WorldWideScience

Sample records for microarray hybridization assay

  1. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.

  2. Investigation of Parameters that Affect the Success Rate of Microarray-Based Allele-Specific Hybridization Assays

    DEFF Research Database (Denmark)

    Poulsen, Lena; Søe, Martin Jensen; Moller, Lisbeth Birk

    2011-01-01

    Background: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions...

  3. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Directory of Open Access Journals (Sweden)

    Laurenzi Ian J

    2009-12-01

    Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

  4. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  5. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  6. Identification of listeria species isolated in Tunisia by Microarray based assay : results of a preliminary study

    International Nuclear Information System (INIS)

    Hmaied, Fatma; Helel, Salma; Barkallah, Insaf; Leberre, V.; Francois, J.M.; Kechrid, A.

    2008-01-01

    Microarray-based assay is a new molecular approach for genetic screening and identification of microorganisms. We have developed a rapid microarray-based assay for the reliable detection and discrimination of Listeria spp. in food and clinical isolates from Tunisia. The method used in the present study is based on the PCR amplification of a virulence factor gene (iap gene). the PCR mixture contained cyanine Cy5labeled dCTP. Therefore, The PCR products were fluorescently labeled. The presence of multiple species-specific sequences within the iap gene enabled us to design different oligoprobes per species. The species-specific sequences of the iap gene used in this study were obtained from genBank and then aligned for phylogenetic analysis in order to identify and retrieve the sequences of homologues of the amplified iap gene analysed. 20 probes were used for detection and identification of 22 food isolates and clinical isolates of Listeria spp (L. monocytogenes, L. ivanovi), L. welshimeri, L. seeligeri, and L. grayi). Each bacterial gene was identified by hybridization to oligoprobes specific for each Listeria species and immobilized on a glass surface. The microarray analysis showed that 5 clinical isolates and 2 food isolates were identified listeria monocytogenes. Concerning the remaining 15 food isolates; 13 were identified listeria innocua and 2 isolates could not be identified by microarray based assay. Further phylogenetic and molecular analysis are required to design more species-specific probes for the identification of Listeria spp. Microarray-based assay is a simple and rapid method used for Listeria species discrimination

  7. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion.

    Science.gov (United States)

    Steger, Doris; Berry, David; Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization.

  9. Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide microarrays

    Science.gov (United States)

    Jin, Lian-Qun; Li, Jun-Wen; Wang, Sheng-Qi; Chao, Fu-Huan; Wang, Xin-Wei; Yuan, Zheng-Quan

    2005-01-01

    AIM: To detect the common intestinal pathogenic bacteria quickly and accurately. METHODS: A rapid (<3 h) experimental procedure was set up based upon the gene chip technology. Target genes were amplified and hybridized by oligonucleotide microarrays. RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified. CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonucleotides to the arrays without any significant increase of complexity or cost. PMID:16437687

  10. Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays

    DEFF Research Database (Denmark)

    Petersen, J.; Poulsen, Lena; Petronis, S.

    2008-01-01

    is called a multi-thermal array washer (MTAW), and it has eight individually controlled heating zones, each of which corresponds to the location of a subarray on a slide. Allele-specific oligonucleotide probes for nine mutations in the beta-globin gene were spotted in eight identical subarrays at positions......DNA microarrays are generally operated at a single condition, which severely limits the freedom of designing probes for allele-specific hybridization assays. Here, we demonstrate a fluidic device for multi-stringency posthybridization washing of microarrays on microscope slides. This device...

  11. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  12. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    Science.gov (United States)

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  13. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

    International Nuclear Information System (INIS)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.; Selvapandiyan, Angamuthu; Hewlett, Indira; Duncan, Robert; Puri, Raj K.; Nakhasi, Hira L.; Kaplan, Gerardo G.

    2007-01-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients

  14. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.

    Science.gov (United States)

    Martins, Diogo; Wei, Xi; Levicky, Rastislav; Song, Yong-Ak

    2016-04-05

    We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.

  15. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Directory of Open Access Journals (Sweden)

    Helene Andersson-Svahn

    2011-11-01

    Full Text Available Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (< 30 ng/mL determination of antigen-specific antibodies in ten minutes of total assay time. Results were developed with gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings.

  16. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray

    Directory of Open Access Journals (Sweden)

    Qiao Yingjuan

    2008-01-01

    Full Text Available Abstract Background DNA methylation based techniques are important tools in both clinical diagnostics and therapeutics. But most of these methods only analyze a few CpG sites in a target region. Indeed, difference of site-specific methylation may also lead to a change of methylation density in many cases, and it has been found that the density of methylation is more important than methylation of single CpG site for gene silencing. Results We have developed a novel approach for quantitative analysis of CpG methylation density on the basis of microarray-based hybridization and incorporation of Cy5-dCTP into the Cy3 labeled target DNA by using Taq DNA Polymerase on microarray. The quantification is achieved by measuring Cy5/Cy3 signal ratio which is proportional to methylation density. This methylation-sensitive technique, termed RMEAM (regional methylation elongation assay on microarray, provides several advantages over existing methods used for methylation analysis. It can determine an exact methylation density of the given region, and has potential of high throughput. We demonstrate a use of this method in determining the methylation density of the promoter region of the tumor-related gene MLH1, TERT and MGMT in colorectal carcinoma patients. Conclusion This technique allows for quantitative analysis of regional methylation density, which is the representative of all allelic methylation patterns in the sample. The results show that this technique has the characteristics of simplicity, rapidness, specificity and high-throughput.

  17. Comparison of Comparative Genomic Hybridization Technologies across Microarray Platforms

    Science.gov (United States)

    In the 2007 Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) project, we analyzed HL-60 DNA with five platforms: Agilent, Affymetrix 500K, Affymetrix U133 Plus 2.0, Illumina, and RPCI 19K BAC arrays. Copy number variation (CNV) was analyzed ...

  18. Automated microfluidic assay system for autoantibodies found in autoimmune diseases using a photoimmobilized autoantigen microarray.

    Science.gov (United States)

    Matsudaira, Takahiro; Tsuzuki, Saki; Wada, Akira; Suwa, Akira; Kohsaka, Hitoshi; Tomida, Maiko; Ito, Yoshihiro

    2008-01-01

    Autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, and autoimmune diabetes are characterized by the production of autoantibodies that serve as useful diagnostic markers, surrogate markers, and prognostic factors. We devised an in vitro system to detect these clinically pivotal autoantibodies using a photoimmobilized autoantigen microarray. Photoimmobilization was useful for preparing the autoantigen microarray, where autoantigens are covalently immobilized on a plate, because it does not require specific functional groups of the autoantigens and any organic material can be immobilized by a radical reaction induced by photoirradiation. Here, we prepared the microarray using a very convenient method. Aqueous solutions of each autoantigen were mixed with a polymer of poly(ethylene glycol) methacrylate and a photoreactive crosslinker, and the mixtures were microspotted on a plate and dried in air. Finally, the plate was irradiated with an ultraviolet lamp to obtain immobilization. In the assay, patient serum was added to the microarray plate. Antigen-specific IgG adsorbed on the microspotted autoantigen was detected by peroxidase-conjugated anti-IgG antibody. The chemical luminescence intensities of the substrate decomposed by the peroxidase were detected with a sensitive CCD camera. All autoantigens were immobilized stably by this method and used to screen antigen-specific IgG. In addition, the plate was covered with a polydimethylsiloxane sheet containing microchannels and automated measurement was carried out.

  19. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    Science.gov (United States)

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  20. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia; Fan, Yongfeng; Garcia-Rodriguez, Consuelo; Lou, Jianlong; Marks, James D.; Varnum, Susan M.

    2014-10-21

    Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.

  1. An automated multiplex specific IgE assay system using a photoimmobilized microarray.

    Science.gov (United States)

    Ito, Yoshihiro; Moritsugu, Nozomi; Matsue, Takahisa; Mitsukoshi, Kiyomi; Ayame, Hirohito; Okochi, Norihiko; Hattori, Hideshi; Tashiro, Hideo; Sato, Sakura; Ebisawa, Motohiro

    2012-11-15

    An automated microarray diagnostic system for specific IgE using photoimmobilized allergen has been developed. Photoimmobilization is useful for preparing microarrays, where various types of biological components are covalently immobilized on a plate. Because the immobilization is based on a photo-induced radical cross-linking reaction, it does not require specific functional groups on the immobilized components. Here, an aqueous solution of a photoreactive poly(ethylene glycol)-based polymer was spin-coated on a plate, and an aqueous solution of each allergen was microspotted on the coated plate and allowed to dry in air. Finally, the plate was irradiated with an ultraviolet lamp for covalent immobilization. An automated machine using these plates was developed for the assay of antigen-specific IgE. Initially, the patient serum was added to the microarray plate, and after reaction of the microspotted allergen with IgE, the adsorbed IgE was detected by a peroxidase-conjugated anti-IgE-antibody. The chemical luminescence intensity of the substrate decomposed by the peroxidase was automatically detected using a sensitive charge-coupled device camera. All the allergens were immobilized stably using this method, which was used to screen for allergen-specific IgE. The results were comparable with those using conventional specific IgE. Using this system, six different allergen-specific IgE were assayed using 10 μL of serum within a period of 20 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  3. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  4. Cross-species hybridization of woodchuck hepatitis virus-induced hepatocellular carcinoma using human oligonucleotide microarrays

    Institute of Scientific and Technical Information of China (English)

    Paul W Anderson; Bud C Tennant; Zhenghong Lee

    2006-01-01

    AIM: To demonstrate the feasibility of using woodchuck samples on human microarrays, to provide insight into pathways involving positron emission tomography (PET) imaging tracers and to identify genes that could be potential molecular imaging targets for woodchuck hepatocellular carcinoma.METHODS: Labeled cRNA from woodchuck tissue samples were hybridized to Affymetrix U133 plus 2.0 GeneChips(R). Ten genes were selected for validation using quantitative RT-PCR and literature review was made.RESULTS: Testis enhanced gene transcript (BAX Inhibitor 1), alpha-fetoprotein, isocitrate dehydrogenase 3 (NAD+) beta, acetyl-CoA synthetase 2, carnitine palmitoyltransferase 2, and N-myc2 were up-regulated and spermidine/spermine N1-acetyltransferase was down-regulated in the woodchuck HCC. We also found previously published results supporting 8 of the 10 most up-regulated genes and all 10 of the 10 most downregulated genes.CONCLUSION: Many of our microarray results were validated using RT-PCR or literature search. Hence, we believe that woodchuck HCC and non-cancerous liver samples can be used on human microarrays to yield meaningful results.

  5. Optimization of the BLASTN substitution matrix for prediction of non-specific DNA microarray hybridization

    DEFF Research Database (Denmark)

    Eklund, Aron Charles; Friis, Pia; Wernersson, Rasmus

    2010-01-01

    BLASTN accuracy by modifying the substitution matrix and gap penalties. We generated gene expression microarray data for samples in which 1 or 10% of the target mass was an exogenous spike of known sequence. We found that the 10% spike induced 2-fold intensity changes in 3% of the probes, two......-third of which were decreases in intensity likely caused by bulk-hybridization. These changes were correlated with similarity between the spike and probe sequences. Interestingly, even very weak similarities tended to induce a change in probe intensity with the 10% spike. Using this data, we optimized the BLASTN...... substitution matrix to more accurately identify probes susceptible to non-specific hybridization with the spike. Relative to the default substitution matrix, the optimized matrix features a decreased score for A–T base pairs relative to G–C base pairs, resulting in a 5–15% increase in area under the ROC curve...

  6. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Directory of Open Access Journals (Sweden)

    Jouventin Pierre

    2010-05-01

    Full Text Available Abstract Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  7. A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera.

    Science.gov (United States)

    Sachse, Konrad; Rahman, Kh Shamsur; Schnee, Christiane; Müller, Elke; Peisker, Madlen; Schumacher, Thomas; Schubert, Evelyn; Ruettger, Anke; Kaltenboeck, Bernhard; Ehricht, Ralf

    2018-03-16

    Serological analysis of Chlamydia (C.) spp. infections is still mainly based on micro-immunofluorescence and ELISA. To overcome the limitations of conventional serology, we have designed a novel microarray carrying 52 synthetic peptides representing B-cell epitopes from immunodominant proteins of all 11 chlamydial species. The new assay has been validated using monospecific mouse hyperimmune sera. Subsequently, serum samples from cattle, sheep and humans with a known history of chlamydial infection were examined. For instance, the specific humoral response of sheep to treatment with a C. abortus vaccine has been visualized against a background of C. pecorum carriership. In samples from humans, dual infection with C. trachomatis and C. pneumoniae could be demonstrated. The experiments revealed that the peptide microarray assay was capable of simultaneously identifying specific antibodies to each Chlamydia spp. The actual assay represents an open platform test that can be complemented through future advances in Chlamydia proteome research. The concept of the highly parallel multi-antigen microarray proven in this study has the potential to enhance our understanding of antibody responses by defining not only a single quantitative response, but also the pattern of this response. The added value of using peptide antigens will consist in unprecedented serodiagnostic specificity.

  8. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  9. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  10. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  11. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  12. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  13. Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization.

    Science.gov (United States)

    Ares, Manuel

    2014-01-01

    This protocol describes how to prepare fluorescently labeled cDNA for hybridization to microarrays. It consists of two steps: first, a mixture of anchored oligo(dT) and random hexamers is used to prime amine-modified cDNA synthesis by reverse transcriptase using a modified deoxynucleotide with a reactive amine group (aminoallyl-dUTP) and an RNA sample as a template. Second, the cDNA is purified and exchanged into bicarbonate buffer so that the amine groups in the cDNA react with the dye N-hydroxysuccinimide (NHS) esters, covalently joining the dye to the cDNA. The dye-coupled cDNA is purified again, and the amount of dye incorporated per microgram of cDNA is determined.

  14. Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2011-01-01

    Full Text Available Microarray-based comparative genomic hybridization (array CGH is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances. The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner.

  15. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  16. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning.

    Science.gov (United States)

    Sun, Xiuhua; Wang, Huaixin; Wang, Yuanyuan; Gui, Taijiang; Wang, Ke; Gao, Changlu

    2018-04-15

    Nonspecific binding or adsorption of biomolecules presents as a major obstacle to higher sensitivity, specificity and reproducibility in microarray technology. We report herein a method to fabricate antifouling microarray via photopolymerization of biomimetic betaine compounds. In brief, carboxybetaine methacrylate was polymerized as arrays for protein sensing, while sulfobetaine methacrylate was polymerized as background. With the abundant carboxyl groups on array surfaces and zwitterionic polymers on the entire surfaces, this microarray allows biomolecular immobilization and recognition with low nonspecific interactions due to its antifouling property. Therefore, low concentration of target molecules can be captured and detected by this microarray. It was proved that a concentration of 10ngmL -1 bovine serum albumin in the sample matrix of bovine serum can be detected by the microarray derivatized with anti-bovine serum albumin. Moreover, with proper hydrophilic-hydrophobic designs, this approach can be applied to fabricate surface-tension droplet arrays, which allows surface-directed cell adhesion and growth. These light controllable approaches constitute a clear improvement in the design of antifouling interfaces, which may lead to greater flexibility in the development of interfacial architectures and wider application in blood contact microdevices. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  18. Evaluation of HER2 Gene Amplification in Breast Cancer Using Nuclei Microarray in Situ Hybridization

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2012-05-01

    Full Text Available Fluorescence in situ hybridization (FISH assay is considered the “gold standard” in evaluating HER2/neu (HER2 gene status. However, FISH detection is costly and time consuming. Thus, we established nuclei microarray with extracted intact nuclei from paraffin embedded breast cancer tissues for FISH detection. The nuclei microarray FISH (NMFISH technology serves as a useful platform for analyzing HER2 gene/chromosome 17 centromere ratio. We examined HER2 gene status in 152 cases of invasive ductal carcinomas of the breast that were resected surgically with FISH and NMFISH. HER2 gene amplification status was classified according to the guidelines of the American Society of Clinical Oncology and College of American Pathologists (ASCO/CAP. Comparison of the cut-off values for HER2/chromosome 17 centromere copy number ratio obtained by NMFISH and FISH showed that there was almost perfect agreement between the two methods (κ coefficient 0.920. The results of the two methods were almost consistent for the evaluation of HER2 gene counts. The present study proved that NMFISH is comparable with FISH for evaluating HER2 gene status. The use of nuclei microarray technology is highly efficient, time and reagent conserving and inexpensive.

  19. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  20. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  1. Prevalence, identification by a DNA microarray-based assay of human and food isolates Listeria spp. from Tunisia.

    Science.gov (United States)

    Hmaïed, F; Helel, S; Le Berre, V; François, J-M; Leclercq, A; Lecuit, M; Smaoui, H; Kechrid, A; Boudabous, A; Barkallah, I

    2014-02-01

    We aimed at evaluating the prevalence of Listeria species isolated from food samples and characterizing food and human cases isolates. Between 2005 and 2007, one hundred food samples collected in the markets of Tunis were analysed in our study. Five strains of Listeria monocytogenes responsible for human listeriosis isolated in hospital of Tunis were included. Multiplex PCR serogrouping and pulsed field gel electrophoresis (PFGE) applying the enzyme AscI and ApaI were used for the characterization of isolates of L. monocytogenes. We have developed a rapid microarray-based assay to a reliable discrimination of species within the Listeria genus. The prevalence of Listeria spp. in food samples was estimated at 14% by using classical biochemical identification. Two samples were assigned to L. monocytogenes and 12 to L. innocua. DNA microarray allowed unambiguous identification of Listeria species. Our results obtained by microarray-based assay were in accordance with the biochemical identification. The two food L. monocytogenes isolates were assigned to the PCR serogroup IIa (serovar 1/2a). Whereas human L. monocytogenes isolates were of PCR serogroup IVb, (serovars 4b). These isolates present a high similarity in PFGE. Food L. monocytogenes isolates were classified into two different pulsotypes. These pulsotypes were different from that of the five strains responsible for the human cases. We confirmed the presence of Listeria spp. in variety of food samples in Tunis. Increased food and clinical surveillance must be taken into consideration in Tunisia to identify putative infections sources. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations

    Directory of Open Access Journals (Sweden)

    Miller Crispin J

    2006-06-01

    Full Text Available Abstract Background Microarrays measure the binding of nucleotide sequences to a set of sequence specific probes. This information is combined with annotation specifying the relationship between probes and targets and used to make inferences about transcript- and, ultimately, gene expression. In some situations, a probe is capable of hybridizing to more than one transcript, in others, multiple probes can target a single sequence. These 'multiply targeted' probes can result in non-independence between measured expression levels. Results An analysis of these relationships for Affymetrix arrays considered both the extent and influence of exact matches between probe and transcript sequences. For the popular HGU133A array, approximately half of the probesets were found to interact in this way. Both real and simulated expression datasets were used to examine how these effects influenced the expression signal. It was found not only to lead to increased signal strength for the affected probesets, but the major effect is to significantly increase their correlation, even in situations when only a single probe from a probeset was involved. By building a network of probe-probeset-transcript relationships, it is possible to identify families of interacting probesets. More than 10% of the families contain members annotated to different genes or even different Unigene clusters. Within a family, a mixture of genuine biological and artefactual correlations can occur. Conclusion Multiple targeting is not only prevalent, but also significant. The ability of probesets to hybridize to more than one gene product can lead to false positives when analysing gene expression. Comprehensive annotation describing multiple targeting is required when interpreting array data.

  3. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children.

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-03-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions.

  4. Comparison of Automated Microarray Detection with Real-Time PCR Assays for Detection of Respiratory Viruses in Specimens Obtained from Children▿

    Science.gov (United States)

    Raymond, Frédéric; Carbonneau, Julie; Boucher, Nancy; Robitaille, Lynda; Boisvert, Sébastien; Wu, Whei-Kuo; De Serres, Gaston; Boivin, Guy; Corbeil, Jacques

    2009-01-01

    Respiratory virus infections are a major health concern and represent the primary cause of testing consultation and hospitalization for young children. We developed and compared two assays that allow the detection of up to 23 different respiratory viruses that frequently infect children. The first method consisted of single TaqMan quantitative real-time PCR assays in a 96-well-plate format. The second consisted of a multiplex PCR followed by primer extension and microarray hybridization in an integrated molecular diagnostic device, the Infiniti analyzer. Both of our assays can detect adenoviruses of groups A, B, C, and E; coronaviruses HKU1, 229E, NL63, and OC43; enteroviruses A, B, C, and D; rhinoviruses of genotypes A and B; influenza viruses A and B; human metapneumoviruses (HMPV) A and B, human respiratory syncytial viruses (HRSV) A and B; and parainfluenza viruses of types 1, 2, and 3. These tests were used to identify viruses in 221 nasopharyngeal aspirates obtained from children hospitalized for respiratory tract infections. Respiratory viruses were detected with at least one of the two methods in 81.4% of the 221 specimens: 10.0% were positive for HRSV A, 38.0% for HRSV B, 13.1% for influenzavirus A, 8.6% for any coronaviruses, 13.1% for rhinoviruses or enteroviruses, 7.2% for adenoviruses, 4.1% for HMPV, and 1.5% for parainfluenzaviruses. Multiple viral infections were found in 13.1% of the specimens. The two methods yielded concordant results for 94.1% of specimens. These tests allowed a thorough etiological assessment of respiratory viruses infecting children in hospital settings and would assist public health interventions. PMID:19158263

  5. A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray.

    Science.gov (United States)

    Becker, Jérémie; Pérot, Philippe; Cheynet, Valérie; Oriol, Guy; Mugnier, Nathalie; Mommert, Marine; Tabone, Olivier; Textoris, Julien; Veyrieras, Jean-Baptiste; Mallet, François

    2017-04-08

    Human endogenous retroviruses (HERVs) have received much attention for their implications in the etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev Immunol 29:351-370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326-335, 2010) conditions. Their repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual loci (De Parseval et al., J Virol 77:10414-10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:16-30, 2005; Seifarth et al., J Virol 79:341-352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006). To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions. RESULTS: HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of 1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of expression measured on HERV-V3 is consistent with those reported in the literature. Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple applications such as enhancers and alternative promoters identification, biomarkers identification as well as the characterization of genes and HERVs/MaLRs modulation caused by viral infection.

  6. The Hybrid II assay: a sensitive and specific real-time hybridization assay for the diagnosis of Theileria parva infection in Cape buffalo (Syncerus caffer) and cattle.

    Science.gov (United States)

    Pienaar, Ronel; Potgieter, Fred T; Latif, Abdalla A; Thekisoe, Oriel M M; Mans, Ben J

    2011-12-01

    Corridor disease is an acute, fatal disease of cattle caused by buffalo-adapted Theileria parva. This is a nationally controlled disease in South Africa and strict control measures apply for the movement of buffalo, which includes mandatory testing for the presence of T. parva and other controlled diseases. Accurate diagnosis of the T. parva carrier state in buffalo using the official real-time hybridization PCR assay (Sibeko et al. 2008), has been shown to be affected by concurrent infection with T. sp. (buffalo)-like parasites. We describe the Hybrid II assay, a real-time hybridization PCR method, which compares well with the official hybridization assay in terms of specificity and sensitivity. It is, however, not influenced by mixed infections of T. sp. (buffalo)-like parasites and is as such a significant improvement on the current hybridization assay.

  7. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay.

    Directory of Open Access Journals (Sweden)

    Sascha D Braun

    Full Text Available Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL and narrow spectrum (NSBL beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13, blaGIM (2/2, blaKPC (27/27, blaNDM (5/5, blaIMP-2/4/7/8/13/14/15/16/31 (10/10, blaOXA-23 (12/13, blaOXA-40-group (7/7, blaOXA-48-group (32/33, blaOXA-51 (1/1 and blaOXA-58 (1/1. Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16, blaOXA-2 (4/4, blaOXA-9 (33/33, OXA-10 (3/3, blaOXA-51 (25/25, blaOXA-58 (2/2, CTX-M1/M15 (17/17 and blaVIM (1/1]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4% isolates, including Acinetobacter baumannii (28/28, Enterobacter spec. (5/5, Escherichia coli (4/4, Klebsiella pneumoniae (62/63, Klebsiella oxytoca (0/2, Pseudomonas aeruginosa (12/12, Citrobacter freundii (1/1 and Citrobacter

  8. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay.

    Directory of Open Access Journals (Sweden)

    Elena Serena

    Full Text Available INTRODUCTION: The heart is one of the least regenerative organs in the body and any major insult can result in a significant loss of heart cells. The development of an in vitro-based cardiac tissue could be of paramount importance for many aspects of the cardiology research. In this context, we developed an in vitro assay based on human cardiomyocytes (hCMs and ad hoc micro-technologies, suitable for several applications: from pharmacological analysis to physio-phatological studies on transplantable hCMs. We focused on the development of an assay able to analyze not only hCMs viability, but also their functionality. METHODS: hCMs were cultured onto a poly-acrylamide hydrogel with tunable tissue-like mechanical properties and organized through micropatterning in a 20×20 array. Arrayed hCMs were characterized by immunofluorescence, GAP-FRAP analyses and live and dead assay. Their functionality was evaluated monitoring the excitation-contraction coupling. RESULTS: Micropatterned hCMs maintained the expression of the major cardiac markers (cTnT, cTnI, Cx43, Nkx2.5, α-actinin and functional properties. The spontaneous contraction frequency was (0.83±0.2 Hz, while exogenous electrical stimulation lead to an increase up to 2 Hz. As proof of concept that our device can be used for screening the effects of pathological conditions, hCMs were exposed to increasing levels of H(2O(2. Remarkably, hCMs viability was not compromised with exposure to 0.1 mM H(2O(2, but hCMs contractility was dramatically suppressed. As proof of concept, we also developed a microfluidic platform to selectively treat areas of the cell array, in the perspective of performing multi-parametric assay. CONCLUSIONS: Such system could be a useful tool for testing the effects of multiple conditions on an in vitro cell model representative of human heart physiology, thus potentially helping the processes of therapy and drug development.

  9. Multiplex Detection and Genotyping of Point Mutations Involved in Charcot-Marie-Tooth Disease Using a Hairpin Microarray-Based Assay

    Directory of Open Access Journals (Sweden)

    Yasser Baaj

    2009-01-01

    Full Text Available We previously developed a highly specific method for detecting SNPs with a microarray-based system using stem-loop probes. In this paper we demonstrate that coupling a multiplexing procedure with our microarray method is possible for the simultaneous detection and genotyping of four point mutations, in three different genes, involved in Charcot-Marie-Tooth disease. DNA from healthy individuals and patients was amplified, labeled with Cy3 by multiplex PCR; and hybridized to microarrays. Spot signal intensities were 18 to 74 times greater for perfect matches than for mismatched target sequences differing by a single nucleotide (discrimination ratio for “homozygous” DNA from healthy individuals. “Heterozygous” mutant DNA samples gave signal intensity ratios close to 1 at the positions of the mutations as expected. Genotyping by this method was therefore reliable. This system now combines the principle of highly specific genotyping based on stem-loop structure probes with the advantages of multiplex analysis.

  10. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    Science.gov (United States)

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  11. Multiplex PCR, amplicon size and hybridization efficiency on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez, Juan J; Morling, Niels

    2004-01-01

    We tested the SNP typing protocol developed for the NanoChip electronic microarray by analyzing the four Y chromosome loci SRY1532, SRY8299, TAT, and 92R7. Amplicons of different lengths containing the same locus were purified and addressed to the NanoChip array and fluorescently labelled reporte...

  12. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs).

    Science.gov (United States)

    Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki

    2016-03-01

    Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hybrid Feature Selection Approach Based on GRASP for Cancer Microarray Data

    Directory of Open Access Journals (Sweden)

    Arpita Nagpal

    2017-01-01

    Full Text Available Microarray data usually contain a large number of genes, but a small number of samples. Feature subset selection for microarray data aims at reducing the number of genes so that useful information can be extracted from the samples. Reducing the dimension of data sets further helps in improving the computational efficiency of the learning model. In this paper, we propose a modified algorithm based on the tabu search as local search procedures to a Greedy Randomized Adaptive Search Procedure (GRASP for high dimensional microarray data sets. The proposed Tabu based Greedy Randomized Adaptive Search Procedure algorithm is named as TGRASP. In TGRASP, a new parameter has been introduced named as Tabu Tenure and the existing parameters, NumIter and size have been modified. We observed that different parameter settings affect the quality of the optimum. The second proposed algorithm known as FFGRASP (Firefly Greedy Randomized Adaptive Search Procedure uses a firefly optimization algorithm in the local search optimzation phase of the greedy randomized adaptive search procedure (GRASP. Firefly algorithm is one of the powerful algorithms for optimization of multimodal applications. Experimental results show that the proposed TGRASP and FFGRASP algorithms are much better than existing algorithm with respect to three performance parameters viz. accuracy, run time, number of a selected subset of features. We have also compared both the approaches with a unified metric (Extended Adjusted Ratio of Ratios which has shown that TGRASP approach outperforms existing approach for six out of nine cancer microarray datasets and FFGRASP performs better on seven out of nine datasets.

  14. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    Science.gov (United States)

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  16. Electrokinetically-controlled RNA-DNA hybridization assay for foodborne pathogens

    International Nuclear Information System (INIS)

    Weng, X.; Jiang, H.; Li, D.

    2012-01-01

    We have developed a microfluidic chip for use in an RNA-DNA hybridization assay for foodborne pathogens. Automatic sequential reagent dispensing and washing was realized with a programmable DC voltage sequencer. Signal detection was achieved with a miniaturized optical detection module. Salmonella and Listeria monocytogenes bacteria in different concentrations were quantitatively determined by this RNA-DNA hybridization assay in the microfluidic chip. The detection limit for the Salmonella and Listeria monocytogenes bacteria is 10 3 to 10 4 CFU mL -1 . The method excels by a significant reduction in the consumption of sample and reagent, and a short assay time. This automatic-operating microfluidic RNA-DNA hybridization assay is promising for on-site pathogen detection. (author)

  17. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    Science.gov (United States)

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  18. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Oikawa Masahiro

    2011-12-01

    Full Text Available Abstract Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN, which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH. Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread, which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05. The concordance of results between aCGH and fluorescence in situ hybridization (FISH for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively. The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15. Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40. Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005 independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for

  19. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-01-01

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  20. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    Science.gov (United States)

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  1. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  2. Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology.

    Science.gov (United States)

    Rezk, Amgad R; Ramesan, Shwathy; Yeo, Leslie Y

    2018-01-30

    The microarray titre plate remains a fundamental workhorse in genomic, proteomic and cellomic analyses that underpin the drug discovery process. Nevertheless, liquid handling technologies for sample dispensing, processing and transfer have not progressed significantly beyond conventional robotic micropipetting techniques, which are not only at their fundamental sample size limit, but are also prone to mechanical failure and contamination. This is because alternative technologies to date suffer from a number of constraints, mainly their limitation to carry out only a single liquid operation such as dispensing or mixing at a given time, and their inability to address individual wells, particularly at high throughput. Here, we demonstrate the possibility for true sequential or simultaneous single- and multi-well addressability in a 96-well plate using a reconfigurable modular platform from which MHz-order hybrid surface and bulk acoustic waves can be coupled to drive a variety of microfluidic modes including mixing, sample preconcentration and droplet jetting/ejection in individual or multiple wells on demand, thus constituting a highly versatile yet simple setup capable of improving the functionality of existing laboratory protocols and processes.

  3. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary,; Bruce, R [Santa Fe, NM; Stubben, Christopher J [Los Alamos, NM

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  4. Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors.

    Science.gov (United States)

    Mohammadi-Ostad-Kalayeh, Sona; Hrupins, Vjaceslavs; Helmsen, Sabine; Ahlbrecht, Christin; Stahl, Frank; Scheper, Thomas; Preller, Matthias; Surup, Frank; Stadler, Marc; Kirschning, Andreas; Zeilinger, Carsten

    2017-12-15

    A facile method for testing ATP binding in a highly miniaturized microarray environment using human HSP70 and DnaK from Mycobacterium tuberculosis as biological targets is reported. Supported by molecular modelling studies we demonstrate that the position of the fluorescence label on ATP has a strong influence on the binding to human HSP70. Importantly, the label has to be positioned on the adenine ring and not to the terminal phosphate group. Unlabelled ATP displaced bound Cy5-ATP from HSP70 in the micromolar range. The affinity of a well-known HSP70 inhibitor VER155008 for the ATP binding site in HSP70 was determined, with a EC 50 in the micromolar range, whereas reblastin, a HSP90-inhibitor, did not compete for ATP in the presence of HSP70. The applicability of the method was demonstrated by screening a small compound library of natural products. This unraveled that terphenyls rickenyl A and D, recently isolated from cultures of the fungus Hypoxylon rickii, are inhibitors of HSP70. They compete with ATP for the chaperone in the range of 29 µM (Rickenyl D) and 49 µM (Rickenyl A). Furthermore, the microarray-based test system enabled protein-protein interaction analysis using full-length HSP70 and HSP90 proteins. The labelled full-length human HSP90 binds with a half-maximal affinity of 5.5 µg/ml (∼40 µM) to HSP70. The data also demonstrate that the microarray test has potency for many applications from inhibitor screening to target-oriented interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research....

  6. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    OpenAIRE

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surface...

  7. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    Science.gov (United States)

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  8. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    Science.gov (United States)

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  9. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    DEFF Research Database (Denmark)

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...... specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can...

  10. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH) Assay

    OpenAIRE

    Daniel Lerda; Marta Cabrera; Jorge Flores; Luis Gutierrez; Armando Chierichetti; Martin Revol; Hernan Garcia Onto

    2013-01-01

    Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH) assay (DAKO Denmark, Glostrup) with respect to fluorescence in situ hybridization (FISH) probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC) signals into chromogenic signals. The dual –color CISH assay was p...

  11. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  12. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    Directory of Open Access Journals (Sweden)

    Cécile Feuillie

    Full Text Available In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR. In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  13. Comparison of the analytical and clinical performances of Abbott RealTime High Risk HPV, Hybrid Capture 2, and DNA Chip assays in gynecology patients.

    Science.gov (United States)

    Park, Seungman; Kang, Youjin; Kim, Dong Geun; Kim, Eui-Chong; Park, Sung Sup; Seong, Moon-Woo

    2013-08-01

    The detection of high-risk (HR) HPV in cervical cancer screening is important for early diagnosis of cervical cancer or pre-cancerous lesions. We evaluated the analytical and clinical performances of 3 HR HPV assays in Gynecology patients. A total of 991 specimens were included in this study: 787 specimens for use with a Hybrid Capture 2 (HC2) and 204 specimens for a HPV DNA microarray (DNA Chip). All specimens were tested using an Abbott RealTime High Risk HPV assay (Real-time HR), PGMY PCR, and sequence analysis. Clinical sensitivities for severe abnormal cytology (severe than high-grade squamous intraepithelial lesion) were 81.8% for Real-time HR, 77.3% for HC2, and 66.7% for DNA Chip, and clinical sensitivities for severe abnormal histology (cervical intraepithelial neoplasia grade 2+) were 91.7% for HC2, 87.5% for Real-time HR, and 73.3% for DNA Chip. As compared to results of the sequence analysis, HC2, Real-time HR, and DNA Chip showed concordance rates of 94.3% (115/122), 90.0% (117/130), and 61.5% (16/26), respectively. The HC2 assay and Real-time HR assay showed comparable results to each other in both clinical and analytical performances, while the DNA Chip assay showed poor clinical and analytical performances. The Real-time HR assay can be a good alternative option for HR HPV testing with advantages of allowing full automation and simultaneous genotyping of HR types 16 and 18. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A two-hybrid assay to study protein interactions within the secretory pathway.

    Directory of Open Access Journals (Sweden)

    Danielle H Dube

    Full Text Available Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H, a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.

  15. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  16. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    Science.gov (United States)

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  19. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  20. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  1. Microarray-based genotyping of Salmonella: Inter-laboratory evaluation of reproducibility and standardization potential

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Riber, Leise; Vigre, Håkan

    2011-01-01

    Bacterial food-borne infections in humans caused by Salmonella spp. are considered a crucial food safety issue. Therefore, it is important for the risk assessments of Salmonella to consider the genomic variationamong different isolates in order to control pathogen-induced infections. Microarray...... critical methodology parameters that differed between the two labs were identified. These related to printing facilities, choice of hybridization buffer,wash buffers used following the hybridization and choice of procedure for purifying genomic DNA. Critical parameters were randomized in a four......DNA and different wash buffers. However, less agreement (Kappa=0.2–0.6) between microarray results were observed when using different hybridization buffers, indicating this parameter as being highly criticalwhen transferring a standard microarray assay between laboratories. In conclusion, this study indicates...

  2. Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization.

    Science.gov (United States)

    Striano, Pasquale; Coppola, Antonietta; Paravidino, Roberta; Malacarne, Michela; Gimelli, Stefania; Robbiano, Angela; Traverso, Monica; Pezzella, Marianna; Belcastro, Vincenzo; Bianchi, Amedeo; Elia, Maurizio; Falace, Antonio; Gazzerro, Elisabetta; Ferlazzo, Edoardo; Freri, Elena; Galasso, Roberta; Gobbi, Giuseppe; Molinatto, Cristina; Cavani, Simona; Zuffardi, Orsetta; Striano, Salvatore; Ferrero, Giovanni Battista; Silengo, Margherita; Cavaliere, Maria Luigia; Benelli, Matteo; Magi, Alberto; Piccione, Maria; Dagna Bricarelli, Franca; Coviello, Domenico A; Fichera, Marco; Minetti, Carlo; Zara, Federico

    2012-03-01

    To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Prospective cohort study. Epilepsy centers in Italy. Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Identification of copy number variations (CNVs) and gene enrichment. Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = .03) and showed higher gene content (P = .02) than those in control subjects. The CNVs larger than 1 megabase (P = .002) and including more than 10 genes (P = .005) occurred more frequently in patients than in control subjects. Nine patients (34.6%) among those harboring rare CNVs showed rearrangements associated with emerging microdeletion or microduplication syndromes. Mental retardation and neuropsychiatric features were associated with rare CNVs (P = .004), whereas epilepsy type was not. The CNV rate in patients with epilepsy and mental retardation or neuropsychiatric features is not different from that observed in patients with mental retardation only. Moreover, significant enrichment of genes involved in ion transport was observed within CNVs identified in patients with epilepsy. Patients with epilepsy show a significantly increased burden of large, rare, gene-rich CNVs, particularly when associated with mental retardation and neuropsychiatric features. The limited overlap between CNVs observed in the epilepsy group and those observed in the group with mental retardation only as well as the involvement of specific (ion channel) genes indicate a specific association between the identified CNVs and epilepsy. Screening for CNVs should be performed for diagnostic purposes preferentially in patients with epilepsy and mental retardation or

  3. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    Science.gov (United States)

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Comparison of in situ hybridization methods for the assessment of HER-2/neu gene amplification status in breast cancer using a tissue microarray.

    Science.gov (United States)

    Malicka-Durczak, Anna; Korski, Konstanty; Ibbs, Matthew

    2012-01-01

    This project compared HER-2/neu gene status in breast cancers, as demonstrated by FISH (fluorescent in situ hybridization) and CISH (chromogenic in situ hybridization) and using a tissue microarray (TMA). The study also aimed to show whether the TMA technique could be used in clinical diagnostics, rather than remain a scientific tool. A TMA was constructed using 121 breast cancer specimens, 6 cores from each specimen. Demonstration and assessment of HER-2/neu gene status was by FISH (Vysis Path) and CISH (DAKO Duo CISH). The 121 breast cancer specimens were divided into 3 groups by HER-2 status, as determined by immunohistochemistry. In the HER-2 negative group no amplification was observed in 36 out of 40 cases. 3 cases showed amplification by both methods and one by CISH alone. The equivocal HER-2 group showed no amplification in 30 out of 41 cases and amplification in 9 cases. One case was FISH negative CISH positive and one was discarded. In the HER-2 positive group, amplification was confirmed in 37 of the 40 cases by both methods. 3 cases were unsuitable for assessment. This study indicated that CISH is a sensitive alternative to FISH in detecting HER2 gene amplification and may replace FISH in HER2 testing. Good agreement was observed between methods (98.5% - 119 out of 121 cases). Furthermore, as only 4 out of 121 cases were unsuitable for assessment (no signal or missing TMA cores) - it may be feasible to use TMA in diagnostics.

  6. Numerical and structural genomic aberrations are reliably detectable in tissue microarrays of formalin-fixed paraffin-embedded tumor samples by fluorescence in-situ hybridization.

    Directory of Open Access Journals (Sweden)

    Heike Horn

    Full Text Available Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH, especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs. We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL and six malignant mesothelioma (MM samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.

  7. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    Science.gov (United States)

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  8. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline–Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays*

    Science.gov (United States)

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-01-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  9. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  10. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2014-03-04

    A bioassay based on DNA hybridization on cellulose paper is a promising format for gene fragment detection that may be suited for in-field and rapid diagnostic applications. We demonstrate for the first time that luminescence resonance energy transfer (LRET) associated with upconverting phosphors (UCPs) can be used to develop a paper-based DNA hybridization assay with high sensitivity, selectivity and fast response. UCPs with strong green emission were synthesized and subsequently functionalized with streptavidin (UCP-strep). UCP-strep particles were immobilized on cellulose paper, and then biotinylated single-stranded oligonucleotide probes were conjugated onto the UCPs via streptavidin-biotin linkage. The UCPs served as donors that were LRET-paired with Cy3-labeled target DNA. Selective DNA hybridization enabled the proximity required for LRET-sensitized emission from Cy3, which was used as the detection signal. Hybridization was complete within 2 min, and the limit of detection of the method was 34 fmol, which is a significant improvement in comparison to an analogous fluorescence resonance energy transfer (FRET) assay based on quantum dots. The assay exhibited excellent resistance to nonspecific adsorption of noncomplementary short/long DNA and protein. The selectivity of the assay was further evaluated by one base pair mismatched (1BPM) DNA detection, where a maximum signal ratio of 3.1:1 was achieved between fully complementary and 1BPM samples. This work represents a preliminary but significant step for the development of paper-based UCP-LRET nucleic acid hybridization assays, which offer potential for lowering the limit of detection of luminescent hybridization assays due to the negligible background signal associated with optical excitation by near-infrared (NIR) light.

  11. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    Science.gov (United States)

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  12. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    Science.gov (United States)

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  13. Performance of PCR-reverse blot hybridization assay for detection of rifampicin-resistant Mycobacterium leprae.

    Science.gov (United States)

    Wang, Hye-young; Kim, Hyunjung; Kim, Yeun; Bang, Hyeeun; Kim, Jong-Pill; Hwang, Joo Hwan; Cho, Sang-Nae; Kim, Tae Ue; Lee, Hyeyoung

    2015-10-01

    Drug resistance in Mycobacterium leprae is a significant problem in countries where leprosy is endemic. A sensitive, specific, and high-throughput reverse blot hybridization assay (REBA) for the detection of genotypic resistance to rifampicin (RIF) was designed and evaluated. It has been shown that resistance to RIF in M. leprae involves mutations in the rpoB gene encoding the -subunit of the RNA polymerase. The PCR-REBA simultaneously detects both 6 wild-type regions and 5 different mutations (507 AGC, 513 GTG, 516 TAT, 531 ATG, and 531 TTC) including the most prevalent mutations at positions 507 and 531. Thirty-one clinical isolates provided by Korea Institute of Hansen-s Disease were analyzed by PCR-REBA with RIF resistance of rpoB gene. As a result, missense mutations at codons 507 AGC and 531 ATG with 2-nucleotide substitutions were found in one sample, and a missense mutation at codon 516 TAT and ΔWT6 (deletion of 530-534) was found in another sample. These cases were confirmed by DNA sequence analysis. This rapid, simple, and highly sensitive assay provides a practical alternative to sequencing for genotypic evaluation of RIF resistance in M. leprae.

  14. Cross-reactivity profiles of hybrid capture II, cobas, and APTIMA human papillomavirus assays

    DEFF Research Database (Denmark)

    Preisler, Sarah Nørgaard; Rebolj, Matejka; Ejegod, Ditte Møller

    2016-01-01

    evaluated to what extent these can be explained by cross-reactivity, i.e. positive test results without evidence of high-risk HPV genotypes. The patterns of cross-reactivity have been thoroughly studied for hybrid capture II (HC2) but not yet for newer HPV assays although the manufacturers claimed...... no or limited frequency of cross-reactivity. In this independent study we evaluated the frequency of cross-reactivity for HC2, cobas, and APTIMA assays. Methods Consecutive routine cervical screening samples from 5022 Danish women, including 2859 from women attending primary screening, were tested...... with normal cytology and positive high-risk HPV test results were invited for repeated testing in 18 months. Results Cross-reactivity to low-risk genotypes was detected in 109 (2.2 %) out of 5022 samples on HC2, 62 (1.2 %) on cobas, and 35 (0.7 %) on APTIMA with only 10 of the samples cross-reacting on all 3...

  15. Study of hepatitis B virus gene mutations with enzymatic colorimetry-based DNA microarray.

    Science.gov (United States)

    Mao, Hailei; Wang, Huimin; Zhang, Donglei; Mao, Hongju; Zhao, Jianlong; Shi, Jian; Cui, Zhichu

    2006-01-01

    To establish a modified microarray method for detecting HBV gene mutations in the clinic. Site-specific oligonucleotide probes were immobilized to microarray slides and hybridized to biotin-labeled HBV gene fragments amplified from two-step PCR. Hybridized targets were transferred to nitrocellulose membranes, followed by intensity measurement using BCIP/NBT colorimetry. HBV genes from 99 Hepatitis B patients and 40 healthy blood donors were analyzed. Mutation frequencies of HBV pre-core/core and basic core promoter (BCP) regions were found to be significantly higher in the patient group (42%, 40% versus 2.5%, 5%, P colorimetry method exhibited the same level of sensitivity and reproducibility. An enzymatic colorimetry-based DNA microarray assay was successfully established to monitor HBV mutations. Pre-core/core and BCP mutations of HBV genes could be major causes of HBV infection in HBeAg-negative patients and could also be relevant to chronicity and aggravation of hepatitis B.

  16. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  17. Accurate detection of male subclinical genital tract infection via cervical culture and DNA hybridization assay of the female partner

    NARCIS (Netherlands)

    Trum, J. W.; Pannekoek, Y.; Spanjaard, L.; Bleker, O. P.; van der Veen, F.

    2000-01-01

    The accuracy of the PACE2 DNA hybridization assay of the cervix and cervical culture in female partners for the diagnosis of male subclinical genital tract infection were assessed in a male infertility population. A total of 184 men were screened for the presence of Chlamydia trachomatis, Ureaplasma

  18. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  19. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  20. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

    Science.gov (United States)

    Anderson, Kelli; Taylor, Daisy A; Thompson, Emma L; Melwani, Aroon R; Nair, Sham V; Raftos, David A

    2015-01-01

    Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

  1. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  2. Nucleic acid hybridization assays employing dA-tailed capture probes. II. Advanced multiple capture methods

    International Nuclear Information System (INIS)

    Hunsaker, W.R.; Badri, H.; Lombardo, M.; Collins, M.L.

    1989-01-01

    A fourth capture is added to the reversible target capture procedure. This results in an improved radioisotopic detection limit of 7.3 x 10(-21) mol of target. In addition, the standard triple capture method is converted into a nonradioactive format with a detection limit of under 1 amol of target. The principal advantage of nonradioactive detection is that the entire assay can be performed in about 1 h. Nucleic acids are released from cells in the presence of the (capture probe) which contains a 3'-poly(dA) sequence and the (labeled probe) which contains a detectable nonradioactive moiety such as biotin. After a brief hybridization in solution, the target is captured on oligo(dT) magnetic particles. The target is further purified from sample impurities and excess labeled probe by recapture either once or twice more on fresh magnetic particles. The highly purified target is then concentrated to 200 nl by recapture onto a poly(dT) nitrocellulose filter and rapidly detected with streptavidin-alkaline phosphatase using bromochloroindolyl phosphate and nitroblue tetrazolium. Using this procedure, as little as 0.25 amol of a target plasmid has been detected nonradioactively in crude samples in just 1 h without prior purification of the DNA and RNA. Finally, a new procedure called background capture is introduced to complement the background-reducing power of RTC

  3. Detection of human papillomavirus in pterygium and conjunctival papilloma by hybrid capture II and PCR assays.

    Science.gov (United States)

    Takamura, Y; Kubo, E; Tsuzuki, S; Akagi, Y

    2008-11-01

    To elucidate the putative role of human papillomavirus (HPV) infection in pterygium and conjunctival papilloma. Hybrid capture II (HC-II) and polymerase chain reaction (PCR) assays were performed to detect HPV in pterygium (42 samples obtained from 40 patients) and conjunctival papilloma (8 samples from 6 patients). The amount of HPV DNA was evaluated by measurement of relative light units (RLUs) on a luminometer. All papilloma samples were positive for HPV DNA by PCR and HC-II. The RLU values for specimens of recurrent and re-recurrent papilloma were markedly higher than those for specimens of primary lesions. HPV was detected by PCR in 2 of 42 (4.8%) beta-globin-positive pterygium specimens, whereas HC-II showed that HPV was negative in all pterygium samples. Our results support the hypothesis that HPV DNA is associated with the pathogenesis of conjunctival papilloma, but not pterygium. RLU measurement by HC-II may serve as a marker for evaluating the activity of HPV in conjunctival tumours.

  4. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  5. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  6. Double positive effect of adding hexaethyelene glycol when optimizing the hybridization efficiency of a microring DNA detection assay

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeghem, Anabelle, E-mail: anabelle.vaneeghem@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Werquin, Sam [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Hoste, Jan-Willem, E-mail: janwillem.hoste@ugent.be [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Goes, Arne [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Agrosavfe NV, Technologiepark 4 (Bio-incubator), Zwijnaarde (Belgium); Vanderleyden, Els [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium); Bienstman, Peter [Center for Nano- and Biophotonics, Ghent University (Belgium); Photonics Research Group, Department of Information Technology, Ghent University – IMEC (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University (Belgium); Center for Nano- and Biophotonics, Ghent University (Belgium)

    2017-05-31

    Highlights: • The hybridization efficiency of a DNA assay was investigated based on SOI microring resonators. • A 4-fold increase in efficiency was obtained by using HEG as backfilling agent, as well as improving robustness. • The dual polarization microring technique shows that HEG reorients the DNA in an upright position. • Hybridizing at 35 °C and with a buffer containing 50 v/v% of formamide greatly improves the robustness. - Abstract: In this paper, a method for detection of DNA molecules using silicon-on-insulator (SOI) microring resonators is described. The influence of temperature and the use of formamide on the hybridization efficiency were studied. It was shown that 50 v/v% of formamide in the hybridization buffer can ensure hybridization when working close to physiological temperature. Furthermore, the use of hexaethylene glycol (HEG) as backfilling agent was studied in order to resolve issues of non-specific adsorption to the surface. The results indicated that not only non-specific binding was reduced significantly but also that HEG improves the orientation of the DNA probes on the surface. This led to a 4-fold increase in hybridization efficiency and thus in an equal decrease in the detection limit, compared to hybridization without the use of HEG. An improvement in robustness of the assay was also observed. This DNA reorientation hypothesis was confirmed by studying the thickness and density of the layers by using dual polarization microring sensing. Finally, the different steps in the sensing experiment were characterized in more detail by static contact angle (SCA) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed quantitatively that the surface modifications were successful.

  7. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    Science.gov (United States)

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  8. Exploring the use of internal and externalcontrols for assessing microarray technical performance

    Directory of Open Access Journals (Sweden)

    Game Laurence

    2010-12-01

    Full Text Available Abstract Background The maturing of gene expression microarray technology and interest in the use of microarray-based applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript presents a retrospective study characterizing several approaches to assess technical performance of microarray data measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same information about technical performance as whole-array metrics and endogenous "housekeeping" genes. These results support the use of spike-in controls as general tools for performance assessment across time, experimenters and array batches, suggesting that they have potential for comparison of microarray data generated across species using different technologies. Results A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in hybridization, spike-in polyA+, internal RNA degradation, endogenous or "housekeeping genes" was used for the assessment of microarray data quality. The controls provide information on multiple stages of the experimental protocol (e.g., hybridization, RNA amplification. External spike-in, hybridization and RNA labeling controls provide information related to both assay and hybridization performance whereas internal endogenous controls provide quality information on the biological sample. We find that the variance of the data generated from the external and internal controls carries critical information about technical performance; the PCA dissection of this variance is consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC metrics. Conclusions These results provide support for the use of both external and internal RNA control data to assess the technical quality of microarray

  9. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  10. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  11. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH Assay

    Directory of Open Access Journals (Sweden)

    Daniel Lerda

    2013-04-01

    Full Text Available Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH assay (DAKO Denmark, Glostrup with respect to fluorescence in situ hybridization (FISH probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC signals into chromogenic signals. The dual –color CISH assay was performed on 40 cases of prostate cancer. Amplification was identified in 12 of 40 (30% tumors. No amplification was seen in 28 of 40 (70% tumors. FISH data were available in total of 40 tumors. All tumors showed concordant results between dual-color CISH and FISH for classifying a tumor as MYC amplified or not amplified. Conclusions: We conclude that dual-color Dako CISH assay is an accurate method for determining MYC gene amplification with added advantages that make it a more practically useful method. [J Interdiscipl Histopathol 2013; 1(2.000: 81-84

  12. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    Science.gov (United States)

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  13. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  14. Evaluation of a polymerase chain reaction reverse hybridization line probe assay for the detection and identification of medically important fungi in bronchoalveolar lavage fluids.

    NARCIS (Netherlands)

    Meletiadis, J.; Melchers, W.J.G.; Meis, J.F.G.M.; Hurk, P.J.J.C. van den; Jannes, G.; Verweij, P.E.

    2003-01-01

    An assay system in which polymerase chain reaction (PCR) amplification of the ITS-1 region of ribosomal DNA (rDNA) is combined with a reverse-hybridization line probe assay (LiPA) was used for the identification of six Candida species and four Aspergillus species in pure cultures of clinical

  15. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  16. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  17. Hybrid Capture 2 and cobas human papillomavirus assays perform similarly on SurePath samples from women with abnormalities

    DEFF Research Database (Denmark)

    Fornari, D; Rebolj, M; Bjerregaard, B

    2016-01-01

    OBJECTIVE: In two laboratories (Departments of Pathology, Copenhagen University Hospitals of Herlev and Hvidovre), we compared cobas and Hybrid Capture 2 (HC2) human papillomavirus (HPV) assays using SurePath® samples from women with atypical squamous cells of undetermined significance (ASCUS......) at ≥30 years and women after treatment of cervical intraepithelial neoplasia (CIN). METHODS: Samples from 566 women with ASCUS and 411 women after treatment were routinely tested with HC2 and, thereafter, with cobas. Histological outcomes were retrieved from the Danish Pathology Data Base. We calculated...... the overall agreement between the assays, and compared their sensitivity and specificity for ≥CIN2. RESULTS: In women with ASCUS, HC2 and cobas testing results were similar in the two laboratories. The overall agreement was 91% (95% CI, 88-93). After CIN treatment, the overall agreement was 87% (95% CI, 82...

  18. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  19. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  20. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    Science.gov (United States)

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    Energy Technology Data Exchange (ETDEWEB)

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  2. Chromogenic in situ hybridization is a reliable assay for detection of ALK rearrangements in adenocarcinomas of the lung.

    Science.gov (United States)

    Schildhaus, Hans-Ulrich; Deml, Karl-Friedrich; Schmitz, Katja; Meiboom, Maren; Binot, Elke; Hauke, Sven; Merkelbach-Bruse, Sabine; Büttner, Reinhard

    2013-11-01

    Reliable detection of anaplastic lymphoma kinase (ALK) rearrangements is a prerequisite for personalized treatment of lung cancer patients, as ALK rearrangements represent a predictive biomarker for the therapy with specific tyrosine kinase inhibitors. Currently, fluorescent in situ hybridization (FISH) is considered to be the standard method for assessing formalin-fixed and paraffin-embedded tissue for ALK inversions and translocations. However, FISH requires a specialized equipment, the signals fade rapidly and it is difficult to detect overall morphology and tumor heterogeneity. Chromogenic in situ hybridization (CISH) has been successfully introduced as an alternative test for the detection of several genetic aberrations. This study validates a newly developed ALK CISH assay by comparing FISH and CISH signal patterns in lung cancer samples with and without ALK rearrangements. One hundred adenocarcinomas of the lung were included in this study, among them 17 with known ALK rearrangement. FISH and CISH were carried out and evaluated according to the manufacturers' recommendations. For both assays, tumors were considered positive if ≥15% of tumor cells showed either isolated 3' signals or break-apart patterns or a combination of both. A subset of tumors was exemplarily examined by using a novel EML4 (echinoderm microtubule-associated protein-like 4) CISH probe. Red, green and fusion CISH signals were clearcut and different signal patterns were easily recognized. The percentage of aberrant tumor cells was statistically highly correlated (PCISH. On the basis of 86 samples that were evaluable by ALK CISH, we found a 100% sensitivity and 100% specificity of this assay. Furthermore, EML4 rearrangements could be recognized by CISH. CISH is a highly reliable, sensitive and specific method for the detection of ALK gene rearrangements in pulmonary adenocarcinomas. Our results suggest that CISH might serve as a suitable alternative to FISH, which is the current gold

  3. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Havran, Luděk; Kizek, René; Paleček, Emil

    2004-01-01

    Roč. 20, č. 5 (2004), s. 985-994 ISSN 0956-5663 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004108; GA AV ČR IBS5004355; GA AV ČR KJB4004302; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical sensors * DNA hybridization * DNA labeling Subject RIV: BO - Biophysics Impact factor: 3.251, year: 2004

  4. Development and application of a microarray meter tool to optimize microarray experiments

    Directory of Open Access Journals (Sweden)

    Rouse Richard JD

    2008-07-01

    Full Text Available Abstract Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a a measure of variability in the signal intensities, b a measure of the signal dynamic range and c a measure of variability of the spot morphologies.

  5. A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants

    Science.gov (United States)

    Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.

    2013-01-01

    We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317

  6. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome.

    Science.gov (United States)

    Francis, Glenn D; Jones, Mark A; Beadle, Geoffrey F; Stein, Sandra R

    2009-06-01

    HER2 gene amplification or overexpression occurs in 15% to 25% of breast cancers and has implications for treatment and prognosis. The most commonly used methods for HER2 testing are fluorescence in situ hybridization (FISH) and immunohistochemistry. FISH is considered to be the reference standard and more accurately predicts response to trastuzumab, but is technically demanding, expensive, and requires specialized equipment. In situ hybridization is required to be eligible for adjuvant treatment with trastuzumab in Australia. Bright-field in situ hybridization is an alternative to FISH and uses a combination of in situ methodology and a peroxidase-mediated chromogenic substrate such as diaminobenzidine [chromogenic in situ hybridization (CISH)] or multimer technology coupled with enzyme metallography [silver-enhanced in situ hybridization (SISH)] to create a marker visible under bright-field microscopy. CISH was introduced into diagnostic testing in Australia in October 2006. SISH methodology is a more recent introduction into the testing repertoire. An evaluation of CISH and SISH performance to assess patient outcome were performed using tissue microarrays. Tissue microarrays were constructed in duplicate using material from 593 patients with invasive breast carcinoma and assessed using CISH and SISH. Gene amplification was assessed using the American Society of Clinical Oncology/College of American Pathologists guideline and Australian HER2 Advisory Board criteria (single probe: diploid, 1 to 2.5 copies/nucleus; polysomy >2.5 to 4 copies/nucleus; equivocal, >4 to 6 copies/nucleus; low-level amplification, >6 to 10 copies/nucleus and high-level amplification >10 copies/nucleus; dual probe HER2/CHR17 ratio: nonamplified 2.2). Results were informative for 337 tissue cores comprising 230 patient samples. Concordance rates were 96% for HER2 single probe CISH and SISH and 95.5% for single probe CISH and dual probe HER2/CHR17 SISH. Both bright-field methods correlated

  7. No evidence of chromosome damage in children and adolescents with differentiated thyroid carcinoma after receiving {sup 131}I radiometabolic therapy, as evaluated by micronucleus assay and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Giovanni; Fiore, Lisa; Massart, Francesco; Saggese, Giuseppe [Azienda Ospedaliero-Universitaria Pisana, Department of Pediatrics, Unit of Pediatric Endocrinology and Diabetes, Pisa (Italy); Boni, Giuseppe; Lazzeri, Patrizia; Mariani, Giuliano [Azienda Ospedaliero-Universitaria Pisana, Unit of Nuclear Medicine, Pisa (Italy); Fabiani, Barbara; Verola, Carmela; Scarpato, Roberto [University of Pisa, Department of Biology, Unit of Genetics, Mutagenesis and Environmental Epidemiology, Pisa (Italy); Traino, Claudio [Azienda Ospedaliero-Universitaria Pisana, Health Physics Service, Pisa (Italy)

    2008-11-15

    As {sup 131}I therapy, used to achieve ablation of thyroid gland remnant, can cause chromosome damage in cultured peripheral lymphocytes especially, we investigated whether administration of radioiodine may induce early genome damage in peripheral T lymphocytes of adolescents with differentiated thyroid carcinoma (DTC). We studied 11 patients, aged 14.8 {+-} 3.1 years, who assumed {sup 131}I (range: 1.11-4.44 GBq) to ablate thyroid remnant. A blood sample for micronucleus assay and for evaluating expression of some genes involved in the DNA repair or the apoptosis pathways was obtained from each patient 1 h before (T{sub 0}) and 24 (T{sub 1}) and 48 h (T{sub 2}) post-radioiodine administration. Compared to T{sub 0}, we did not find any difference in the number of micronucleated cells at both T{sub 1} and T{sub 2} in any subject. Nine out of 11 patients had altered expression levels in a majority of the DNA repair and apoptosis genes at T{sub 1}, which decreased at T{sub 2}. We demonstrated for the first time that peripheral cells of DTC children and adolescents who received {sup 131}I at a mean dosage of 3.50 {+-} 0.37 GBq did not show chromosome damage within 48 h from the end of radiometabolic therapy. This may be due to a prompt activation of the cell machinery that maintains the integrity of the genome to prevent harmful double-strand breaks from progressing to chromosome mutations, either by repairing the lesions or by eliminating the most seriously damaged cells via apoptosis. (orig.)

  8. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    Science.gov (United States)

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  9. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: rleite2005@gmail.com; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Centro de Ciencias Biologicas. Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with {sup 32}P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  11. Diagnosis of visceral Leishmaniasis in asymptomatic dogs by the KDNA PCR-hybridization assay using noninvasive samples

    International Nuclear Information System (INIS)

    Leite, Rodrigo Souza; Andrade, Antero Silva Ribeiro de; Ferreira, Sydney de Almeida; Ituassu, Leonardo Trindade; Melo, Maria Norma de

    2009-01-01

    The visceral leishmaniasis (VL) in Brazil is caused by Leishmania (Leishmania) chagasi and the asymptomatic dogs may transmit the parasite to sand flies vectors. The VL epidemiological control in Brazil involves the elimination of seropositive dogs, insecticide treatment and systematic treatment of human cases. Therefore, the accurate diagnosis is important in order to avoid the disease transmission or unnecessary culling of dogs. Serological tests are used for screening of dogs. However, these techniques present limitations. The Polymerase Chain Reaction (PCR) is an attractive alternative to the diagnosis in this context; but non-invasive samplings have great importance because they are simpler, painless and less resisted by dog-owners. This study aimed at evaluating conjunctival swab (CS) for canine VL diagnosis. In this methodology a sterile cotton swab is used to sampling the dog conjunctiva in both eyes. Thirty asymptomatic seropositive dogs were used. The samples were analyzed by the kDNA PCR-hybridization procedure in which the PCR products are hybridized with cloned kDNA mini-circles labeled with 32 P[]dCTP. In addition, blood (B) was collected from each animal. L. chagasi was identified in 90% of CS samples and 13,6% of B samples. The high sensitivity obtained with asymptomatic dogs, in which the diagnosis is more difficult due the low number of parasites in the samples, allow concluding that the conjunctival swab associated to the kDNA PCR-hybridization assay provides a valuable alternative tool for the direct diagnosis of canine leishmaniasis. (author)

  12. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  13. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  14. Comparison of Abbott RealTime High-Risk HPV and Hybrid Capture 2 Assays for Detection of HPV Infection.

    Science.gov (United States)

    Ko, Kiwoong; Yu, Shinae; Lee, Eun Hee; Park, Hyosoon; Woo, Hee-Yeon; Kwon, Min-Jung

    2016-09-01

    Various assays for detecting high-risk human papillomavirus (HR HPV) have been introduced recently, including the Abbott RealTime High-Risk HPV assay. We sought to compare the performance of Abbott PCR to Hybrid Capture 2 for the detection of HR HPV. A total of 941 cervical swab specimens were obtained. We submitted all specimens for HR HPV detection with HC2 and Abbott PCR, and then additionally analyzed discordant and concordant positive results using restriction fragment mass polymorphism (RFMP) genotyping analysis. HC2 detected one of 13 HR HPV types in 12.3% (116/941) of cases, while Abbott PCR detected one of 14 detectable HR HPV types in 12.9% (121/941) of cases. The overall agreement rate was 97.3% with a kappa coefficient of 0.879. Discordant results between these two assays were observed in 25 cases. HC2 showed a sensitivity of 90.0% and specificity of 95.9%, while Abbott PCR showed a sensitivity of 98.0% and specificity of 96.8% when using RFMP results as the gold standard. For HPV 16/18 detection, Abbott PCR showed 95.8%/88.9% sensitivity and 99.2%/99.8% specificity, respectively. The overall coinfection rate between HPV 16, 18 and non-16/18 was 9.9% (12/121) in Abbott PCR analysis. Considering its high agreement rate with HC2, higher sensitivity/specificity compared to HC2, and ability to differentiate HPV 16/18 from other HPV types, Abbott PCR could be a reliable laboratory testing method for the screening of HPV infections. © 2016 by the Association of Clinical Scientists, Inc.

  15. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  16. Simulation of microarray data with realistic characteristics

    Directory of Open Access Journals (Sweden)

    Lehmussola Antti

    2006-07-01

    Full Text Available Abstract Background Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. Results We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. Conclusion The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms.

  17. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparisons with Other Methods

    International Nuclear Information System (INIS)

    Wu, Liyou; Yi, T.Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-01-01

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site (Hanford Reach of the Columbia River (HRCR), 11 strains), Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  18. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  19. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  20. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    Science.gov (United States)

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  2. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...... were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example...

  3. Gene Expression Analysis Using Agilent DNA Microarrays

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount ...

  4. On-chip mitochondrial assay microfluidic devices and protein nanopore/nanotube hybrid transistor

    Science.gov (United States)

    Lim, Taesun

    Tremendous efforts to understand the cause, mechanism of development and the way to treat various diseases as well as an early diagnosis have been made so far and people are still working hardly on these researches. Even now, countless people are suffering from diseases such as Alzhemer's disease, Parkinson's disease, diabetes and cancer without knowing clues to cure their diseases completely. Generally speaking, we still have a long way to go through to comprehensively figure out these our long-lasting homeworks. One of possible solutions is to merge current advanced technology and science together to find a powerful synergetic effect for a specific purpose that can be tailored depending on user's need. Here this research tried to put nanotechnology and biological science together to find a way to resolve current challenges by developing a new generation of the analytical sensing device. Mitochondrial functions and biological roles in regulating life and death control will be discussed indicating mitochondrion is a crucial organism to monitor to obtain important information regarding degenerative diseases and aging process. On-chip mitochondrial functional assay microsensor that could facilitate the mitochondrial evaluation will be extensively demonstrated and discussed in both technical and biological perspectives. The novel fusion technological approach will be demonstrated by combining artificial cell membrane with carbon nanotube electronics to interrogate interactions between biomolecules and electronic circuitries. In addition, molecular dynamics at the cell membrane could be investigated closely which can help understand the cell-cell communication and the regulation of ion transport.

  5. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  6. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  7. Branched-DNA signal amplification combined with paper chromatography hybridization assay and used in hepatitis B virus DNA detection

    International Nuclear Information System (INIS)

    Fu, F.Z.; Liu, L.X.; Wang, W.Q.; Sun, S. H.; Liu, L.B.

    2002-01-01

    Nucleic acids detection method is vital to the clinical pathogen diagnosis. The established method can be classified into target direct amplification and signal amplification format according to the target DNA or RNA being directly amplified or not. Those methods have advantages and disadvantages respectively in the clinical application. In the United States of American, branched-DNA as a strong signal amplifier is broadly used in the quantification of the nucleic acids. To gain satisfied sensitivity, some expensive label molecular and instruments should be adopted. Personnel should be special trained to perform. Hence, those can't be widely carried out in the Third World. To avoid those disadvantages, we used the branched-DNA amplifier in the paper chromatography hybridization assay. Methods: Branched DNA signal amplifier and series of probes complementary to the nucleic acid sequence of hepatitis B virus (HBV) have been synthesized. HBV-DNA or it's capture probe were immobilized on the high flow nitrocellulose strip. Having loaded at one end of the strip in turn, probes or HBV-DNA in the hybridization solution migrate to the opposite end of the strip by capillary forces and hybridizes to the immobilized DNA. The branched-DNA signal amplifier and probe labeled with biotin or 32P were then loaded. Through streptavidin-alkaline phosphatase (SA-AP) conjugate and NBT/BCIP ( the specific chromogenic substrate of AP) or autoradiography, the result can be visualized by color reaction or image production on the X-ray film. Results: The sensitivity of this HBV-DNA detection method used probe labeled with biotin and 32P are 1ng and 10pg. The method using the probe labeled with biotin is simple and rapid (2h) without depending on special instruments, it also avoids the pollution of EtBr which can lead to tumor. And the method using the probe labeled with 32P is simple and sensitive, with the exception of long time autoradiography and the inconvenient isotopic disposal

  8. A hybrid approach to device integration on a genetic analysis platform

    International Nuclear Information System (INIS)

    Brennan, Des; Justice, John; Aherne, Margaret; Galvin, Paul; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Macek, Milan

    2012-01-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization. (paper)

  9. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  10. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    Science.gov (United States)

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  11. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    Science.gov (United States)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  12. Microarrays for Universal Detection and Identification of Phytoplasmas

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Nyskjold, Henriette; Bertaccini, Assunta

    2013-01-01

    Detection and identification of phytoplasmas is a laborious process often involving nested PCR followed by restriction enzyme analysis and fine-resolution gel electrophoresis. To improve throughput, other methods are needed. Microarray technology offers a generic assay that can potentially detect...... and differentiate all types of phytoplasmas in one assay. The present protocol describes a microarray-based method for identification of phytoplasmas to 16Sr group level....

  13. Detection of cystic fibrosis transmembrane conductance regulator ΔF508 gene mutation using a paper-based nucleic acid hybridization assay and a smartphone camera.

    Science.gov (United States)

    Malhotra, Karan; Noor, M Omair; Krull, Ulrich J

    2018-05-29

    Diagnostic technology that makes use of paper platforms in conjunction with the ubiquitous availability of digital cameras in cellular telephones and personal assistive devices offers opportunities for development of bioassays that are cost effective and widely distributed. Assays that operate effectively in aqueous solution require further development for implementation in paper substrates, overcoming issues associated with surface interactions on a matrix that offers a large surface-to-volume ratio and constraints on convective mixing. This report presents and compares two related methods for determination of oligonucleotides that serve as indicators of cystic fibrosis, differentiating between the normal wild-type sequence, and a mutant-type sequence that has a 3-base replacement. The transduction strategy operates by selective hybridization of oligonucleotide probes that are conjugated to fluorescent quantum dots, where hybridization of target sequences causes a molecular fluorophore to approach the quantum dot and become emissive through fluorescence resonance energy transfer. Detection can rely on hybridization of a target that is labelled with Cy3 fluorophore, or in the presence of an unlabelled target when a sandwich assay format is implemented with a labelled reporter oligonucleotide. Selectivity to determine the presence of mismatched sequences involves appropriate selection of nucleotide sequences to set melt temperatures, in conjunction with control of stringency conditions using formamide as a chaotrope. It was determined that both direct and sandwich assays on paper substrates are able to distinguish between wild-type and mutant-type samples.

  14. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    Science.gov (United States)

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  15. Detection and genotyping of Entamoeba histolytica, Entamoeba dispar, Giardia lamblia, and Cryptosporidium parvum by oligonucleotide microarray.

    Science.gov (United States)

    Wang, Zheng; Vora, Gary J; Stenger, David A

    2004-07-01

    Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum are the most frequently identified protozoan parasites causing waterborne disease outbreaks. The morbidity and mortality associated with these intestinal parasitic infections warrant the development of rapid and accurate detection and genotyping methods to aid public health efforts aimed at preventing and controlling outbreaks. In this study, we describe the development of an oligonucleotide microarray capable of detecting and discriminating between E. histolytica, Entamoeba dispar, G. lamblia assemblages A and B, and C. parvum types 1 and 2 in a single assay. Unique hybridization patterns for each selected protozoan were generated by amplifying six to eight diagnostic sequences/organism by multiplex PCR; fluorescent labeling of the amplicons via primer extension; and subsequent hybridization to a set of genus-, species-, and subtype-specific covalently immobilized oligonucleotide probes. The profile-based specificity of this methodology not only permitted for the unequivocal identification of the six targeted species and subtypes, but also demonstrated its potential in identifying related species such as Cryptosporidium meleagridis and Cryptosporidium muris. In addition, sensitivity assays demonstrated lower detection limits of five trophozoites of G. lamblia. Taken together, the specificity and sensitivity of the microarray-based approach suggest that this methodology may provide a promising tool to detect and genotype protozoa from clinical and environmental samples.

  16. Fibre optic microarrays.

    Science.gov (United States)

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  17. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors.

    Science.gov (United States)

    Doughan, Samer; Uddayasankar, Uvaraj; Krull, Ulrich J

    2015-06-09

    Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  19. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  20. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    Science.gov (United States)

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  1. DNA Microarray Technology; TOPICAL

    International Nuclear Information System (INIS)

    WERNER-WASHBURNE, MARGARET; DAVIDSON, GEORGE S.

    2002-01-01

    Collaboration between Sandia National Laboratories and the University of New Mexico Biology Department resulted in the capability to train students in microarray techniques and the interpretation of data from microarray experiments. These studies provide for a better understanding of the role of stationary phase and the gene regulation involved in exit from stationary phase, which may eventually have important clinical implications. Importantly, this research trained numerous students and is the basis for three new Ph.D. projects

  2. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  3. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  4. Nanotechnology: moving from microarrays toward nanoarrays.

    Science.gov (United States)

    Chen, Hua; Li, Jun

    2007-01-01

    Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

  5. Preimplantation genetic screening for all 24 chromosomes by microarray comparative genomic hybridization significantly increases implantation rates and clinical pregnancy rates in patients undergoing in vitro fertilization with poor prognosis

    Science.gov (United States)

    Majumdar, Gaurav; Majumdar, Abha; Lall, Meena; Verma, Ishwar C.; Upadhyaya, Kailash C.

    2016-01-01

    CONTEXT: A majority of human embryos produced in vitro are aneuploid, especially in couples undergoing in vitro fertilization (IVF) with poor prognosis. Preimplantation genetic screening (PGS) for all 24 chromosomes has the potential to select the most euploid embryos for transfer in such cases. AIM: To study the efficacy of PGS for all 24 chromosomes by microarray comparative genomic hybridization (array CGH) in Indian couples undergoing IVF cycles with poor prognosis. SETTINGS AND DESIGN: A retrospective, case–control study was undertaken in an institution-based tertiary care IVF center to compare the clinical outcomes of twenty patients, who underwent 21 PGS cycles with poor prognosis, with 128 non-PGS patients in the control group, with the same inclusion criterion as for the PGS group. MATERIALS AND METHODS: Single cells were obtained by laser-assisted embryo biopsy from day 3 embryos and subsequently analyzed by array CGH for all 24 chromosomes. Once the array CGH results were available on the morning of day 5, only chromosomally normal embryos that had progressed to blastocyst stage were transferred. RESULTS: The implantation rate and clinical pregnancy rate (PR) per transfer were found to be significantly higher in the PGS group than in the control group (63.2% vs. 26.2%, P = 0.001 and 73.3% vs. 36.7%, P = 0.006, respectively), while the multiple PRs sharply declined from 31.9% to 9.1% in the PGS group. CONCLUSIONS: In this pilot study, we have shown that PGS by array CGH can improve the clinical outcome in patients undergoing IVF with poor prognosis. PMID:27382234

  6. Universal Reference RNA as a standard for microarray experiments

    Directory of Open Access Journals (Sweden)

    Fero Michael

    2004-03-01

    Full Text Available Abstract Background Obtaining reliable and reproducible two-color microarray gene expression data is critically important for understanding the biological significance of perturbations made on a cellular system. Microarray design, RNA preparation and labeling, hybridization conditions and data acquisition and analysis are variables difficult to simultaneously control. A useful tool for monitoring and controlling intra- and inter-experimental variation is Universal Reference RNA (URR, developed with the goal of providing hybridization signal at each microarray probe location (spot. Measuring signal at each spot as the ratio of experimental RNA to reference RNA targets, rather than relying on absolute signal intensity, decreases variability by normalizing signal output in any two-color hybridization experiment. Results Human, mouse and rat URR (UHRR, UMRR and URRR, respectively were prepared from pools of RNA derived from individual cell lines representing different tissues. A variety of microarrays were used to determine percentage of spots hybridizing with URR and producing signal above a user defined threshold (microarray coverage. Microarray coverage was consistently greater than 80% for all arrays tested. We confirmed that individual cell lines contribute their own unique set of genes to URR, arguing for a pool of RNA from several cell lines as a better configuration for URR as opposed to a single cell line source for URR. Microarray coverage comparing two separately prepared batches each of UHRR, UMRR and URRR were highly correlated (Pearson's correlation coefficients of 0.97. Conclusion Results of this study demonstrate that large quantities of pooled RNA from individual cell lines are reproducibly prepared and possess diverse gene representation. This type of reference provides a standard for reducing variation in microarray experiments and allows more reliable comparison of gene expression data within and between experiments and

  7. The illusion of specific capture: surface and solution studies of suboptimal oligonucleotide hybridization

    Science.gov (United States)

    2013-01-01

    Background Hybridization based assays and capture systems depend on the specificity of hybridization between a probe and its intended target. A common guideline in the construction of DNA microarrays, for instance, is that avoiding complementary stretches of more than 15 nucleic acids in a 50 or 60-mer probe will eliminate sequence specific cross-hybridization reactions. Here we present a study of the behavior of partially matched oligonucleotide pairs with complementary stretches starting well below this threshold complementarity length – in silico, in solution, and at the microarray surface. The modeled behavior of pairs of oligonucleotide probes and their targets suggests that even a complementary stretch of sequence 12 nt in length would give rise to specific cross-hybridization. We designed a set of binding partners to a 50-mer oligonucleotide containing complementary stretches from 6 nt to 21 nt in length. Results Solution melting experiments demonstrate that stable partial duplexes can form when only 12 bp of complementary sequence are present; surface hybridization experiments confirm that a signal close in magnitude to full-strength signal can be obtained from hybridization of a 12 bp duplex within a 50mer oligonucleotide. Conclusions Microarray and other molecular capture strategies that rely on a 15 nt lower complementarity bound for eliminating specific cross-hybridization may not be sufficiently conservative. PMID:23445545

  8. The use of Taka-diastase in a [3H]poly(A) hybridization assay of oligo(U) sequences in RNA

    International Nuclear Information System (INIS)

    De Herdt, E.; Kondo, M.; Slegers, H.

    1981-01-01

    A reliable assay for uridylate sequences longer than 10 is described. The procedure is based on the hybridization of [ 3 H]poly(A) with poly(U) or oligo(U) sequences in high ionic conditions and a subsequent degradation of single stranded polynucleotides with purified Taka-diastase. A 1:2 complex between poly(A) and poly(U) is formed on which one poly(U) strand is digested by Taka-diastase. The procedure is especially suitable for the detection and quantitation of Usub(n) (n > 10) in RNA preparations. (Auth.)

  9. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  10. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel

  11. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  12. Principles of gene microarray data analysis.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  13. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics.

    Science.gov (United States)

    Ma, Y; Dai, X; Hong, T; Munk, G B; Libera, M

    2016-12-19

    Despite their many advantages and successes, molecular beacon (MB) hybridization probes have not been extensively used in microarray formats because of the complicating probe-substrate interactions that increase the background intensity. We have previously shown that tethering to surface-patterned microgels is an effective means for localizing MB probes to specific surface locations in a microarray format while simultaneously maintaining them in as water-like an environment as possible and minimizing probe-surface interactions. Here we extend this approach to include both real-time detection together with integrated NASBA amplification. We fabricate small (∼250 μm × 250 μm) simplex, duplex, and five-plex assays with microarray spots of controllable size (∼20 μm diameter), position, and shape to detect bacteria and fungi in a bloodstream-infection model. The targets, primers, and microgel-tethered probes can be combined in a single isothermal reaction chamber with no post-amplification labelling. We extract total RNA from clinical blood samples and differentiate between Gram-positive and Gram-negative bloodstream infection in a duplex assay to detect RNA- amplicons. The sensitivity based on our current protocols in a simplex assay to detect specific ribosomal RNA sequences within total RNA extracted from S. aureus and E. coli cultures corresponds to tens of bacteria per ml. We furthermore show that the platform can detect RNA- amplicons from synthetic target DNA with 1 fM sensitivity in sample volumes that contain about 12 000 DNA molecules. These experiments demonstrate an alternative approach that can enable rapid and real-time microarray-based molecular diagnostics.

  14. Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis.

    Science.gov (United States)

    Lezar, Sabine; Myburg, A A; Berger, D K; Wingfield, M J; Wingfield, B D

    2004-11-01

    Development of improved Eucalyptus genotypes involves the routine identification of breeding stock and superior clones. Currently, microsatellites and random amplified polymorphic DNA markers are the most widely used DNA-based techniques for fingerprinting of these trees. While these techniques have provided rapid and powerful fingerprinting assays, they are constrained by their reliance on gel or capillary electrophoresis, and therefore, relatively low throughput of fragment analysis. In contrast, recently developed microarray technology holds the promise of parallel analysis of thousands of markers in plant genomes. The aim of this study was to develop a DNA fingerprinting chip for Eucalyptus grandis and to investigate its usefulness for fingerprinting of eucalypt trees. A prototype chip was prepared using a partial genomic library from total genomic DNA of 23 E. grandis trees, of which 22 were full siblings. A total of 384 cloned genomic fragments were individually amplified and arrayed onto glass slides. DNA fingerprints were obtained for 17 individuals by hybridizing labeled genome representations of the individual trees to the 384-element chip. Polymorphic DNA fragments were identified by evaluating the binary distribution of their background-corrected signal intensities across full-sib individuals. Among 384 DNA fragments on the chip, 104 (27%) were found to be polymorphic. Hybridization of these polymorphic fragments was highly repeatable (R2>0.91) within the E. grandis individuals, and they allowed us to identify all 17 full-sib individuals. Our results suggest that DNA microarrays can be used to effectively fingerprint large numbers of closely related Eucalyptus trees.

  15. Normalization for triple-target microarray experiments

    Directory of Open Access Journals (Sweden)

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  16. Protein microarray: sensitive and effective immunodetection for drug residues

    Directory of Open Access Journals (Sweden)

    Zer Cindy

    2010-02-01

    Full Text Available Abstract Background Veterinary drugs such as clenbuterol (CL and sulfamethazine (SM2 are low molecular weight ( Results The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC50. Our microarray assay showed the IC50 were 39.6 ng/ml for CL and 48.8 ng/ml for SM2, while the traditional competitive indirect-ELISA (ci-ELISA showed the IC50 were 190.7 ng/ml for CL and 156.7 ng/ml for SM2. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g than the ci-ELISA (0.1 ng/g for detection of CL residues. Conclusions The protein microarrays showed 4.5 and 3.5 times lower IC50 than the ci-ELISA detection for CL and SM2, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.

  17. Staphylococcus aureus DNA ligase: characterization of its kinetics of catalysis and development of a high-throughput screening compatible chemiluminescent hybridization protection assay.

    Science.gov (United States)

    Gul, Sheraz; Brown, Richard; May, Earl; Mazzulla, Marie; Smyth, Martin G; Berry, Colin; Morby, Andrew; Powell, David J

    2004-11-01

    DNA ligases are key enzymes involved in the repair and replication of DNA. Prokaryotic DNA ligases uniquely use NAD+ as the adenylate donor during catalysis, whereas eukaryotic enzymes use ATP. This difference in substrate specificity makes the bacterial enzymes potential targets for therapeutic intervention. We have developed a homogeneous chemiluminescence-based hybridization protection assay for Staphylococcus aureus DNA ligase that uses novel acridinium ester technology and demonstrate that it is an alternative to the commonly used radiometric assays for ligases. The assay has been used to determine a number of kinetic constants for S. aureus DNA ligase catalysis. These included the K(m) values for NAD+ (2.75+/-0.1 microM) and the acridinium-ester-labelled DNA substrate (2.5+/-0.2 nM). A study of the pH-dependencies of kcat, K(m) and kcat/K(m) has revealed values of kinetically influential ionizations within the enzyme-substrate complexes (kcat) and free enzyme (kcat/K(m)). In each case, the curves were shown to be composed of one kinetically influential ionization, for k(cat), pK(a)=6.6+/-0.1 and kcat/K(m), pK(a)=7.1+/-0.1. Inhibition characteristics of the enzyme against two Escherichia coli DNA ligase inhibitors have also been determined with IC50 values for these being 3.30+/-0.86 microM for doxorubicin and 1.40+/-0.07 microM for chloroquine diphosphate. The assay has also been successfully miniaturized to a sufficiently low volume to allow it to be utilized in a high-throughput screen (384-well format; 20 microl reaction volume), enabling the assay to be used in screening campaigns against libraries of compounds to discover leads for further drug development.

  18. 11th GCC Closed Forum: cumulative stability; matrix stability; immunogenicity assays; laboratory manuals; biosimilars; chiral methods; hybrid LBA/LCMS assays; fit-for-purpose validation; China Food and Drug Administration bioanalytical method validation.

    Science.gov (United States)

    Islam, Rafiq; Briscoe, Chad; Bower, Joseph; Cape, Stephanie; Arnold, Mark; Hayes, Roger; Warren, Mark; Karnik, Shane; Stouffer, Bruce; Xiao, Yi Qun; van der Strate, Barry; Sikkema, Daniel; Fang, Xinping; Tudoroniu, Ariana; Tayyem, Rabab; Brant, Ashley; Spriggs, Franklin; Barry, Colin; Khan, Masood; Keyhani, Anahita; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Datin, Jim; Zemo, Jennifer; Hughes, Nicola; Fatmi, Saadya; Sheldon, Curtis; Fountain, Scott; Satterwhite, Christina; Colletti, Kelly; Vija, Jenifer; Yu, Mathilde; Stamatopoulos, John; Lin, Jenny; Wilfahrt, Jim; Dinan, Andrew; Ohorodnik, Susan; Hulse, James; Patel, Vimal; Garofolo, Wei; Savoie, Natasha; Brown, Michael; Papac, Damon; Buonarati, Mike; Hristopoulos, George; Beaver, Chris; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Ray, Gene; Warrino, Dominic; Xu, Allan; Green, Rachel; Hayward-Sewell, Joanne; Marcelletti, John; Sanchez, Christina; Kennedy, Michael; Charles, Jessica St; Bouhajib, Mohammed; Nehls, Corey; Tabler, Edward; Tu, Jing; Joyce, Philip; Iordachescu, Adriana; DuBey, Ira; Lindsay, John; Yamashita, Jim; Wells, Edward

    2018-04-01

    The 11th Global CRO Council Closed Forum was held in Universal City, CA, USA on 3 April 2017. Representatives from international CRO members offering bioanalytical services were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The second CRO-Pharma Scientific Interchange Meeting was held on 7 April 2017, which included Pharma representatives' sharing perspectives on the topics discussed earlier in the week with the CRO members. The issues discussed at the meetings included cumulative stability evaluations, matrix stability evaluations, the 2016 US FDA Immunogenicity Guidance and recent and unexpected FDA Form 483s on immunogenicity assays, the bioanalytical laboratory's role in writing PK sample collection instructions, biosimilars, CRO perspectives on the use of chiral versus achiral methods, hybrid LBA/LCMS assays, applications of fit-for-purpose validation and, at the Global CRO Council Closed Forum only, the status and trend of current regulated bioanalytical practice in China under CFDA's new BMV policy. Conclusions from discussions of these topics at both meetings are included in this report.

  19. An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays

    Directory of Open Access Journals (Sweden)

    Atefeh Pourjahed

    2013-12-01

    The agarose-PLL microarrays had the highest signal (2546 and lowest background signal (205 in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes.

  20. Towards a programmable magnetic bead microarray in a microfluidic channel

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bruus, Henrik; Hansen, Mikkel Fougt

    2007-01-01

    to use larger currents and obtain forces of longer range than from thin current lines at a given power limit. Guiding of magnetic beads in the hybrid magnetic separator and the construction of a programmable microarray of magnetic beads in the microfluidic channel by hydrodynamic focusing is presented....

  1. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

    Directory of Open Access Journals (Sweden)

    Nobumasa Hitoshi

    2007-04-01

    Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

  2. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    Science.gov (United States)

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    Science.gov (United States)

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of RT-PCR-Dot blot hybridization based on radioisotope 32P with conventional RT-PCR and commercial ELISA Assays for blood screening of HIV-1

    International Nuclear Information System (INIS)

    Maria Lina R; Andi Yasmon

    2011-01-01

    There are many commercial ELISA and rapid test kits that have been used for blood screening; however, the kits can give false positive and negative results. Therefore, RT-PCR (Reverse Transcription Polymerase Chain Reaction) - Dot Blot Hybridization based on radioisotope 32 P (RDBR) method was developed in this research, to compare the method with the conventional RT-PCR and commercial ELISA Enzyme-Linked lmmunosorbent Assay) kit. This method is efficient for screening of large blood specimens and surveillance study. Eighty seven samples were used and serum of the samples were tested by ELISA to detect HIV-1. The HIV-l RNA genome was extracted from plasma samples and tested using the RT-PCR and RDBR methods. Of 87 samples that were tested, the rates of positive testing of the RT-PCR, the RDBR, and the ELISA were 71.26%, 74.71%, and 80.46%, respectively. The RDBR (a combination of RTPCR and dot blot hybridization) was more sensitive than conventional RT-PCR by showing 3.45% in increase number of positive specimens. The results showed that of 9 samples (10.34%) were negative RDBR and positive ELISA, while 4 samples (4.60%) were negative ELISA and positive RDBR. The two methods showed slightly difference in the results but further validation is still needed. However, RDBR has high potential as an alternative method for screening of blood in large quantities when compared to method of conventional RT-PCR and ELISA. (author)

  5. Non-destructive assay system for uranium and plutonium in reprocessing input solutions. Hybrid K-edge/XRF Densitometer. JASPAS JC-11 final report

    International Nuclear Information System (INIS)

    Surugaya, N.; Abe, K.; Kurosawa, A.; Ikeda, H.; Kuno, Y.

    1997-05-01

    As a part of JASPAS programme, a non-radioactive assay system for the accountability of uranium and plutonium in input dissolver solutions of a spent fuel reprocessing plant, called Hybrid K-edge/XRF Densitometer, has been developed at the Tokai Reprocessing plant (TRP) since 1991. The instrument is the one of the hybrid type combined K-edge densitometry (KED) and X-ray fluorescence (XRF) analysis. The KED is used to determine the uranium concentration and the XRF is used to determine the U/Pu ratio. These results give the plutonium concentration in consequence. It is considered that the instrument has the capability of timely on-site verification for input accountancy. The instrument had been installed in the analytical hot cell at the TRP and the experiments comparing with Isotope Dilution Mass Spectrometry (IDMS) method have been carried out. As the results of measurements for the actual input solutions in the acceptance and performance tests, it was typically confirmed that the precision for determining uranium concentration by the KED was within 0.2%, whereas the XRF for plutonium performed within 0.7%. This final report summarizes the design information and performance data so as to end the JASPAS programme. (author)

  6. Cell-Based Microarrays for In Vitro Toxicology

    Science.gov (United States)

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  7. Comparison of analytical and clinical performance of CLART HPV2 genotyping assay to Linear Array and Hybrid Capture 2

    DEFF Research Database (Denmark)

    Ejegod, Ditte Møller; Rebolj, Matejka; Bonde, Jesper

    2015-01-01

    to the Danish nation-wide Pathology Data Bank. For comparison of CLART and LA in terms of genotype detection, we calculated κ-coefficients, and proportions of overall and positive agreement. For comparison of CIN detection between CLART, LA, and HC2, we calculated the relative sensitivity and specificity......), and Hybrid Capture 2 (HC2) using samples stored in SurePath. METHODS: Residual material from 401 routine samples from women with abnormal cytology was tested by CLART, LA, and HC2 (ClinicalTrial.gov: NCT01671462, Ethical Committee approval: H-2012-070). Histological outcomes were ascertained by linkage...... for high-grade CIN. RESULTS: The κ-coefficient for agreement in detection of genotypes 16, 18, 31, 33, 35, and 51 was ≥0.90 (overall agreement: 98-99%, positive agreement: 84-95%). The values were slightly lower, but still in the "substantial" range for genotypes 39, 45, 52, 56, 58, 59, and several low...

  8. Uses of Dendrimers for DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Majoral

    2006-08-01

    Full Text Available Biosensors such as DNA microarrays and microchips are gaining an increasingimportance in medicinal, forensic, and environmental analyses. Such devices are based onthe detection of supramolecular interactions called hybridizations that occur betweencomplementary oligonucleotides, one linked to a solid surface (the probe, and the other oneto be analyzed (the target. This paper focuses on the improvements that hyperbranched andperfectly defined nanomolecules called dendrimers can provide to this methodology. Twomain uses of dendrimers for such purpose have been described up to now; either thedendrimer is used as linker between the solid surface and the probe oligonucleotide, or thedendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the firstcase the dendrimer generally induces a higher loading of probes and an easier hybridization,due to moving away the solid phase. In the second case the high number of localized labels(generally fluorescent induces an increased sensitivity, allowing the detection of smallquantities of biological entities.

  9. Evaluation of a microarray-based genotyping assay for the rapid detection of cytochrome P450 2C19 *2 and *3 polymorphisms from whole blood using nanoparticle probes.

    Science.gov (United States)

    Buchan, Blake W; Peterson, Jess F; Cogbill, Christopher H; Anderson, Dennis K; Ledford, Joellen S; White, Mary N; Quigley, Neil B; Jannetto, Paul J; Ledeboer, Nathan A

    2011-10-01

    Numerous drugs such as clopidogrel have been developed to reduce coagulation or inhibit platelet function. The hepatic cytochrome P450 (CYP) pathway is involved in the conversion of clopidogrel to its active metabolite. A recent black-box warning was included in the clopidogrel package insert indicating a significant clinical link between specific CYP2C19 genetic variants and poor metabolism of clopidogrel. Of these variants, *2 and *3 are the most common and are associated with complete loss of enzyme activity. In patients who are carriers of a CYP2C19 *2 or *3 allele, the conversion of clopidogrel to its active metabolite may be reduced, which can lead to ischemic events and negative consequence for the patient. We examined the ability of the Verigene CLO assay (Nanosphere, Northbrook, IL) to identify CYP2C19 *2 and *3 polymorphisms in 1,286 unique whole blood samples. The Verigene CLO assay accurately identified homozygous and heterozygous *2 and *3 phenotypes with a specificity of 100% and a final call rate of 99.7%. The assay is fully automated and can produce a result in approximately 3.5 hours.

  10. Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies

    DEFF Research Database (Denmark)

    Dufva, Martin; Petersen, Jesper; Poulsen, Lena

    2009-01-01

    DNA microarrays have for a decade been the only platform for genome-wide analysis and have provided a wealth of information about living organisms. DNA microarrays are processed today under one condition only, which puts large demands on assay development because all probes on the array need to f...

  11. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  12. ELISA-BASE: an integrated bioinformatics tool for analyzing and tracking ELISA microarray data

    OpenAIRE

    White, Amanda M.; Collett, James R.; Seurynck-Servoss, Shannon L.; Daly, Don S.; Zangar, Richard C.

    2009-01-01

    Summary:ELISA-BASE is an open source database for capturing, organizing and analyzing enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Software Environment (BASE) database system.

  13. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay.

    Science.gov (United States)

    Goud, Kalal Iravathy; Dayakar, Seetha; Vijayalaxmi, Kolanupaka; Babu, Saidam Jangu; Reddy, P Vijay Anand

    2012-03-01

    Fluorescence in situ hybridization (FISH) is increasingly being recognized as the most accurate and predictive test for HER 2/neu gene amplification and response to therapy in breast cancer. In the present study we investigated HER-2/neu gene amplification by FISH in breast carcinoma tissue specimens and compared the results with that of immunohistochemical (IHC) analysis. A total of 90 breast carcinoma tissue samples were used for immunohistochemical (IHC) and FISH analysis. IHC was performed by using mouse monoclonal antibody to the intracellular domain of HER-2/neu protein. Each slide was scored in a blinded fashion by two pathologists according to the manufacturer's recommended criteria. FISH analysis was performed on paraffin embedded breast tumour tissue sections. The polysomy for centromere 17 (Spec green signal) was read as green signals less than 4 as moderate polysomy, and more than 4 as highly polysomy. Thirty of the 90 patients had negative results by IHC and FISH. Of the 28 patients with the score of 2+ by IHC, 20 were FISH positive for HER-2/neu gene amplification, three were FISH negative and five patients showed equivocal (1.8-2.2) results by FISH. These five cases were retested for IHC and FISH on different paraffin embedded tissue blocks, and all five were found positive for HER-2/neu gene amplification. Twenty five patients with the score of 3+ by IHC were FISH positive for HER-2/neu gene amplification (>2.2). Seven cases with the score of 3+ by IHC were FISH negative for HER-2/neu gene amplification (>2.2), and showed polysomy of chromosome number 17 high polysomy > 4. Our results indicated that HER-2/neu status by FISH should be performed in all cases of breast tumour with a 2+ score by IHC. Cases demonstrating a 3+ score by IHC may be subjected to FISH to rule out polysomy of chromosome 17 which could be falsely interpreted as HER-2/neu overexpression by IHC analysis. There is also a need for establishing a clinically validated cut-off value

  14. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia adhesion

    Directory of Open Access Journals (Sweden)

    Faisal Mohamed

    2010-05-01

    Full Text Available Abstract Background The zebra mussel (Dreissena polymorpha has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A, current velocity (Factor B, dissolved oxygen (Factor C, and byssogenesis status (Factor D. Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR. The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment.

  15. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia) adhesion.

    Science.gov (United States)

    Xu, Wei; Faisal, Mohamed

    2010-05-28

    The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment.

  16. Microarray-based screening of heat shock protein inhibitors.

    Science.gov (United States)

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... DNA Microarrays provides authoritative, detailed instruction on the design, construction, and applications of microarrays, as well as comprehensive descriptions of the software tools and strategies...

  18. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  19. Bioinspired near-infrared-excited sensing platform for in vitro antioxidant capacity assay based on upconversion nanoparticles and a dopamine-melanin hybrid system.

    Science.gov (United States)

    Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei

    2015-02-11

    A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.

  20. Detection of high-risk subtypes of human papillomavirus in cervical swabs: routine use of the Digene Hybrid Capture assay and polymerase chain reaction analysis.

    LENUS (Irish Health Repository)

    Brennan, M M

    2012-02-03

    Human papillomaviruses (HPVs) are major causative agents in the pathogenesis of cervical cancer, and more than twenty types are associated with its development. With the introduction of liquid-based preparation systems, it is envisaged that large-scale HPV testing will be established in the near future. Preliminary studies demonstrate the accessibility of these samples for DNA testing using both the Digene Hybrid Capture assay (DHCA) and polymerase chain reaction (PCR) techniques. This study aims to assess the validity and sensitivity of the DHCA system to detect high-risk HPV DNA, using two sets of HPV consensus primers (Gp5+\\/Gp6+ and MY09\\/MY11) in tandem with routine assessment of cervical smear and biopsy samples. Results indicate that the combination of DHCA and PCR detects more high-grade lesions than does the DHCA alone. DHCA-negative cases were categorised by subsequent PCR amplification into low-grade HPV-negative (12\\/16) cervical lesions and high-grade HPV-positive (7\\/9) cervical lesions. Gp5+\\/Gp6+ primers were less sensitive in detecting HPV-positive samples than was the MY09\\/MY11 primer set. These results support the use of high-risk HPV testing by DHCA, with subsequent analysis of DHCA-negative samples by PCR using the MY09\\/MY11 primers.

  1. Simultaneous detection of viruses and Toxoplasma gondii in cerebrospinal fluid specimens by multiplex polymerase chain reaction-based reverse hybridization assay.

    Science.gov (United States)

    Del Prete, Raffaele; Di Taranto, Anna Maria; Lipsi, Maria Rosaria; Natalicchio, Maria Iole; Antonetti, Raffaele; Miragliotta, Giuseppe

    2009-04-01

    The lack of rapidity and the low sensitivity and specificity of traditional laboratory methods limits their usefulness in the laboratory diagnosis of viral central nervous system (CNS) infections. This study describes the use of a commercially available multiplex polymerase chain reaction (mPCR)-based reverse hybridization assay (RHA) for the simultaneous detection of the genomes of 8 viruses and Toxoplasma gondii in cerebrospinal fluids (CSF) from 181 patients suspected of having viral meningitis. Twenty-two/181 (12.15%) CSF samples resulted positive by mPCR. Eighteen/22 were positive for 1 viral pathogen, whereas a dual infection was detected in 4/22 samples. Epstein-Barr virus (EBV) was the most commonly detected virus (6/22), followed by herpes simplex virus type-1 (HSV-1) (5/22) and -2 (HSV-2) (4/22). Cytomegalovirus (CMV), human herpesvirus-6 (HHV-6), and Epstein-Barr virus (EBV) were detected in 1 specimen each. Two CSF samples were co-infected by HSV-1/HSV-2, 1 sample by HHV-6/T. gondii, and 1 sample by EBV/EV, respectively. Our data support the usefulness of mPCR as a rapid molecular method for the simultaneous detection of major viral pathogens and T. gondii in aseptic meningitis also to allow the earlier application of specific antiviral therapy.

  2. Washing scaling of GeneChip microarray expression

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2010-05-01

    Full Text Available Abstract Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM and mismatch (MM probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental

  3. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    Science.gov (United States)

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  4. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  5. Xylella fastidiosa gene expression analysis by DNA microarrays

    OpenAIRE

    Travensolo,Regiane F.; Carareto-Alves,Lucia M.; Costa,Maria V.C.G.; Lopes,Tiago J.S.; Carrilho,Emanuel; Lemos,Eliana G.M.

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcrip...

  6. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay.

    Science.gov (United States)

    Godinho, Bruno M D C; Gilbert, James W; Haraszti, Reka A; Coles, Andrew H; Biscans, Annabelle; Roux, Loic; Nikan, Mehran; Echeverria, Dimas; Hassler, Matthew; Khvorova, Anastasia

    2017-12-01

    Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.

  7. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  8. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    OpenAIRE

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulat...

  9. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  10. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Directory of Open Access Journals (Sweden)

    Beaudoing Emmanuel

    2006-09-01

    Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

  11. Polyadenylation state microarray (PASTA) analysis.

    Science.gov (United States)

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  12. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  13. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay

    International Nuclear Information System (INIS)

    Hida, T.; Ueda, R.; Takahashi, T.; Watanabe, H.; Kato, T.; Suyama, M.; Sugiura, T.; Ariyoshi, Y.

    1989-01-01

    The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay was developed by technically combining the human tumor clonogenic assay and the MTT assay to make the most of both assays. This assay was able to estimate the in vitro growth of cultured cell lines and of tumor cells in pleural effusion, suggesting the possibility of its use for assessment of chemosensitivity and radiosensitivity of fresh tumor samples. Multiple cell lines [including morphological and/or phenotypical in vitro converters and cisplatin (CDDP)-resistant lines] were established from three patients with small cell lung cancer at different stages of the disease. Chemosensitivity of these cell lines to four commonly used chemotherapeutic drugs was tested by the MTT hybrid assay. SK1 and SK3 lines were established from Patient S. K. before and after chemotherapy and radiotherapy, respectively. SK3/CDDP, a CDDP-resistant line derived from the SK3 line, was 30-fold more resistant to CDDP [50% inhibiting dose (IC50), 21.5 micrograms/ml] than the SK1 line. In Patient M. O., MOA2/CDDP, a CDDP-resistant line derived from MOA2 (an in vitro converter from the MO line), was 41-fold more resistant to CDDP (IC50, 37 micrograms/ml) than the parent MO line. From Patient T. M., TM1 and TM2 lines were established before and after chemotherapy, respectively. The latter showed 6-fold more resistance to CDDP than the former. Chemosensitivity of these lines to three other drugs, 4-hydroperoxycyclophosphamide, Adriamycin, and etoposide, suggested cross-resistance between CDDP and 4-hydroperoxycyclophosphamide. Radiosensitivity study was also carried out with the MTT hybrid assay. The MOA2 line was more resistant [Do, 3.0 Gy; extrapolation number (n), 4.0] than the parental MO line (Do, 1.6 Gy; n, 2.1). There was no clear difference in radiosensitivity between the cell lines established before and after radiation therapy in Patient S. K

  14. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  15. Current Knowledge on Microarray Technology - An Overview

    African Journals Online (AJOL)

    Erah

    This paper reviews basics and updates of each microarray technology and serves to .... through protein microarrays. Protein microarrays also known as protein chips are nothing but grids that ... conditioned media, patient sera, plasma and urine. Clontech ... based antibody arrays) is similar to membrane-based antibody ...

  16. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the post...

  17. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  18. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    International Nuclear Information System (INIS)

    Herbáth, Melinda; Balogh, Andrea; Matkó, János; Papp, Krisztián; Prechl, József

    2014-01-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  19. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  20. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    Science.gov (United States)

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  1. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    Science.gov (United States)

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  3. Validation of tissue microarray technology in squamous cell carcinoma of the esophagus

    NARCIS (Netherlands)

    Boone, Judith; van Hillegersberg, Richard; van Diest, Paul J.; Offerhaus, G. Johan A.; Borel Rinkes, Inne H. M.; ten Kate, Fiebo J. W.

    2008-01-01

    Tissue microarray (TMA) technology has been developed to facilitate high-throughput immunohistochemical and in situ hybridization analysis of tissues by inserting small tissue biopsy cores into a single paraffin block. Several studies have revealed novel prognostic biomarkers in esophageal squamous

  4. Printing Proteins as Microarrays for High-Throughput Function Determination

    Science.gov (United States)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  5. DNA microarray technology in nutraceutical and food safety.

    Science.gov (United States)

    Liu-Stratton, Yiwen; Roy, Sashwati; Sen, Chandan K

    2004-04-15

    The quality and quantity of diet is a key determinant of health and disease. Molecular diagnostics may play a key role in food safety related to genetically modified foods, food-borne pathogens and novel nutraceuticals. Functional outcomes in biology are determined, for the most part, by net balance between sets of genes related to the specific outcome in question. The DNA microarray technology offers a new dimension of strength in molecular diagnostics by permitting the simultaneous analysis of large sets of genes. Automation of assay and novel bioinformatics tools make DNA microarrays a robust technology for diagnostics. Since its development a few years ago, this technology has been used for the applications of toxicogenomics, pharmacogenomics, cell biology, and clinical investigations addressing the prevention and intervention of diseases. Optimization of this technology to specifically address food safety is a vast resource that remains to be mined. Efforts to develop diagnostic custom arrays and simplified bioinformatics tools for field use are warranted.

  6. Development and Validation of Protein Microarray Technology for Simultaneous Inflammatory Mediator Detection in Human Sera

    Directory of Open Access Journals (Sweden)

    Senthooran Selvarajah

    2014-01-01

    Full Text Available Biomarkers, including cytokines, can help in the diagnosis, prognosis, and prediction of treatment response across a wide range of disease settings. Consequently, the recent emergence of protein microarray technology, which is able to quantify a range of inflammatory mediators in a large number of samples simultaneously, has become highly desirable. However, the cost of commercial systems remains somewhat prohibitive. Here we show the development, validation, and implementation of an in-house microarray platform which enables the simultaneous quantitative analysis of multiple protein biomarkers. The accuracy and precision of the in-house microarray system were investigated according to the Food and Drug Administration (FDA guidelines for pharmacokinetic assay validation. The assay fell within these limits for all but the very low-abundant cytokines, such as interleukin- (IL- 10. Additionally, there were no significant differences between cytokine detection using our microarray system and the “gold standard” ELISA format. Crucially, future biomarker detection need not be limited to the 16 cytokines shown here but could be expanded as required. In conclusion, we detail a bespoke protein microarray system, utilizing well-validated ELISA reagents, that allows accurate, precise, and reproducible multiplexed biomarker quantification, comparable with commercial ELISA, and allowing customization beyond that of similar commercial microarrays.

  7. Misregulation of Gene Expression and Sterility in Interspecies Hybrids: Causal Links and Alternative Hypotheses.

    Science.gov (United States)

    Civetta, Alberto

    2016-05-01

    Understanding the origin of species is of interest to biologist in general and evolutionary biologist in particular. Hybrid male sterility (HMS) has been a focus in studies of speciation because sterility imposes a barrier to free gene flow between organisms, thus effectively isolating them as distinct species. In this review, I focus on the role of differential gene expression in HMS and speciation. Microarray and qPCR assays have established associations between misregulation of gene expression and sterility in hybrids between closely related species. These studies originally proposed disrupted expression of spermatogenesis genes as a causative of sterility. Alternatively, rapid genetic divergence of regulatory elements, particularly as they relate to the male sex (fast-male evolution), can drive the misregulation of sperm developmental genes in the absence of sterility. The use of fertile hybrids (both backcross and F1 progeny) as controls has lent support to this alternative explanation. Differences in gene expression between fertile and sterile hybrids can also be influenced by a pattern of faster evolution of the sex chromosome (fast-X evolution) than autosomes. In particular, it would be desirable to establish whether known X-chromosome sterility factors can act as trans-regulatory drivers of genome-wide patterns of misregulation. Genome-wide expression studies coupled with assays of proxies of sterility in F1 and BC progeny have identified candidate HMS genes but functional assays, and a better phenotypic characterization of sterility phenotypes, are needed to rigorously test how these genes might contribute to HMS.

  8. Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France

    Directory of Open Access Journals (Sweden)

    Linda K. Medlin

    2013-03-01

    Full Text Available Harmful algal blooms (HABs occur worldwide, causing health problems and economic damages to fisheries and tourism. Monitoring agencies are therefore essential, yet monitoring is based only on time-consuming light microscopy, a level at which a correct identification can be limited by insufficient morphological characters. The project MIDTAL (Microarray Detection of Toxic Algae—an FP7-funded EU project—used rRNA genes (SSU and LSU as a target on microarrays to identify toxic species. Furthermore, toxins were detected with a newly developed multiplex optical Surface Plasmon Resonance biosensor (Multi SPR and compared with an enzyme-linked immunosorbent assay (ELISA. In this study, we demonstrate the latest generation of MIDTAL microarrays (version 3 and show the correlation between cell counts, detected toxin and microarray signals from field samples taken in Arcachon Bay in France in 2011. The MIDTAL microarray always detected more potentially toxic species than those detected by microscopic counts. The toxin detection was even more sensitive than both methods. Because of the universal nature of both toxin and species microarrays, they can be used to detect invasive species. Nevertheless, the MIDTAL microarray is not completely universal: first, because not all toxic species are on the chip, and second, because invasive species, such as Ostreopsis, already influence European coasts.

  9. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  10. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Science.gov (United States)

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  11. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Directory of Open Access Journals (Sweden)

    Xavier Libert

    Full Text Available Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  12. Application of the micro-array comparative genomic hybridization technology in preimplantation genetic diagnosis%Array-CGH技术在胚胎植入前遗传学诊断中的应用进展

    Institute of Scientific and Technical Information of China (English)

    韩丹; 陈大蔚; 曹云霞; 周平

    2015-01-01

    As a new kind high-throughput genomics technology, micro array-based comparative genomic hybridization (aCGH) has brought the huge change for molecular biology and medical research. Because of the detection range covers the whole genome, high efficiency, easy operation etc, aCGH has been widely used in many areas of human genetic disease diagnosis, tumor genomics, systems biology and prenatal diagnosis. Human preimplantation genetic diagnosis (PGD) is an important part of assisted reproductive technology, with the development of molecular genetics technology, its application range is continuously widening. Based on aCGH technology in PGD for embryonic whole genome screening for aneuploidy and structural abnormalities, human PGD/human preimplantation genetic screening (PGS) implantation rate and clinical pregnancy rate have improved significantly. In this article, we discussed the advantages, disadvantages and prospects of aCGH in prenatal diagnosis.%微阵列比较基因组杂交(aCGH)作为一种新兴的高通量检测技术,给分子生物学及医学研究带来了巨大变化,因其检测范围覆盖全基因组、高效率、操作简便等特点,在人类遗传疾病诊断,肿瘤基因组学,系统生物学研究及产前诊断中已有了广泛应用。植入前遗传学诊断(PGD)是辅助生殖技术的重要组成部分,随着分子遗传学技术的发展,其应用范围也不断拓宽。基于aCGH技术在PGD中对胚胎全染色体组非整倍体及结构异常的筛查,PGD/植入前遗传学筛查(PGS)胚胎植入率和临床妊娠率均有显著提高,本文就aCGH技术在胚胎植入前遗传学诊断中的应用进行综述。

  13. Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl tranferase. Application in electrochemical DNA hybridization and protein-DNA binding assays

    Czech Academy of Sciences Publication Activity Database

    Horáková Brázdilová, Petra; Macíčková-Cahová, Hana; Pivoňková, Hana; Špaček, Jan; Havran, Luděk; Hocek, Michal; Fojta, Miroslav

    2011-01-01

    Roč. 9, č. 5 (2011), s. 1366-1371 ISSN 1477-0520 R&D Projects: GA MŠk(CZ) LC06035; GA MŠk(CZ) LC512; GA AV ČR(CZ) IAA400040901 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : DNA tail- labelling * protein-DNA binding * DNA hybridization Subject RIV: BO - Biophysics Impact factor: 3.696, year: 2011

  14. A highly sensitive, multiplex broad-spectrum PCR-DNA-enzyme immunoassay and reverse hybridization assay for rapid detection and identification of Chlamydia trachomatis serovars.

    NARCIS (Netherlands)

    Quint, K.D.; Doorn, L.J. van; Kleter, B.; Koning, M.N. de; Munckhof, H.A. van den; Morre, S.A.; Harmsel, B. ter; Weiderpass, E.; Harbers, G.; Melchers, W.J.G.; Quint, W.G.V.

    2007-01-01

    Chlamydia trachomatis (Ct) comprises distinct serogroups and serovars. The present study evaluates a novel Ct amplification, detection, and genotyping method (Ct-DT assay). The Ct-DT amplification step is a multiplex broad-spectrum PCR for the cryptic plasmid and the VD2-region of ompl. The Ct-DT

  15. Porous Silicon Antibody Microarrays for Quantitative Analysis: Measurement of Free and Total PSA in Clinical Plasma Samples

    Science.gov (United States)

    Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas

    2014-01-01

    The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878

  16. Improving comparability between microarray probe signals by thermodynamic intensity correction

    DEFF Research Database (Denmark)

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities...... determination of transcription start sites for a subset of yeast genes. In another application, we identify present/absent calls for probes hybridized to the sequenced Escherichia coli strain O157:H7 EDL933. The model improves the correct calls from 85 to 95% relative to raw intensity measures. The model thus...... makes applications which depend on comparisons between probes aimed at different sections of the same target more reliable....

  17. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    Directory of Open Access Journals (Sweden)

    Toome Kadri

    2011-02-01

    Full Text Available Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  18. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  19. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    LENUS (Irish Health Repository)

    Scheler, Ott

    2011-02-28

    Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification) amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal\\/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  20. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation

    Directory of Open Access Journals (Sweden)

    Akshata Datar

    2015-10-01

    Full Text Available Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS, thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI. In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures.

  1. Tissue Microarray TechnologyA Brief Review

    Directory of Open Access Journals (Sweden)

    Ramya S Vokuda

    2018-01-01

    Full Text Available In this era of modern revolutionisation in the field of medical laboratory technology, everyone is aiming at taking the innovations from laboratory to bed side. One such technique that is most relevant to the pathologic community is Tissue Microarray (TMA technology. This is becoming quite popular amongst all the members of this family, right from laboratory scientists to clinicians and residents to technologists. The reason for this technique to gain popularity is attributed to its cost effectiveness and time saving protocols. Though, every technique is accompanied by disadvantages, the benefits out number them. This technique is very versatile as many downstream molecular assays such as immunohistochemistry, cytogenetic studies, Fluorescent In situ-Hybridisation (FISH etc., can be carried out on a single slide with multiple numbers of samples. It is a very practical approach that aids effectively to identify novel biomarkers in cancer diagnostics and therapeutics. It helps in assessing the molecular markers on a large scale very quickly. Also, the quality assurance protocols in pathological laboratory has exploited TMA to a great extent. However, the application of TMA technology is beyond oncology. This review shall focus on the different aspects of this technology such as construction of TMA, instrumentation, types, advantages and disadvantages and utilisation of the technique in various disease conditions.

  2. "Harshlighting" small blemishes on microarrays

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-03-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

  3. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  4. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    Science.gov (United States)

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  5. Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening

    DEFF Research Database (Denmark)

    Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E

    2010-01-01

    ligand-binding domains of the LuxR homolog CarR from Erwinia carotovora subsp. carotovora. The 3D microarray platform was used to discover the biologically active chloro-pyridine pharmacophore, which was validated using a fluorometric ligand binding assay and ITC. Analogs containing the chloro...

  6. Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification.

    Science.gov (United States)

    Lu, Jing; Wu, Lin; Hu, Yufang; Wang, Sui; Guo, Zhiyong

    2018-06-30

    In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe 3 O 4 @SiO 2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen) 3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen) 3 2+ as a signal readout pathway. All these signal molecules could take part in electrochemical reactions, thus further enhancing the ECL signal drastically. Therefore, the proposed sensor constructed by integrating HCR with Faraday cage-type strategy displayed an ultrasensitive detection platform for the miRNA-141 with a low detection limit of 0.03 fM. In addition, this proposed biosensor provides a universal platform for analysis of other microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Development of a Novel Protein Microarray Method for Serotyping Salmonella enterica Strains

    OpenAIRE

    Cai, H. Y.; Lu, L.; Muckle, C. A.; Prescott, J. F.; Chen, S.

    2005-01-01

    An antibody microarray assay was developed for Salmonella serotyping based on the Kauffmann-White scheme. A model (8 by 15) array was constructed using 35 antibodies for identification of 20 common Salmonella serovars and evaluated using 117 target and 73 nontarget Salmonella strains. The assay allowed complete serovar identification of 86 target strains and partial identification of 30 target strains and allowed exclusion of the 73 nontarget strains from the target serovars.

  8. Advanced microarray technologies for clinical diagnostics

    NARCIS (Netherlands)

    Pierik, Anke

    2011-01-01

    DNA microarrays become increasingly important in the field of clinical diagnostics. These microarrays, also called DNA chips, are small solid substrates, typically having a maximum surface area of a few cm2, onto which many spots are arrayed in a pre-determined pattern. Each of these spots contains

  9. Dynamic, electronically switchable surfaces for membrane protein microarrays.

    Science.gov (United States)

    Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J

    2006-02-01

    Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.

  10. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Paniego Norma

    2008-01-01

    Full Text Available Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion

  11. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  12. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  13. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful...

  14. Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong; Li, Ning

    2016-12-01

    Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC ( n = 65) and healthy control subjects ( n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC.

  15. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies.

    Science.gov (United States)

    Martín, Verónica; Perales, Celia; Fernández-Algar, María; Dos Santos, Helena G; Garrido, Patricia; Pernas, María; Parro, Víctor; Moreno, Miguel; García-Pérez, Javier; Alcamí, José; Torán, José Luis; Abia, David; Domingo, Esteban; Briones, Carlos

    2016-01-01

    The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5-10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice.

  16. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    Science.gov (United States)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  17. Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots

    Directory of Open Access Journals (Sweden)

    Song Yang

    2006-01-01

    Full Text Available We developed a quality assurance (QA tool, namely microarray outlier filter (MOF, and have applied it to our microarray datasets for the identification of problematic arrays. Our approach is based on the comparison of the arrays using the correlation coefficient and the number of outlier spots generated on each array to reveal outlier arrays. For a human universal reference (HUR dataset, which is used as a technical control in our standard hybridization procedure, 3 outlier arrays were identified out of 35 experiments. For a human blood dataset, 12 outlier arrays were identified from 185 experiments. In general, arrays from human blood samples displayed greater variation in their gene expression profiles than arrays from HUR samples. As a result, MOF identified two distinct patterns in the occurrence of outlier arrays. These results demonstrate that this methodology is a valuable QA practice to identify questionable microarray data prior to downstream analysis.

  18. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  19. The hybrid EIA test: a specific and sensitive assay for the detection of woodchuck antibody to hepatitis surface antigen (anti-WHs).

    Science.gov (United States)

    Millman, I; Glass, R G

    1988-05-01

    'Ausria II' polystyrene beads (Abbott Labs, N. Chicago) are reacted with woodchuck serum positive for WHsAg in a dilution predetermined by titration. This modified bead is used in a blocking assay to detect the presence of antibody to the surface antigen of woodchuck hepatitis virus (anti-WHs). Serum containing woodchuck anti-WHs and commercial horseradish peroxidase (HRP) labeled anti-HBs are sequentially added. A drop in optical density at 492 nm of 50% or more due to the blocking of HRP conjugated anti-HBs by anti-WHs compared with a control (negative woodchuck serum) is a measure of anti-WHs. The ease and simplicity of converting readily available 'Ausria II' beads to specific reagents for detecting anti-WHs should be welcomed by investigators studying WHV. The method described is both sensitive and reproducible.

  20. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  1. Radioactive cDNA microarray in neurospsychiatry

    International Nuclear Information System (INIS)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon

    2003-01-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  2. Radioactive cDNA microarray in neurospsychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon [Korea University Medical School, Seoul (Korea, Republic of)

    2003-02-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  3. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  4. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2008-05-01

    Full Text Available Abstract Background We report the development of a microarray platform for rapid and cost-effective genetic mapping, and its evaluation using rice as a model. In contrast to methods employing whole-genome tiling microarrays for genotyping, our method is based on low-cost spotted microarray production, focusing only on known polymorphic features. Results We have produced a genotyping microarray for rice, comprising 880 single feature polymorphism (SFP elements derived from insertions/deletions identified by aligning genomic sequences of the japonica cultivar Nipponbare and the indica cultivar 93-11. The SFPs were experimentally verified by hybridization with labeled genomic DNA prepared from the two cultivars. Using the genotyping microarrays, we found high levels of polymorphism across diverse rice accessions, and were able to classify all five subpopulations of rice with high bootstrap support. The microarrays were used for mapping of a gene conferring resistance to Magnaporthe grisea, the causative organism of rice blast disease, by quantitative genotyping of samples from a recombinant inbred line population pooled by phenotype. Conclusion We anticipate this microarray-based genotyping platform, based on its low cost-per-sample, to be particularly useful in applications requiring whole-genome molecular marker coverage across large numbers of individuals.

  5. Break-apart interphase fluorescence in situ hybridization assay in papillary thyroid carcinoma: on the road to optimizing the cut-off level for RET/PTC rearrangements.

    Science.gov (United States)

    Colato, Chiara; Vicentini, Caterina; Cantara, Silvia; Pedron, Serena; Brazzarola, Paolo; Marchetti, Ivo; Di Coscio, Giancarlo; Chilosi, Marco; Brunelli, Matteo; Pacini, Furio; Ferdeghini, Marco

    2015-05-01

    Chromosomal rearrangements of the RET proto-oncogene is one of the most common molecular events in papillary thyroid carcinoma (PTC). However, their pathogenic role and clinical significance are still debated. This study aimed to investigate the prevalence of RET/PTC rearrangement in a cohort of BRAF WT PTCs by fluorescence in situ hybridization (FISH) and to search a reliable cut-off level in order to distinguish clonal or non-clonal RET changes. Forty BRAF WT PTCs were analyzed by FISH for RET rearrangements. As controls, six BRAFV600E mutated PTCs, 13 follicular adenomas (FA), and ten normal thyroid parenchyma were also analyzed. We performed FISH analysis on formalin-fixed, paraffin-embedded tissue using a commercially available RET break-apart probe. A cut-off level equivalent to 10.2% of aberrant cells was accepted as significant. To validate FISH results, we analyzed the study cohort by qRT-PCR. Split RET signals above the cut-off level were observed in 25% (10/40) of PTCs, harboring a percentage of positive cells ranging from 12 to 50%, and in one spontaneous FA (1/13, 7.7%). Overall, the data obtained by FISH matched well with qRT-PCR results. Challenging findings were observed in five cases showing a frequency of rearrangement very close to the cut-off. FISH approach represents a powerful tool to estimate the ratio between broken and non-broken RET tumor cells. Establishing a precise FISH cut-off may be useful in the interpretation of the presence of RET rearrangement, primarily when this strategy is used for cytological evaluation or for targeted therapy. © 2015 European Society of Endocrinology.

  6. Position dependent mismatch discrimination on DNA microarrays – experiments and model

    Directory of Open Access Journals (Sweden)

    Michel Wolfgang

    2008-12-01

    Full Text Available Abstract Background The propensity of oligonucleotide strands to form stable duplexes with complementary sequences is fundamental to a variety of biological and biotechnological processes as various as microRNA signalling, microarray hybridization and PCR. Yet our understanding of oligonucleotide hybridization, in particular in presence of surfaces, is rather limited. Here we use oligonucleotide microarrays made in-house by optically controlled DNA synthesis to produce probe sets comprising all possible single base mismatches and base bulges for each of 20 sequence motifs under study. Results We observe that mismatch discrimination is mostly determined by the defect position (relative to the duplex ends as well as by the sequence context. We investigate the thermodynamics of the oligonucleotide duplexes on the basis of double-ended molecular zipper. Theoretical predictions of defect positional influence as well as long range sequence influence agree well with the experimental results. Conclusion Molecular zipping at thermodynamic equilibrium explains the binding affinity of mismatched DNA duplexes on microarrays well. The position dependent nearest neighbor model (PDNN can be inferred from it. Quantitative understanding of microarray experiments from first principles is in reach.

  7. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    Directory of Open Access Journals (Sweden)

    Kaplinski Lauris

    2009-05-01

    Full Text Available Abstract Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology.

  8. The MGED Ontology: a resource for semantics-based description of microarray experiments.

    Science.gov (United States)

    Whetzel, Patricia L; Parkinson, Helen; Causton, Helen C; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Game, Laurence; Heiskanen, Mervi; Morrison, Norman; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Taylor, Chris; White, Joseph; Stoeckert, Christian J

    2006-04-01

    The generation of large amounts of microarray data and the need to share these data bring challenges for both data management and annotation and highlights the need for standards. MIAME specifies the minimum information needed to describe a microarray experiment and the Microarray Gene Expression Object Model (MAGE-OM) and resulting MAGE-ML provide a mechanism to standardize data representation for data exchange, however a common terminology for data annotation is needed to support these standards. Here we describe the MGED Ontology (MO) developed by the Ontology Working Group of the Microarray Gene Expression Data (MGED) Society. The MO provides terms for annotating all aspects of a microarray experiment from the design of the experiment and array layout, through to the preparation of the biological sample and the protocols used to hybridize the RNA and analyze the data. The MO was developed to provide terms for annotating experiments in line with the MIAME guidelines, i.e. to provide the semantics to describe a microarray experiment according to the concepts specified in MIAME. The MO does not attempt to incorporate terms from existing ontologies, e.g. those that deal with anatomical parts or developmental stages terms, but provides a framework to reference terms in other ontologies and therefore facilitates the use of ontologies in microarray data annotation. The MGED Ontology version.1.2.0 is available as a file in both DAML and OWL formats at http://mged.sourceforge.net/ontologies/index.php. Release notes and annotation examples are provided. The MO is also provided via the NCICB's Enterprise Vocabulary System (http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). Stoeckrt@pcbi.upenn.edu Supplementary data are available at Bioinformatics online.

  9. Four-channel asymmetric Real-Time PCR hybridization probe assay: a rapid pre-screening method for critical BCR-ABL kinase domain mutations.

    Science.gov (United States)

    Martinez-Serra, Jordi; Gutiérrez, Antonio; Marcús, Toni F; Soverini, Simona; Amat, Juan Carlos; Navarro-Palou, María; Ros, Teresa; Bex, Teresa; Ballester, Carmen; Bauça, Josep Miquel; SanFelix, Sara; Novo, Andrés; Vidal, Carmen; Santos, Carmen; Besalduch, Joan

    2012-03-01

    Within the laboratory protocols, used for the study of BCR-ABL resistance mutations in chronic myeloid leukemia patients treated with Imatinib, direct sequencing remains the reference method. Since the incidence of patients with a mutation-related loss of response is not very high, it is very useful in the routine laboratory to perform a fast pre-screening method. With this in mind, we have designed a new technique, based on a single Real-Time FRET-based PCR, followed by a study of melting peaks. This new tool, developed in a LightCycler 2.0, combines four different fluorescence channels for the simultaneous detection, in a single close tube, of critical mutations within the ABL kinase domain. Assay evaluation performed on 33 samples, previously genotyped by sequentiation, resulted in full concordance of results. This new methodology detects in a few steps the presence of critical mutations associated to Imatinib resistance. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. BASE - 2nd generation software for microarray data management and analysis

    Directory of Open Access Journals (Sweden)

    Nordborg Nicklas

    2009-10-01

    Full Text Available Abstract Background Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. Results The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. Conclusion BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  11. Improvement in the amine glass platform by bubbling method for a DNA microarray

    Directory of Open Access Journals (Sweden)

    Jee SH

    2015-10-01

    Full Text Available Seung Hyun Jee,1 Jong Won Kim,2 Ji Hyeong Lee,2 Young Soo Yoon11Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi, Republic of Korea; 2Genomics Clinical Research Institute, LabGenomics Co., Ltd., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of KoreaAbstract: A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. Keywords: DNA microarray, glass platform, bubbling method, self-assambled monolayer

  12. BASE--2nd generation software for microarray data management and analysis.

    Science.gov (United States)

    Vallon-Christersson, Johan; Nordborg, Nicklas; Svensson, Martin; Häkkinen, Jari

    2009-10-12

    Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  13. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture. (DEN ... Keywords: Diabetes, Gene expression, Dendrobium mixture, Microarray testing ..... homeostasis in airway smooth muscle. Am J.

  14. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  15. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    Science.gov (United States)

    Poulsen, Tim S.; Espersen, Maiken L. M.; Kofoed, Vibeke; Dabetic, Tanja; Høgdall, Estrid; Balslev, Eva

    2013-01-01

    The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region of interest was identified from a serial H&E stained slide following tissue cores were transferred to a tissue microarrays (TMA). When using TMA in a routine flow, all patients will be tested for HER2 status with IHC followed by CISH or FISH, thereby providing individual HER2 results. In conclusion, our results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing. PMID:24383005

  16. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system

    NARCIS (Netherlands)

    Hsiao, Nai-hua; Kirby, Ralph

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data

  17. Characterization of adjacent breast tumors using oligonucleotide microarrays

    International Nuclear Information System (INIS)

    Unger, Meredith A; Rishi, Mazhar; Clemmer, Virginia B; Hartman, Jennifer L; Keiper, Elizabeth A; Greshock, Joel D; Chodosh, Lewis A; Liebman, Michael N; Weber, Barbara L

    2001-01-01

    Current methodology often cannot distinguish second primary breast cancers from multifocal disease, a potentially important distinction for clinical management. In the present study we evaluated the use of oligonucleotide-based microarray analysis in determining the clonality of tumors by comparing gene expression profiles. Total RNA was extracted from two tumors with no apparent physical connection that were located in the right breast of an 87-year-old woman diagnosed with invasive ductal carcinoma (IDC). The RNA was hybridized to the Affymetrix Human Genome U95A Gene Chip ® (12,500 known human genes) and analyzed using the Gene Chip Analysis Suite ® 3.3 (Affymetrix, Inc, Santa Clara, CA, USA) and JMPIN ® 3.2.6 (SAS Institute, Inc, Cary, NC, USA). Gene expression profiles of tumors from five additional patients were compared in order to evaluate the heterogeneity in gene expression between tumors with similar clinical characteristics. The adjacent breast tumors had a pairwise correlation coefficient of 0.987, and were essentially indistinguishable by microarray analysis. Analysis of gene expression profiles from different individuals, however, generated a pairwise correlation coefficient of 0.710. Transcriptional profiling may be a useful diagnostic tool for determining tumor clonality and heterogeneity, and may ultimately impact on therapeutic decision making

  18. Fuzzy C-means method for clustering microarray data.

    Science.gov (United States)

    Dembélé, Doulaye; Kastner, Philippe

    2003-05-22

    Clustering analysis of data from DNA microarray hybridization studies is essential for identifying biologically relevant groups of genes. Partitional clustering methods such as K-means or self-organizing maps assign each gene to a single cluster. However, these methods do not provide information about the influence of a given gene for the overall shape of clusters. Here we apply a fuzzy partitioning method, Fuzzy C-means (FCM), to attribute cluster membership values to genes. A major problem in applying the FCM method for clustering microarray data is the choice of the fuzziness parameter m. We show that the commonly used value m = 2 is not appropriate for some data sets, and that optimal values for m vary widely from one data set to another. We propose an empirical method, based on the distribution of distances between genes in a given data set, to determine an adequate value for m. By setting threshold levels for the membership values, genes which are tigthly associated to a given cluster can be selected. Using a yeast cell cycle data set as an example, we show that this selection increases the overall biological significance of the genes within the cluster. Supplementary text and Matlab functions are available at http://www-igbmc.u-strasbg.fr/fcm/

  19. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  20. Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis

    OpenAIRE

    Brunelle, Brian W; Nicholson, Tracy L; Stephens, Richard S

    2004-01-01

    By comparing two fully sequenced genomes of Chlamydia trachomatis using competitive hybridization on DNA microarrays, a logarithmic correlation was demonstrated between the signal ratio of the arrays and the 75-99% range of nucleotide identities of the genes. Variable genes within 14 uncharacterized strains of C. trachomatis were identified by array analysis and verified by DNA sequencing. These genes may be crucial for understanding chlamydial virulence and pathogenesis.

  1. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    Science.gov (United States)

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  2. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?

    Science.gov (United States)

    Peterson, Jess F.; Aggarwal, Nidhi; Smith, Clayton A.; Gollin, Susanne M.; Surti, Urvashi; Rajkovic, Aleksandar; Swerdlow, Steven H.; Yatsenko, Svetlana A.

    2015-01-01

    Purpose To evaluate the clinical utility, diagnostic yield and rationale of integrating microarray analysis in the clinical diagnosis of hematological malignancies in comparison with classical chromosome karyotyping/fluorescence in situ hybridization (FISH). Methods G-banded chromosome analysis, FISH and microarray studies using customized CGH and CGH+SNP designs were performed on 27 samples from patients with hematological malignancies. A comprehensive comparison of the results obtained by three methods was conducted to evaluate benefits and limitations of these techniques for clinical diagnosis. Results Overall, 89.7% of chromosomal abnormalities identified by karyotyping/FISH studies were also detectable by microarray. Among 183 acquired copy number alterations (CNAs) identified by microarray, 94 were additional findings revealed in 14 cases (52%), and at least 30% of CNAs were in genomic regions of diagnostic/prognostic significance. Approximately 30% of novel alterations detected by microarray were >20 Mb in size. Balanced abnormalities were not detected by microarray; however, of the 19 apparently “balanced” rearrangements, 55% (6/11) of recurrent and 13% (1/8) of non-recurrent translocations had alterations at the breakpoints discovered by microarray. Conclusion Microarray technology enables accurate, cost-effective and time-efficient whole-genome analysis at a resolution significantly higher than that of conventional karyotyping and FISH. Array-CGH showed advantage in identification of cryptic imbalances and detection of clonal aberrations in population of non-dividing cancer cells and samples with poor chromosome morphology. The integration of microarray analysis into the cytogenetic diagnosis of hematologic malignancies has the potential to improve patient management by providing clinicians with additional disease specific and potentially clinically actionable genomic alterations. PMID:26299921

  3. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  5. Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution

    DEFF Research Database (Denmark)

    Novak, Jaroslav P; Kim, Seon-Young; Xu, Jun

    2006-01-01

    BACKGROUND: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability of DNA microarray data, many new statistical methods have...

  6. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  7. Expanding probe repertoire and improving reproducibility in human genomic hybridization

    Science.gov (United States)

    Dorman, Stephanie N.; Shirley, Ben C.; Knoll, Joan H. M.; Rogan, Peter K.

    2013-01-01

    Diagnostic DNA hybridization relies on probes composed of single copy (sc) genomic sequences. Sc sequences in probe design ensure high specificity and avoid cross-hybridization to other regions of the genome, which could lead to ambiguous results that are difficult to interpret. We examine how the distribution and composition of repetitive sequences in the genome affects sc probe performance. A divide and conquer algorithm was implemented to design sc probes. With this approach, sc probes can include divergent repetitive elements, which hybridize to unique genomic targets under higher stringency experimental conditions. Genome-wide custom probe sets were created for fluorescent in situ hybridization (FISH) and microarray genomic hybridization. The scFISH probes were developed for detection of copy number changes within small tumour suppressor genes and oncogenes. The microarrays demonstrated increased reproducibility by eliminating cross-hybridization to repetitive sequences adjacent to probe targets. The genome-wide microarrays exhibited lower median coefficients of variation (17.8%) for two HapMap family trios. The coefficients of variations of commercial probes within 300 nt of a repetitive element were 48.3% higher than the nearest custom probe. Furthermore, the custom microarray called a chromosome 15q11.2q13 deletion more consistently. This method for sc probe design increases probe coverage for FISH and lowers variability in genomic microarrays. PMID:23376933

  8. Integrative missing value estimation for microarray data.

    Science.gov (United States)

    Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine

    2006-10-12

    Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  9. Integrative missing value estimation for microarray data

    Directory of Open Access Journals (Sweden)

    Zhou Xianghong

    2006-10-01

    Full Text Available Abstract Background Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. Results We present the integrative Missing Value Estimation method (iMISS by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS imputation algorithm by up to 15% improvement in our benchmark tests. Conclusion We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  10. Microarrays in ecological research: A case study of a cDNA microarray for plant-herbivore interactions

    Directory of Open Access Journals (Sweden)

    Gase Klaus

    2004-09-01

    Full Text Available Abstract Background Microarray technology allows researchers to simultaneously monitor changes in the expression ratios (ERs of hundreds of genes and has thereby revolutionized most of biology. Although this technique has the potential of elucidating early stages in an organism's phenotypic response to complex ecological interactions, to date, it has not been fully incorporated into ecological research. This is partially due to a lack of simple procedures of handling and analyzing the expression ratio (ER data produced from microarrays. Results We describe an analysis of the sources of variation in ERs from 73 hybridized cDNA microarrays, each with 234 herbivory-elicited genes from the model ecological expression system, Nicotiana attenuata, using procedures that are commonly used in ecologic research. Each gene is represented by two independently labeled PCR products and each product was arrayed in quadruplicate. We present a robust method of normalizing and analyzing ERs based on arbitrary thresholds and statistical criteria, and characterize a "norm of reaction" of ERs for 6 genes (4 of known function, 2 of unknown with different ERs as determined across all analyzed arrays to provide a biologically-informed alternative to the use of arbitrary expression ratios in determining significance of expression. These gene-specific ERs and their variance (gene CV were used to calculate array-based variances (array CV, which, in turn, were used to study the effects of array age, probe cDNA quantity and quality, and quality of spotted PCR products as estimates of technical variation. Cluster analysis and a Principal Component Analysis (PCA were used to reveal associations among the transcriptional "imprints" of arrays hybridized with cDNA probes derived from mRNA from N. attenuata plants variously elicited and attacked by different herbivore species and from three congeners: N. quadrivalis, N. longiflora and N. clevelandii. Additionally, the PCA

  11. Evaluation of a gene information summarization system by users during the analysis process of microarray datasets

    Directory of Open Access Journals (Sweden)

    Cohen Aaron

    2009-02-01

    Full Text Available Abstract Background Summarization of gene information in the literature has the potential to help genomics researchers translate basic research into clinical benefits. Gene expression microarrays have been used to study biomarkers for disease and discover novel types of therapeutics and the task of finding information in journal articles on sets of genes is common for translational researchers working with microarray data. However, manually searching and scanning the literature references returned from PubMed is a time-consuming task for scientists. We built and evaluated an automatic summarizer of information on genes studied in microarray experiments. The Gene Information Clustering and Summarization System (GICSS is a system that integrates two related steps of the microarray data analysis process: functional gene clustering and gene information gathering. The system evaluation was conducted during the process of genomic researchers analyzing their own experimental microarray datasets. Results The clusters generated by GICSS were validated by scientists during their microarray analysis process. In addition, presenting sentences in the abstract provided significantly more important information to the users than just showing the title in the default PubMed format. Conclusion The evaluation results suggest that GICSS can be useful for researchers in genomic area. In addition, the hybrid evaluation method, partway between intrinsic and extrinsic system evaluation, may enable researchers to gauge the true usefulness of the tool for the scientists in their natural analysis workflow and also elicit suggestions for future enhancements. Availability GICSS can be accessed online at: http://ir.ohsu.edu/jianji/index.html

  12. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates

    KAUST Repository

    Boopathi, Pon Arunachalam

    2016-10-09

    High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60 mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n =14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n = 85) present in the arrays showed perfect correlation (r(2) = 0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r >= 0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates. (C) 2016 Published by Elsevier B.V.

  13. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates

    KAUST Repository

    Boopathi, Pon Arunachalam; Subudhi, Amit; Middha, Sheetal; Acharya, Jyoti; Mugasimangalam, Raja Chinnadurai; Kochar, Sanjay Kumar; Kochar, Dhanpat Kumar; Das, Ashis

    2016-01-01

    High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60 mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n =14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n = 85) present in the arrays showed perfect correlation (r(2) = 0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r >= 0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates. (C) 2016 Published by Elsevier B.V.

  14. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  15. Assay system

    International Nuclear Information System (INIS)

    Patzke, J.B.; Rosenberg, B.J.

    1984-01-01

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a 1 -acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed

  16. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  17. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  18. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    Science.gov (United States)

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    Science.gov (United States)

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  20. Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips

    Science.gov (United States)

    Lee, Yun-Shien; Chen, Chun-Houh; Tsai, Chi-Neu; Tsai, Chia-Lung; Chao, Angel; Wang, Tzu-Hao

    2009-01-01

    Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11–20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that ‘labeling extension values (LEVs)’, which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukayotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of ‘laboratory signatures’. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data. PMID:19295132

  1. Improving the scaling normalization for high-density oligonucleotide GeneChip expression microarrays

    Directory of Open Access Journals (Sweden)

    Lu Chao

    2004-07-01

    Full Text Available Abstract Background Normalization is an important step for microarray data analysis to minimize biological and technical variations. Choosing a suitable approach can be critical. The default method in GeneChip expression microarray uses a constant factor, the scaling factor (SF, for every gene on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2% of the probe sets with the highest and the lowest values. Results Among the 76 U34A GeneChip experiments, the total signals on each array showed 25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals that were normally excluded from SF calculation accounted for 34% to 54% of the total signals (40.7% ± 4.4%, mean ± sd. In comparison with normalization factors obtained from the median signal or from the mean of the log transformed signal, SF showed the greatest variation. The normalization factors obtained from log transformed signals showed least variation. Conclusions Eliminating 40% of the signal data during SF calculation failed to show any benefit. Normalization factors obtained with log transformed signals performed the best. Thus, it is suggested to use the mean of the logarithm transformed data for normalization, rather than the arithmetic mean of signals in GeneChip gene expression microarrays.

  2. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  3. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  4. Evaluation of chronic lymphocytic leukemia by BAC-based microarray analysis

    Directory of Open Access Journals (Sweden)

    McDaniel Lisa D

    2011-02-01

    Full Text Available Abstract Background Chronic lymphocytic leukemia (CLL is a highly variable disease with life expectancies ranging from months to decades. Cytogenetic findings play an integral role in defining the prognostic significance and treatment for individual patients. Results We have evaluated 25 clinical cases from a tertiary cancer center that have an established diagnosis of CLL and for which there was prior cytogenetic and/or fluorescence in situ hybridization (FISH data. We performed microarray-based comparative genomic hybridization (aCGH using a bacterial artificial chromosome (BAC-based microarray designed for the detection of known constitutional genetic syndromes. In 15 of the 25 cases, aCGH detected all copy number imbalances identified by prior cytogenetic and/or FISH studies. For the majority of those not detected, the aberrations were present at low levels of mosaicism. Furthermore, for 15 of the 25 cases, additional abnormalities were detected. Four of those cases had deletions that mapped to intervals implicated in inherited predisposition to CLL. For most cases, aCGH was able to detect abnormalities present in as few as 10% of cells. Although changes in ploidy are not easily discernable by aCGH, results for two cases illustrate the detection of additional copy gains and losses present within a mosaic tetraploid cell population. Conclusions Our results illustrate the successful evaluation of CLL using a microarray optimized for the interrogation of inherited disorders and the identification of alterations with possible relevance to CLL susceptibility.

  5. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    Directory of Open Access Journals (Sweden)

    Michael A Cook

    Full Text Available BACKGROUND: Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM, we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. CONCLUSIONS/SIGNIFICANCE: These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  6. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  7. Detection of selected plant viruses by microarrays

    OpenAIRE

    HRABÁKOVÁ, Lenka

    2013-01-01

    The main aim of this master thesis was the simultaneous detection of four selected plant viruses ? Apple mosaic virus, Plum pox virus, Prunus necrotic ringspot virus and Prune harf virus, by microarrays. The intermediate step in the process of the detection was optimizing of multiplex polymerase chain reaction (PCR).

  8. LNA-modified isothermal oligonucleotide microarray for ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... the advent of DNA microarray techniques (Lee et al. 2007). ... atoms of ribose to form a bicyclic ribosyl structure. It is the .... 532 nm and emission at 570 nm. The signal ..... sis and validation using real-time PCR. Nucleic Acids ...

  9. Microarrays (DNA Chips) for the Classroom Laboratory

    Science.gov (United States)

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The…

  10. Comparing transformation methods for DNA microarray data

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2004-01-01

    Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include

  11. A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Primmer Craig R

    2009-09-01

    Full Text Available Abstract Background The use of microarray technology for describing changes in mRNA expression to address ecological and evolutionary questions is becoming increasingly popular. Since three-spine stickleback are an important ecological and evolutionary model-species as well as an emerging model for eco-toxicology, the ability to have a functional and flexible microarray platform for transcriptome studies will greatly enhance the research potential in these areas. Results We designed 43,392 unique oligonucleotide probes representing 19,274 genes (93% of the estimated total gene number, and tested the hybridization performance of both DNA and RNA from different populations to determine the efficacy of probe design for transcriptome analysis using the Agilent array platform. The majority of probes were functional as evidenced by the DNA hybridization success, and 30,946 probes (14,615 genes had a signal that was significantly above background for RNA isolated from liver tissue. Genes identified as being expressed in liver tissue were grouped into functional categories for each of the three Gene Ontology groups: biological process, molecular function, and cellular component. As expected, the highest proportions of functional categories belonged to those associated with metabolic functions: metabolic process, binding, catabolism, and organelles. Conclusion The probe and microarray design presented here provides an important step facilitating transcriptomics research for this important research organism by providing a set of over 43,000 probes whose hybridization success and specificity to liver expression has been demonstrated. Probes can easily be added or removed from the current design to tailor the array to specific experiments and additional flexibility lies in the ability to perform either one-color or two-color hybridizations.

  12. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    2010-09-01

    Full Text Available International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection.This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology.Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  13. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  14. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  15. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

    DEFF Research Database (Denmark)

    Sabourin, David; Petersen, J; Snakenborg, Detlef

    2010-01-01

    This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated...... the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes...... with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development...

  16. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  17. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Sterry Wolfram

    2006-08-01

    Full Text Available Abstract Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC. Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled, actinic keratosis (AK (two were pooled, and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.

  18. Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses.

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A; Old, Iain G; Kong, Katherine; Kennedy, Giulia C; Manuguerra, Jean-Claude; Cole, Stewart T; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-09-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.

  19. Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses▿

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C.; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A.; Old, Iain G.; Kong, Katherine; Kennedy, Giulia C.; Manuguerra, Jean-Claude; Cole, Stewart T.; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-01-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world. PMID:20610710

  20. Elimination of heparin interference during microarray processing of fresh and biobank-archived blood samples.

    Science.gov (United States)

    Hebels, Dennie G A J; van Herwijnen, Marcel H M; Brauers, Karen J J; de Kok, Theo M C M; Chalkiadaki, Georgia; Kyrtopoulos, Soterios A; Kleinjans, Jos C S

    2014-07-01

    In the context of environmental health research, biobank blood samples have recently been identified as suitable for high-throughput omics analyses enabling the identification of new biomarkers of exposure and disease. However, blood samples containing the anti-coagulant heparin could complicate transcriptomic analysis because heparin may inhibit RNA polymerase causing inefficient cRNA synthesis and fluorophore labelling. We investigated the inhibitory effect of heparin and the influence of storage conditions (0 or 3 hr bench times, storage at room temperature or -80°C) on fluorophore labelling in heparinized fresh human buffy coat and whole blood biobank samples during the mRNA work-up protocol for microarray analysis. Subsequently, we removed heparin by lithium chloride (LiCl) treatment and performed a quality control analysis of LiCl-treated biobank sample microarrays to prove their suitability for downstream data analysis. Both fresh and biobank samples experienced varying degrees of heparin-induced inhibition of fluorophore labelling, making most samples unusable for microarray analysis. RNA derived from EDTA and citrate blood was not inhibited. No effect of bench time was observed but room temperature storage gave slightly better results. Strong correlations were observed between original blood sample RNA yield and the amount of synthesized cRNA. LiCl treatment restored sample quality to normal standards in both fresh and biobank samples and the previously identified correlations disappeared. Microarrays hybridized with LiCl-treated biobank samples were of excellent quality with no identifiable influence of heparin. We conclude that, to obtain high quality results, in most cases heparin removal is essential in blood-derived RNA samples intended for microarray analysis. Copyright © 2014 Wiley Periodicals, Inc.

  1. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    Directory of Open Access Journals (Sweden)

    Reinders Marcel JT

    2009-11-01

    Full Text Available Abstract Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical

  2. Identification of MYCN gene amplification in neuroblastoma using chromogenic in situ hybridization (CISH): an alternative and practical method.

    Science.gov (United States)

    Bhargava, Rohit; Oppenheimer, Orit; Gerald, William; Jhanwar, Suresh C; Chen, Beiyun

    2005-06-01

    Chromogenic in situ hybridization (CISH) is a recently developed technique, which utilizes the general principles of in situ hybridization and a detection system similar to immunohistochemistry. To assess the utility of CISH for analysis of MYCN gene amplification, we compared this assay with established diagnostic assays such as Southern blot analysis (SB) and fluorescent in situ hybridization (FISH). CISH was performed on 67 cases of neuroblastoma using tissue microarray (65 cases) and whole tissue sections (2 cases). Unequivocal, high-level amplification (> or =10 gene copies per tumor nucleus) was identified in 19 of 67 (28.4%) tumors. Two (3%) tumors showed low-level amplification (6-9 gene copies per tumor nucleus). No amplification was seen in 46 of 67 (68.6%) tumors. SB data were available in 44 tumors. Forty-one of the 44 tumors (93%) showed concordant results between CISH and SB. Three tumors showed MYCN amplification by CISH but no amplification by SB, most likely due to dilution effect of nonneoplastic tissue in the test samples. Two of these three tumors also showed MYCN amplification by FISH, and the third tumor was not analyzed by FISH. FISH data were available in total of 30 tumors. All 30 tumors showed concordant results between CISH and FISH for classifying a tumor as MYCN amplified or not amplified. We conclude that CISH is an accurate method for determining MYCN gene amplification, with added advantages that make it a more practically useful method.

  3. [Preparation of the cDNA microarray on the differential expressed cDNA of senescence-accelerated mouse's hippocampus].

    Science.gov (United States)

    Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2006-05-01

    Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.

  4. A simple gold nanoparticle-mediated immobilization method to fabricate highly homogeneous DNA microarrays having higher capacities than those prepared by using conventional techniques

    International Nuclear Information System (INIS)

    Jung, Cheulhee; Mun, Hyo Young; Li, Taihua; Park, Hyun Gyu

    2009-01-01

    A simple, highly efficient immobilization method to fabricate DNA microarrays, that utilizes gold nanoparticles as the mediator, has been developed. The fabrication method begins with electrostatic attachment of amine-modified DNA to gold nanoparticles. The resulting gold-DNA complexes are immobilized on conventional amine or aldehyde functionalized glass slides. By employing gold nanoparticles as the immobilization mediator, implementation of this procedure yields highly homogeneous microarrays that have higher binding capacities than those produced by conventional methods. This outcome is due to the increased three-dimensional immobilization surface provided by the gold nanoparticles as well as the intrinsic effects of gold on emission properties. This novel immobilization strategy gives microarrays that produce more intense hybridization signals for the complementary DNA. Furthermore, the silver enhancement technique, made possible only in the case of immobilized gold nanoparticles on the microarrays, enables simple monitoring of the integrity of the immobilized DNA probe.

  5. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    at identifying the exact breakpoints where DNA has been gained or lost. In this thesis, three popular methods are compared and a realistic simulation model is presented for generating artificial data with known breakpoints and known DNA copy number. By using simulated data, we obtain a realistic evaluation......During the past few years, innovations in the DNA sequencing technology has led to an explosion in available DNA sequence information. This has revolutionized biological research and promoted the development of high throughput analysis methods that can take advantage of the vast amount of sequence...... data. For this, the DNA microarray technology has gained enormous popularity due to its ability to measure the presence or the activity of thousands of genes simultaneously. Microarrays for high throughput data analyses are not limited to a few organisms but may be applied to everything from bacteria...

  6. Immobilization Techniques for Microarray: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Satish Balasaheb Nimse

    2014-11-01

    Full Text Available The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.

  7. Mining meiosis and gametogenesis with DNA microarrays.

    Science.gov (United States)

    Schlecht, Ulrich; Primig, Michael

    2003-04-01

    Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.

  8. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  9. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia.

    Science.gov (United States)

    Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo

    2009-04-01

    For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.

  10. Examination of gene expression in mice exposed to low dose radiation using affymetrix cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.; Knox, D.; Lavoie, J.; Lemon, J.; Boreham, D. [McMaster Univ., Hamilton, Ontario (Canada)

    2005-07-01

    'Full text:' Gamma radiation acts via the indirect effect to damage cells by producing reactive oxygen species (ROS). These ROS are capable damaging macromolecules and, altering signal pathways and gene transcription. Cells have evolved enzymes and mechanisms to scavenge ROS and repair oxidative damage. Microarrays allow the survey of the gene transcription activity of thousands of genes simultaneously. Messenger RNA is extracted from cells, hybridized with the complementary DNA (cDNA) of a microarray chip, and examined with a chip reader. Affymetrix microarray chips have been produced by the CSCHAH in Winnipeg containing 26000 murine genes. Groups of female mice have been exposed to low dose whole body chronic gamma radiation exposures of 0,50,100, and 120 mGy, corresponding to 15,30,60, and 75 weeks, respectively. MRNA from mice brain tissue has been extracted, isolated, converted to cDNA and labeled. Gene expression in each irradiated mouse was compared to the pooled expression of the control mice. Analysis of gene expression levels are performed with microarray analytical software, Array Pro by Media Cybernetics, and powerful statistical software, BRB microarray tools. Differences in gene expressions, focusing on genes for cytokines, DNA repair mechanisms, immuno-modulators, apoptosis pathways, and enzymatic anti-oxidant systems, are being examined and will be reported. (author)

  11. Tissue Microarray Analysis Applied to Bone Diagenesis

    OpenAIRE

    Barrios Mello, Rafael; Regis Silva, Maria Regina; Seixas Alves, Maria Teresa; Evison, Martin; Guimarães, Marco Aurélio; Francisco, Rafaella Arrabaça; Dias Astolphi, Rafael; Miazato Iwamura, Edna Sadayo

    2017-01-01

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens....

  12. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling

    Directory of Open Access Journals (Sweden)

    Hernández-Moneo Jose-Luis

    2006-09-01

    Full Text Available Abstract Background Conventional cytogenetic and comparative genomic hybridization (CGH studies in brain malignancies have shown that glioblastoma multiforme (GBM is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations. Results We performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR, 7q21 (CDK6, 4q12 (PDGFRA, and 12q13-15 (MDM2 and CDK4. In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15, and TNFSF13B and COL4A2 (13q32-34. Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs. Conclusion This high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development

  13. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    Science.gov (United States)

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties

  14. Development and validation of a flax (Linum usitatissimum L. gene expression oligo microarray

    Directory of Open Access Journals (Sweden)

    Gutierrez Laurent

    2010-10-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars and its cellulose-rich fibres (fibre-flax cultivars used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well

  15. Geiger mode avalanche photodiodes for microarray systems

    Science.gov (United States)

    Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan

    2002-06-01

    New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.

  16. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    DEFF Research Database (Denmark)

    Aarts, Henk J.M.; Vos, Pieter; Larsson, Jonas T.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection. The fea...... assessors that support bio-traceability models....

  17. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    NARCIS (Netherlands)

    Aarts, H.J.M.; Vos, P.; Larsson, J.T.; Hoek, van A.H.A.M.; Huehn, S.; Weijers, T.; Gronlund, H.A.; Malorny, B.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube (R) microarray detection. The

  18. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  19. Screening hybridomas for anabolic androgenic steroids by steroid analog antigen microarray.

    Science.gov (United States)

    Du, Hongwu; Chen, Guangyu; Bian, Yongzhong; Xing, Cenzan; Ding, Xue; Zhu, Mengliang; Xun, Yiping; Chen, Peng; Zhou, Yabin; Li, Shaoxu

    2015-01-01

    Currently, dozens of anabolic androgenic steroids (AAS) are forbidden in the World Anti-Doping Agency Prohibited List, however, despite extensive investigation, there are still lots of AAS without corresponding monoclonal antibodies. A steroid analog antigen microarray made up of ten AAS was fabricated to screen the hybridoma and it was found an original unsuccessful clone turned out to be a candidate anti-boldenone antibody, without any cross-reactions with endogenous AAS or 44 different AAS standard reference materials tested. Our findings suggested that steroid analog antigen microarray could be a promising tool to screen and characterize new applications of antibodies for structure analogs, and this also exhibits the potential to fast identify effective epitopes of hybridomas in a single assay.

  20. miRNAs modified by dietary lipids in Caco-2 cells. A microarray screening

    Directory of Open Access Journals (Sweden)

    Lidia Daimiel

    2015-09-01

    Full Text Available We performed a screening of miRNAs regulated by dietary lipids in a cellular model of enterocytes, Caco-2 cells. Our aim was to describe new lipid-modified miRNAs with an implication in lipid homeostasis and cardiovascular disease [1,2]. For that purpose, we treated differentiated Caco-2 cells with micelles containing the assayed lipids (cholesterol, conjugated linoleic acid and docosahexaenoic acid and the screening of miRNAs was carried out by microarray using the μParaflo®Microfluidic Biochip Technology of LC Sciences (Huston, TX, USA. Experimental design, microarray description and raw data have been made available in the GEO database with the reference number of GSE59153. Here we described in detail the experimental design and methods used to obtain the relative expression data.

  1. A new DPYD genotyping assay for improving the safety of 5-fluorouracil therapy.

    Science.gov (United States)

    Sistonen, Johanna; Smith, Chingying; Fu, Yung-Kang; Largiadèr, Carlo R

    2012-12-24

    Chemotherapeutic use of 5-fluorouracil (5FU) is compromised by 10-20% of patients developing severe toxicity. Recently described genetic variation in dihydropyrimidine dehydrogenase (DPYD) has been shown to be a major predictor of 5FU toxicity. Here, we describe a new genotyping assay for routine clinical use that covers all the major DPYD risk variants. Genomic regions targeting DPYD risk variants (c.1129-5923C>G, c.1679T>G/A, c.1905+1G>A, c.2846A>T) and additional markers (c.234-123G>C, c.496A>G, c.775A>G) were amplified in a multiplex PCR reaction. The subsequent steps including allele-specific primer extension, hybridization of the primers to a microarray, scanning of the array, and data analysis were automated within the INFINITI® Analyzer (AutoGenomics). The assay was validated by analyzing 107 blood samples obtained from patients previously re-sequenced for the DPYD. The genotypes obtained with the developed assay were 100% concordant with the re-sequencing. The procedure is suitable for routine clinical use since the results are obtained within one day. For heterozygous risk variant carriers (~7% of Europeans), the treatment can be adjusted by 5FU dose reduction, whereas carriers of two risk alleles should be treated with an alternative therapy. The developed assay provides a novel tool to improve the safety of commonly used 5FU-based chemotherapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Nonlinear matching measure for the analysis of on-off type DNA microarray images

    Science.gov (United States)

    Kim, Jong D.; Park, Misun; Kim, Jongwon

    2003-07-01

    In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.

  3. A protein microarray for the rapid screening of patients suspected of infection with various food-borne helminthiases.

    Directory of Open Access Journals (Sweden)

    Jia-Xu Chen

    Full Text Available BACKGROUND: Food-borne helminthiases (FBHs have become increasingly important due to frequent occurrence and worldwide distribution. There is increasing demand for developing more sensitive, high-throughput techniques for the simultaneous detection of multiple parasitic diseases due to limitations in differential clinical diagnosis of FBHs with similar symptoms. These infections are difficult to diagnose correctly by conventional diagnostic approaches including serological approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, antigens obtained from 5 parasite species, namely Cysticercus cellulosae, Angiostrongylus cantonensis, Paragonimus westermani, Trichinella spiralis and Spirometra sp., were semi-purified after immunoblotting. Sera from 365 human cases of helminthiasis and 80 healthy individuals were assayed with semi-purified antigens by both a protein microarray and the enzyme-linked immunosorbent assay (ELISA. The sensitivity, specificity and simplicity of each test for the end-user were evaluated. The specificity of the tests ranged from 97.0% (95% confidence interval (CI: 95.3-98.7% to 100.0% (95% CI: 100.0% in the protein microarray and from 97.7% (95% CI: 96.2-99.2% to 100.0% (95% CI: 100.0% in ELISA. The sensitivity varied from 85.7% (95% CI: 75.1-96.3% to 92.1% (95% CI: 83.5-100.0% in the protein microarray, while the corresponding values for ELISA were 82.0% (95% CI: 71.4-92.6% to 92.1% (95% CI: 83.5-100.0%. Furthermore, the Youden index spanned from 0.83 to 0.92 in the protein microarray and from 0.80 to 0.92 in ELISA. For each parasite, the Youden index from the protein microarray was often slightly higher than the one from ELISA even though the same antigen was used. CONCLUSIONS/SIGNIFICANCE: The protein microarray platform is a convenient, versatile, high-throughput method that can easily be adapted to massive FBH screening.

  4. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays

    Directory of Open Access Journals (Sweden)

    Dahlgren Andreas

    2004-10-01

    Full Text Available Abstract Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and

  5. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    Science.gov (United States)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  6. Analysis of Chromothripsis by Combined FISH and Microarray Analysis.

    Science.gov (United States)

    MacKinnon, Ruth N

    2018-01-01

    Fluorescence in situ hybridization (FISH) to metaphase chromosomes, in conjunction with SNP array, array CGH, or whole genome sequencing, can help determine the organization of abnormal genomes after chromothripsis and other types of complex genome rearrangement. DNA microarrays can identify the changes in copy number, but they do not give information on the organization of the abnormal chromosomes, balanced rearrangements, or abnormalities of the centromeres and other regions comprised of highly repetitive DNA. Many of these details can be determined by the strategic use of metaphase FISH. FISH is a single-cell technique, so it can identify low-frequency chromosome abnormalities, and it can determine which chromosome abnormalities occur in the same or different clonal populations. These are important considerations in cancer. Metaphase chromosomes are intact, so information about abnormalities of the chromosome homologues is preserved. Here we describe strategies for working out the organization of highly rearranged genomes by combining SNP array data with various metaphase FISH methods. This approach can also be used to address some of the uncertainties arising from whole genome or mate-pair sequencing data.

  7. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  8. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Directory of Open Access Journals (Sweden)

    Gravelat Fabrice

    2010-09-01

    Full Text Available Abstract Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments

  9. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Utility of the pooling approach as applied to whole genome association scans with high-density Affymetrix microarrays

    Directory of Open Access Journals (Sweden)

    Gray Joanna

    2010-11-01

    Full Text Available Abstract Background We report an attempt to extend the previously successful approach of combining SNP (single nucleotide polymorphism microarrays and DNA pooling (SNP-MaP employing high-density microarrays. Whereas earlier studies employed a range of Affymetrix SNP microarrays comprising from 10 K to 500 K SNPs, this most recent investigation used the 6.0 chip which displays 906,600 SNP probes and 946,000 probes for the interrogation of CNVs (copy number variations. The genotyping assay using the Affymetrix SNP 6.0 array is highly demanding on sample quality due to the small feature size, low redundancy, and lack of mismatch probes. Findings In the first study published so far using this microarray on pooled DNA, we found that pooled cheek swab DNA could not accurately predict real allele frequencies of the samples that comprised the pools. In contrast, the allele frequency estimates using blood DNA pools were reasonable, although inferior compared to those obtained with previously employed Affymetrix microarrays. However, it might be possible to improve performance by developing improved analysis methods. Conclusions Despite the decreasing costs of genome-wide individual genotyping, the pooling approach may have applications in very large-scale case-control association studies. In such cases, our study suggests that high-quality DNA preparations and lower density platforms should be preferred.

  11. Training ANFIS structure using genetic algorithm for liver cancer classification based on microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Bülent Haznedar

    2017-02-01

    Full Text Available Classification is an important data mining technique, which is used in many fields mostly exemplified as medicine, genetics and biomedical engineering. The number of studies about classification of the datum on DNA microarray gene expression is specifically increased in recent years. However, because of the reasons as the abundance of gene numbers in the datum as microarray gene expressions and the nonlinear relations mostly across those datum, the success of conventional classification algorithms can be limited. Because of these reasons, the interest on classification methods which are based on artificial intelligence to solve the problem on classification has been gradually increased in recent times. In this study, a hybrid approach which is based on Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithm (GA are suggested in order to classify liver microarray cancer data set. Simulation results are compared with the results of other methods. According to the results obtained, it is seen that the recommended method is better than the other methods.

  12. Detection of tmRNA molecules on microarrays at low temperatures using helper oligonucleotides

    Directory of Open Access Journals (Sweden)

    Palta Priit

    2010-04-01

    Full Text Available Abstract Background The hybridization of synthetic Streptococcus pneumoniae tmRNA on a detection microarray is slow at 34°C resulting in low signal intensities. Results We demonstrate that adding specific DNA helper oligonucleotides (chaperones to the hybridization buffer increases the signal strength at a given temperature and thus makes the specific detection of Streptococcus pneumoniae tmRNA more sensitive. No loss of specificity was observed at low temperatures compared to hybridization at 46°C. The effect of the chaperones can be explained by disruption of the strong secondary and tertiary structure of the target RNA by the selective hybridization of helper molecules. The amplification of the hybridization signal strength by chaperones is not necessarily local; we observed increased signal intensities in both local and distant regions of the target molecule. Conclusions The sensitivity of the detection of tmRNA at low temperature can be increased by chaperone oligonucleotides. Due to the complexity of RNA secondary and tertiary structures the effect of any individual chaperone is currently not predictable.

  13. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  14. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  15. Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer.

    Science.gov (United States)

    Dinca, V; Ranella, A; Farsari, M; Kafetzopoulos, D; Dinescu, M; Popescu, A; Fotakis, C

    2008-10-01

    The direct-writing technique laser-induced forward transfer has been employed for the micro-array printing of liquid solutions of the enzyme horseradish peroxidase and the protein Titin on nitrocellulose solid surfaces. The effect of two UV laser pulse lengths, femtosecond and nanosecond has been studied in relation with maintaining the activity of the transferred biomolecules. The quantification of the active biomolecules after transfer has been carried out using Bradford assay, quantitative colorimetric enzymatic assay and fluorescence techniques. Spectrophotometric measurements of the HRP and the Titin activity as well as chromatogenic and fluorescence assay studies have revealed a connection between the properties of the deposited, biologically active biomolecules, the experimental conditions and the target composition. The bioassays have shown that up to 78% of the biomolecules remained active after femtosecond laser transfer, while this value reduced to 54% after nanosecond laser transfer. The addition of glycerol in a percentage up to 70% in the solution to be transferred has contributed to the stabilization of the micro-array patterns and the increase of their resolution.

  16. Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions

    Directory of Open Access Journals (Sweden)

    Kille Peter

    2008-11-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (CGH and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5 are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb. Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3 ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays. Results Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and

  17. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  18. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  19. "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2008-08-01

    Full Text Available Abstract Background Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics. Results In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated. Conclusion The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics

  20. Production of DNA microarray and expression analysis of genes from Xylella fastidiosa in different culture media

    Directory of Open Access Journals (Sweden)

    Regiane de Fátima Travensolo

    2009-06-01

    Full Text Available DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.DNA Microarray foi desenvolvida para monitorar a expressão de muitos genes de Xylella fastidiosa, permitindo a comparação de duas situações distintas em um único experimento. Os experimentos foram feitos utilizando células de X. fastidiosa cultivada em dois meios de cultura: BCYE e XDM2. Pares de oligonucleotídeos iniciadores foram sintetizados, depositados em lâminas de vidro e o arranjo foi hibridizado contra cDNAs marcados fluorescentemente. Os sinais emitidos foram quantificados, normalizados e os dados foram estatisticamente analisados para verificar os genes diferencialmente expressos. De acordo com nossos dados, 104 genes foram diferencialmente expressos para o meio de cultura XDM2 e 30 genes para o BCYE. No presente estudo, nós demonstramos que a técnica de DNA microarrays eficientemente diferencia genes expressos sob diferentes condições de cultivo.

  1. Comparing transformation methods for DNA microarray data

    Directory of Open Access Journals (Sweden)

    Zwinderman Aeilko H

    2004-06-01

    Full Text Available Abstract Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects, and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  2. Association Study between BDNF Gene Polymorphisms and Autism by Three-Dimensional Gel-Based Microarray

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2009-06-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers which can be used in association studies searching for susceptible genes of complex diseases. High-throughput methods are needed for SNP genotyping in a large number of samples. In this study, we applied polyacrylamide gel-based microarray combined with dual-color hybridization for association study of four BDNF polymorphisms with autism. All the SNPs in both patients and controls could be analyzed quickly and correctly. Among four SNPs, only C270T polymorphism showed significant differences in the frequency of the allele (χ2 = 7.809, p = 0.005 and genotype (χ2 = 7.800, p = 0.020. In the haplotype association analysis, there was significant difference in global haplotype distribution between the groups (χ2 = 28.19,p = 3.44e-005. We suggest that BDNF has a possible role in the pathogenesis of autism. The study also show that the polyacrylamide gel-based microarray combined with dual-color hybridization is a rapid, simple and high-throughput method for SNPs genotyping, and can be used for association study of susceptible gene with disorders in large samples.

  3. Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses.

    Science.gov (United States)

    Kim, Jeong-Soon; Sagaram, Uma Shankar; Burns, Jacqueline K; Li, Jian-Liang; Wang, Nian

    2009-01-01

    Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium 'Candidatus Liberibacter spp.' In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 33,879 expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. The anatomical analyses indicated that HLB bacterium infection caused phloem disruption, sucrose accumulation, and plugged sieve pores. The up-regulation of three key starch biosynthetic genes including ADP-glucose pyrophosphorylase, starch synthase, granule-bound starch synthase and starch debranching enzyme likely contributed to accumulation of starch in HLB-affected leaves. The HLB-associated phloem blockage resulted from the plugged sieve pores rather than the HLB bacterial aggregates since 'Ca. Liberibacter asiaticus' does not form aggregate in citrus. The up-regulation of pp2 gene is related to callose deposition to plug the sieve pores in HLB-affected plants.

  4. Gene targeting associated with the radiation sensitivity in squamous cell carcinoma by using microarray analysis

    International Nuclear Information System (INIS)

    Nimura, Yoshinori; Kumagai, Ken; Kouzu, Yoshinao; Higo, Morihiro; Kato, Yoshikuni; Seki, Naohiko; Yamada, Shigeru

    2005-01-01

    In order to identify a set of genes related to radiation sensitivity of squamous cell carcinoma (SCC) and establish a predictive method, we compared expression profiles of radio-sensitive/radio-resistant SCC cell lines, using the in-house cDNA microarray consisting of 2,201 human genes derived from full-length enriched SCC cDNA libraries and the Human oligo chip 30 K (Hitachi Software Engineering). Surviving fractions (SF) after irradiation of heavy iron were calculated by colony formation assay. Three pairs (TE2-TE13, YES5-YES6, and HSC3-HSC2), sensitive (SF1 0.6), were selected for the microarray analysis. The results of cDNA microarray analysis showed that 20 genes in resistant cell lines and 5 genes in sensitive cell lines were up regulated more than 1.5-fold compared with sensitive and resistant cell lines respectively. Fourteen out of 25 genes were confirmed the gene expression profiles by real-time polymerase chain reaction (PCR). Twenty-seven genes identified by Human oligo chip 30 K are candidate for the markers to distinguish radio-sensitive from radio-resistant. These results suggest that the isolated 27 genes are the candidates that might be used as specific molecular markers to predict radiation sensitivity. (author)

  5. The effects of radiation on p53-mutated glioma cells using cDNA microarray technique

    International Nuclear Information System (INIS)

    Ngo, F.Q.H.; Hsiao, Y.-Y.H.

    2003-01-01

    Full text: In this study, we investigated the effects of 10-Gy irradiation on cell-cycle arrest, apoptosis and clonogenic death in the p53-mutated human U138MG (malignant glioblastoma) cell line. In order to evaluate time-dependent events in cellular responses to radiation, we did a time course study by incubating cells ranging from 0.5 to 48 hours after irradiation. Cell-cycle distribution and apoptosis were evaluated by flow cytometry using propidium iodide (PI) and annexin-V plus PI staining. Cell viability and proliferative capacity were studied by colony formation assay. Dual fluorescence cDNA microarray technique was used to examine the differential expression patterns of the irradiated cells. The cDNA microarray chips used contained DNA sequences corresponding to 12,814 human genes. From the flow cytometry data, it can be observed that radiation induced G2/M phase arrest and that late apoptosis was more evident following G2/M arrest. After 36 hours, some cells underwent senescence and the remains continued on with the cell cycle. Microarray analyses revealed changes in the expression of a small number of cell-cycle-related genes (p21, cyclin B1, etc.) and cell-death genes (tumor necrosis factors, DDB2, etc.) suggesting their involvement in radiation-induced cell-cycle arrest and apoptosis. In silico interpretations of the molecular mechanisms responsible for these radiation effects are in progress

  6. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA.

    Science.gov (United States)

    Gibbons, Brian; Datta, Parikkhit; Wu, Ying; Chan, Alan; Al Armour, John

    2006-06-30

    Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A). Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  7. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  8. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.

    Science.gov (United States)

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-11-19

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  9. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    Directory of Open Access Journals (Sweden)

    Kei Kanie

    2016-11-01

    Full Text Available The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV, an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I, and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  10. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R.

    2012-01-01

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  11. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  12. Shared probe design and existing microarray reanalysis using PICKY

    Directory of Open Access Journals (Sweden)

    Chou Hui-Hsien

    2010-04-01

    Full Text Available Abstract Background Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations. Results PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users. Conclusions Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.

  13. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  14. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    Science.gov (United States)

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  15. The application of DNA microarrays in gene expression analysis

    NARCIS (Netherlands)

    Hal, van N.L.W.; Vorst, O.; Houwelingen, van A.M.M.L.; Kok, E.J.; Peijnenburg, A.A.C.M.; Aharoni, A.; Tunen, van A.J.; Keijer, J.

    2000-01-01

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed.

  16. Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins.

    Science.gov (United States)

    Pinne, Marija; Matsunaga, James; Haake, David A

    2012-11-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.

  17. Bystander effect: Biological endpoints and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, M. Ahmad [Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405 (United States) and DNA Microarray Facility, University of Vermont, Burlington, VT 05405 (United States)]. E-mail: mchaudhr@uvm.edu

    2006-05-11

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  18. Bystander effect: Biological endpoints and microarray analysis

    International Nuclear Information System (INIS)

    Chaudhry, M. Ahmad

    2006-01-01

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  19. cDNA microarray screening in food safety

    International Nuclear Information System (INIS)

    Roy, Sashwati; Sen, Chandan K.

    2006-01-01

    The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests

  20. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  1. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  2. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  3. Microarray-based analysis of plasma cirDNA epigenetic modification profiling in xenografted mice exposed to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rene Cortese

    2015-09-01

    Full Text Available Intermittent hypoxia (IH during sleep is one of the major abnormalities occurring in patients suffering from obstructive sleep apnea (OSA, a highly prevalent disorder affecting 6–15% of the general population, particularly among obese people. IH has been proposed as a major determinant of oncogenetically-related processes such as tumor growth, invasion and metastasis. During the growth and expansion of tumors, fragmented DNA is released into the bloodstream and enters the circulation. Circulating tumor DNA (cirDNA conserves the genetic and epigenetic profiles from the tumor of origin and can be isolated from the plasma fraction. Here we report a microarray-based epigenetic profiling of cirDNA isolated from blood samples of mice engrafted with TC1 epithelial lung cancer cells and controls, which were exposed to IH during sleep (XenoIH group, n = 3 or control conditions, (i.e., room air (RA; XenoRA group, n = 3 conditions. To prepare the targets for microarray hybridization, we applied a previously developed method that enriches the modified fraction of the cirDNA without amplification of genomic DNA. Regions of differential cirDNA modification between the two groups were identified by hybridizing the enriched fractions for each sample to Affymetrix GeneChip Human Promoter Arrays 1.0R. Microarray raw and processed data were deposited in NCBI's Gene Expression Omnibus (GEO database (accession number: GSE61070.

  4. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

    DEFF Research Database (Denmark)

    Pedersen, Henriette Lodberg; Fangel, Jonatan Ulrik; McCleary, Barry

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less establish...

  5. Use of Molecular Assays in Diagnosis and Monitoring of Cytomegalovirus Disease following Renal Transplantation

    OpenAIRE

    Aitken, Celia; Barrett-Muir, Winsome; Millar, Colin; Templeton, Kate; Thomas, Janice; Sheridan, Fran; Jeffries, Donald; Yaqoob, Magdi; Breuer, Judith

    1999-01-01

    We compared two commercial molecular assays (the Murex Hybrid Capture CMV DNA assay [HCA], version 2, and the Roche Amplicor plasma PCR assay) with a standard shell vial assay in detecting and predicting cytomegalovirus (CMV) disease in a group of renal transplant patients and assessed the role of viral load measurements (using the HCA) in their management. The sensitivity of the HCA and Amplicor assay in terms of disease detection was 100%, compared to 71% for the shell vial assay. Both the ...

  6. Mismatch oligonucleotides in human and yeast: guidelines for probe design on tiling microarrays

    Directory of Open Access Journals (Sweden)

    Jee Justin

    2008-12-01

    Full Text Available Abstract Background Mismatched oligonucleotides are widely used on microarrays to differentiate specific from nonspecific hybridization. While many experiments rely on such oligos, the hybridization behavior of various degrees of mismatch (MM structure has not been extensively studied. Here, we present the results of two large-scale microarray experiments on S. cerevisiae and H. sapiens genomic DNA, to explore MM oligonucleotide behavior with real sample mixtures under tiling-array conditions. Results We examined all possible nucleotide substitutions at the central position of 36-nucleotide probes, and found that nonspecific binding by MM oligos depends upon the individual nucleotide substitutions they incorporate: C→A, C→G and T→A (yielding purine-purine mispairs are most disruptive, whereas A→X were least disruptive. We also quantify a marked GC skew effect: substitutions raising probe GC content exhibit higher intensity (and vice versa. This skew is small in highly-expressed regions (± 0.5% of total intensity range and large (± 2% or more elsewhere. Multiple mismatches per oligo are largely additive in effect: each MM added in a distributed fashion causes an additional 21% intensity drop relative to PM, three-fold more disruptive than adding adjacent mispairs (7% drop per MM. Conclusion We investigate several parameters for oligonucleotide design, including the effects of each central nucleotide substitution on array signal intensity and of multiple MM per oligo. To avoid GC skew, individual substitutions should not alter probe GC content. RNA sample mixture complexity may increase the amount of nonspecific hybridization, magnify GC skew and boost the intensity of MM oligos at all levels.

  7. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

    International Nuclear Information System (INIS)

    Lenburg, Marc E; Liou, Louis S; Gerry, Norman P; Frampton, Garrett M; Cohen, Herbert T; Christman, Michael F

    2003-01-01

    Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell

  8. Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates

    Directory of Open Access Journals (Sweden)

    Andrew G. Gehring

    2015-12-01

    Full Text Available Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins. We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7 to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555 conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1 could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 105 cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.

  9. Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates.

    Science.gov (United States)

    Gehring, Andrew G; Brewster, Jeffrey D; He, Yiping; Irwin, Peter L; Paoli, George C; Simons, Tawana; Tu, Shu-I; Uknalis, Joseph

    2015-12-04

    Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins). We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7) to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation) had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555) conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1) could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 10⁵ cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.

  10. Profiling cellular protein complexes by proximity ligation with dual tag microarray readout.

    Science.gov (United States)

    Hammond, Maria; Nong, Rachel Yuan; Ericsson, Olle; Pardali, Katerina; Landegren, Ulf

    2012-01-01

    Patterns of protein interactions provide important insights in basic biology, and their analysis plays an increasing role in drug development and diagnostics of disease. We have established a scalable technique to compare two biological samples for the levels of all pairwise interactions among a set of targeted protein molecules. The technique is a combination of the proximity ligation assay with readout via dual tag microarrays. In the proximity ligation assay protein identities are encoded as DNA sequences by attaching DNA oligonucleotides to antibodies directed against the proteins of interest. Upon binding by pairs of antibodies to proteins present in the same molecular complexes, ligation reactions give rise to reporter DNA molecules that contain the combined sequence information from the two DNA strands. The ligation reactions also serve to incorporate a sample barcode in the reporter molecules to allow for direct comparison between pairs of samples. The samples are evaluated using a dual tag microarray where information is decoded, revealing which pairs of tags that have become joined. As a proof-of-concept we demonstrate that this approach can be used to detect a set of five proteins and their pairwise interactions both in cellular lysates and in fixed tissue culture cells. This paper provides a general strategy to analyze the extent of any pairwise interactions in large sets of molecules by decoding reporter DNA strands that identify the interacting molecules.

  11. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan; Durmus, Naside Gozde

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  12. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  13. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    Full Text Available Abstract Background The toxigenic fungal plant pathogen Fusarium graminearum compromises wheat production worldwide. Azole fungicides play a prominent role in controlling this pathogen. Sequencing of its genome stimulated the development of high-throughput technologies to study mechanisms of coping with fungicide stress and adaptation to fungicides at a previously unprecedented precision. DNA-microarrays have been used to analyze genome-wide gene expression patterns and uncovered complex transcriptional responses. A recently developed one-color multiplex array format allowed flexible, effective, and parallel examinations of eight RNA samples. Results We took advantage of the 8 × 15 k Agilent format to design, evaluate, and apply a novel microarray covering the whole F. graminearum genome to analyze transcriptional responses to azole fungicide treatment. Comparative statistical analysis of expression profiles uncovered 1058 genes that were significantly differentially expressed after azole-treatment. Quantitative RT-PCR analysis for 31 selected genes indicated high conformity to results from the microarray hybridization. Among the 596 genes with significantly increased transcript levels, analyses using GeneOntology and FunCat annotations detected the ergosterol-biosynthesis pathway genes as the category most significantly responding, confirming the mode-of-action of azole fungicides. Cyp51A, which is one of the three F. graminearum paralogs of Cyp51 encoding the target of azoles, was the most consistently differentially expressed gene of the entire study. A molecular phylogeny analyzing the relationships of the three CYP51 proteins in the context of 38 fungal genomes belonging to the Pezizomycotina indicated that CYP51C (FGSG_11024 groups with a new clade of CYP51 proteins. The transcriptional profiles for genes encoding ABC transporters and transcription factors suggested several involved in mechanisms alleviating the impact of the fungicide

  14. Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays

    Directory of Open Access Journals (Sweden)

    Kreil David P

    2008-08-01

    Full Text Available Abstract Background DNA Microarrays are regarded as a valuable tool for basic and applied research in microbiology. However, for many industrially important microorganisms the lack of commercially available microarrays still hampers physiological research. Exemplarily, our understanding of protein folding and secretion in the yeast Pichia pastoris is presently widely dependent on conclusions drawn from analogies to Saccharomyces cerevisiae. To close this gap for a yeast species employed for its high capacity to produce heterologous proteins, we developed full genome DNA microarrays for P. pastoris and analyzed the unfolded protein response (UPR in this yeast species, as compared to S. cerevisiae. Results By combining the partially annotated gene list of P. pastoris with de novo gene finding a list of putative open reading frames was generated for which an oligonucleotide probe set was designed using the probe design tool TherMODO (a thermodynamic model-based oligoset design optimizer. To evaluate the performance of the novel array design, microarrays carrying the oligo set were hybridized with samples from treatments with dithiothreitol (DTT or a strain overexpressing the UPR transcription factor HAC1, both compared with a wild type strain in normal medium as untreated control. DTT treatment was compared with literature data for S. cerevisiae, and revealed similarities, but also important differences between the two yeast species. Overexpression of HAC1, the most direct control for UPR genes, resulted in significant new understanding of this important regulatory pathway in P. pastoris, and generally in yeasts. Conclusion The differences observed between P. pastoris and S. cerevisiae underline the importance of DNA microarrays for industrial production strains. P. pastoris reacts to DTT treatment mainly by the regulation of genes related to chemical stimulus, electron transport and respiration, while the overexpression of HAC1 induced many genes

  15. Performance of seven serological assays for diagnosing tularemia

    Science.gov (United States)

    2014-01-01

    Background Tularemia is a rare zoonotic disease caused by the Gram-negative bacterium Francisella tularensis. Serology is frequently the preferred diagnostic approach, because the pathogen is highly infectious and difficult to cultivate. The aim of this retrospective study was to determine the diagnostic accuracy of tularemia specific tests. Methods The Serazym®Anti-Francisella tularensis ELISA, Serion ELISA classic Francisella tularensis IgG/IgM, an in-house ELISA, the VIRapid® Tularemia immunochromatographic test, an in-house antigen microarray, and a Western Blot (WB) assay were evaluated. The diagnosis tularemia was established using a standard micro-agglutination assay. In total, 135 sera from a series of 110 consecutive tularemia patients were tested. Results The diagnostic sensitivity and diagnostic specificity of the tests were VIRapid (97.0% and 84.0%), Serion IgG (96.3% and 96.8%), Serion IgM (94.8% and 96.8%), Serazym (97.0% and 91.5%), in-house ELISA (95.6% and 76.6%), WB (93.3% and 83.0%), microarray (91.1% and 97.9%). Conclusions The diagnostic value of the commercial assays was proven, because the diagnostic accuracy was >90%. The diagnostic sensitivity of the in-house ELISA and the WB were acceptable, but the diagnostic accuracy was <90%. Interestingly, the antigen microarray test was very specific and had a very good positive predictive value. PMID:24885274

  16. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Directory of Open Access Journals (Sweden)

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  17. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay

    NARCIS (Netherlands)

    Joo, C.; Ozkumur, E.; Unlu, B.; de Boer, J.F.

    2009-01-01

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning

  18. Expanding the substantial interactome of NEMO using protein microarrays.

    LENUS (Irish Health Repository)

    Fenner, Beau J

    2010-01-01

    Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.

  19. A High-Throughput Antibody-Based Microarray Typing Platform

    Directory of Open Access Journals (Sweden)

    Ashan Perera

    2013-05-01

    Full Text Available Many rapid methods have been developed for screening foods for the presence of pathogenic microorganisms. Rapid methods that have the additional ability to identify microorganisms via multiplexed immunological recognition have the potential for classification or typing of microbial contaminants thus facilitating epidemiological investigations that aim to identify outbreaks and trace back the contamination to its source. This manuscript introduces a novel, high throughput typing platform that employs microarrayed multiwell plate substrates and laser-induced fluorescence of the nucleic acid intercalating dye/stain SYBR Gold for detection of antibody-captured bacteria. The aim of this study was to use this platform for comparison of different sets of antibodies raised against the same pathogens as well as demonstrate its potential effectiveness for serotyping. To that end, two sets of antibodies raised against each of the “Big Six” non-O157 Shiga toxin-producing E. coli (STEC as well as E. coli O157:H7 were array-printed into microtiter plates, and serial dilutions of the bacteria were added and subsequently detected. Though antibody specificity was not sufficient for the development of an STEC serotyping method, the STEC antibody sets performed reasonably well exhibiting that specificity increased at lower capture antibody concentrations or, conversely, at lower bacterial target concentrations. The favorable results indicated that with sufficiently selective and ideally concentrated sets of biorecognition elements (e.g., antibodies or aptamers, this high-throughput platform can be used to rapidly type microbial isolates derived from food samples within ca. 80 min of total assay time. It can also potentially be used to detect the pathogens from food enrichments and at least serve as a platform for testing antibodies.

  20. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    Science.gov (United States)

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  1. The application of DNA microarrays in gene expression analysis.

    Science.gov (United States)

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  2. Microarray Beads for Identifying Blood Group Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Drago, Francesca; Karpasitou, Katerina; Poli, Francesca

    2009-01-01

    We have developed a high-throughput system for single nucleotide polymorphism (SNP) genotyping of alleles of diverse blood group systems exploiting Luminex technology. The method uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres and is designed for typing Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, K/k, Kp(a)/Kp(b), Js(a)/Js(b), Co(a)/Co(b) and Lu(a)/Lu(b) alleles. Briefly, two multiplex PCR reactions (PCR I and PCR II) according to the laboratory specific needs are set up. PCR I amplifies the alleles tested routinely, namely Jk(a)/Jk(b), Fy(a)/Fy(b), S/s, and K/k. PCR II amplifies those alleles that are typed less frequently. Biotinylated PCR products are hybridized in a single multiplex assay with the corresponding probe mixture. After incubation with R-phycoerythrin-conjugated streptavidin, the emitted fluorescence is analyzed with Luminex 100. So far, we have typed more than 2,000 subjects, 493 of whom with multiplex assay, and there have been no discrepancies with the serology results other than null and/or weak phenotypes. The cost of consumables and reagents for typing a single biallelic pair per sample is less than EUR 3.-, not including DNA extraction costs. The capability to perform multiplexed reactions makes the method markedly suitable for mass screening of red blood cell alleles. This genotyping approach represents an important tool in transfusion medicine.

  3. An Affymetrix Microarray Design for Microbial Genotyping

    Science.gov (United States)

    2009-10-01

    les échantillons qui ne se prêtent pas aux méthodes culturales de la microbiologie classique. La puce à ADN est une technologie qui permet la... area of microbial genotyping there are multiple platforms that can identify one or a few microbial targets in a single assay iteration. For most

  4. Tissue Microarray Analysis Applied to Bone Diagenesis.

    Science.gov (United States)

    Mello, Rafael Barrios; Silva, Maria Regina Regis; Alves, Maria Teresa Seixas; Evison, Martin Paul; Guimarães, Marco Aurelio; Francisco, Rafaella Arrabaca; Astolphi, Rafael Dias; Iwamura, Edna Sadayo Miazato

    2017-01-04

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens. Standard hematoxylin and eosin, periodic acid-Schiff and silver methenamine, and picrosirius red staining, and CD31 and CD34 immunohistochemistry were applied to TMA sections. Osteocyte and osteocyte lacuna counts, percent bone matrix loss, and fungal spheroid element counts could be measured and collagen fibre bundles observed in all specimens. Decalcification with 7% nitric acid proceeded more rapidly than with 0.5 M EDTA and may offer better preservation of histological and cellular structure. No endothelial cells could be detected using CD31 and CD34 immunohistochemistry. Correlation between osteocytes per lacuna and age at death may reflect reported age-related responses to microdamage. Methodological limitations and caveats, and results of the TMA analysis of post mortem diagenesis in bone are discussed, and implications for DNA survival and recovery considered.

  5. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  6. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  7. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    Science.gov (United States)

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  9. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  10. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  11. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  12. Rapid Diagnosis of Bacterial Meningitis Using a Microarray

    Directory of Open Access Journals (Sweden)

    Ren-Jy Ben

    2008-06-01

    Conclusion: The microarray method provides a more accurate and rapid diagnostic tool for bacterial meningitis compared to traditional culture methods. Clinical application of this new technique may reduce the potential risk of delay in treatment.

  13. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong; Ma, Yanyuan; Carroll, Raymond J.

    2009-01-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing

  14. Novel Protein Microarray Technology to Examine Men with Prostate Cancer

    National Research Council Canada - National Science Library

    Lilja, Hans

    2005-01-01

    The authors developed a novel macro and nanoporous silicon surface for protein microarrays to facilitate high-throughput biomarker discovery, and high-density protein-chip array analyses of complex biological samples...

  15. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  16. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  17. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  18. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  19. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells

    Directory of Open Access Journals (Sweden)

    Kim Han

    2012-07-01

    Full Text Available Abstract Background In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. Results Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1 was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2. Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. Conclusions Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that

  20. Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments

    Science.gov (United States)

    Jourdren, Laurent; Duclos, Aurélie; Brion, Christian; Portnoy, Thomas; Mathis, Hugues; Margeot, Antoine; Le Crom, Stéphane

    2010-01-01

    Despite the development of new high-throughput sequencing techniques, microarrays are still attractive tools to study small genome organisms, thanks to sample multiplexing and high-feature densities. However, the oligonucleotide design remains a delicate step for most users. A vast array of software is available to deal with this problem, but each program is developed with its own strategy, which makes the choice of the best solution difficult. Here we describe Teolenn, a universal probe design workflow developed with a flexible and customizable module organization allowing fixed or variable length oligonucleotide generation. In addition, our software is able to supply quality scores for each of the designed probes. In order to assess the relevance of these scores, we performed a real hybridization using a tiling array designed against the Trichoderma reesei fungus genome. We show that our scoring pipeline correlates with signal quality for 97.2% of all the designed probes, allowing for a posteriori comparisons between quality scores and signal intensities. This result is useful in discarding any bad scoring probes during the design step in order to get high-quality microarrays. Teolenn is available at http://transcriptome.ens.fr/teolenn/. PMID:20176570

  1. A comparative analysis of DNA barcode microarray feature size

    Directory of Open Access Journals (Sweden)

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  2. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  3. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  4. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    International Nuclear Information System (INIS)

    Ramfos, Ioannis; Birbas, Alexios; Blionas, Spyridon

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges. (paper)

  5. Performance analysis of clustering techniques over microarray data: A case study

    Science.gov (United States)

    Dash, Rasmita; Misra, Bijan Bihari

    2018-03-01

    Handling big data is one of the major issues in the field of statistical data analysis. In such investigation cluster analysis plays a vital role to deal with the large scale data. There are many clustering techniques with different cluster analysis approach. But which approach suits a particular dataset is difficult to predict. To deal with this problem a grading approach is introduced over many clustering techniques to identify a stable technique. But the grading approach depends on the characteristic of dataset as well as on the validity indices. So a two stage grading approach is implemented. In this study the grading approach is implemented over five clustering techniques like hybrid swarm based clustering (HSC), k-means, partitioning around medoids (PAM), vector quantization (VQ) and agglomerative nesting (AGNES). The experimentation is conducted over five microarray datasets with seven validity indices. The finding of grading approach that a cluster technique is significant is also established by Nemenyi post-hoc hypothetical test.

  6. [Research on the relevance between the virulent genes differential expression and pathogenecity of Leptospira with microarray].

    Science.gov (United States)

    Yu, De-li; Bao, Lang

    2015-01-01

    To find the change of virulent gene expression and to analyze the relevance between the virulent change and the gene expression. Grouped guinea pigs were inoculated with 1 mL Leptospira cultured in vivo, Leptospira cultured in vitro and the Leptospira culture medium through abdominal subcutaneous respectively. The survival rate, body mass and temperature change of guinea pigs in different groups were measured within 15 d after the inoculation, then the survived guinea pigs were scarified, and the organ coefficient was also measured to know the virulence of Leptospira cultured in different environment. The amplified gene segments from Leptospira were used as probes and wrote the microarray. The total RNA was extracted from Leptospira standard strain cultured in culture medium and guinea pigs. After reverse transcription to cDNA, they were labeled with Cy3 and Cy5 respectively. Labeled cDNA was mixed and hybridized with the microarray. The hybridized mircroarray was scanned and analysed. The survival rate of inoculated guinea pig was different from group to group (in vivo group: 0%; in vitro group: 88.9%; culture medium group: 100%). The guinea pigs in vivo group had a higher temperature (PLeptospira: LA1027, LA1029, LA4004, LA3050, LA3540, LA0327, LA0378, LA1650, LA3937, LA2089, LA2144, LA3576, LA0011 and gene of Loa22 were up regulation after continuously cultured in guinea pigs. The pathogenic ability of Leptospira cultured in different environment is different and the gene expression of Leptospira is different between in vivo and in vitro as well. The understanding of the meaning of this change might help to know the pathogenecity of Leptospira.

  7. Generation of Antigen Microarrays to Screen for Autoantibodies in Heart Failure and Heart Transplantation.

    Directory of Open Access Journals (Sweden)

    Andrzej Chruscinski

    Full Text Available Autoantibodies directed against endogenous proteins including contractile proteins and endothelial antigens are frequently detected in patients with heart failure and after heart transplantation. There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes. Currently, autoantibodies are detected in patient sera using individual ELISA assays (one for each antigen. Thus, screening for many individual autoantibodies is laborious and consumes a large amount of patient sample. To better capture the broad-scale antibody reactivities that occur in heart failure and post-transplant, we developed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum. We first demonstrated that our antigen microarray technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method. We then piloted this technique using two sets of samples that were obtained at our institution. In the first retrospective study, we profiled pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. We identified 8 antibody reactivities that were higher in patients who developed cellular rejection (2 or more episodes of grade 2R rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, we identified 7 IgM reactivities that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. In conclusion, we demonstrated that the autoantibody microarray technique outperforms traditional ELISAs as it uses less patient

  8. Microarray-based IgE detection in tears of patients with vernal keratoconjunctivitis.

    Science.gov (United States)

    Leonardi, Andrea; Borghesan, Franco; Faggian, Diego; Plebani, Mario

    2015-11-01

    A specific allergen sensitization can be demonstrated in approximately half of the vernal keratoconjunctivitis (VKC) patients by conventional allergic tests. The measurement of specific IgE in tears using a multiplex allergen microarray may offer advantages to identify local sensitization to a specific allergen. In spring-summer 2011, serum and tears samples were collected from 10 active VKC patients (three females, seven males) and 10 age-matched normal subjects. Skin prick test, symptoms score and full ophthalmological examination were performed. Specific serum and tear IgE were assayed using ImmunoCAP ISAC, a microarray containing 103 components derived from 47 allergens. Normal subjects resulted negative for the presence of specific IgE both in serum and in tears. Of the 10 VKC patients, six resulted positive to specific IgE in serum and/or tears. In three of these six patients, specific IgE was found positive only in tears. Cross-reactivity between specific markers was found in three patients. Grass, tree, mites, animal but also food allergen-specific IgE were found in tears. Conjunctival provocation test performed out of season confirmed the specific local conjunctival reactivity. Multiple specific IgE measurements with single protein allergens using a microarray technique in tear samples are a useful, simple and non-invasive diagnostic tool. ImmunoCAP ISAC detects allergen sensitization at component level and adds important information by defining both cross- and co-sensitization to a large variety of allergen molecules. The presence of specific IgE only in tears of VKC patients reinforces the concept of possible local sensitization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Directory of Open Access Journals (Sweden)

    Boyang Cao

    Full Text Available Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  10. A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.

    Science.gov (United States)

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776

  11. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  12. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    Science.gov (United States)

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  13. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  14. GeneChip microarrays-signal intensities, RNA concentrations and probe sequences

    International Nuclear Information System (INIS)

    Binder, Hans; Preibisch, Stephan

    2006-01-01

    GeneChip microarrays consist of hundreds of thousands of oligonucleotide probes. The transformation of their signal intensities into RNA transcript concentrations requires the knowledge of the response function of the measuring device. We analysed the 'apparatus' function of perfect match (PM) and mismatched (MM) oligonucleotide probes of GeneChip microarrays after changes of the target concentration using the results of a spiked-in experiment. In agreement with previous studies we found that a competitive two-species Langmuir-adsorption model describes the probe intensities well. Each PM and MM probe is characterized by two hybridization constants which specify the propensity of the probe to bind specific and non-specific transcripts. The affinity for non-specific hybridization is on average equal for PM and MM. The purine-pyrimidine asymmetry of base pair interaction strengths, however, causes a characteristic PM-MM intensity difference, the sign of which depends on the middle base of the probe. The affinity for specific hybridization of the PM exceeds that of the MM on average by nearly one order of magnitude because the central mismatched base only weakly contributes to the stability of the probe/target duplexes. For the first time we differentiate between the free energy parameters related to the 64 possible middle-triples of DNA/RNA oligomer duplexes with a central Watson-Crick pairing and a central mismatched pairing. Both the PM and MM probes respond to the concentration of specific transcripts, which can be estimated from the PM and MM probe intensities using the Langmuir-model. The analysis of the PM-MM intensity difference provides at least no loss of accuracy and precision of the estimated concentration compared with the PM-only estimates which in turn outperform the MM-only estimates. The results show that the processing of the PM-MM intensity difference requires the consideration of a background term due to non-specific hybridization, which is

  15. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  16. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Abdessamad El Kaoutari

    Full Text Available Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  17. NF2 tumor suppressor gene: a comprehensive and efficient detection of somatic mutations by denaturing HPLC and microarray-CGH.

    Science.gov (United States)

    Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A

    2003-01-01

    The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.

  18. Microarray Analysis of the Developing Rat Mandible

    Institute of Scientific and Technical Information of China (English)

    Hideo KABURAGI; Naoyuki SUGANO; Maiko OSHIKAWA; Ryosuke KOSHI; Naoki SENDA; Kazuhiro KAWAMOTO; Koichi ITO

    2007-01-01

    To analyze the molecular events that occur in the developing mandible, we examined the expression of 8803 genes from samples taken at different time points during rat postnatal mandible development.Total RNA was extracted from the mandibles of 1-day-old, 1-week-old, and 2-week-old rats. Complementary RNA (cRNA) was synthesized from cDNA and biotinylated. Fragmented cRNA was hybridized to RGU34A GeneChip arrays. Among the 8803 genes tested, 4344 were detectable. We identified 148 genes with significantly increased expression, and 19 genes with significantly decreased expression. A comprehensive analysis appears to be an effective method of studying the complex process of development.

  19. Microarray-based analysis of differential gene expression between infective and noninfective larvae of Strongyloides stercoralis.

    Directory of Open Access Journals (Sweden)

    Roshan Ramanathan

    2011-05-01

    Full Text Available Differences between noninfective first-stage (L1 and infective third-stage (L3i larvae of parasitic nematode Strongyloides stercoralis at the molecular level are relatively uncharacterized. DNA microarrays were developed and utilized for this purpose.Oligonucleotide hybridization probes for the array were designed to bind 3,571 putative mRNA transcripts predicted by analysis of 11,335 expressed sequence tags (ESTs obtained as part of the Nematode EST project. RNA obtained from S. stercoralis L3i and L1 was co-hybridized to each array after labeling the individual samples with different fluorescent tags. Bioinformatic predictions of gene function were developed using a novel cDNA Annotation System software. We identified 935 differentially expressed genes (469 L3i-biased; 466 L1-biased having two-fold expression differences or greater and microarray signals with a p value<0.01. Based on a functional analysis, L1 larvae have a larger number of genes putatively involved in transcription (p = 0.004, and L3i larvae have biased expression of putative heat shock proteins (such as hsp-90. Genes with products known to be immunoreactive in S. stercoralis-infected humans (such as SsIR and NIE had L3i biased expression. Abundantly expressed L3i contigs of interest included S. stercoralis orthologs of cytochrome oxidase ucr 2.1 and hsp-90, which may be potential chemotherapeutic targets. The S. stercoralis ortholog of fatty acid and retinol binding protein-1, successfully used in a vaccine against Ancylostoma ceylanicum, was identified among the 25 most highly expressed L3i genes. The sperm-containing glycoprotein domain, utilized in a vaccine against the nematode Cooperia punctata, was exclusively found in L3i biased genes and may be a valuable S. stercoralis target of interest.A new DNA microarray tool for the examination of S. stercoralis biology has been developed and provides new and valuable insights regarding differences between infective and

  20. A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins

    Directory of Open Access Journals (Sweden)

    Andrew Gehring

    2014-06-01

    Full Text Available Shiga toxins 1 and 2 (Stx1 and Stx2 from Shiga toxin-producing E. coli (STEC bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies and pooled horseradish peroxidase (HRP-conjugated monoclonal antibodies. Following the reaction of HRP with the precipitating chromogenic substrate (metal enhanced 3,3-diaminobenzidine tetrahydrochloride or DAB, the formation of a colored product was quantitatively measured with an inexpensive flatbed page scanner. The colorimetric ELISA microarray was demonstrated to detect Stx1 and Stx2 at levels as low as ~4.5 ng/mL within ~2 h of total assay time with a narrow linear dynamic range of ~1–2 orders of magnitude and saturation levels well above background. Stx1 and/or Stx2 produced by various strains of STEC were also detected following the treatment of cultured cells with mitomycin C (a toxin-inducing antibiotic and/or B-PER (a cell-disrupting, protein extraction reagent. Semi-quantitative detection of Shiga toxins was demonstrated to be sporadic among various STEC strains following incubation with mitomycin C; however, further reaction with B-PER generally resulted in the detection of or increased detection of Stx1, relative to Stx2, produced by STECs inoculated into either axenic broth culture or culture broth containing ground beef.

  1. Comparative analysis of gene expression by microarray analysis of male and female flowers of Asparagus officinalis.

    Science.gov (United States)

    Gao, Wu-Jun; Li, Shu-Fen; Zhang, Guo-Jun; Wang, Ning-Na; Deng, Chuan-Liang; Lu, Long-Dou

    2013-01-01

    To identify rapidly a number of genes probably involved in sex determination and differentiation of the dioecious plant Asparagus officinalis, gene expression profiles in early flower development for male and female plants were investigated by microarray assay with 8,665 probes. In total, 638 male-biased and 543 female-biased genes were identified. These genes with biased-expression for male and female were involved in a variety of processes associated with molecular functions, cellular components, and biological processes, suggesting that a complex mechanism underlies the sex development of asparagus. Among the differentially expressed genes involved in the reproductive process, a number of genes associated with floral development were identified. Reverse transcription-PCR was performed for validation, and the results were largely consistent with those obtained by microarray analysis. The findings of this study might contribute to understanding of the molecular mechanisms of sex determination and differentiation in dioecious asparagus and provide a foundation for further studies of this plant.

  2. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    Science.gov (United States)

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores

  3. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several

  4. Significance analysis of lexical bias in microarray data

    Directory of Open Access Journals (Sweden)

    Falkow Stanley

    2003-04-01

    Full Text Available Abstract Background Genes that are determined to be significantly differentially regulated in microarray analyses often appear to have functional commonalities, such as being components of the same biochemical pathway. This results in certain words being under- or overrepresented in the list of genes. Distinguishing between biologically meaningful trends and artifacts of annotation and analysis procedures is of the utmost importance, as only true biological trends are of interest for further experimentation. A number of sophisticated methods for identification of significant lexical trends are currently available, but these methods are generally too cumbersome for practical use by most microarray users. Results We have developed a tool, LACK, for calculating the statistical significance of apparent lexical bias in microarray datasets. The frequency of a user-specified list of search terms in a list of genes which are differentially regulated is assessed for statistical significance by comparison to randomly generated datasets. The simplicity of the input files and user interface targets the average microarray user who wishes to have a statistical measure of apparent lexical trends in analyzed datasets without the need for bioinformatics skills. The software is available as Perl source or a Windows executable. Conclusion We have used LACK in our laboratory to generate biological hypotheses based on our microarray data. We demonstrate the program's utility using an example in which we confirm significant upregulation of SPI-2 pathogenicity island of Salmonella enterica serovar Typhimurium by the cation chelator dipyridyl.

  5. A Fisheye Viewer for microarray-based gene expression data.

    Science.gov (United States)

    Wu, Min; Thao, Cheng; Mu, Xiangming; Munson, Ethan V

    2006-10-13

    Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface--an electronic table (E-table) that uses fisheye distortion technology. The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  6. A fisheye viewer for microarray-based gene expression data

    Directory of Open Access Journals (Sweden)

    Munson Ethan V

    2006-10-01

    Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  7. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  8. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  9. Spot detection and image segmentation in DNA microarray data.

    Science.gov (United States)

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  10. Efficacy of a novel PCR- and microarray-based method in diagnosis of a prosthetic joint infection

    Science.gov (United States)

    2014-01-01

    Background and purpose Polymerase chain reaction (PCR) methods enable detection and species identification of many pathogens. We assessed the efficacy of a new PCR and microarray-based platform for detection of bacteria in prosthetic joint infections (PJIs). Methods This prospective study involved 61 suspected PJIs in hip and knee prostheses and 20 negative controls. 142 samples were analyzed by Prove-it Bone and Joint assay. The laboratory staff conducting the Prove-it analysis were not aware of the results of microbiological culture and clinical findings. The results of the analysis were compared with diagnosis of PJIs defined according to the Musculoskeletal Infection Society (MSIS) criteria and with the results of microbiological culture. Results 38 of 61 suspected PJIs met the definition of PJI according to the MSIS criteria. Of the 38 patients, the PCR detected bacteria in 31 whereas bacterial culture was positive in 28 patients. 15 of the PJI patients were undergoing antimicrobial treatment as the samples for analysis were obtained. When antimicrobial treatment had lasted 4 days or more, PCR detected bacteria in 6 of the 9 patients, but positive cultures were noted in only 2 of the 9 patients. All PCR results for the controls were negative. Of the 61 suspected PJIs, there were false-positive PCR results in 6 cases. Interpretation The Prove-it assay was helpful in PJI diagnostics during ongoing antimicrobial treatment. Without preceding treatment with antimicrobials, PCR and microarray-based assay did not appear to give any additional information over culture. PMID:24564748

  11. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  12. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  13. DNA microarray data and contextual analysis of correlation graphs

    Directory of Open Access Journals (Sweden)

    Hingamp Pascal

    2003-04-01

    Full Text Available Abstract Background DNA microarrays are used to produce large sets of expression measurements from which specific biological information is sought. Their analysis requires efficient and reliable algorithms for dimensional reduction, classification and annotation. Results We study networks of co-expressed genes obtained from DNA microarray experiments. The mathematical concept of curvature on graphs is used to group genes or samples into clusters to which relevant gene or sample annotations are automatically assigned. Application to publicly available yeast and human lymphoma data demonstrates the reliability of the method in spite of its simplicity, especially with respect to the small number of parameters involved. Conclusions We provide a method for automatically determining relevant gene clusters among the many genes monitored with microarrays. The automatic annotations and the graphical interface improve the readability of the data. A C++ implementation, called Trixy, is available from http://tagc.univ-mrs.fr/bioinformatics/trixy.html.

  14. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  15. A Versatile Microarray Platform for Capturing Rare Cells

    Science.gov (United States)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  16. Development and validation of a Luminex assay for detection of a predictive biomarker for PROSTVAC-VF therapy

    Science.gov (United States)

    Lucas, Julie L.; Tacheny, Erin A.; Ferris, Allison; Galusha, Michelle; Srivastava, Apurva K.; Ganguly, Aniruddha; Williams, P. Mickey; Sachs, Michael C.; Thurin, Magdalena; Tricoli, James V.; Ricker, Winnie; Gildersleeve, Jeffrey C.

    2017-01-01

    Cancer therapies can provide substantially improved survival in some patients while other seemingly similar patients receive little or no benefit. Strategies to identify patients likely to respond well to a given therapy could significantly improve health care outcomes by maximizing clinical benefits while reducing toxicities and adverse effects. Using a glycan microarray assay, we recently reported that pretreatment serum levels of IgM specific to blood group A trisaccharide (BG-Atri) correlate positively with overall survival of cancer patients on PROSTVAC-VF therapy. The results suggested anti-BG-Atri IgM measured prior to treatment could serve as a biomarker for identifying patients likely to benefit from PROSTVAC-VF. For continued development and clinical application of serum IgM specific to BG-Atri as a predictive biomarker, a clinical assay was needed. In this study, we developed and validated a Luminex-based clinical assay for measuring serum IgM specific to BG-Atri. IgM levels were measured with the Luminex assay and compared to levels measured using the microarray for 126 healthy individuals and 77 prostate cancer patients. This assay provided reproducible and consistent results with low %CVs, and tolerance ranges were established for the assay. IgM levels measured using the Luminex assay were found to be highly correlated to the microarray results with R values of 0.93–0.95. This assay is a Laboratory Developed Test (LDT) and is suitable for evaluating thousands of serum samples in CLIA certified laboratories that have validated the assay. In addition, the study demonstrates that discoveries made using neoglycoprotein-based microarrays can be readily migrated to a clinical assay. PMID:28771597

  17. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  18. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  19. AMDA: an R package for the automated microarray data analysis

    Directory of Open Access Journals (Sweden)

    Foti Maria

    2006-07-01

    Full Text Available Abstract Background Microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being performed. In spite of this fact, few and limited tools exist for quickly and easily analyzing the results. Microarray analysis can be challenging for researchers without the necessary training and it can be time-consuming for service providers with many users. Results To address these problems we have developed an automated microarray data analysis (AMDA software, which provides scientists with an easy and integrated system for the analysis of Affymetrix microarray experiments. AMDA is free and it is available as an R package. It is based on the Bioconductor project that provides a number of powerful bioinformatics and microarray analysis tools. This automated pipeline integrates different functions available in the R and Bioconductor projects with newly developed functions. AMDA covers all of the steps, performing a full data analysis, including image analysis, quality controls, normalization, selection of differentially expressed genes, clustering, correspondence analysis and functional evaluation. Finally a LaTEX document is dynamically generated depending on the performed analysis steps. The generated report contains comments and analysis results as well as the references to several files for a deeper investigation. Conclusion AMDA is freely available as an R package under the GPL license. The package as well as an example analysis report can be downloaded in the Services/Bioinformatics section of the Genopolis http://www.genopolis.it/

  20. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  1. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  2. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Label and Label-Free Detection Techniques for Protein Microarrays

    Directory of Open Access Journals (Sweden)

    Amir Syahir

    2015-04-01

    Full Text Available Protein microarray technology has gone through numerous i