United States); University of Tehran, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, Tehran (Iran, Islamic Republic of); School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2012-04-15

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  4. Segmentation of multiple sclerosis lesions in MR images: a review

    International Nuclear Information System (INIS)

    Mortazavi, Daryoush; Kouzani, Abbas Z.; Soltanian-Zadeh, Hamid

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease that the parts of the nervous system through the lesions generated in the white matter of the brain. It brings about disabilities in different organs of the body such as eyes and muscles. Early detection of MS and estimation of its progression are critical for optimal treatment of the disease. For diagnosis and treatment evaluation of MS lesions, they may be detected and segmented in Magnetic Resonance Imaging (MRI) scans of the brain. However, due to the large amount of MRI data to be analyzed, manual segmentation of the lesions by clinical experts translates into a very cumbersome and time consuming task. In addition, manual segmentation is subjective and prone to human errors. Several groups have developed computerized methods to detect and segment MS lesions. These methods are not categorized and compared in the past. This paper reviews and compares various MS lesion segmentation methods proposed in recent years. It covers conventional methods like multilevel thresholding and region growing, as well as more recent Bayesian methods that require parameter estimation algorithms. It also covers parameter estimation methods like expectation maximization and adaptive mixture model which are among unsupervised techniques as well as kNN and Parzen window methods that are among supervised techniques. Integration of knowledge-based methods such as atlas-based approaches with Bayesian methods increases segmentation accuracy. In addition, employing intelligent classifiers like Fuzzy C-Means, Fuzzy Inference Systems, and Artificial Neural Networks reduces misclassified voxels. (orig.)

  5. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images

    Directory of Open Access Journals (Sweden)

    David Vázquez

    2017-01-01

    Full Text Available Colorectal cancer (CRC is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs. We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.

  7. Deep convolutional networks for pancreas segmentation in CT imaging

    Science.gov (United States)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  8. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  9. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  10. A New Wavelet-Based Document Image Segmentation Scheme

    Institute of Scientific and Technical Information of China (English)

    赵健; 李道京; 俞卞章; 耿军平

    2002-01-01

    The document image segmentation is very useful for printing, faxing and data processing. An algorithm is developed for segmenting and classifying document image. Feature used for classification is based on the histogram distribution pattern of different image classes. The important attribute of the algorithm is using wavelet correlation image to enhance raw image's pattern, so the classification accuracy is improved. In this paper document image is divided into four types: background, photo, text and graph. Firstly, the document image background has been distingusished easily by former normally method; secondly, three image types will be distinguished by their typical histograms, in order to make histograms feature clearer, each resolution' s HH wavelet subimage is used to add to the raw image at their resolution. At last, the photo, text and praph have been devided according to how the feature fit to the Laplacian distrbution by -X2 and L. Simulations show that classification accuracy is significantly improved. The comparison with related shows that our algorithm provides both lower classification error rates and better visual results.

  11. Plantar fascia segmentation and thickness estimation in ultrasound images.

    Science.gov (United States)

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Interactive segmentation for geographic atrophy in retinal fundus images.

    Science.gov (United States)

    Lee, Noah; Smith, R Theodore; Laine, Andrew F

    2008-10-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12-21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of pathological images still remains an unsolved problem. In this paper we leverage the watershed transform and generalized non-linear gradient operators for interactive segmentation and present an intuitive and simple approach for geographic atrophy segmentation. We compare our approach with the state of the art random walker [5] algorithm for interactive segmentation using ROC statistics. Quantitative evaluation experiments on 100 FAF images show a mean sensitivity/specificity of 98.3/97.7% for our approach and a mean sensitivity/specificity of 88.2/96.6% for the random walker algorithm.

  13. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  14. Image segmentation for enhancing symbol recognition in prosthetic vision.

    Science.gov (United States)

    Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming

    2012-01-01

    Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.

  15. Unsupervised color image segmentation using a lattice algebra clustering technique

    Science.gov (United States)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  16. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  17. Level set method for image segmentation based on moment competition

    Science.gov (United States)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  18. Superiority Of Graph-Based Visual Saliency GVS Over Other Image Segmentation Methods

    Directory of Open Access Journals (Sweden)

    Umu Lamboi

    2017-02-01

    Full Text Available Although inherently tedious the segmentation of images and the evaluation of segmented images are critical in computer vision processes. One of the main challenges in image segmentation evaluation arises from the basic conflict between generality and objectivity. For general segmentation purposes the lack of well-defined ground-truth and segmentation accuracy limits the evaluation of specific applications. Subjectivity is the most common method of evaluation of segmentation quality where segmented images are visually compared. This is daunting task however limits the scope of segmentation evaluation to a few predetermined sets of images. As an alternative supervised evaluation compares segmented images against manually-segmented or pre-processed benchmark images. Not only good evaluation methods allow for different comparisons but also for integration with target recognition systems for adaptive selection of appropriate segmentation granularity with improved recognition accuracy. Most of the current segmentation methods still lack satisfactory measures of effectiveness. Thus this study proposed a supervised framework which uses visual saliency detection to quantitatively evaluate image segmentation quality. The new benchmark evaluator uses Graph-based Visual Saliency GVS to compare boundary outputs for manually segmented images. Using the Berkeley Segmentation Database the proposed algorithm was tested against 4 other quantitative evaluation methods Probabilistic Rand Index PRI Variation of Information VOI Global Consistency Error GSE and Boundary Detection Error BDE. Based on the results the GVS approach outperformed any of the other 4 independent standard methods in terms of visual saliency detection of images.

  19. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  20. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  1. Constrained Deep Weak Supervision for Histopathology Image Segmentation.

    Science.gov (United States)

    Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan

    2017-11-01

    In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

  2. GPU-based relative fuzzy connectedness image segmentation

    International Nuclear Information System (INIS)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ ∞ -based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  3. GPU-based relative fuzzy connectedness image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W. [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506 (United States) and Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  4. GPU-based relative fuzzy connectedness image segmentation.

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  5. GPU-based relative fuzzy connectedness image segmentation

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  6. Superpixel-based segmentation of glottal area from videolaryngoscopy images

    Science.gov (United States)

    Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail

    2017-11-01

    Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.

  7. Automatic tissue image segmentation based on image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  8. Image segmentation-based robust feature extraction for color image watermarking

    Science.gov (United States)

    Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen

    2018-04-01

    This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.

  9. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  10. Robust medical image segmentation for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Neufeld, E.; Chavannes, N.; Kuster, N.; Samaras, T.

    2005-01-01

    Full text: This work is part of an ongoing effort to develop a comprehensive hyperthermia treatment planning (HTP) tool. The goal is to unify all the steps necessary to perform treatment planning - from image segmentation to optimization of the energy deposition pattern - in a single tool. The bases of the HTP software are the routines and know-how developed in our TRINTY project that resulted the commercial EM platform SEMCAD-X. It incorporates the non-uniform finite-difference time-domain (FDTD) method, permitting the simulation of highly detailed models. Subsequently, in order to create highly resolved patient models, a powerful and robust segmentation tool is needed. A toolbox has been created that allows the flexible combination of various segmentation methods as well as several pre-and postprocessing functions. It works primarily with CT and MRI images, which it can read in various formats. A wide variety of segmentation methods has been implemented. This includes thresholding techniques (k-means classification, expectation maximization and modal histogram analysis for automatic threshold detection, multi-dimensional if required), region growing methods (with hysteretic behavior and simultaneous competitive growing), an interactive marker based watershed transformation, level-set methods (homogeneity and edge based, fast-marching), a flexible live-wire implementation as well as fuzzy connectedness. Due to the large number of tissues that need to be segmented for HTP, no methods that rely on prior knowledge have been implemented. Various edge extraction routines, distance transforms, smoothing techniques (convolutions, anisotropic diffusion, sigma filter...), connected component analysis, topologically flexible interpolation, image algebra and morphological operations are available. Moreover, contours or surfaces can be extracted, simplified and exported. Using these different techniques on several samples, the following conclusions have been drawn: Due to the

  11. STUDY OF IMAGE SEGMENTATION TECHNIQUES ON RETINAL IMAGES FOR HEALTH CARE MANAGEMENT WITH FAST COMPUTING

    Directory of Open Access Journals (Sweden)

    Srikanth Prabhu

    2012-02-01

    Full Text Available The role of segmentation in image processing is to separate foreground from background. In this process, the features become clearly visible when appropriate filters are applied on the image. In this paper emphasis has been laid on segmentation of biometric retinal images to filter out the vessels explicitly for evaluating the bifurcation points and features for diabetic retinopathy. Segmentation on images is performed by calculating ridges or morphology. Ridges are those areas in the images where there is sharp contrast in features. Morphology targets the features using structuring elements. Structuring elements are of different shapes like disk, line which is used for extracting features of those shapes. When segmentation was performed on retinal images problems were encountered during image pre-processing stage. Also edge detection techniques have been deployed to find out the contours of the retinal images. After the segmentation has been performed, it has been seen that artifacts of the retinal images have been minimal when ridge based segmentation technique was deployed. In the field of Health Care Management, image segmentation has an important role to play as it determines whether a person is normal or having any disease specially diabetes. During the process of segmentation, diseased features are classified as diseased one’s or artifacts. The problem comes when artifacts are classified as diseased ones. This results in misclassification which has been discussed in the analysis Section. We have achieved fast computing with better performance, in terms of speed for non-repeating features, when compared to repeating features.

  12. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  13. Asymmetric similarity-weighted ensembles for image segmentation

    DEFF Research Database (Denmark)

    Cheplygina, V.; Van Opbroek, A.; Ikram, M. A.

    2016-01-01

    Supervised classification is widely used for image segmentation. To work effectively, these techniques need large amounts of labeled training data, that is representative of the test data. Different patient groups, different scanners or different scanning protocols can lead to differences between...... the images, thus representative data might not be available. Transfer learning techniques can be used to account for these differences, thus taking advantage of all the available data acquired with different protocols. We investigate the use of classifier ensembles, where each classifier is weighted...... and the direction of measurement needs to be chosen carefully. We also show that a point set similarity measure is robust across different studies, and outperforms state-of-the-art results on a multi-center brain tissue segmentation task....

  14. Point based interactive image segmentation using multiquadrics splines

    Science.gov (United States)

    Meena, Sachin; Duraisamy, Prakash; Palniappan, Kannappan; Seetharaman, Guna

    2017-05-01

    Multiquadrics (MQ) are radial basis spline function that can provide an efficient interpolation of data points located in a high dimensional space. MQ were developed by Hardy to approximate geographical surfaces and terrain modelling. In this paper we frame the task of interactive image segmentation as a semi-supervised interpolation where an interpolating function learned from the user provided seed points is used to predict the labels of unlabeled pixel and the spline function used in the semi-supervised interpolation is MQ. This semi-supervised interpolation framework has a nice closed form solution which along with the fact that MQ is a radial basis spline function lead to a very fast interactive image segmentation process. Quantitative and qualitative results on the standard datasets show that MQ outperforms other regression based methods, GEBS, Ridge Regression and Logistic Regression, and popular methods like Graph Cut,4 Random Walk and Random Forest.6

  15. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  16. Fast Superpixel Segmentation Algorithm for PolSAR Images

    Directory of Open Access Journals (Sweden)

    Zhang Yue

    2017-10-01

    Full Text Available As a pre-processing technique, superpixel segmentation algorithms should be of high computational efficiency, accurate boundary adherence and regular shape in homogeneous regions. A fast superpixel segmentation algorithm based on Iterative Edge Refinement (IER has shown to be applicable on optical images. However, it is difficult to obtain the ideal results when IER is applied directly to PolSAR images due to the speckle noise and small or slim regions in PolSAR images. To address these problems, in this study, the unstable pixel set is initialized as all the pixels in the PolSAR image instead of the initial grid edge pixels. In the local relabeling of the unstable pixels, the fast revised Wishart distance is utilized instead of the Euclidean distance in CIELAB color space. Then, a post-processing procedure based on dissimilarity measure is empolyed to remove isolated small superpixels as well as to retain the strong point targets. Finally, extensive experiments based on a simulated image and a real-world PolSAR image from Airborne Synthetic Aperture Radar (AirSAR are conducted, showing that the proposed algorithm, compared with three state-of-the-art methods, performs better in terms of several commonly used evaluation criteria with high computational efficiency, accurate boundary adherence, and homogeneous regularity.

  17. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    Science.gov (United States)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  18. Interactive segmentation for geographic atrophy in retinal fundus images

    OpenAIRE

    Lee, Noah; Smith, R. Theodore; Laine, Andrew F.

    2008-01-01

    Fundus auto-fluorescence (FAF) imaging is a non-invasive technique for in vivo ophthalmoscopic inspection of age-related macular degeneration (AMD), the most common cause of blindness in developed countries. Geographic atrophy (GA) is an advanced form of AMD and accounts for 12–21% of severe visual loss in this disorder [3]. Automatic quantification of GA is important for determining disease progression and facilitating clinical diagnosis of AMD. The problem of automatic segmentation of patho...

  19. Deformable M-Reps for 3D Medical Image Segmentation

    Science.gov (United States)

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  20. Medical image segmentation by a constraint satisfaction neural network

    International Nuclear Information System (INIS)

    Chen, C.T.; Tsao, E.C.K.; Lin, W.C.

    1991-01-01

    This paper proposes a class of Constraint Satisfaction Neural Networks (CSNNs) for solving the problem of medical image segmentation which can be formulated as a Constraint Satisfaction Problem (CSP). A CSNN consists of a set of objects, a set of labels for each object, a collection of constraint relations linking the labels of neighboring objects, and a topological constraint describing the neighborhood relationship among various objects. Each label for a particular object indicates one possible interpretation for that object. The CSNN can be viewed as a collection of neurons that interconnect with each other. The connections and the topology of a CSNN are used to represent the constraints in a CSP. The mechanism of the neural network is to find a solution that satisfies all the constraints in order to achieve a global consistency. The final solution outlines segmented areas and simultaneously satisfies all the constraints. This technique has been applied to medical images and the results show that this CSNN method is a very promising approach for image segmentation

  1. A holistic image segmentation framework for cloud detection and extraction

    Science.gov (United States)

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  2. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    Science.gov (United States)

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    Science.gov (United States)

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  4. Model-based segmentation of short-axis MR cardiac images

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; Breeuwer, M.

    Reliable automatic segmentation of MR cardiac images is still an important problem in medical image processing. Although image data quality has improved considerably during the last years, this segmentation is still considered a difficult problem. Manual segmentation is hardly an option as this is

  5. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  6. Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation

    Directory of Open Access Journals (Sweden)

    Xionggang Tu

    2014-11-01

    Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.

  7. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  8. Characterisation and correction of signal fluctuations in successive acquisitions of microarray images

    Directory of Open Access Journals (Sweden)

    François Nicolas

    2009-03-01

    Full Text Available Abstract Background There are many sources of variation in dual labelled microarray experiments, including data acquisition and image processing. The final interpretation of experiments strongly relies on the accuracy of the measurement of the signal intensity. For low intensity spots in particular, accurately estimating gene expression variations remains a challenge as signal measurement is, in this case, highly subject to fluctuations. Results To evaluate the fluctuations in the fluorescence intensities of spots, we used series of successive scans, at the same settings, of whole genome arrays. We measured the decrease in fluorescence and we evaluated the influence of different parameters (PMT gain, resolution and chemistry of the slide on the signal variability, at the level of the array as a whole and by intensity interval. Moreover, we assessed the effect of averaging scans on the fluctuations. We found that the extent of photo-bleaching was low and we established that 1 the fluorescence fluctuation is linked to the resolution e.g. it depends on the number of pixels in the spot 2 the fluorescence fluctuation increases as the scanner voltage increases and, moreover, is higher for the red as opposed to the green fluorescence which can introduce bias in the analysis 3 the signal variability is linked to the intensity level, it is higher for low intensities 4 the heterogeneity of the spots and the variability of the signal and the intensity ratios decrease when two or three scans are averaged. Conclusion Protocols consisting of two scans, one at low and one at high PMT gains, or multiple scans (ten scans can introduce bias or be difficult to implement. We found that averaging two, or at most three, acquisitions of microarrays scanned at moderate photomultiplier settings (PMT gain is sufficient to significantly improve the accuracy (quality of the data and particularly those for spots having low intensities and we propose this as a general

  9. A new iterative triclass thresholding technique in image segmentation.

    Science.gov (United States)

    Cai, Hongmin; Yang, Zhong; Cao, Xinhua; Xia, Weiming; Xu, Xiaoyin

    2014-03-01

    We present a new method in image segmentation that is based on Otsu's method but iteratively searches for subregions of the image for segmentation, instead of treating the full image as a whole region for processing. The iterative method starts with Otsu's threshold and computes the mean values of the two classes as separated by the threshold. Based on the Otsu's threshold and the two mean values, the method separates the image into three classes instead of two as the standard Otsu's method does. The first two classes are determined as the foreground and background and they will not be processed further. The third class is denoted as a to-be-determined (TBD) region that is processed at next iteration. At the succeeding iteration, Otsu's method is applied on the TBD region to calculate a new threshold and two class means and the TBD region is again separated into three classes, namely, foreground, background, and a new TBD region, which by definition is smaller than the previous TBD regions. Then, the new TBD region is processed in the similar manner. The process stops when the Otsu's thresholds calculated between two iterations is less than a preset threshold. Then, all the intermediate foreground and background regions are, respectively, combined to create the final segmentation result. Tests on synthetic and real images showed that the new iterative method can achieve better performance than the standard Otsu's method in many challenging cases, such as identifying weak objects and revealing fine structures of complex objects while the added computational cost is minimal.

  10. Placental fetal stem segmentation in a sequence of histology images

    Science.gov (United States)

    Athavale, Prashant; Vese, Luminita A.

    2012-02-01

    Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an

  11. Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

    Directory of Open Access Journals (Sweden)

    Kazemi K

    2014-03-01

    Full Text Available Background: Accurate brain tissue segmentation from magnetic resonance (MR images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM, white matter (WM and cerebrospinal fluid (CSF is needed for the neuroimaging applications. Methods: In this paper, performance evaluation of three widely used brain segmentation software packages SPM8, FSL and Brainsuite is presented. Segmentation with SPM8 has been performed in three frameworks: i default segmentation, ii SPM8 New-segmentation and iii modified version using hidden Markov random field as implemented in SPM8-VBM toolbox. Results: The accuracy of the segmented GM, WM and CSF and the robustness of the tools against changes of image quality has been assessed using Brainweb simulated MR images and IBSR real MR images. The calculated similarity between the segmented tissues using different tools and corresponding ground truth shows variations in segmentation results. Conclusion: A few studies has investigated GM, WM and CSF segmentation. In these studies, the skull stripping and bias correction are performed separately and they just evaluated the segmentation. Thus, in this study, assessment of complete segmentation framework consisting of pre-processing and segmentation of these packages is performed. The obtained results can assist the users in choosing an appropriate segmentation software package for the neuroimaging application of interest.

  12. Segmenting overlapping nano-objects in atomic force microscopy image

    Science.gov (United States)

    Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko

    2018-01-01

    Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.

  13. Semantic Segmentation of Aerial Images with AN Ensemble of Cnns

    Science.gov (United States)

    Marmanis, D.; Wegner, J. D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U.

    2016-06-01

    This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architectures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution. We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

  14. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  15. Automatic airline baggage counting using 3D image segmentation

    Science.gov (United States)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  16. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images

    OpenAIRE

    Boix García, Macarena; Cantó Colomina, Begoña

    2013-01-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet...

  17. GLOBAL CLASSIFICATION OF DERMATITIS DISEASE WITH K-MEANS CLUSTERING IMAGE SEGMENTATION METHODS

    OpenAIRE

    Prafulla N. Aerkewar1 & Dr. G. H. Agrawal2

    2018-01-01

    The objective of this paper to presents a global technique for classification of different dermatitis disease lesions using the process of k-Means clustering image segmentation method. The word global is used such that the all dermatitis disease having skin lesion on body are classified in to four category using k-means image segmentation and nntool of Matlab. Through the image segmentation technique and nntool can be analyze and study the segmentation properties of skin lesions occurs in...

  18. Hybrid of Fuzzy Logic and Random Walker Method for Medical Image Segmentation

    OpenAIRE

    Jasdeep Kaur; Manish Mahajan

    2015-01-01

    The procedure of partitioning an image into various segments to reform an image into somewhat that is more significant and easier to analyze, defined as image segmentation. In real world applications, noisy images exits and there could be some measurement errors too. These factors affect the quality of segmentation, which is of major concern in medical fields where decisions about patients’ treatment are based on information extracted from radiological images. Several algorithms and technique...

  19. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research....

  20. Extended Multiscale Image Segmentation for Castellated Wall Management

    Science.gov (United States)

    Sakamoto, M.; Tsuguchi, M.; Chhatkuli, S.; Satoh, T.

    2018-05-01

    Castellated walls are positioned as tangible cultural heritage, which require regular maintenance to preserve their original state. For the demolition and repair work of the castellated wall, it is necessary to identify the individual stones constituting the wall. However, conventional approaches using laser scanning or integrated circuits (IC) tags were very time-consuming and cumbersome. Therefore, we herein propose an efficient approach for castellated wall management based on an extended multiscale image segmentation technique. In this approach, individual stone polygons are extracted from the castellated wall image and are associated with a stone management database. First, to improve the performance of the extraction of individual stone polygons having a convex shape, we developed a new shape criterion named convex hull fitness in the image segmentation process and confirmed its effectiveness. Next, we discussed the stone management database and its beneficial utilization in the repair work of castellated walls. Subsequently, we proposed irregular-shape indexes that are helpful for evaluating the stone shape and the stability of the stone arrangement state in castellated walls. Finally, we demonstrated an application of the proposed method for a typical castellated wall in Japan. Consequently, we confirmed that the stone polygons can be extracted with an acceptable level. Further, the condition of the shapes and the layout of the stones could be visually judged with the proposed irregular-shape indexes.

  1. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  2. A fuzzy Hopfield neural network for medical image segmentation

    International Nuclear Information System (INIS)

    Lin, J.S.; Cheng, K.S.; Mao, C.W.

    1996-01-01

    In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentation is chosen as the minimization of the Euclidean distance between samples to class centers. In order to generate feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function, which is formulated and based on a basic concept commonly used in pattern classification, called the within-class scatter matrix principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The fuzzy Hopfield neural network based on the within-class scatter matrix shows the promising results in comparison with the hard c-means method

  3. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    Science.gov (United States)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  4. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Niu, Sijie [School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yuan, Songtao; Fan, Wen, E-mail: fanwen1029@163.com; Liu, Qinghuai [Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-04-15

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  5. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    International Nuclear Information System (INIS)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai

    2016-01-01

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  6. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  7. Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation

    Science.gov (United States)

    Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting

    2014-12-01

    This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.

  8. Artificial immune kernel clustering network for unsupervised image segmentation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Licheng Jiao

    2008-01-01

    An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the support vector domain description (SVDD) for the unsupervised image segmentation. In the network, a new antibody neighborhood and an adaptive learning coefficient, which is inspired by the long-term memory in cerebral cortices are presented. Starting from IKCN algorithm, we divide the image feature sets into subsets by the antibodies, and then map each subset into a high dimensional feature space by a mercer kernel, where each antibody neighborhood is represented as a support vector hypersphere. The clustering results of the local support vector hyperspheres are combined to yield a global clustering solution by the minimal spanning tree (MST), where a predefined number of clustering is not needed. We compare the proposed methods with two common clustering algorithms for the artificial synthetic data set and several image data sets, including the synthetic texture images and the SAR images, and encouraging experimental results are obtained.

  9. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    Directory of Open Access Journals (Sweden)

    Su Luo

    2017-01-01

    Full Text Available Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology.

  10. Hyperspectral image segmentation of the common bile duct

    Science.gov (United States)

    Samarov, Daniel; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    Over the course of the last several years hyperspectral imaging (HSI) has seen increased usage in biomedicine. Within the medical field in particular HSI has been recognized as having the potential to make an immediate impact by reducing the risks and complications associated with laparotomies (surgical procedures involving large incisions into the abdominal wall) and related procedures. There are several ongoing studies focused on such applications. Hyperspectral images were acquired during pancreatoduodenectomies (commonly referred to as Whipple procedures), a surgical procedure done to remove cancerous tumors involving the pancreas and gallbladder. As a result of the complexity of the local anatomy, identifying where the common bile duct (CBD) is can be difficult, resulting in comparatively high incidents of injury to the CBD and associated complications. It is here that HSI has the potential to help reduce the risk of such events from happening. Because the bile contained within the CBD exhibits a unique spectral signature, we are able to utilize HSI segmentation algorithms to help in identifying where the CBD is. In the work presented here we discuss approaches to this segmentation problem and present the results.

  11. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Lopes Filho, Ferdinand J.; Vieira, Igor F.

    2014-01-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments

  12. Image segmentation of pyramid style identifier based on Support Vector Machine for colorectal endoscopic images.

    Science.gov (United States)

    Okamoto, Takumi; Koide, Tetsushi; Sugi, Koki; Shimizu, Tatsuya; Anh-Tuan Hoang; Tamaki, Toru; Raytchev, Bisser; Kaneda, Kazufumi; Kominami, Yoko; Yoshida, Shigeto; Mieno, Hiroshi; Tanaka, Shinji

    2015-08-01

    With the increase of colorectal cancer patients in recent years, the needs of quantitative evaluation of colorectal cancer are increased, and the computer-aided diagnosis (CAD) system which supports doctor's diagnosis is essential. In this paper, a hardware design of type identification module in CAD system for colorectal endoscopic images with narrow band imaging (NBI) magnification is proposed for real-time processing of full high definition image (1920 × 1080 pixel). A pyramid style image segmentation with SVMs for multi-size scan windows, which can be implemented on an FPGA with small circuit area and achieve high accuracy, is proposed for actual complex colorectal endoscopic images.

  13. Gravel Image Segmentation in Noisy Background Based on Partial Entropy Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In this paper, we develop a partial entropy method and succeed to realize gravel objects segmentation. We give entropy principles and fur calculation methods. Moreover, we use minimum entropy error automaticly to select a threshold to segment image. We introduce the filter method using mathematical morphology. The segment experiments are performed by using different window dimensions for a group of gravel image and demonstrates that this method has high segmentation rate and low noise sensitivity.

  14. Soft tissue segmentation and 3D display from computerized tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fan, R.T.; Trivedi, S.S.; Fellingham, L.L.; Gamboa-Aldeco, A.; Hedgcock, M.W.

    1987-01-01

    Volume calculation and 3D display of human anatomy facilitate a physician's diagnosis, treatment, and evaluation. Accurate segmentation of soft tissue structures is a prerequisite for such volume calculations and 3D displays, but segmentation by hand-outlining structures is often tedious and time-consuming. In this paper, methods based on analysis of statistics of image gray level are applied to segmentation of soft tissue in medical images, with the goal of making segmentation automatic or semi-automatic. The resulting segmented images, volume calculations, and 3D displays are analyzed and compared with results based on physician-drawn outlines as well as actual volume measurements

  15. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    Science.gov (United States)

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This

  16. X-ray image segmentation for vertebral mobility analysis

    International Nuclear Information System (INIS)

    Benjelloun, Mohammed; Mahmoudi, Said

    2008-01-01

    The goal of this work is to extract the parameters determining vertebral motion and its variation during flexion-extension movements using a computer vision tool for estimating and analyzing vertebral mobility. To compute vertebral body motion parameters we propose a comparative study between two segmentation methods proposed and applied to lateral X-ray images of the cervical spine. The two vertebra contour detection methods include (1) a discrete dynamic contour model (DDCM) and (2) a template matching process associated with a polar signature system. These two methods not only enable vertebra segmentation but also extract parameters that can be used to evaluate vertebral mobility. Lateral cervical spine views including 100 views in flexion, extension and neutral orientations were available for evaluation. Vertebral body motion was evaluated by human observers and using automatic methods. The results provided by the automated approaches were consistent with manual measures obtained by 15 human observers. The automated techniques provide acceptable results for the assessment of vertebral body mobility in flexion and extension on lateral views of the cervical spine. (orig.)

  17. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    Science.gov (United States)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  18. A spectral k-means approach to bright-field cell image segmentation.

    Science.gov (United States)

    Bradbury, Laura; Wan, Justin W L

    2010-01-01

    Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.

  19. Automatic segmentation of MR brain images with a convolutional neural network

    NARCIS (Netherlands)

    Moeskops, P.; Viergever, M.A.; Mendrik, A.M.; de Vries, L.S.; Benders, M.J.N.L.; Išgum, I.

    2016-01-01

    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure

  20. A kind of color image segmentation algorithm based on super-pixel and PCNN

    Science.gov (United States)

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  1. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling

    OpenAIRE

    Tong, Tong; Wolz, Robin; Coupe, Pierrick; Hajnal, Joseph V.; Rueckert, Daniel

    2013-01-01

    International audience; We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labe...

  2. Fat segmentation on chest CT images via fuzzy models

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Wu, Caiyun; Pednekar, Gargi; Subramanian, Janani Rajan; Lederer, David J.; Christie, Jason; Torigian, Drew A.

    2016-03-01

    Quantification of fat throughout the body is vital for the study of many diseases. In the thorax, it is important for lung transplant candidates since obesity and being underweight are contraindications to lung transplantation given their associations with increased mortality. Common approaches for thoracic fat segmentation are all interactive in nature, requiring significant manual effort to draw the interfaces between fat and muscle with low efficiency and questionable repeatability. The goal of this paper is to explore a practical way for the segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) components of chest fat based on a recently developed body-wide automatic anatomy recognition (AAR) methodology. The AAR approach involves 3 main steps: building a fuzzy anatomy model of the body region involving all its major representative objects, recognizing objects in any given test image, and delineating the objects. We made several modifications to these steps to develop an effective solution to delineate SAT/VAT components of fat. Two new objects representing interfaces of SAT and VAT regions with other tissues, SatIn and VatIn are defined, rather than using directly the SAT and VAT components as objects for constructing the models. A hierarchical arrangement of these new and other reference objects is built to facilitate their recognition in the hierarchical order. Subsequently, accurate delineations of the SAT/VAT components are derived from these objects. Unenhanced CT images from 40 lung transplant candidates were utilized in experimentally evaluating this new strategy. Mean object location error achieved was about 2 voxels and delineation error in terms of false positive and false negative volume fractions were, respectively, 0.07 and 0.1 for SAT and 0.04 and 0.2 for VAT.

  3. SUPERVISED AUTOMATIC HISTOGRAM CLUSTERING AND WATERSHED SEGMENTATION. APPLICATION TO MICROSCOPIC MEDICAL COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Olivier Lezoray

    2011-05-01

    Full Text Available In this paper, an approach to the segmentation of microscopic color images is addressed, and applied to medical images. The approach combines a clustering method and a region growing method. Each color plane is segmented independently relying on a watershed based clustering of the plane histogram. The marginal segmentation maps intersect in a label concordance map. The latter map is simplified based on the assumption that the color planes are correlated. This produces a simplified label concordance map containing labeled and unlabeled pixels. The formers are used as an image of seeds for a color watershed. This fast and robust segmentation scheme is applied to several types of medical images.

  4. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    International Nuclear Information System (INIS)

    Benkirane, A.; Auger, G.; Chbihi, A.; Bloyet, D.; Plagnol, E.

    1994-01-01

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ''classical'' automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append

  5. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Benkirane, A; Auger, G; Chbihi, A [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Bloyet, D [Caen Univ., 14 (France); Plagnol, E [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1994-12-31

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ``classical`` automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append.

  6. A segmentation algorithm based on image projection for complex text layout

    Science.gov (United States)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  7. Reasonable threshold value used to segment the individual comet from the comet assay image

    International Nuclear Information System (INIS)

    Yan Xuekun; Chen Ying; Du Jie; Zhang Xueqing; Luo Yisheng

    2009-01-01

    Reasonable segmentation of the individual comet contour from the Comet Assay (CA) images is the precondition for all of parameters analysis during the automatic analyzing for the CA. The Otsu method and several arithmetic operators for image segmentation, such as Sobel, Prewitt, Roberts and Canny were used to segment the comet contour, and characters of the CA images were analyzed firstly. And then the segmentation methods which had been adopted in the software for CA automatic analysis, such as the CASP, the TriTek CometScore TM , were put for-ward and compared. At last, a two-step procedure for threshold calculation based on image-content analysis is adopted to segment the individual comet from the CA images, and several principles for the segmentation are put forward too.(authors)

  8. Region-based Image Segmentation by Watershed Partition and DCT Energy Compaction

    Directory of Open Access Journals (Sweden)

    Chi-Man Pun

    2012-02-01

    Full Text Available An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in order to partition the image in to several small disjoint patches, while the region size, mean and variance features are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for energy compaction which is a criterion for texture comparison and region merging. Finally the image can be segmented into several partitions. The experimental results show that the proposed approach achieved very good segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and human segmentation results.

  9. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Science.gov (United States)

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  10. Minimizing manual image segmentation turn-around time for neuronal reconstruction by embracing uncertainty.

    Directory of Open Access Journals (Sweden)

    Stephen M Plaza

    Full Text Available The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary. Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation to the most uncertain parts of segmentation. Our contributions include 1 a probabilistic measure that evaluates segmentation without ground truth and 2 a methodology that leverages these probabilistic measures to significantly reduce manual correction while maintaining segmentation quality.

  11. [Application of GVF snake model in segmentation of whole body bone SPECT image].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2008-02-01

    Limited by the imaging principle of whole body bone SPECT image, the gray value of bladder area is quite high, which affects the image's brightness, contrast and readability. In the meantime, the similarity between bladder area and focus makes it difficult for some images to be segmented automatically. In this paper, an improved Snake model, GVF Snake, is adopted to automatically segment bladder area, preparing for further processing of whole body bone SPECT images.

  12. Multi-focus Image Fusion Using Epifluorescence Microscopy for Robust Vascular Segmentation

    OpenAIRE

    Pelapur, Rengarajan; Prasath, Surya; Palaniappan, Kannappan

    2014-01-01

    We are building a computerized image analysis system for Dura Mater vascular network from fluorescence microscopy images. We propose a system that couples a multi-focus image fusion module with a robust adaptive filtering based segmentation. The robust adaptive filtering scheme handles noise without destroying small structures, and the multi focal image fusion considerably improves the overall segmentation quality by integrating information from multiple images. Based on the segmenta...

  13. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    International Nuclear Information System (INIS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-01-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback–Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data. (paper)

  14. SEMANTIC BUILDING FAÇADE SEGMENTATION FROM AIRBORNE OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-05-01

    Full Text Available With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF, capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  15. Semantic Building FAÇADE Segmentation from Airborne Oblique Images

    Science.gov (United States)

    Lin, Y.; Nex, F.; Yang, M. Y.

    2018-05-01

    With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  16. Anatomy-based automatic detection and segmentation of major vessels in thoracic CTA images

    International Nuclear Information System (INIS)

    Zou Xiaotao; Liang Jianming; Wolf, M.; Salganicoff, M.; Krishnan, A.; Nadich, D.P.

    2007-01-01

    Existing approaches for automated computerized detection of pulmonary embolism (PE) using computed tomography angiography (CTA) usually focus on segmental and sub-segmental emboli. The goal of our current research is to extend our existing approach to automated detection of central PE. In order to detect central emboli, the major vessels must be first identified and segmented automatically. This submission presents an anatomy-based method for automatic computerized detection and segmentation of aortas and main pulmonary arteries in CTA images. (orig.)

  17. HARDWARE REALIZATION OF CANNY EDGE DETECTION ALGORITHM FOR UNDERWATER IMAGE SEGMENTATION USING FIELD PROGRAMMABLE GATE ARRAYS

    Directory of Open Access Journals (Sweden)

    ALEX RAJ S. M.

    2017-09-01

    Full Text Available Underwater images raise new challenges in the field of digital image processing technology in recent years because of its widespread applications. There are many tangled matters to be considered in processing of images collected from water medium due to the adverse effects imposed by the environment itself. Image segmentation is preferred as basal stage of many digital image processing techniques which distinguish multiple segments in an image and reveal the hidden crucial information required for a peculiar application. There are so many general purpose algorithms and techniques that have been developed for image segmentation. Discontinuity based segmentation are most promising approach for image segmentation, in which Canny Edge detection based segmentation is more preferred for its high level of noise immunity and ability to tackle underwater environment. Since dealing with real time underwater image segmentation algorithm, which is computationally complex enough, an efficient hardware implementation is to be considered. The FPGA based realization of the referred segmentation algorithm is presented in this paper.

  18. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  19. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    Science.gov (United States)

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  20. Segmentation of isolated MR images: development and comparison of neuronal networks

    International Nuclear Information System (INIS)

    Paredes, R.; Robles, M.; Marti-Bonmati, L.; Masia, L.

    1998-01-01

    Segmentation defines the capacity to differentiate among types of tissues. In MR. it is frequently applied to volumetric determinations. Digital images can be segmented in a number of ways; neuronal networks (NN) can be employed for this purpose. Our objective was to develop algorithms for automatic segmentation using NN and apply them to central nervous system MR images. The segmentation obtained with NN was compared with that resulting from other procedures (region-growing and K means). Each NN consisted of two layers: one based on unsupervised training, which was utilized for image segmentation in sets of K, and a second layer associating each set obtained by the preceding layer with the real set corresponding to the previously segmented objective image. This NN was trained with previously segmented images with supervised regions-growing algorithms and automatic K means. Thus, 4 different segmentation were obtained: region-growing, K means, NN with region-growing and NN with K means. The tissue volumes corresponding to cerebrospinal fluid, gray matter and white matter obtained with the 4 techniques were compared and the most representative segmented image was selected qualitatively by averaging the visual perception of 3 radiologists. The segmentation that best corresponded to the visual perception of the radiologists was that consisting of trained NN with region-growing. In comparison, the other 3 algorithms presented low percentage differences (mean, 3.44%). The mean percentage error for the 3 tissues from these algorithms was lower for region-growing segmentation (2.34%) than for trained NN with K means (3.31%) and for automatic K-means segmentation (4.66%). Thus, NN are reliable in the automation of isolated MR image segmentation. (Author) 12 refs

  1. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  2. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    International Nuclear Information System (INIS)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Chen, Ken Chung; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Shen, Dinggang

    2014-01-01

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  3. Artificial neural net system for interactive tissue classification with MR imaging and image segmentation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Silbiger, M.; Naylor, C.; Brown, K.

    1990-01-01

    This paper reports on the development of interactive methods for MR tissue classification that permit mathematically rigorous methods for three-dimensional image segmentation and automatic organ/tumor contouring, as required for surgical and RTP planning. The authors investigate a number of image-intensity based tissue- classification methods that make no implicit assumptions on the MR parameters and hence are not limited by image data set. Similarly, we have trained artificial neural net (ANN) systems for both supervised and unsupervised tissue classification

  4. An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images.

    Science.gov (United States)

    Cavalcanti, Pablo G; Scharcanski, Jacob; Di Persia, Leandro E; Milone, Diego H

    2011-01-01

    Segmentation is an important step in computer-aided diagnostic systems for pigmented skin lesions, since that a good definition of the lesion area and its boundary at the image is very important to distinguish benign from malignant cases. In this paper a new skin lesion segmentation method is proposed. This method uses Independent Component Analysis to locate skin lesions in the image, and this location information is further refined by a Level-set segmentation method. Our method was evaluated in 141 images and achieved an average segmentation error of 16.55%, lower than the results for comparable state-of-the-art methods proposed in literature.

  5. DSCImageCalc – Software for Determining Similarity Coefficients for the Analysis of Image Segmentations

    Directory of Open Access Journals (Sweden)

    Tom Lawton

    2017-10-01

    Full Text Available DSCImageCalc is free software for calculating similarity coefficients on segmented images. It is written in Visual BASIC .NET and is available at: https://doi.org/10.6084/m9.figshare.894428. It presently calculates Sørensen-Dice Coefficient, Jaccard Coefficient, Proportional Agreement, Cohen’s Kappa, Goodman & Kruskal’s Gamma, and Rogot-Goldberg Agreement. It also calculates segment centroids and the distance between them. Whilst it was originally designed for calculating Dice coefficients on segmentations of ultrasound images, it has potential for re-use in any field where similarity of image segments is to be analysed; predominantly medical radiology and ecology.

  6. A Nash-game approach to joint image restoration and segmentation

    OpenAIRE

    Kallel , Moez; Aboulaich , Rajae; Habbal , Abderrahmane; Moakher , Maher

    2014-01-01

    International audience; We propose a game theory approach to simultaneously restore and segment noisy images. We define two players: one is restoration, with the image intensity as strategy, and the other is segmentation with contours as strategy. Cost functions are the classical relevant ones for restoration and segmentation, respectively. The two players play a static game with complete information, and we consider as solution to the game the so-called Nash Equilibrium. For the computation ...

  7. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    Science.gov (United States)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  8. Texture Segmentation Based on Wavelet and Kohonen Network for Remotely Sensed Images

    NARCIS (Netherlands)

    Chen, Z.; Feng, T.J.; Feng, T.J.; Houkes, Z.

    1999-01-01

    In this paper, an approach based on wavelet decomposition and Kohonen's self-organizing map is developed for image segmentation. After performing the 2D wavelet transform of image, some features are extracted for texture segmentation, and the Kohonen neural network is used to accomplish feature

  9. SEGMENTING RETAIL MARKETS ON STORE IMAGE USING A CONSUMER-BASED METHODOLOGY

    NARCIS (Netherlands)

    STEENKAMP, JBEM; WEDEL, M

    1991-01-01

    Various approaches to segmenting retail markets based on store image are reviewed, including methods that have not yet been applied to retailing problems. It is argued that a recently developed segmentation technique, fuzzy clusterwise regression analysis (FCR), holds high potential for store-image

  10. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  11. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  12. A general system for automatic biomedical image segmentation using intensity neighborhoods.

    Science.gov (United States)

    Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K

    2011-01-01

    Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  13. Unsupervised segmentation of medical image based on difference of mutual information

    Institute of Scientific and Technical Information of China (English)

    L(U) Qingwen; CHEN Wufan

    2006-01-01

    In the scope of medical image processing, segmentation is important and difficult. There are still two problems which trouble us in this field. One is how to determine the number of clusters in an image and the other is how to segment medical images containing lesions. A new segmentation method called DDC, based on difference of mutual information (dMI) and pixon, is proposed in this paper. Experiments demonstrate that dMI shows one kind of intrinsic relationship between the segmented image and the original one and so it can be used to well determine the number of clusters. Furthermore, multi-modality medical images with lesions can be automatically and successfully segmented by DDC method.

  14. A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2011-01-01

    Full Text Available Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  15. Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching

    Directory of Open Access Journals (Sweden)

    Ward Kevin R

    2009-11-01

    Full Text Available Abstract Background Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI. Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information. Methods First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM and Maximum A Posteriori Spatial Probability (MASP are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases. Results Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images. Conclusion The experiments show the reliability of the proposed algorithms. The

  16. Image Segmentation of Cattle Muzzle Using Region Merging Statistical Technic

    Directory of Open Access Journals (Sweden)

    Jullend Gatc

    2015-12-01

    Full Text Available Making an identification system that able to assist in obtaining, recording and organizing information is the first step in developing any kind of recording system. Nowadays, many recording systems were developed with artificial markers although it has been proved that it has many limitations. Biometrics use of animals provides a solution to these restrictions. On a cattle, biometric features contained in the cattle muzzle that can be used as a pattern recognition sample. Pattern recognition methods can be used for the development of cattle identification system utilizing biometric found on the cattle muzzle using digital image processing techniques. In this study, we proposed cattle muzzle identification method using segmentation Statistical Region Merging (SRM. This method aims to identify specific patterns found on the cattle muzzle by separating the object pattern (foreground from unnecessary information (background This method is able to identified individual cattle based on the pattern of it muzzle. Based on our evaluation, this method can provide good performance results. This method good performance can be seen from the precision and recall : 87% and the value of ROC : 0.976. Hopefully this research can be used to help identify cattle accurately on the recording process.

  17. High intensity region segmentation in MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Rodrigo, F; Filipuzzi, M; Graffigna, J P; Isoardi, R; Noceti, M

    2013-01-01

    Numerous pathologies are often manifest in Magnetic Resonance Imaging (MRI) as hyperintense or bright regions as compared to normal tissue. It is of particular interest to develop an algorithm to detect, identify and define those Regions of Interest (ROI) when analyzing MRI studies, particularly for lesions of Multiple Sclerosis (MS). The objective of this study is to analyze those parameters which optimize segmentation of the areas of interest. To establish which areas should be considered as hyperintense regions, we developed a database (DB), with studies of patients diagnosed with MS. This disease causes axonal demyelination and it is expressed as bright regions in PD, T2 and FLAIR MRI sequences. Thus, with more than 4300 hyperintense regions validated by an expert physician, an algorithm was developed to detect such spots, approximating the results the expert obtained. Alongside these hyperintense lesion regions, it also detected bone regions with high intensity levels, similar to the intensity of the lesions, but with other features that allow a good differentiation.The algorithm will then detect ROIs with similar intensity levels and performs classification through data mining techniques

  18. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  19. High-speed MRF-based segmentation algorithm using pixonal images

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Hassanpour, H.; Naimi, H. M.

    2013-01-01

    Segmentation is one of the most complicated procedures in the image processing that has important role in the image analysis. In this paper, an improved pixon-based method for image segmentation is proposed. In proposed algorithm, complex partial differential equations (PDEs) is used as a kernel...... function to make pixonal image. Using this kernel function causes noise on images to reduce and an image not to be over-segment when the pixon-based method is used. Utilising the PDE-based method leads to elimination of some unnecessary details and results in a fewer pixon number, faster performance...... and more robustness against unwanted environmental noises. As the next step, the appropriate pixons are extracted and eventually, we segment the image with the use of a Markov random field. The experimental results indicate that the proposed pixon-based approach has a reduced computational load...

  20. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  1. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  2. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    Science.gov (United States)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  3. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    Science.gov (United States)

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.

    Science.gov (United States)

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Hariri, Amirhossein; Wu, Xiaodong; Sadda, Srinivas R

    2013-12-30

    Geographic atrophy (GA) is the atrophic late-stage manifestation of age-related macular degeneration (AMD), which may result in severe vision loss and blindness. The purpose of this study was to develop a reliable, effective approach for GA segmentation in both spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images using a level set-based approach and to compare the segmentation performance in the two modalities. To identify GA regions in SD-OCT images, three retinal surfaces were first segmented in volumetric SD-OCT images using a double-surface graph search scheme. A two-dimensional (2-D) partial OCT projection image was created from the segmented choroid layer. A level set approach was applied to segment the GA in the partial OCT projection image. In addition, the algorithm was applied to FAF images for the GA segmentation. Twenty randomly chosen macular SD-OCT (Zeiss Cirrus) volumes and 20 corresponding FAF (Heidelberg Spectralis) images were obtained from 20 subjects with GA. The algorithm-defined GA region was compared with consensus manual delineation performed by certified graders. The mean Dice similarity coefficients (DSC) between the algorithm- and manually defined GA regions were 0.87 ± 0.09 in partial OCT projection images and 0.89 ± 0.07 in registered FAF images. The area correlations between them were 0.93 (P segment GA regions in both SD-OCT and FAF images. This approach demonstrated good agreement between the algorithm- and manually defined GA regions within each single modality. The GA segmentation in FAF images performed better than in partial OCT projection images. Across the two modalities, the GA segmentation presented reasonable agreement.

  5. Automated choroid segmentation based on gradual intensity distance in HD-OCT images.

    Science.gov (United States)

    Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao

    2015-04-06

    The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.

  6. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    Science.gov (United States)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  7. Medical Image Segmentation for Mobile Electronic Patient Charts Using Numerical Modeling of IoT

    Directory of Open Access Journals (Sweden)

    Seung-Hoon Chae

    2014-01-01

    Full Text Available Internet of Things (IoT brings telemedicine a new chance. This enables the specialist to consult the patient’s condition despite the fact that they are in different places. Medical image segmentation is needed for analysis, storage, and protection of medical image in telemedicine. Therefore, a variety of methods have been researched for fast and accurate medical image segmentation. Performing segmentation in various organs, the accurate judgment of the region is needed in medical image. However, the removal of region occurs by the lack of information to determine the region in a small region. In this paper, we researched how to reconstruct segmentation region in a small region in order to improve the segmentation results. We generated predicted segmentation of slices using volume data with linear equation and proposed improvement method for small regions using the predicted segmentation. In order to verify the performance of the proposed method, lung region by chest CT images was segmented. As a result of experiments, volume data segmentation accuracy rose from 0.978 to 0.981 and from 0.281 to 0.187 with a standard deviation improvement confirmed.

  8. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  9. An embedded system for image segmentation and multimodal registration in noninvasive skin cancer screening.

    Science.gov (United States)

    Diaz, Silvana; Soto, Javier E; Inostroza, Fabian; Godoy, Sebastian E; Figueroa, Miguel

    2017-07-01

    We present a heterogeneous architecture for image registration and multimodal segmentation on an embedded system for noninvasive skin cancer screening. The architecture combines Otsu thresholding and the random walker algorithm to perform image segmentation, and features a hardware implementation of the Harris corner detection algorithm to perform region-of-interest detection and image registration. Running on a Xilinx XC7Z020 reconfigurable system-on-a-chip, our prototype computes the initial segmentation of a 400×400-pixel region of interest in the visible spectrum in 12.1 seconds, and registers infrared images against this region at 540 frames per second, while consuming 1.9W.

  10. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  11. Statistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal \\ud microscopy images

    OpenAIRE

    Histace, A; Meziou, B J; Matuszewski, Bogdan; Precioso, F; Murphy, M F; Carreiras, F

    2013-01-01

    We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and s...

  12. A Novel Segmentation Approach Combining Region- and Edge-Based Information for Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Yaozhong Luo

    2017-01-01

    Full Text Available Ultrasound imaging has become one of the most popular medical imaging modalities with numerous diagnostic applications. However, ultrasound (US image segmentation, which is the essential process for further analysis, is a challenging task due to the poor image quality. In this paper, we propose a new segmentation scheme to combine both region- and edge-based information into the robust graph-based (RGB segmentation method. The only interaction required is to select two diagonal points to determine a region of interest (ROI on the original image. The ROI image is smoothed by a bilateral filter and then contrast-enhanced by histogram equalization. Then, the enhanced image is filtered by pyramid mean shift to improve homogeneity. With the optimization of particle swarm optimization (PSO algorithm, the RGB segmentation method is performed to segment the filtered image. The segmentation results of our method have been compared with the corresponding results obtained by three existing approaches, and four metrics have been used to measure the segmentation performance. The experimental results show that the method achieves the best overall performance and gets the lowest ARE (10.77%, the second highest TPVF (85.34%, and the second lowest FPVF (4.48%.

  13. Method of image segmentation using a neural network. Application to MR imaging of brain tumors

    International Nuclear Information System (INIS)

    Engler, E.; Gautherie, M.

    1992-01-01

    An original method of numerical images segmentation has been developed. This method is based on pixel clustering using a formal neural network configurated by supervised learning of pre-classified examples. The method has been applied to series of MR images of brain tumors (gliomas) with a view to proceed with a 3D-extraction of the tumor volume. This study is part of a project on cancer thermotherapy including the development of a scan-focused ultrasound system of tumor heating and a 3D-numerical thermal model

  14. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Directory of Open Access Journals (Sweden)

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  15. [Segmentation of whole body bone SPECT image based on BP neural network].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; He, Yuanlie; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-10-01

    In this paper, BP neural network is used to segment whole body bone SPECT image so that the lesion area can be recognized automatically. For the uncertain characteristics of SPECT images, it is hard to achieve good segmentation result if only the BP neural network is employed. Therefore, the segmentation process is divided into three steps: first, the optimal gray threshold segmentation method is employed for preprocessing, then BP neural network is used to roughly identify the lesions, and finally template match method and symmetry-removing program are adopted to delete the wrongly recognized areas.

  16. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  17. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  18. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  19. Iris recognition: on the segmentation of degraded images acquired in the visible wavelength.

    Science.gov (United States)

    Proença, Hugo

    2010-08-01

    Iris recognition imaging constraints are receiving increasing attention. There are several proposals to develop systems that operate in the visible wavelength and in less constrained environments. These imaging conditions engender acquired noisy artifacts that lead to severely degraded images, making iris segmentation a major issue. Having observed that existing iris segmentation methods tend to fail in these challenging conditions, we present a segmentation method that can handle degraded images acquired in less constrained conditions. We offer the following contributions: 1) to consider the sclera the most easily distinguishable part of the eye in degraded images, 2) to propose a new type of feature that measures the proportion of sclera in each direction and is fundamental in segmenting the iris, and 3) to run the entire procedure in deterministically linear time in respect to the size of the image, making the procedure suitable for real-time applications.

  20. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  1. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  2. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge; Segmentation et recalage d`images echographiques par utilisation de connaissances physiologiques et morphologiques

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, G

    1998-12-04

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  3. 3D segmentation of scintigraphic images with validation on realistic GATE simulations

    International Nuclear Information System (INIS)

    Burg, Samuel

    2011-01-01

    The objective of this thesis was to propose a new 3D segmentation method for scintigraphic imaging. The first part of the work was to simulate 3D volumes with known ground truth in order to validate a segmentation method over other. Monte-Carlo simulations were performed using the GATE software (Geant4 Application for Emission Tomography). For this, we characterized and modeled the gamma camera 'γ Imager' Biospace"T"M by comparing each measurement from a simulated acquisition to his real equivalent. The 'low level' segmentation tool that we have developed is based on a modeling of the levels of the image by probabilistic mixtures. Parameters estimation is done by an SEM algorithm (Stochastic Expectation Maximization). The 3D volume segmentation is achieved by an ICM algorithm (Iterative Conditional Mode). We compared the segmentation based on Gaussian and Poisson mixtures to segmentation by thresholding on the simulated volumes. This showed the relevance of the segmentations obtained using probabilistic mixtures, especially those obtained with Poisson mixtures. Those one has been used to segment real "1"8FDG PET images of the brain and to compute descriptive statistics of the different tissues. In order to obtain a 'high level' segmentation method and find anatomical structures (necrotic part or active part of a tumor, for example), we proposed a process based on the point processes formalism. A feasibility study has yielded very encouraging results. (author) [fr

  4. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  5. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7513 (United States); Chen, Ken-Chung; Tang, Zhen [Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030 (United States); Xia, James J., E-mail: dgshen@med.unc.edu, E-mail: JXia@HoustonMethodist.org [Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu, E-mail: JXia@HoustonMethodist.org [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7513 and Department of Brain and Cognitive Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-01-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimate the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method

  6. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    International Nuclear Information System (INIS)

    Wang, Li; Gao, Yaozong; Shi, Feng; Li, Gang; Chen, Ken-Chung; Tang, Zhen; Xia, James J.; Shen, Dinggang

    2016-01-01

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimate the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method

  7. A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2012-10-01

    Full Text Available Abstract Background Computer-assisted surgical navigation aims to provide surgeons with anatomical target localization and critical structure observation, where medical image processing methods such as segmentation, registration and visualization play a critical role. Percutaneous renal intervention plays an important role in several minimally-invasive surgeries of kidney, such as Percutaneous Nephrolithotomy (PCNL and Radio-Frequency Ablation (RFA of kidney tumors, which refers to a surgical procedure where access to a target inside the kidney by a needle puncture of the skin. Thus, kidney segmentation is a key step in developing any ultrasound-based computer-aided diagnosis systems for percutaneous renal intervention. Methods In this paper, we proposed a novel framework for kidney segmentation of ultrasound (US images combined with nonlocal total variation (NLTV image denoising, distance regularized level set evolution (DRLSE and shape prior. Firstly, a denoised US image was obtained by NLTV image denoising. Secondly, DRLSE was applied in the kidney segmentation to get binary image. In this case, black and white region represented the kidney and the background respectively. The last stage is that the shape prior was applied to get a shape with the smooth boundary from the kidney shape space, which was used to optimize the segmentation result of the second step. The alignment model was used occasionally to enlarge the shape space in order to increase segmentation accuracy. Experimental results on both synthetic images and US data are given to demonstrate the effectiveness and accuracy of the proposed algorithm. Results We applied our segmentation framework on synthetic and real US images to demonstrate the better segmentation results of our method. From the qualitative results, the experiment results show that the segmentation results are much closer to the manual segmentations. The sensitivity (SN, specificity (SP and positive predictive value

  8. Breast Cancer Image Segmentation Using K-Means Clustering Based on GPU Cuda Parallel Computing

    Directory of Open Access Journals (Sweden)

    Andika Elok Amalia

    2018-02-01

    Full Text Available Image processing technology is now widely used in the health area, one example is to help the radiologist to analyze the result of MRI (Magnetic Resonance Imaging, CT Scan and Mammography. Image segmentation is a process which is intended to obtain the objects contained in the image by dividing the image into several areas that have similarity attributes on an object with the aim of facilitating the analysis process. The increasing amount  of patient data and larger image size are new challenges in segmentation process to use time efficiently while still keeping the process quality. Research on the segmentation of medical images have been done but still few that combine with parallel computing. In this research, K-Means clustering on the image of mammography result is implemented using two-way computation which are serial and parallel. The result shows that parallel computing  gives faster average performance execution up to twofold.

  9. Snake Model Based on Improved Genetic Algorithm in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mingying Zhang

    2016-12-01

    Full Text Available Automatic fingerprint identification technology is a quite mature research field in biometric identification technology. As the preprocessing step in fingerprint identification, fingerprint segmentation can improve the accuracy of fingerprint feature extraction, and also reduce the time of fingerprint preprocessing, which has a great significance in improving the performance of the whole system. Based on the analysis of the commonly used methods of fingerprint segmentation, the existing segmentation algorithm is improved in this paper. The snake model is used to segment the fingerprint image. Additionally, it is improved by using the global optimization of the improved genetic algorithm. Experimental results show that the algorithm has obvious advantages both in the speed of image segmentation and in the segmentation effect.

  10. Semi-automatic watershed medical image segmentation methods for customized cancer radiation treatment planning simulation

    International Nuclear Information System (INIS)

    Kum Oyeon; Kim Hye Kyung; Max, N.

    2007-01-01

    A cancer radiation treatment planning simulation requires image segmentation to define the gross tumor volume, clinical target volume, and planning target volume. Manual segmentation, which is usual in clinical settings, depends on the operator's experience and may, in addition, change for every trial by the same operator. To overcome this difficulty, we developed semi-automatic watershed medical image segmentation tools using both the top-down watershed algorithm in the insight segmentation and registration toolkit (ITK) and Vincent-Soille's bottom-up watershed algorithm with region merging. We applied our algorithms to segment two- and three-dimensional head phantom CT data and to find pixel (or voxel) numbers for each segmented area, which are needed for radiation treatment optimization. A semi-automatic method is useful to avoid errors incurred by both human and machine sources, and provide clear and visible information for pedagogical purpose. (orig.)

  11. heuristically improved bayesian segmentation of brain mr images

    African Journals Online (AJOL)

    Brainweb as a simulated brain MRI dataset is used in evaluating the proposed algorithm. ..... neighboring system can improve the segmentation power of the algorithm. ... tuning and learning of fuzzy knowledge bases, World Scientific. Pub Co ...

  12. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    Science.gov (United States)

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2017-04-01

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization

    Science.gov (United States)

    Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li

    2018-04-01

    Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.

  14. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    segmental branches, and longitudinal matching of airway branches in repeated scans of the same subject. Methods and Materials: The segmentation process begins from an automatically detected seed point in the trachea. The airway centerline tree is then constructed by iteratively adding locally optimal paths...... differences. Results: The segmentation method has been used on 9711 low dose CT images from the Danish Lung Cancer Screening Trial (DLCST). Manual inspection of thumbnail images revealed gross errors in a total of 44 images. 29 were missing branches at the lobar level and only 15 had obvious false positives...... measurements to segments matched in multiple images of the same subject using image registration was observed to increase their reproducibility. The anatomical branch labeling tool was validated on a subset of 20 subjects, 5 of each category: asymptomatic, mild, moderate and severe COPD. The average inter...

  15. Efficient Active Contour and K-Means Algorithms in Image Segmentation

    Directory of Open Access Journals (Sweden)

    J.R. Rommelse

    2004-01-01

    Full Text Available In this paper we discuss a classic clustering algorithm that can be used to segment images and a recently developed active contour image segmentation model. We propose integrating aspects of the classic algorithm to improve the active contour model. For the resulting CVK and B-means segmentation algorithms we examine methods to decrease the size of the image domain. The CVK method has been implemented to run on parallel and distributed computers. By changing the order of updating the pixels, it was possible to replace synchronous communication with asynchronous communication and subsequently the parallel efficiency is improved.

  16. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.

    Science.gov (United States)

    Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A

    2011-01-01

    Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.

  17. Multi-scale image segmentation method with visual saliency constraints and its application

    Science.gov (United States)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works

  18. A Novel Approach of Cardiac Segmentation In CT Image Based On Spline Interpolation

    International Nuclear Information System (INIS)

    Gao Yuan; Ma Pengcheng

    2011-01-01

    Organ segmentation in CT images is the basis of organ model reconstruction, thus precisely detecting and extracting the organ boundary are keys for reconstruction. In CT image the cardiac are often adjacent to the surrounding tissues and gray gradient between them is too slight, which cause the difficulty of applying classical segmentation method. We proposed a novel algorithm for cardiac segmentation in CT images in this paper, which combines the gray gradient methods and the B-spline interpolation. This algorithm can perfectly detect the boundaries of cardiac, at the same time it could well keep the timeliness because of the automatic processing.

  19. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  20. Concealed object segmentation and three-dimensional localization with passive millimeter-wave imaging

    Science.gov (United States)

    Yeom, Seokwon

    2013-05-01

    Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.

  1. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm

    DEFF Research Database (Denmark)

    Letteboer, Marloes M J; Olsen, Ole F; Dam, Erik B

    2004-01-01

    RATIONALE AND OBJECTIVE: This article presents the evaluation of an interactive multiscale watershed segmentation algorithm for segmenting tumors in magnetic resonance brain images of patients scheduled for neuronavigational procedures. MATERIALS AND METHODS: The watershed method is compared...... delineation shows that the two methods are interchangeable according to the Bland and Altman criterion, and thus equally accurate. The repeatability of the watershed method and the manual method are compared by looking at the similarity of the segmented volumes. The similarity for intraobserver...

  2. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    Directory of Open Access Journals (Sweden)

    Zhang Zewei

    2014-01-01

    Full Text Available In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  3. An interactive method based on the live wire for segmentation of the breast in mammography images.

    Science.gov (United States)

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  4. Image segmentation with a novel regularized composite shape prior based on surrogate study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  5. Image segmentation with a novel regularized composite shape prior based on surrogate study

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2016-01-01

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

  6. Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    Directory of Open Access Journals (Sweden)

    Pradipta Maji

    Full Text Available Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.

  7. Active contour segmentation in dynamic medical imaging: application to nuclear cardiology

    International Nuclear Information System (INIS)

    Debreuve, Eric

    2000-01-01

    In emission imaging, nuclear medicine provides functional information about the organ of interest. In transmission imaging, it provides anatomical information whose goal may be the correction of physical phenomena that corrupt emission images. With both emission and transmission images, it is useful to know how to extract, either automatically or semi-automatically, the organs of interest and the body outline in the case of a large field of view. This is the aim of segmentation. We developed two active contour segmentation methods. They were implemented using level sets. The key point is the evolution velocity definition. First, we were interested in static transmission imaging of the thorax. The evolution velocity was heuristically defined and depended only on the acquired projections. The segmented transmission map was computed w/o reconstruction and could be advantageously used for attenuation correction. Then, we studied the segmentation of cardiac gated sequences. The developed space-time segmentation method results from the minimization of a variational criterion which takes into account the whole sequence. The computed segmentation could be used for calculating physiological parameters. As an illustration, we computed the ejection fraction. Finally, we exploited some level set properties to develop a non-rigid, non-parametric, and geometric registration method. We applied it for kinetic compensation of cardiac gated sequences. The registered images were then added together providing an image with noise characteristics similar to a cardiac static image but w/o motion-induced blurring. (author)

  8. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  9. A transfer-learning approach to image segmentation across scanners by maximizing distribution similarity

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Ikram, M. Arfan; Vernooij, Meike W.

    2013-01-01

    Many successful methods for biomedical image segmentation are based on supervised learning, where a segmentation algorithm is trained based on manually labeled training data. For supervised-learning algorithms to perform well, this training data has to be representative for the target data. In pr...

  10. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Zaidi, Habib; Abdoli, Mehrsima; Fuentes, Carolina Llina; El Naqa, Issam M.

    Several methods have been proposed for the segmentation of F-18-FDG uptake in PET. In this study, we assessed the performance of four categories of F-18-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the

  11. Adaptation of the Maracas algorithm for carotid artery segmentation and stenosis quantification on CT images

    International Nuclear Information System (INIS)

    Maria A Zuluaga; Maciej Orkisz; Edgar J F Delgado; Vincent Dore; Alfredo Morales Pinzon; Marcela Hernandez Hoyos

    2010-01-01

    This paper describes the adaptations of Maracas algorithm to the segmentation and quantification of vascular structures in CTA images of the carotid artery. The maracas algorithm, which is based on an elastic model and on a multi-scale Eigen-analysis of the inertia matrix, was originally designed to segment a single artery in MRA images. The modifications are primarily aimed at addressing the specificities of CT images and the bifurcations. The algorithms implemented in this new version are classified into two levels. 1. The low-level processing (filtering of noise and directional artifacts, enhancement and pre-segmentation) to improve the quality of the image and to pre-segment it. These techniques are based on a priori information about noise, artifacts and typical gray levels ranges of lumen, background and calcifications. 2. The high-level processing to extract the centerline of the artery, to segment the lumen and to quantify the stenosis. At this level, we apply a priori knowledge of shape and anatomy of vascular structures. The method was evaluated on 31 datasets from the carotid lumen segmentation and stenosis grading grand challenge 2009. The segmentation results obtained an average of 80:4% dice similarity score, compared to reference segmentation, and the mean stenosis quantification error was 14.4%.

  12. Hybrid Segmentation of Vessels and Automated Flow Measures in In-Vivo Ultrasound Imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Martins, Bo; Hansen, Kristoffer Lindskov

    2016-01-01

    Vector Flow Imaging (VFI) has received an increasing attention in the scientific field of ultrasound, as it enables angle independent visualization of blood flow. VFI can be used in volume flow estimation, but a vessel segmentation is needed to make it fully automatic. A novel vessel segmentation...

  13. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    NARCIS (Netherlands)

    Weijers, G.; Starke, A.; Haudum, A.; Thijssen, J.M.; Rehage, J.; Korte, C.L. de

    2010-01-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty

  14. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  15. Multi-domain, higher order level set scheme for 3D image segmentation on the GPU

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Zhang, Qin; Anton, François

    2010-01-01

    to evaluate level set surfaces that are $C^2$ continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming...

  16. Quality Assurance of Serial 3D Image Registration, Fusion, and Segmentation

    International Nuclear Information System (INIS)

    Sharpe, Michael; Brock, Kristy K.

    2008-01-01

    Radiotherapy relies on images to plan, guide, and assess treatment. Image registration, fusion, and segmentation are integral to these processes; specifically for aiding anatomic delineation, assessing organ motion, and aligning targets with treatment beams in image-guided radiation therapy (IGRT). Future developments in image registration will also improve estimations of the actual dose delivered and quantitative assessment in patient follow-up exams. This article summarizes common and emerging technologies and reviews the role of image registration, fusion, and segmentation in radiotherapy processes. The current quality assurance practices are summarized, and implications for clinical procedures are discussed

  17. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  18. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell

  19. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    Science.gov (United States)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  20. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    Science.gov (United States)

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  1. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    Science.gov (United States)

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  2. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    Science.gov (United States)

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  3. Concrete Image Segmentation Based on Multiscale Mathematic Morphology Operators and Otsu Method

    Directory of Open Access Journals (Sweden)

    Sheng-Bo Zhou

    2015-01-01

    Full Text Available The aim of the current study lies in the development of a reformative technique of image segmentation for Computed Tomography (CT concrete images with the strength grades of C30 and C40. The results, through the comparison of the traditional threshold algorithms, indicate that three threshold algorithms and five edge detectors fail to meet the demand of segmentation for Computed Tomography concrete images. The paper proposes a new segmentation method, by combining multiscale noise suppression morphology edge detector with Otsu method, which is more appropriate for the segmentation of Computed Tomography concrete images with low contrast. This method cannot only locate the boundaries between objects and background with high accuracy, but also obtain a complete edge and eliminate noise.

  4. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  5. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)

    2012-07-15

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  6. Adaptive Binary Arithmetic Coder-Based Image Feature and Segmentation in the Compressed Domain

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Hsin

    2012-01-01

    Full Text Available Image compression is necessary in various applications, especially for efficient transmission over a band-limited channel. It is thus desirable to be able to segment an image in the compressed domain directly such that the burden of decompressing computation can be avoided. Motivated by the adaptive binary arithmetic coder (MQ coder of JPEG2000, we propose an efficient scheme to segment the feature vectors that are extracted from the code stream of an image. We modify the Compression-based Texture Merging (CTM algorithm to alleviate the influence of overmerging problem by making use of the rate distortion information. Experimental results show that the MQ coder-based image segmentation is preferable in terms of the boundary displacement error (BDE measure. It has the advantage of saving computational cost as the segmentation results even at low rates of bits per pixel (bpp are satisfactory.

  7. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  8. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.

  9. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Aviña-Cervantes, J. G.; López-Hernández, J. M.; González-Reyna, S. E.

    2013-01-01

    This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO). The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability. PMID:23762177

  10. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  11. High-resolution satellite image segmentation using Hölder exponents

    Indian Academy of Sciences (India)

    Keywords. High resolution image; texture analysis; segmentation; IKONOS; Hölder exponent; cluster. ... are that. • it can be used as a tool to measure the roughness ... uses reinforcement learning to learn the reward values of ..... The numerical.

  12. A Region-Based GeneSIS Segmentation Algorithm for the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Stelios K. Mylonas

    2015-03-01

    Full Text Available This paper proposes an object-based segmentation/classification scheme for remotely sensed images, based on a novel variant of the recently proposed Genetic Sequential Image Segmentation (GeneSIS algorithm. GeneSIS segments the image in an iterative manner, whereby at each iteration a single object is extracted via a genetic-based object extraction algorithm. Contrary to the previous pixel-based GeneSIS where the candidate objects to be extracted were evaluated through the fuzzy content of their included pixels, in the newly developed region-based GeneSIS algorithm, a watershed-driven fine segmentation map is initially obtained from the original image, which serves as the basis for the forthcoming GeneSIS segmentation. Furthermore, in order to enhance the spatial search capabilities, we introduce a more descriptive encoding scheme in the object extraction algorithm, where the structural search modules are represented by polygonal shapes. Our objectives in the new framework are posed as follows: enhance the flexibility of the algorithm in extracting more flexible object shapes, assure high level classification accuracies, and reduce the execution time of the segmentation, while at the same time preserving all the inherent attributes of the GeneSIS approach. Finally, exploiting the inherent attribute of GeneSIS to produce multiple segmentations, we also propose two segmentation fusion schemes that operate on the ensemble of segmentations generated by GeneSIS. Our approaches are tested on an urban and two agricultural images. The results show that region-based GeneSIS has considerably lower computational demands compared to the pixel-based one. Furthermore, the suggested methods achieve higher classification accuracies and good segmentation maps compared to a series of existing algorithms.

  13. Boundary fitting based segmentation of fluorescence microscopy images

    Science.gov (United States)

    Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2015-03-01

    Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.

  14. Marginal space learning for medical image analysis efficient detection and segmentation of anatomical structures

    CERN Document Server

    Zheng, Yefeng

    2014-01-01

    Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound.

  15. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    OpenAIRE

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two...

  16. Semi-automatic geographic atrophy segmentation for SD-OCT images

    OpenAIRE

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L.

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in wh...

  17. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    Science.gov (United States)

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  18. Active Contour Driven by Local Region Statistics and Maximum A Posteriori Probability for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Jiang

    2014-01-01

    Full Text Available This paper presents a novel active contour model in a variational level set formulation for simultaneous segmentation and bias field estimation of medical images. An energy function is formulated based on improved Kullback-Leibler distance (KLD with likelihood ratio. According to the additive model of images with intensity inhomogeneity, we characterize the statistics of image intensities belonging to each different object in local regions as Gaussian distributions with different means and variances. Then, we use the Gaussian distribution with bias field as a local region descriptor in level set formulation for segmentation and bias field correction of the images with inhomogeneous intensities. Therefore, image segmentation and bias field estimation are simultaneously achieved by minimizing the level set formulation. Experimental results demonstrate desirable performance of the proposed method for different medical images with weak boundaries and noise.

  19. General Staining and Segmentation Procedures for High Content Imaging and Analysis.

    Science.gov (United States)

    Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S

    2018-01-01

    Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.

  20. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners

    DEFF Research Database (Denmark)

    van Opbroek, Annegreet; Vernooij, Meike W; Ikram, M.Arfan

    2015-01-01

    Many automatic segmentation methods are based on supervised machine learning. Such methods have proven to perform well, on the condition that they are trained on a sufficiently large manually labeled training set that is representative of the images to segment. However, due to differences between...... scanners, scanning parameters, and patients such a training set may be difficult to obtain. We present a transfer-learning approach to segmentation by multi-feature voxelwise classification. The presented method can be trained using a heterogeneous set of training images that may be obtained with different...... scanners than the target image. In our approach each training image is given a weight based on the distribution of its voxels in the feature space. These image weights are chosen as to minimize the difference between the weighted probability density function (PDF) of the voxels of the training images...

  1. Hierarchical layered and semantic-based image segmentation using ergodicity map

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  2. A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.

    Science.gov (United States)

    Mignotte, Max

    2010-06-01

    This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.

  3. Graph-based surface reconstruction from stereo pairs using image segmentation

    Science.gov (United States)

    Bleyer, Michael; Gelautz, Margrit

    2005-01-01

    This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.

  4. The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Korsager, Anne Sofie, E-mail: asko@hst.aau.dk; Østergaard, Lasse Riis [Department of Health Science and Technology, Aalborg University, Aalborg 9220 (Denmark); Fortunati, Valerio; Lijn, Fedde van der; Niessen, Wiro; Walsum, Theo van [Biomedical Imaging Group of Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, Rotterdam 3015 GE Rotterdam (Netherlands); Carl, Jesper [Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg 9220 (Denmark)

    2015-04-15

    Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas and intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.

  5. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different

  6. Automatic segmentation and 3-dimensional display based on the knowledge of head MRI images

    International Nuclear Information System (INIS)

    Suzuki, Hidetomo; Toriwaki, Jun-ichiro.

    1987-01-01

    In this paper we present a procedure which automatically extracts soft tissues, such as subcutaneous fat, brain, and cerebral ventricle, from the multislice MRI images of head region, and displays their 3-dimensional images. Segmentation of soft tissues is done by use of an iterative thresholding. In order to select the optimum threshold value automatically, we introduce a measure to evaluate the goodness of segmentation into this procedure. When the measure satisfies given conditions, iteration of thresholding terminates, and the final result of segmentation is extracted by using the current threshold value. Since this procedure can execute segmentation and calculation of the goodness measure in each slice automatically, it remarkably decreases efforts of users. Moreover, the 3-dimensional display of the segmented tissues shows that this procedure can extract the shape of each soft tissue with reasonable precision for clinical use. (author)

  7. Fluid region segmentation in OCT images based on convolution neural network

    Science.gov (United States)

    Liu, Dong; Liu, Xiaoming; Fu, Tianyu; Yang, Zhou

    2017-07-01

    In the retinal image, characteristics of fluid have great significance for diagnosis in eye disease. In the clinical, the segmentation of fluid is usually conducted manually, but is time-consuming and the accuracy is highly depend on the expert's experience. In this paper, we proposed a segmentation method based on convolution neural network (CNN) for segmenting the fluid from fundus image. The B-scans of OCT are segmented into layers, and patches from specific region with annotation are used for training. After the data set being divided into training set and test set, network training is performed and a good segmentation result is obtained, which has a significant advantage over traditional methods such as threshold method.

  8. Fast and robust multi-atlas segmentation of brain magnetic resonance images

    DEFF Research Database (Denmark)

    Lötjönen, Jyrki Mp; Wolz, Robin; Koikkalainen, Juha R

    2010-01-01

    We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead of stand......We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead...... of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity...

  9. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    Science.gov (United States)

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  10. A Hybrid Approach for Improving Image Segmentation: Application to Phenotyping of Wheat Leaves.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available In this article we propose a novel tool that takes an initial segmented image and returns a more accurate segmentation that accurately captures sharp features such as leaf tips, twists and axils. Our algorithm utilizes basic a-priori information about the shape of plant leaves and local image orientations to fit active contour models to important plant features that have been missed during the initial segmentation. We compare the performance of our approach with three state-of-the-art segmentation techniques, using three error metrics. The results show that leaf tips are detected with roughly one half of the original error, segmentation accuracy is almost always improved and more than half of the leaf breakages are corrected.

  11. Color image segmentation to detect defects on fresh ham

    Science.gov (United States)

    Marty-Mahe, Pascale; Loisel, Philippe; Brossard, Didier

    2003-04-01

    We present in this paper the color segmentation methods that were used to detect appearance defects on 3 dimensional shape of fresh ham. The use of color histograms turned out to be an efficient solution to characterize the healthy skin, but a special care must be taken to choose the color components because of the 3 dimensional shape of ham.

  12. Visual Sensor Based Image Segmentation by Fuzzy Classification and Subregion Merge

    Directory of Open Access Journals (Sweden)

    Huidong He

    2017-01-01

    Full Text Available The extraction and tracking of targets in an image shot by visual sensors have been studied extensively. The technology of image segmentation plays an important role in such tracking systems. This paper presents a new approach to color image segmentation based on fuzzy color extractor (FCE. Different from many existing methods, the proposed approach provides a new classification of pixels in a source color image which usually classifies an individual pixel into several subimages by fuzzy sets. This approach shows two unique features: the spatial proximity and color similarity, and it mainly consists of two algorithms: CreateSubImage and MergeSubImage. We apply the FCE to segment colors of the test images from the database at UC Berkeley in the RGB, HSV, and YUV, the three different color spaces. The comparative studies show that the FCE applied in the RGB space is superior to the HSV and YUV spaces. Finally, we compare the segmentation effect with Canny edge detection and Log edge detection algorithms. The results show that the FCE-based approach performs best in the color image segmentation.

  13. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues

    Science.gov (United States)

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966

  14. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  15. Investigations on the quality of manual image segmentation in 3D radiotherapy planning

    International Nuclear Information System (INIS)

    Perelmouter, J.; Tuebingen Univ.; Bohsung, J.; Nuesslin, F.; Becker, G.; Kortmann, R.D.; Bamberg, M.

    1998-01-01

    In 3D radiotherapy planning image segmentation plays an important role in the definition process of target volume and organs at risk. Here, we present a method to quantify the technical precision of the manual image segmentation process. To validate our method we developed a virtual phantom consisting of several geometrical objects of changing form and contrast, which should be contoured by volunteers using the TOMAS tool for manual segmentation of the Heidelberg VOXELPLAN system. The results of this examination are presented. (orig.) [de

  16. Comparison of human and automatic segmentations of kidneys from CT images

    International Nuclear Information System (INIS)

    Rao, Manjori; Stough, Joshua; Chi, Y.-Y.; Muller, Keith; Tracton, Gregg; Pizer, Stephen M.; Chaney, Edward L.

    2005-01-01

    Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic (CT) images. Methods and materials: Deformable shape models called m-reps were used to automatically segment right and left kidneys from 12 target CT images, and the results were compared with careful manual segmentations performed by two human experts. M-rep models were trained based on manual segmentations from a collection of images that did not include the targets. Segmentation using m-reps began with interactive initialization to position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of the kidney model was computed to position the model closer to the target kidney. The similarity transformation was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage, the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no changes were observed. The transformations and deformations at both stages were driven by optimizing an objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term computed a model-to-image match term based on the goodness of match of the trained intensity template for the currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3) maximum surface separation (Hausdorff distance

  17. Upper airway segmentation and dimensions estimation from cone-beam CT image datasets

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongjian; Scarfe, W.C. [Louisville Univ., KY (United States). School of Dentistry; Farman, A.G. [Louisville Univ., KY (United States). School of Dentistry; Louisville Univ., KY (United States). Div. of Radiology and Imaging Science

    2006-11-15

    Objective: To segment and measure the upper airway using cone-beam computed tomography (CBCT). This information may be useful as an imaging biomarker in the diagnostic assessment of patients with obstructive sleep apnea and in the planning of any necessary therapy. Methods: With Institutional Review Board Approval, anonymous CBCT datasets from subjects who had been imaged for a variety of conditions unrelated to the airway were evaluated. DICOM images were available. A segmentation algorithm was developed to separate the bounded upper airway and measurements were performed manually to determine the smallest cross-sectional area and the anteriorposterior distance of the retropalatal space (RP-SCA and RP-AP, respectively) and retroglossal space (RG-SCA and RG-AP, respectively). A segmentation algorithm was developed to separate the bounded upper airway and it was applied to determine RP-AP, RG-AP, the smallest transaxial-sectional area (TSCA) and largest sagittal view airway area (LCSA). A second algorithm was created to evaluate the airway volume within this bounded upper airway. Results: Measurements of the airway segmented automatically by the developed algorithm agreed with those obtained using manual segmentation. The corresponding volumes showed only very small differences considered clinically insignificant. Conclusion: Automatic segmentation of the airway imaged using CBCT is feasible and this method can be used to evaluate airway cross-section and volume comparable to measurements extracted using manual segmentation. (orig.)

  18. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 2: Assessment

    Science.gov (United States)

    Karunatillake, Suniti; McLennan, Scott M.; Herkenhoff, Kenneth E.; Husch, Jonathan M.; Hardgrove, Craig; Skok, J. R.

    2014-02-01

    In a companion work, we bridge the gap between mature segmentation software used in terrestrial sedimentology and emergent planetary segmentation with an original algorithm optimized to segment whole images from the Microscopic Imager (MI) of the Mars Exploration Rovers (MER). In this work, we compare its semi-automated outcome with manual photoanalyses using unconsolidated sediment at Gusev and Meridiani Planum sites for geologic context. On average, our code and manual segmentation converge to within ∼10% in the number and total area of identified grains in a pseudo-random, single blind comparison of 50 samples. Unlike manual segmentation, it also locates finer grains in an image with internal consistency, enabling robust comparisons across geologic contexts. When implemented in Mathematica-8, the algorithm segments an entire MI image within minutes, surpassing the extent and speed possible with manual segmentation by about a factor of ten. These results indicate that our algorithm enables not only new sedimentological insight from the MER MI data, but also detailed sedimentology with the Mars Science Laboratory’s Mars Hand Lens Instrument.

  19. Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Ya-Shuo Li

    2012-03-01

    Full Text Available Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature’s ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.

  20. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    Science.gov (United States)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  1. Segmentation of radiographic images under topological constraints: application to the femur.

    Science.gov (United States)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  2. Segmentation of radiographic images under topological constraints: application to the femur

    International Nuclear Information System (INIS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-01-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  3. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  4. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    Science.gov (United States)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic

  5. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.

    Science.gov (United States)

    Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M

    2015-10-01

    New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference

  6. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  7. Deploying swarm intelligence in medical imaging identifying metastasis, micro-calcifications and brain image segmentation.

    Science.gov (United States)

    al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude

    2015-12-01

    This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images.

  8. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  9. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa

    2016-01-01

    On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and

  10. Design and validation of Segment - freely available software for cardiovascular image analysis

    International Nuclear Information System (INIS)

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-01

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page (http://segment.heiberg.se). Segment

  11. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    Science.gov (United States)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  12. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  13. Cell nuclei segmentation in fluorescence microscopy images using inter- and intra-region discriminative information.

    Science.gov (United States)

    Song, Yang; Cai, Weidong; Feng, David Dagan; Chen, Mei

    2013-01-01

    Automated segmentation of cell nuclei in microscopic images is critical to high throughput analysis of the ever increasing amount of data. Although cell nuclei are generally visually distinguishable for human, automated segmentation faces challenges when there is significant intensity inhomogeneity among cell nuclei or in the background. In this paper, we propose an effective method for automated cell nucleus segmentation using a three-step approach. It first obtains an initial segmentation by extracting salient regions in the image, then reduces false positives using inter-region feature discrimination, and finally refines the boundary of the cell nuclei using intra-region contrast information. This method has been evaluated on two publicly available datasets of fluorescence microscopic images with 4009 cells, and has achieved superior performance compared to popular state of the art methods using established metrics.

  14. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Science.gov (United States)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  15. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    Science.gov (United States)

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  16. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    International Nuclear Information System (INIS)

    Prieto, Elena; Peñuelas, Iván; Martí-Climent, Josep M; Lecumberri, Pablo; Gómez, Marisol; Pagola, Miguel; Bilbao, Izaskun; Ecay, Margarita

    2012-01-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18 F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. (paper)

  17. White blood cell counting analysis of blood smear images using various segmentation strategies

    Science.gov (United States)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  18. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  19. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  20. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  1. Visual Analytics Applied to Image Analysis : From Segmentation to Classification

    NARCIS (Netherlands)

    Rauber, Paulo

    2017-01-01

    Image analysis is the field of study concerned with extracting information from images. This field is immensely important for commercial and scientific applications, from identifying people in photographs to recognizing diseases in medical images. The goal behind the work presented in this thesis is

  2. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    Science.gov (United States)

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  3. Multi-scale Gaussian representation and outline-learning based cell image segmentation

    Science.gov (United States)

    2013-01-01

    Background High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. Methods We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. Results and conclusions We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks. PMID:24267488

  4. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  5. Lung vessel segmentation in CT images using graph-cuts

    Science.gov (United States)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  6. A hybrid segmentation method for partitioning the liver based on 4D DCE-MR images

    Science.gov (United States)

    Zhang, Tian; Wu, Zhiyi; Runge, Jurgen H.; Lavini, Cristina; Stoker, Jaap; van Gulik, Thomas; Cieslak, Kasia P.; van Vliet, Lucas J.; Vos, Frans M.

    2018-03-01

    The Couinaud classification of hepatic anatomy partitions the liver into eight functionally independent segments. Detection and segmentation of the hepatic vein (HV), portal vein (PV) and inferior vena cava (IVC) plays an important role in the subsequent delineation of the liver segments. To facilitate pharmacokinetic modeling of the liver based on the same data, a 4D DCE-MR scan protocol was selected. This yields images with high temporal resolution but low spatial resolution. Since the liver's vasculature consists of many tiny branches, segmentation of these images is challenging. The proposed framework starts with registration of the 4D DCE-MRI series followed by region growing from manually annotated seeds in the main branches of key blood vessels in the liver. It calculates the Pearson correlation between the time intensity curves (TICs) of a seed and all voxels. A maximum correlation map for each vessel is obtained by combining the correlation maps for all branches of the same vessel through a maximum selection per voxel. The maximum correlation map is incorporated in a level set scheme to individually delineate the main vessels. Subsequently, the eight liver segments are segmented based on three vertical intersecting planes fit through the three skeleton branches of HV and IVC's center of mass as well as a horizontal plane fit through the skeleton of PV. Our segmentation regarding delineation of the vessels is more accurate than the results of two state-of-the-art techniques on five subjects in terms of the average symmetric surface distance (ASSD) and modified Hausdorff distance (MHD). Furthermore, the proposed liver partitioning achieves large overlap with manual reference segmentations (expressed in Dice Coefficient) in all but a small minority of segments (mean values between 87% and 94% for segments 2-8). The lower mean overlap for segment 1 (72%) is due to the limited spatial resolution of our DCE-MR scan protocol.

  7. SEGMENTATION AND CLASSIFICATION OF CERVICAL CYTOLOGY IMAGES USING MORPHOLOGICAL AND STATISTICAL OPERATIONS

    Directory of Open Access Journals (Sweden)

    S Anantha Sivaprakasam

    2017-02-01

    Full Text Available Cervical cancer that is a disease, in which malignant (cancer cells form in the tissues of the cervix, is one of the fourth leading causes of cancer death in female community worldwide. The cervical cancer can be prevented and/or cured if it is diagnosed in the pre-cancerous lesion stage or earlier. A common physical examination technique widely used in the screening is called Papanicolaou test or Pap test which is used to detect the abnormality of the cell. Due to intricacy of the cell nature, automating of this procedure is still a herculean task for the pathologist. This paper addresses solution for the challenges in terms of a simple and novel method to segment and classify the cervical cell automatically. The primary step of this procedure is pre-processing in which de-nosing, de-correlation operation and segregation of colour components are carried out, Then, two new techniques called Morphological and Statistical Edge based segmentation and Morphological and Statistical Region Based segmentation Techniques- put forward in this paper, and that are applied on the each component of image to segment the nuclei from cervical image. Finally, all segmented colour components are combined together to make a final segmentation result. After extracting the nuclei, the morphological features are extracted from the nuclei. The performance of two techniques mentioned above outperformed than standard segmentation techniques. Besides, Morphological and Statistical Edge based segmentation is outperformed than Morphological and Statistical Region based Segmentation. Finally, the nuclei are classified based on the morphological value The segmentation accuracy is echoed in classification accuracy. The overall segmentation accuracy is 97%.

  8. Label fusion based brain MR image segmentation via a latent selective model

    Science.gov (United States)

    Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu

    2018-04-01

    Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.

  9. Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.

    Science.gov (United States)

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos

    2011-01-01

    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. CT image segmentation methods for bone used in medical additive manufacturing.

    Science.gov (United States)

    van Eijnatten, Maureen; van Dijk, Roelof; Dobbe, Johannes; Streekstra, Geert; Koivisto, Juha; Wolff, Jan

    2018-01-01

    The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. An Improved Random Walker with Bayes Model for Volumetric Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Chunhua Dong

    2017-01-01

    Full Text Available Random walk (RW method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-based Bayes random walk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow band threshold (NBT method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p<0.001.

  12. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    Science.gov (United States)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  13. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  14. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  16. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    International Nuclear Information System (INIS)

    Chen, Hsin-Chen; Jia, Wenyan; Li, Yuecheng; Sun, Mingui; Sun, Xin; Li, Zhaoxin; Fernstrom, John D; Burke, Lora E; Baranowski, Thomas

    2015-01-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. (paper)

  17. Semi-automatic geographic atrophy segmentation for SD-OCT images.

    Science.gov (United States)

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

  18. NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION

    Directory of Open Access Journals (Sweden)

    Hiren Mewada

    2010-08-01

    Full Text Available Because of cross-disciplinary nature, Active Contour modeling techniques have been utilized extensively for the image segmentation. In traditional active contour based segmentation techniques based on level set methods, the energy functions are defined based on the intensity gradient. This makes them highly sensitive to the situation where the underlying image content is characterized by image nonhomogeneities due to illumination and contrast condition. This is the most difficult problem to make them as fully automatic image segmentation techniques. This paper introduces one of the approaches based on image enhancement to this problem. The enhanced image is obtained using NonSubsampled Contourlet Transform, which improves the edges strengths in the direction where the illumination is not proper and then active contour model based on level set technique is utilized to segment the object. Experiment results demonstrate that proposed method can be utilized along with existing active contour model based segmentation method under situation characterized by intensity non-homogeneity to make them fully automatic.

  19. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    Science.gov (United States)

    Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui

    2015-02-01

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.

  20. Segmentation of the tissues from MR images using basic anatomical information

    International Nuclear Information System (INIS)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki; Nakamura, Toshiyasu; Mochimaru, Masaaki.

    1994-01-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author)

  1. Segmentation of the tissues from MR images using basic anatomical information

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Nobutoshi; Notoya, Yoshiaki [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Nakamura, Toshiyasu; Mochimaru, Masaaki

    1994-11-01

    Automatic segmentation methods of MR images have been developed for the cardiac surgery and the brain surgery. In these fields, Region Growing method has been used mainly. In this method, the core was inserted manually, and the pixel adjoining the core was judged whether it was homogeneous or not from its features based on image information. The core grew adding the homogeneous pixels, and the region of interest was obtained as the grown core. It is available for orthopedic surgery and biomechanics to obtain the location and the orientation of bones and soft tissues in vivo. However, MR images including them could not be segmented by the former region growing method based on only image information. This is because those tissues had fuzzy boundaries on the image. Thus, we used not only intensity and spatial gradient as image information but also location, size and complexity of the tissue to segment the MR images. The pixel adjoining the core was judged from three local features of the pixel ; its intensity, gradient and location, and two global features of the core region ; its size and complexity. Judgment was performed by Fuzzy Reasoning to allow their fuzzy boundaries. The homogeneous pixel was added into the core region. It grew into normal size and smooth shape under constraint of global anatomical features. Using the present method, as an example, radius, ulna and interosseous membrane were segmented from the multi-sliced MR images of forearm. Segmented tissues agreed with the shape inserted manually by a medical doctor. As s result, three tissues containing different features on the MR image could be segmented by a single algorithm. It takes about 10 sec per slice by using an engineering workstation. (author).

  2. Automated intraretinal layer segmentation of optical coherence tomography images using graph-theoretical methods

    Science.gov (United States)

    Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.

  3. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    Science.gov (United States)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  4. Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images

    Science.gov (United States)

    Jiang, Luan; Ling, Shan; Li, Qiang

    2016-03-01

    Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.

  5. Segmenting high-frequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions.

    Science.gov (United States)

    Hao, X; Bruce, C J; Pislaru, C; Greenleaf, J F

    2001-12-01

    Segmenting abnormal from normal myocardium using high-frequency intracardiac echocardiography (ICE) images presents new challenges for image processing. Gray-level intensity and texture features of ICE images of myocardium with the same structural/perfusion properties differ. This significant limitation conflicts with the fundamental assumption on which existing segmentation techniques are based. This paper describes a new seeded region growing method to overcome the limitations of the existing segmentation techniques. Three criteria are used for region growing control: 1) Each pixel is merged into the globally closest region in the multifeature space. 2) "Geographic similarity" is introduced to overcome the problem that myocardial tissue, despite having the same property (i.e., perfusion status), may be segmented into several different regions using existing segmentation methods. 3) "Equal opportunity competence" criterion is employed making results independent of processing order. This novel segmentation method is applied to in vivo intracardiac ultrasound images using pathology as the reference method for the ground truth. The corresponding results demonstrate that this method is reliable and effective.

  6. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images.

    Science.gov (United States)

    Gao, Han; Tang, Yunwei; Jing, Linhai; Li, Hui; Ding, Haifeng

    2017-10-24

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  7. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Han Gao

    2017-10-01

    Full Text Available The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA. Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.

  8. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Science.gov (United States)

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  10. A system for the acquisition and segmentation of plane static images in nuclear medicine

    International Nuclear Information System (INIS)

    Fideles, Ederson Lacerda.

    1994-09-01

    In nuclear medicine an image is obtained by employing a radioactive compound that is selectively fixed by the organ or tissue under study. In the traditional exams a radiation detector and a oscilloscope are used to obtain analog images of the organs that can be visualized directly or printed in film. In the modern approach, computers are used in the processing of the images obtained. In the present work an A/D board was developed to be used with an IBM compatible PC (XT or AT) for the acquisition of planar static images generated by the gamma camera. Pre-processing routines were developed to prepare the images for the image processing routines developed for the image segmentation. For this segmentation task thresholding methods were used based on the optimization of a certain criterion based on the histogram in such a way that the object can be separated from the background. (author). 25 refs., 26 figs

  11. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  12. Automating the segmentation of medical images for the production of voxel tomographic computational models

    International Nuclear Information System (INIS)

    Caon, M.

    2001-01-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  13. Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images

    NARCIS (Netherlands)

    Veta, M.; Huisman, A.; Viergever, M.A.; Diest, van P.J.; Pluim, J.P.W.

    2011-01-01

    In this paper we present an unsupervised automatic method for segmentation of nuclei in H&E stained breast cancer biopsy images. Colour deconvolution and morphological operations are used to preprocess the images in order to remove irrelevant structures. Candidate nuclei locations, obtained with the

  14. Automatic segmentation of MR brain images of preterm infants using supervised classification

    NARCIS (Netherlands)

    Moeskops, Pim; Benders, Manon J N L; Chiţă, Sabina M.; Kersbergen, Karina J.; Groenendaal, Floris; de Vries, Linda S.; Viergever, Max A.; Isgum, Ivana

    Preterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images.This paper

  15. Automatic segmentation of MR brain images of preterm infants using supervised classification

    NARCIS (Netherlands)

    Moeskops, P.; Benders, M.J.N.L.; Chiţ, S.M.; Kersbergen, K.J.; Groenendaal, F.; de Vries, L.S.; Viergever, M.A.; Išgum, I.

    Preterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images. This paper

  16. Color Image Segmentation Based on Statistics of Location and Feature Similarity

    Science.gov (United States)

    Mori, Fumihiko; Yamada, Hiromitsu; Mizuno, Makoto; Sugano, Naotoshi

    The process of “image segmentation and extracting remarkable regions” is an important research subject for the image understanding. However, an algorithm based on the global features is hardly found. The requisite of such an image segmentation algorism is to reduce as much as possible the over segmentation and over unification. We developed an algorithm using the multidimensional convex hull based on the density as the global feature. In the concrete, we propose a new algorithm in which regions are expanded according to the statistics of the region such as the mean value, standard deviation, maximum value and minimum value of pixel location, brightness and color elements and the statistics are updated. We also introduced a new concept of conspicuity degree and applied it to the various 21 images to examine the effectiveness. The remarkable object regions, which were extracted by the presented system, highly coincided with those which were pointed by the sixty four subjects who attended the psychological experiment.

  17. A methodology for texture feature-based quality assessment in nucleus segmentation of histopathology image

    Directory of Open Access Journals (Sweden)

    Si Wen

    2017-01-01

    Full Text Available Context: Image segmentation pipelines often are sensitive to algorithm input parameters. Algorithm parameters optimized for a set of images do not necessarily produce good-quality-segmentation results for other images. Even within an image, some regions may not be well segmented due to a number of factors, including multiple pieces of tissue with distinct characteristics, differences in staining of the tissue, normal versus tumor regions, and tumor heterogeneity. Evaluation of quality of segmentation results is an important step in image analysis. It is very labor intensive to do quality assessment manually with large image datasets because a whole-slide tissue image may have hundreds of thousands of nuclei. Semi-automatic mechanisms are needed to assist researchers and application developers to detect image regions with bad segmentations efficiently. Aims: Our goal is to develop and evaluate a machine-learning-based semi-automated workflow to assess quality of nucleus segmentation results in a large set of whole-slide tissue images. Methods: We propose a quality control methodology, in which machine-learning algorithms are trained with image intensity and texture features to produce a classification model. This model is applied to image patches in a whole-slide tissue image to predict the quality of nucleus segmentation in each patch. The training step of our methodology involves the selection and labeling of regions by a pathologist in a set of images to create the training dataset. The image regions are partitioned into patches. A set of intensity and texture features is computed for each patch. A classifier is trained with the features and the labels assigned by the pathologist. At the end of this process, a classification model is generated. The classification step applies the classification model to unlabeled test images. Each test image is partitioned into patches. The classification model is applied to each patch to predict the patch

  18. Partial segmental thrombosis of the corpus cavernosum: imaging findings.

    Science.gov (United States)

    Moya-Sánchez, E; Medina-Benítez, A; Medina-Salas, V; Fernández-Navarro, L

    2018-03-05

    Partial segmental thrombosis of the corpus cavernosum is an unusual clinical condition of unknown origin that mainly affects young males, whose characteristic presentation is the appearance of unexplained perineal pain associated with a palpable perineal mass. This entity consists of thrombosis in the perineal portion of the corpus cavernosum, usually unilateral and it is associated with underlying malignant pathologies and predisposing factors such as microtrauma. After the adequate adherence to conservative treatment, the appearance of complications such as erectile dysfunction is very uncommon. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    Science.gov (United States)

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  20. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  1. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing.

    Science.gov (United States)

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection.

  2. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.

    1999-01-01

    The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)

  3. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  4. Validation of a model of left ventricular segmentation for interpretation of SPET myocardial perfusion images

    International Nuclear Information System (INIS)

    Aepfelbacher, F.C.; Johnson, R.B.; Schwartz, J.G.; Danias, P.G.; Chen, L.; Parker, R.A.; Parker, A.J.

    2001-01-01

    Several models of left ventricular segmentation have been developed that assume a standard coronary artery distribution, and are currently used for interpretation of single-photon emission tomography (SPET) myocardial perfusion imaging. This approach has the potential for incorrect assignment of myocardial segments to vascular territories, possibly over- or underestimating the number of vessels with significant coronary artery disease (CAD). We therefore sought to validate a 17-segment model of myocardial perfusion by comparing the predefined coronary territory assignment with the actual angiographically derived coronary distribution. We examined 135 patients who underwent both coronary angiography and stress SPET imaging within 30 days. Individualized coronary distribution was determined by review of the coronary angiograms and used to identify the coronary artery supplying each of the 17 myocardial segments of the model. The actual coronary distribution was used to assess the accuracy of the assumed coronary distribution of the model. The sensitivities and specificities of stress SPET for detection of CAD in individual coronary arteries and the classification regarding perceived number of diseased coronary arteries were also compared between the two coronary distributions (actual and assumed). The assumed coronary distribution corresponded to the actual coronary anatomy in all but one segment (3). The majority of patients (80%) had 14 or more concordant segments. Sensitivities and specificities of stress SPET for detection of CAD in the coronary territories were similar, with the exception of the RCA territory, for which specificity for detection of CAD was better for the angiographically derived coronary artery distribution than for the model. There was 95% agreement between assumed and angiographically derived coronary distributions in classification to single- versus multi-vessel CAD. Reassignment of a single segment (segment 3) from the LCX to the LAD

  5. Validation of a model of left ventricular segmentation for interpretation of SPET myocardial perfusion images

    Energy Technology Data Exchange (ETDEWEB)

    Aepfelbacher, F.C.; Johnson, R.B.; Schwartz, J.G.; Danias, P.G. [Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Chen, L.; Parker, R.A. [Biometrics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Parker, A.J. [Nuclear Medicine Division, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States)

    2001-11-01

    Several models of left ventricular segmentation have been developed that assume a standard coronary artery distribution, and are currently used for interpretation of single-photon emission tomography (SPET) myocardial perfusion imaging. This approach has the potential for incorrect assignment of myocardial segments to vascular territories, possibly over- or underestimating the number of vessels with significant coronary artery disease (CAD). We therefore sought to validate a 17-segment model of myocardial perfusion by comparing the predefined coronary territory assignment with the actual angiographically derived coronary distribution. We examined 135 patients who underwent both coronary angiography and stress SPET imaging within 30 days. Individualized coronary distribution was determined by review of the coronary angiograms and used to identify the coronary artery supplying each of the 17 myocardial segments of the model. The actual coronary distribution was used to assess the accuracy of the assumed coronary distribution of the model. The sensitivities and specificities of stress SPET for detection of CAD in individual coronary arteries and the classification regarding perceived number of diseased coronary arteries were also compared between the two coronary distributions (actual and assumed). The assumed coronary distribution corresponded to the actual coronary anatomy in all but one segment (3). The majority of patients (80%) had 14 or more concordant segments. Sensitivities and specificities of stress SPET for detection of CAD in the coronary territories were similar, with the exception of the RCA territory, for which specificity for detection of CAD was better for the angiographically derived coronary artery distribution than for the model. There was 95% agreement between assumed and angiographically derived coronary distributions in classification to single- versus multi-vessel CAD. Reassignment