WorldWideScience

Sample records for microarray experiments computational

  1. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  2. Universal Reference RNA as a standard for microarray experiments

    Directory of Open Access Journals (Sweden)

    Fero Michael

    2004-03-01

    Full Text Available Abstract Background Obtaining reliable and reproducible two-color microarray gene expression data is critically important for understanding the biological significance of perturbations made on a cellular system. Microarray design, RNA preparation and labeling, hybridization conditions and data acquisition and analysis are variables difficult to simultaneously control. A useful tool for monitoring and controlling intra- and inter-experimental variation is Universal Reference RNA (URR, developed with the goal of providing hybridization signal at each microarray probe location (spot. Measuring signal at each spot as the ratio of experimental RNA to reference RNA targets, rather than relying on absolute signal intensity, decreases variability by normalizing signal output in any two-color hybridization experiment. Results Human, mouse and rat URR (UHRR, UMRR and URRR, respectively were prepared from pools of RNA derived from individual cell lines representing different tissues. A variety of microarrays were used to determine percentage of spots hybridizing with URR and producing signal above a user defined threshold (microarray coverage. Microarray coverage was consistently greater than 80% for all arrays tested. We confirmed that individual cell lines contribute their own unique set of genes to URR, arguing for a pool of RNA from several cell lines as a better configuration for URR as opposed to a single cell line source for URR. Microarray coverage comparing two separately prepared batches each of UHRR, UMRR and URRR were highly correlated (Pearson's correlation coefficients of 0.97. Conclusion Results of this study demonstrate that large quantities of pooled RNA from individual cell lines are reproducibly prepared and possess diverse gene representation. This type of reference provides a standard for reducing variation in microarray experiments and allows more reliable comparison of gene expression data within and between experiments and

  3. A permutation-based multiple testing method for time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2009-10-01

    Full Text Available Abstract Background Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005 developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course and alternative (time-course hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation. Results In this paper, we propose a permutation-based multiple testing procedure based on the test statistic used by Storey et al. (2005. We also propose an efficient computation algorithm. Extensive simulations are conducted to investigate the performance of the permutation-based multiple testing procedure. The application of the proposed method is illustrated using the Caenorhabditis elegans dauer developmental data. Conclusion Our method is computationally efficient and applicable for identifying genes whose expression levels are time-dependent in a single biological group and for identifying the genes for which the time-profile depends on the group in a multi-group setting.

  4. Identification of potential biomarkers from microarray experiments using multiple criteria optimization

    International Nuclear Information System (INIS)

    Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio

    2013-01-01

    Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization

  5. Normalization for triple-target microarray experiments

    Directory of Open Access Journals (Sweden)

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  6. The MGED Ontology: a resource for semantics-based description of microarray experiments.

    Science.gov (United States)

    Whetzel, Patricia L; Parkinson, Helen; Causton, Helen C; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Game, Laurence; Heiskanen, Mervi; Morrison, Norman; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Taylor, Chris; White, Joseph; Stoeckert, Christian J

    2006-04-01

    The generation of large amounts of microarray data and the need to share these data bring challenges for both data management and annotation and highlights the need for standards. MIAME specifies the minimum information needed to describe a microarray experiment and the Microarray Gene Expression Object Model (MAGE-OM) and resulting MAGE-ML provide a mechanism to standardize data representation for data exchange, however a common terminology for data annotation is needed to support these standards. Here we describe the MGED Ontology (MO) developed by the Ontology Working Group of the Microarray Gene Expression Data (MGED) Society. The MO provides terms for annotating all aspects of a microarray experiment from the design of the experiment and array layout, through to the preparation of the biological sample and the protocols used to hybridize the RNA and analyze the data. The MO was developed to provide terms for annotating experiments in line with the MIAME guidelines, i.e. to provide the semantics to describe a microarray experiment according to the concepts specified in MIAME. The MO does not attempt to incorporate terms from existing ontologies, e.g. those that deal with anatomical parts or developmental stages terms, but provides a framework to reference terms in other ontologies and therefore facilitates the use of ontologies in microarray data annotation. The MGED Ontology version.1.2.0 is available as a file in both DAML and OWL formats at http://mged.sourceforge.net/ontologies/index.php. Release notes and annotation examples are provided. The MO is also provided via the NCICB's Enterprise Vocabulary System (http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). Stoeckrt@pcbi.upenn.edu Supplementary data are available at Bioinformatics online.

  7. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  8. Development and application of a microarray meter tool to optimize microarray experiments

    Directory of Open Access Journals (Sweden)

    Rouse Richard JD

    2008-07-01

    Full Text Available Abstract Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a a measure of variability in the signal intensities, b a measure of the signal dynamic range and c a measure of variability of the spot morphologies.

  9. A Reliable and Distributed LIMS for Efficient Management of the Microarray Experiment Environment

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2007-03-01

    Full Text Available A microarray is a principal technology in molecular biology. It generates thousands of expressions of genotypes at once. Typically, a microarray experiment contains many kinds of information, such as gene names, sequences, expression profiles, scanned images, and annotation. So, the organization and analysis of vast amounts of data are required. Microarray LIMS (Laboratory Information Management System provides data management, search, and basic analysis. Recently, microarray joint researches, such as the skeletal system disease and anti-cancer medicine have been widely conducted. This research requires data sharing among laboratories within the joint research group. In this paper, we introduce a web based microarray LIMS, SMILE (Small and solid MIcroarray Lims for Experimenters, especially for shared data management. The data sharing function of SMILE is based on Friend-to-Friend (F2F, which is based on anonymous P2P (Peer-to-Peer, in which people connect directly with their “friends”. It only allows its friends to exchange data directly using IP addresses or digital signatures you trust. In SMILE, there are two types of friends: “service provider”, which provides data, and “client”, which is provided with data. So, the service provider provides shared data only to its clients. SMILE provides useful functions for microarray experiments, such as variant data management, image analysis, normalization, system management, project schedule management, and shared data management. Moreover, it connections with two systems: ArrayMall for analyzing microarray images and GENAW for constructing a genetic network. SMILE is available on http://neobio.cs.pusan.ac.kr:8080/smile.

  10. Systematic interpretation of microarray data using experiment annotations

    Directory of Open Access Journals (Sweden)

    Frohme Marcus

    2006-12-01

    Full Text Available Abstract Background Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format. Results We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel and two-channel data, stemming from model organisms such as yeast and drosophila up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design. Conclusion Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.

  11. An Introduction to MAMA (Meta-Analysis of MicroArray data) System.

    Science.gov (United States)

    Zhang, Zhe; Fenstermacher, David

    2005-01-01

    Analyzing microarray data across multiple experiments has been proven advantageous. To support this kind of analysis, we are developing a software system called MAMA (Meta-Analysis of MicroArray data). MAMA utilizes a client-server architecture with a relational database on the server-side for the storage of microarray datasets collected from various resources. The client-side is an application running on the end user's computer that allows the user to manipulate microarray data and analytical results locally. MAMA implementation will integrate several analytical methods, including meta-analysis within an open-source framework offering other developers the flexibility to plug in additional statistical algorithms.

  12. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs.

    Science.gov (United States)

    Pancoska, Petr; Moravek, Zdenek; Moll, Ute M

    2004-01-01

    Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.

  13. Position dependent mismatch discrimination on DNA microarraysexperiments and model

    Directory of Open Access Journals (Sweden)

    Michel Wolfgang

    2008-12-01

    Full Text Available Abstract Background The propensity of oligonucleotide strands to form stable duplexes with complementary sequences is fundamental to a variety of biological and biotechnological processes as various as microRNA signalling, microarray hybridization and PCR. Yet our understanding of oligonucleotide hybridization, in particular in presence of surfaces, is rather limited. Here we use oligonucleotide microarrays made in-house by optically controlled DNA synthesis to produce probe sets comprising all possible single base mismatches and base bulges for each of 20 sequence motifs under study. Results We observe that mismatch discrimination is mostly determined by the defect position (relative to the duplex ends as well as by the sequence context. We investigate the thermodynamics of the oligonucleotide duplexes on the basis of double-ended molecular zipper. Theoretical predictions of defect positional influence as well as long range sequence influence agree well with the experimental results. Conclusion Molecular zipping at thermodynamic equilibrium explains the binding affinity of mismatched DNA duplexes on microarrays well. The position dependent nearest neighbor model (PDNN can be inferred from it. Quantitative understanding of microarray experiments from first principles is in reach.

  14. Hierarchical information representation and efficient classification of gene expression microarray data

    OpenAIRE

    Bosio, Mattia

    2014-01-01

    In the field of computational biology, microarryas are used to measure the activity of thousands of genes at once and create a global picture of cellular function. Microarrays allow scientists to analyze expression of many genes in a single experiment quickly and eficiently. Even if microarrays are a consolidated research technology nowadays and the trends in high-throughput data analysis are shifting towards new technologies like Next Generation Sequencing (NGS), an optimum method for sample...

  15. Design issues in toxicogenomics using DNA microarray experiment

    International Nuclear Information System (INIS)

    Lee, Kyoung-Mu; Kim, Ju-Han; Kang, Daehee

    2005-01-01

    The methods of toxicogenomics might be classified into omics study (e.g., genomics, proteomics, and metabolomics) and population study focusing on risk assessment and gene-environment interaction. In omics study, microarray is the most popular approach. Genes falling into several categories (e.g., xenobiotics metabolism, cell cycle control, DNA repair etc.) can be selected up to 20,000 according to a priori hypothesis. The appropriate type of samples and species should be selected in advance. Multiple doses and varied exposure durations are suggested to identify those genes clearly linked to toxic response. Microarray experiments can be affected by numerous nuisance variables including experimental designs, sample extraction, type of scanners, etc. The number of slides might be determined from the magnitude and variance of expression change, false-positive rate, and desired power. Instead, pooling samples is an alternative. Online databases on chemicals with known exposure-disease outcomes and genetic information can aid the interpretation of the normalized results. Gene function can be inferred from microarray data analyzed by bioinformatics methods such as cluster analysis. The population study often adopts hospital-based or nested case-control design. Biases in subject selection and exposure assessment should be minimized, and confounding bias should also be controlled for in stratified or multiple regression analysis. Optimal sample sizes are dependent on the statistical test for gene-to-environment or gene-to-gene interaction. The design issues addressed in this mini-review are crucial in conducting toxicogenomics study. In addition, integrative approach of exposure assessment, epidemiology, and clinical trial is required

  16. Application of microarray analysis on computer cluster and cloud platforms.

    Science.gov (United States)

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  17. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  18. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  19. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Directory of Open Access Journals (Sweden)

    Hedegaard Jakob

    2009-07-01

    Full Text Available Abstract Background The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

  20. Image microarrays derived from tissue microarrays (IMA-TMA: New resource for computer-aided diagnostic algorithm development

    Directory of Open Access Journals (Sweden)

    Jennifer A Hipp

    2012-01-01

    Full Text Available Background: Conventional tissue microarrays (TMAs consist of cores of tissue inserted into a recipient paraffin block such that a tissue section on a single glass slide can contain numerous patient samples in a spatially structured pattern. Scanning TMAs into digital slides for subsequent analysis by computer-aided diagnostic (CAD algorithms all offers the possibility of evaluating candidate algorithms against a near-complete repertoire of variable disease morphologies. This parallel interrogation approach simplifies the evaluation, validation, and comparison of such candidate algorithms. A recently developed digital tool, digital core (dCORE, and image microarray maker (iMAM enables the capture of uniformly sized and resolution-matched images, with these representing key morphologic features and fields of view, aggregated into a single monolithic digital image file in an array format, which we define as an image microarray (IMA. We further define the TMA-IMA construct as IMA-based images derived from whole slide images of TMAs themselves. Methods: Here we describe the first combined use of the previously described dCORE and iMAM tools, toward the goal of generating a higher-order image construct, with multiple TMA cores from multiple distinct conventional TMAs assembled as a single digital image montage. This image construct served as the basis of the carrying out of a massively parallel image analysis exercise, based on the use of the previously described spatially invariant vector quantization (SIVQ algorithm. Results: Multicase, multifield TMA-IMAs of follicular lymphoma and follicular hyperplasia were separately rendered, using the aforementioned tools. Each of these two IMAs contained a distinct spectrum of morphologic heterogeneity with respect to both tingible body macrophage (TBM appearance and apoptotic body morphology. SIVQ-based pattern matching, with ring vectors selected to screen for either tingible body macrophages or apoptotic

  1. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  2. Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer

    Directory of Open Access Journals (Sweden)

    Utro Filippo

    2008-10-01

    Full Text Available Abstract Background Inferring cluster structure in microarray datasets is a fundamental task for the so-called -omic sciences. It is also a fundamental question in Statistics, Data Analysis and Classification, in particular with regard to the prediction of the number of clusters in a dataset, usually established via internal validation measures. Despite the wealth of internal measures available in the literature, new ones have been recently proposed, some of them specifically for microarray data. Results We consider five such measures: Clest, Consensus (Consensus Clustering, FOM (Figure of Merit, Gap (Gap Statistics and ME (Model Explorer, in addition to the classic WCSS (Within Cluster Sum-of-Squares and KL (Krzanowski and Lai index. We perform extensive experiments on six benchmark microarray datasets, using both Hierarchical and K-means clustering algorithms, and we provide an analysis assessing both the intrinsic ability of a measure to predict the correct number of clusters in a dataset and its merit relative to the other measures. We pay particular attention both to precision and speed. Moreover, we also provide various fast approximation algorithms for the computation of Gap, FOM and WCSS. The main result is a hierarchy of those measures in terms of precision and speed, highlighting some of their merits and limitations not reported before in the literature. Conclusion Based on our analysis, we draw several conclusions for the use of those internal measures on microarray data. We report the main ones. Consensus is by far the best performer in terms of predictive power and remarkably algorithm-independent. Unfortunately, on large datasets, it may be of no use because of its non-trivial computer time demand (weeks on a state of the art PC. FOM is the second best performer although, quite surprisingly, it may not be competitive in this scenario: it has essentially the same predictive power of WCSS but it is from 6 to 100 times slower in time

  3. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    Science.gov (United States)

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  4. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful...

  5. DNA Microarray Technology; TOPICAL

    International Nuclear Information System (INIS)

    WERNER-WASHBURNE, MARGARET; DAVIDSON, GEORGE S.

    2002-01-01

    Collaboration between Sandia National Laboratories and the University of New Mexico Biology Department resulted in the capability to train students in microarray techniques and the interpretation of data from microarray experiments. These studies provide for a better understanding of the role of stationary phase and the gene regulation involved in exit from stationary phase, which may eventually have important clinical implications. Importantly, this research trained numerous students and is the basis for three new Ph.D. projects

  6. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  7. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research....

  8. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  9. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    DEFF Research Database (Denmark)

    Hedegaard, Jakob; Arce, Christina; Bicciato, Silvio

    2009-01-01

    The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microa...... a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria...

  10. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  11. Simulation of microarray data with realistic characteristics

    Directory of Open Access Journals (Sweden)

    Lehmussola Antti

    2006-07-01

    Full Text Available Abstract Background Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. Results We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. Conclusion The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms.

  12. FiGS: a filter-based gene selection workbench for microarray data

    Directory of Open Access Journals (Sweden)

    Yun Taegyun

    2010-01-01

    Full Text Available Abstract Background The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset. Results FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs. Conclusion FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.

  13. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  14. Workflows for microarray data processing in the Kepler environment

    Science.gov (United States)

    2012-01-01

    Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or

  15. Workflows for microarray data processing in the Kepler environment

    Directory of Open Access Journals (Sweden)

    Stropp Thomas

    2012-05-01

    Full Text Available Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data and therefore are close to

  16. Workflows for microarray data processing in the Kepler environment.

    Science.gov (United States)

    Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark

    2012-05-17

    Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R

  17. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  18. Bioinformatics and Microarray Data Analysis on the Cloud.

    Science.gov (United States)

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.

  19. GeneRank: Using search engine technology for the analysis of microarray experiments

    Directory of Open Access Journals (Sweden)

    Breitling Rainer

    2005-09-01

    Full Text Available Abstract Background Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method – based on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  20. GeneRank: using search engine technology for the analysis of microarray experiments.

    Science.gov (United States)

    Morrison, Julie L; Breitling, Rainer; Higham, Desmond J; Gilbert, David R

    2005-09-21

    Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method--based on the PageRank algorithm employed by the popular search engine Google--that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  1. Experiments in computing: a survey.

    Science.gov (United States)

    Tedre, Matti; Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.

  2. Gene Expression Browser: Large-Scale and Cross-Experiment Microarray Data Management, Search & Visualization

    Science.gov (United States)

    The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...

  3. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  4. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    Directory of Open Access Journals (Sweden)

    Kitchen Robert R

    2011-12-01

    Full Text Available Abstract Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic

  5. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments.

    Science.gov (United States)

    Kitchen, Robert R; Sabine, Vicky S; Simen, Arthur A; Dixon, J Michael; Bartlett, John M S; Sims, Andrew H

    2011-12-01

    Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependent upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. The magnitude of systematic processing noise in a microarray experiment is variable

  6. BASE - 2nd generation software for microarray data management and analysis

    Directory of Open Access Journals (Sweden)

    Nordborg Nicklas

    2009-10-01

    Full Text Available Abstract Background Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. Results The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. Conclusion BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  7. BASE--2nd generation software for microarray data management and analysis.

    Science.gov (United States)

    Vallon-Christersson, Johan; Nordborg, Nicklas; Svensson, Martin; Häkkinen, Jari

    2009-10-12

    Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  8. Towards the integration, annotation and association of historical microarray experiments with RNA-seq.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Peterson, Erich A; Heuck, Christoph J; Johann, Donald J

    2013-01-01

    Transcriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches. Custom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets. Output from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline. A novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.

  9. Shared probe design and existing microarray reanalysis using PICKY

    Directory of Open Access Journals (Sweden)

    Chou Hui-Hsien

    2010-04-01

    Full Text Available Abstract Background Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations. Results PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users. Conclusions Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.

  10. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  11. Spot detection and image segmentation in DNA microarray data.

    Science.gov (United States)

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  12. Implementation of mutual information and bayes theorem for classification microarray data

    Science.gov (United States)

    Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda

    2018-03-01

    Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.

  13. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

    Directory of Open Access Journals (Sweden)

    Nobumasa Hitoshi

    2007-04-01

    Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

  14. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    International Nuclear Information System (INIS)

    Karaçali, Bilge; Tözeren, Aydin

    2007-01-01

    Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B), percentage occupied by stroma-like regions (P), and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists) as hundreds of tumors that are used to develop an array have typically been evaluated (graded) by different pathologists. The region of interest

  15. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    2010-09-01

    Full Text Available International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection.This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology.Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  16. Mining meiosis and gametogenesis with DNA microarrays.

    Science.gov (United States)

    Schlecht, Ulrich; Primig, Michael

    2003-04-01

    Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.

  17. Integrative missing value estimation for microarray data.

    Science.gov (United States)

    Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine

    2006-10-12

    Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  18. AMDA: an R package for the automated microarray data analysis

    Directory of Open Access Journals (Sweden)

    Foti Maria

    2006-07-01

    Full Text Available Abstract Background Microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being performed. In spite of this fact, few and limited tools exist for quickly and easily analyzing the results. Microarray analysis can be challenging for researchers without the necessary training and it can be time-consuming for service providers with many users. Results To address these problems we have developed an automated microarray data analysis (AMDA software, which provides scientists with an easy and integrated system for the analysis of Affymetrix microarray experiments. AMDA is free and it is available as an R package. It is based on the Bioconductor project that provides a number of powerful bioinformatics and microarray analysis tools. This automated pipeline integrates different functions available in the R and Bioconductor projects with newly developed functions. AMDA covers all of the steps, performing a full data analysis, including image analysis, quality controls, normalization, selection of differentially expressed genes, clustering, correspondence analysis and functional evaluation. Finally a LaTEX document is dynamically generated depending on the performed analysis steps. The generated report contains comments and analysis results as well as the references to several files for a deeper investigation. Conclusion AMDA is freely available as an R package under the GPL license. The package as well as an example analysis report can be downloaded in the Services/Bioinformatics section of the Genopolis http://www.genopolis.it/

  19. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  20. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    Science.gov (United States)

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  1. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    Science.gov (United States)

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  2. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  3. Integrative missing value estimation for microarray data

    Directory of Open Access Journals (Sweden)

    Zhou Xianghong

    2006-10-01

    Full Text Available Abstract Background Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. Results We present the integrative Missing Value Estimation method (iMISS by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS imputation algorithm by up to 15% improvement in our benchmark tests. Conclusion We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  4. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  5. Washing scaling of GeneChip microarray expression

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2010-05-01

    Full Text Available Abstract Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM and mismatch (MM probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental

  6. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  7. A Java-based tool for the design of classification microarrays.

    Science.gov (United States)

    Meng, Da; Broschat, Shira L; Call, Douglas R

    2008-08-04

    Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for

  8. Label and Label-Free Detection Techniques for Protein Microarrays

    Directory of Open Access Journals (Sweden)

    Amir Syahir

    2015-04-01

    Full Text Available Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano‑biological events.

  9. A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments.

    Science.gov (United States)

    Gómez-Villegas, Miguel A; Salazar, Isabel; Sanz, Luis

    2014-02-01

    DNA microarray experiments require the use of multiple hypothesis testing procedures because thousands of hypotheses are simultaneously tested. We deal with this problem from a Bayesian decision theory perspective. We propose a decision criterion based on an estimation of the number of false null hypotheses (FNH), taking as an error measure the proportion of the posterior expected number of false positives with respect to the estimated number of true null hypotheses. The methodology is applied to a Gaussian model when testing bilateral hypotheses. The procedure is illustrated with both simulated and real data examples and the results are compared to those obtained by the Bayes rule when an additive loss function is considered for each joint action and the generalized loss 0-1 function for each individual action. Our procedure significantly reduced the percentage of false negatives whereas the percentage of false positives remains at an acceptable level.

  10. permGPU: Using graphics processing units in RNA microarray association studies

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2010-06-01

    Full Text Available Abstract Background Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. Results We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. Conclusions permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  11. Network Expansion and Pathway Enrichment Analysis towards Biologically Significant Findings from Microarrays

    Directory of Open Access Journals (Sweden)

    Wu Xiaogang

    2012-06-01

    Full Text Available In many cases, crucial genes show relatively slight changes between groups of samples (e.g. normal vs. disease, and many genes selected from microarray differential analysis by measuring the expression level statistically are also poorly annotated and lack of biological significance. In this paper, we present an innovative approach - network expansion and pathway enrichment analysis (NEPEA for integrative microarray analysis. We assume that organized knowledge will help microarray data analysis in significant ways, and the organized knowledge could be represented as molecular interaction networks or biological pathways. Based on this hypothesis, we develop the NEPEA framework based on network expansion from the human annotated and predicted protein interaction (HAPPI database, and pathway enrichment from the human pathway database (HPD. We use a recently-published microarray dataset (GSE24215 related to insulin resistance and type 2 diabetes (T2D as case study, since this study provided a thorough experimental validation for both genes and pathways identified computationally from classical microarray analysis and pathway analysis. We perform our NEPEA analysis for this dataset based on the results from the classical microarray analysis to identify biologically significant genes and pathways. Our findings are not only consistent with the original findings mostly, but also obtained more supports from other literatures.

  12. A Java-based tool for the design of classification microarrays

    Directory of Open Access Journals (Sweden)

    Broschat Shira L

    2008-08-01

    Full Text Available Abstract Background Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. Results The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. Conclusion In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays–and mixed-plasmid microarrays in particular–it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm, several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text, and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff. Weights

  13. Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution

    DEFF Research Database (Denmark)

    Novak, Jaroslav P; Kim, Seon-Young; Xu, Jun

    2006-01-01

    BACKGROUND: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability of DNA microarray data, many new statistical methods have...

  14. Classification of mislabelled microarrays using robust sparse logistic regression.

    Science.gov (United States)

    Bootkrajang, Jakramate; Kabán, Ata

    2013-04-01

    Previous studies reported that labelling errors are not uncommon in microarray datasets. In such cases, the training set may become misleading, and the ability of classifiers to make reliable inferences from the data is compromised. Yet, few methods are currently available in the bioinformatics literature to deal with this problem. The few existing methods focus on data cleansing alone, without reference to classification, and their performance crucially depends on some tuning parameters. In this article, we develop a new method to detect mislabelled arrays simultaneously with learning a sparse logistic regression classifier. Our method may be seen as a label-noise robust extension of the well-known and successful Bayesian logistic regression classifier. To account for possible mislabelling, we formulate a label-flipping process as part of the classifier. The regularization parameter is automatically set using Bayesian regularization, which not only saves the computation time that cross-validation would take, but also eliminates any unwanted effects of label noise when setting the regularization parameter. Extensive experiments with both synthetic data and real microarray datasets demonstrate that our approach is able to counter the bad effects of labelling errors in terms of predictive performance, it is effective at identifying marker genes and simultaneously it detects mislabelled arrays to high accuracy. The code is available from http://cs.bham.ac.uk/∼jxb008. Supplementary data are available at Bioinformatics online.

  15. Fibre optic microarrays.

    Science.gov (United States)

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  16. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  17. COMPUTER CONTROL OF BEHAVIORAL EXPERIMENTS.

    Science.gov (United States)

    SIEGEL, LOUIS

    THE LINC COMPUTER PROVIDES A PARTICULAR SCHEDULE OF REINFORCEMENT FOR BEHAVIORAL EXPERIMENTS BY EXECUTING A SEQUENCE OF COMPUTER OPERATIONS IN CONJUNCTION WITH A SPECIALLY DESIGNED INTERFACE. THE INTERFACE IS THE MEANS OF COMMUNICATION BETWEEN THE EXPERIMENTAL CHAMBER AND THE COMPUTER. THE PROGRAM AND INTERFACE OF AN EXPERIMENT INVOLVING A PIGEON…

  18. SoFoCles: feature filtering for microarray classification based on gene ontology.

    Science.gov (United States)

    Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A

    2010-02-01

    Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.

  19. Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots

    Directory of Open Access Journals (Sweden)

    Song Yang

    2006-01-01

    Full Text Available We developed a quality assurance (QA tool, namely microarray outlier filter (MOF, and have applied it to our microarray datasets for the identification of problematic arrays. Our approach is based on the comparison of the arrays using the correlation coefficient and the number of outlier spots generated on each array to reveal outlier arrays. For a human universal reference (HUR dataset, which is used as a technical control in our standard hybridization procedure, 3 outlier arrays were identified out of 35 experiments. For a human blood dataset, 12 outlier arrays were identified from 185 experiments. In general, arrays from human blood samples displayed greater variation in their gene expression profiles than arrays from HUR samples. As a result, MOF identified two distinct patterns in the occurrence of outlier arrays. These results demonstrate that this methodology is a valuable QA practice to identify questionable microarray data prior to downstream analysis.

  20. Serious limitations of the QTL/Microarray approach for QTL gene discovery

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2010-07-01

    Full Text Available Abstract Background It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL. However, the effectiveness of this approach has not been assessed. Results Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP. Conclusions The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes

  1. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  2. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    Science.gov (United States)

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  3. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.

  4. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    Science.gov (United States)

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  5. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    Science.gov (United States)

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  6. GenePublisher: automated analysis of DNA microarray data

    DEFF Research Database (Denmark)

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, T.

    2003-01-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with aspecification of the data. The server performs normalization...

  7. A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment

    NARCIS (Netherlands)

    Aguirre von Wobeser, E.; Huisman, J.; Ibelings, B.; Matthijs, H.C.P.; Matthijs, H.C.P.

    2005-01-01

    A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment Eneas Aguirre-von-Wobeser 1, Jef Huisman1, Bas Ibelings2 and Hans C.P. Matthijs1 1 Universiteit van Amsterdam, Amsterdam, The

  8. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  9. DNA microarray data and contextual analysis of correlation graphs

    Directory of Open Access Journals (Sweden)

    Hingamp Pascal

    2003-04-01

    Full Text Available Abstract Background DNA microarrays are used to produce large sets of expression measurements from which specific biological information is sought. Their analysis requires efficient and reliable algorithms for dimensional reduction, classification and annotation. Results We study networks of co-expressed genes obtained from DNA microarray experiments. The mathematical concept of curvature on graphs is used to group genes or samples into clusters to which relevant gene or sample annotations are automatically assigned. Application to publicly available yeast and human lymphoma data demonstrates the reliability of the method in spite of its simplicity, especially with respect to the small number of parameters involved. Conclusions We provide a method for automatically determining relevant gene clusters among the many genes monitored with microarrays. The automatic annotations and the graphical interface improve the readability of the data. A C++ implementation, called Trixy, is available from http://tagc.univ-mrs.fr/bioinformatics/trixy.html.

  10. GEPAS, a web-based tool for microarray data analysis and interpretation

    Science.gov (United States)

    Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Huerta-Cepas, Jaime; Minguez, Pablo; Alloza, Eva; Al-Shahrour, Fátima; Vegas-Azcárate, Susana; Goetz, Stefan; Escobar, Pablo; Garcia-Garcia, Francisco; Conesa, Ana; Montaner, David; Dopazo, Joaquín

    2008-01-01

    Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org. PMID:18508806

  11. On the classification techniques in data mining for microarray data classification

    Science.gov (United States)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  12. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  13. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes.

    Science.gov (United States)

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Payam; Behzadi, Elham

    2015-01-01

    The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes.

  14. The PowerAtlas: a power and sample size atlas for microarray experimental design and research

    Directory of Open Access Journals (Sweden)

    Wang Jelai

    2006-02-01

    Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.

  15. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas

    2011-01-01

    RNA microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods.......The quality of RNA is crucial in gene expression experiments. RNA degradation interferes in the measurement of gene expression, and in this context, microRNA quantification can lead to an incorrect estimation. In the present study, two different RNA isolation methods were used to perform micro...

  16. ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

    OpenAIRE

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for tra...

  17. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies

    Directory of Open Access Journals (Sweden)

    Guillermo Lay-Son

    2015-04-01

    Full Text Available OBJECTIVES: Clinical use of microarray-based techniques for the analysis of many developmental disorders has emerged during the last decade. Thus, chromosomal microarray has been positioned as a first-tier test. This study reports the first experience in a Chilean cohort. METHODS: Chilean patients with developmental disabilities and congenital anomalies were studied with a high-density microarray (CytoScan(tm HD Array, Affymetrix, Inc., Santa Clara, CA, USA. Patients had previous cytogenetic studies with either a normal result or a poorly characterized anomaly. RESULTS: This study tested 40 patients selected by two or more criteria, including: major congenital anomalies, facial dysmorphism, developmental delay, and intellectual disability. Copy number variants (CNVs were found in 72.5% of patients, while a pathogenic CNV was found in 25% of patients and a CNV of uncertain clinical significance was found in 2.5% of patients. CONCLUSION: Chromosomal microarray analysis is a useful and powerful tool for diagnosis of developmental diseases, by allowing accurate diagnosis, improving the diagnosis rate, and discovering new etiologies. The higher cost is a limitation for widespread use in this setting.

  18. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  19. MiMiR: a comprehensive solution for storage, annotation and exchange of microarray data

    Directory of Open Access Journals (Sweden)

    Rahman Fatimah

    2005-11-01

    Full Text Available Abstract Background The generation of large amounts of microarray data presents challenges for data collection, annotation, exchange and analysis. Although there are now widely accepted formats, minimum standards for data content and ontologies for microarray data, only a few groups are using them together to build and populate large-scale databases. Structured environments for data management are crucial for making full use of these data. Description The MiMiR database provides a comprehensive infrastructure for microarray data annotation, storage and exchange and is based on the MAGE format. MiMiR is MIAME-supportive, customised for use with data generated on the Affymetrix platform and includes a tool for data annotation using ontologies. Detailed information on the experiment, methods, reagents and signal intensity data can be captured in a systematic format. Reports screens permit the user to query the database, to view annotation on individual experiments and provide summary statistics. MiMiR has tools for automatic upload of the data from the microarray scanner and export to databases using MAGE-ML. Conclusion MiMiR facilitates microarray data management, annotation and exchange, in line with international guidelines. The database is valuable for underpinning research activities and promotes a systematic approach to data handling. Copies of MiMiR are freely available to academic groups under licence.

  20. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  1. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  2. RDFBuilder: a tool to automatically build RDF-based interfaces for MAGE-OM microarray data sources.

    Science.gov (United States)

    Anguita, Alberto; Martin, Luis; Garcia-Remesal, Miguel; Maojo, Victor

    2013-07-01

    This paper presents RDFBuilder, a tool that enables RDF-based access to MAGE-ML-compliant microarray databases. We have developed a system that automatically transforms the MAGE-OM model and microarray data stored in the ArrayExpress database into RDF format. Additionally, the system automatically enables a SPARQL endpoint. This allows users to execute SPARQL queries for retrieving microarray data, either from specific experiments or from more than one experiment at a time. Our system optimizes response times by caching and reusing information from previous queries. In this paper, we describe our methods for achieving this transformation. We show that our approach is complementary to other existing initiatives, such as Bio2RDF, for accessing and retrieving data from the ArrayExpress database. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Extended analysis of benchmark datasets for Agilent two-color microarrays

    Directory of Open Access Journals (Sweden)

    Kerr Kathleen F

    2007-10-01

    Full Text Available Abstract Background As part of its broad and ambitious mission, the MicroArray Quality Control (MAQC project reported the results of experiments using External RNA Controls (ERCs on five microarray platforms. For most platforms, several different methods of data processing were considered. However, there was no similar consideration of different methods for processing the data from the Agilent two-color platform. While this omission is understandable given the scale of the project, it can create the false impression that there is consensus about the best way to process Agilent two-color data. It is also important to consider whether ERCs are representative of all the probes on a microarray. Results A comparison of different methods of processing Agilent two-color data shows substantial differences among methods for low-intensity genes. The sensitivity and specificity for detecting differentially expressed genes varies substantially for different methods. Analysis also reveals that the ERCs in the MAQC data only span the upper half of the intensity range, and therefore cannot be representative of all genes on the microarray. Conclusion Although ERCs demonstrate good agreement between observed and expected log-ratios on the Agilent two-color platform, such an analysis is incomplete. Simple loess normalization outperformed data processing with Agilent's Feature Extraction software for accurate identification of differentially expressed genes. Results from studies using ERCs should not be over-generalized when ERCs are not representative of all probes on a microarray.

  4. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Stephanopoulos

    2004-07-31

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  5. DNA Microarray Technologies: A Novel Approach to Geonomic Research

    Energy Technology Data Exchange (ETDEWEB)

    Hinman, R.; Thrall, B.; Wong, K,

    2002-01-01

    A cDNA microarray allows biologists to examine the expression of thousands of genes simultaneously. Researchers may analyze the complete transcriptional program of an organism in response to specific physiological or developmental conditions. By design, a cDNA microarray is an experiment with many variables and few controls. One question that inevitably arises when working with a cDNA microarray is data reproducibility. How easy is it to confirm mRNA expression patterns? In this paper, a case study involving the treatment of a murine macrophage RAW 264.7 cell line with tumor necrosis factor alpha (TNF) was used to obtain a rough estimate of data reproducibility. Two trials were examined and a list of genes displaying either a > 2-fold or > 4-fold increase in gene expression was compiled. Variations in signal mean ratios between the two slides were observed. We can assume that erring in reproducibility may be compensated by greater inductive levels of similar genes. Steps taken to obtain results included serum starvation of cells before treatment, tests of mRNA for quality/consistency, and data normalization.

  6. Mann-Whitney Type Tests for Microarray Experiments: The R Package gMWT

    Directory of Open Access Journals (Sweden)

    Daniel Fischer

    2015-06-01

    Full Text Available We present the R package gMWT which is designed for the comparison of several treatments (or groups for a large number of variables. The comparisons are made using certain probabilistic indices (PI. The PIs computed here tell how often pairs or triples of observations coming from different groups appear in a specific order of magnitude. Classical two and several sample rank test statistics such as the Mann-Whitney-Wilcoxon, Kruskal-Wallis, or Jonckheere-Terpstra test statistics are simple functions of these PI. Also new test statistics for directional alternatives are provided. The package gMWT can be used to calculate the variable-wise PI estimates, to illustrate their multivariate distribution and mutual dependence with joint scatterplot matrices, and to construct several classical and new rank tests based on the PIs. The aim of the paper is first to briefly explain the theory that is necessary to understand the behavior of the estimated PIs and the rank tests based on them. Second, the use of the package is described and illustrated with simulated and real data examples. It is stressed that the package provides a new flexible toolbox to analyze large gene or microRNA expression data sets, collected on microarrays or by other high-throughput technologies. The testing procedures can be used in an eQTL analysis, for example, as implemented in the package GeneticTools.

  7. "Harshlighting" small blemishes on microarrays

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-03-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

  8. Radioactive cDNA microarray in neurospsychiatry

    International Nuclear Information System (INIS)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon

    2003-01-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  9. Radioactive cDNA microarray in neurospsychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon [Korea University Medical School, Seoul (Korea, Republic of)

    2003-02-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  10. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... DNA Microarrays provides authoritative, detailed instruction on the design, construction, and applications of microarrays, as well as comprehensive descriptions of the software tools and strategies...

  11. Autoregressive-model-based missing value estimation for DNA microarray time series data.

    Science.gov (United States)

    Choong, Miew Keen; Charbit, Maurice; Yan, Hong

    2009-01-01

    Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.

  12. Goober: A fully integrated and user-friendly microarray data management and analysis solution for core labs and bench biologists

    Directory of Open Access Journals (Sweden)

    Luo Wen

    2009-03-01

    Full Text Available Despite the large number of software tools developed to address different areas of microarray data analysis, very few offer an all-in-one solution with little learning curve. For microarray core labs, there are even fewer software packages available to help with their routine but critical tasks, such as data quality control (QC and inventory management. We have developed a simple-to-use web portal to allow bench biologists to analyze and query complicated microarray data and related biological pathways without prior training. Both experiment-based and gene-based analysis can be easily performed, even for the first-time user, through the intuitive multi-layer design and interactive graphic links. While being friendly to inexperienced users, most parameters in Goober can be easily adjusted via drop-down menus to allow advanced users to tailor their needs and perform more complicated analysis. Moreover, we have integrated graphic pathway analysis into the website to help users examine microarray data within the relevant biological content. Goober also contains features that cover most of the common tasks in microarray core labs, such as real time array QC, data loading, array usage and inventory tracking. Overall, Goober is a complete microarray solution to help biologists instantly discover valuable information from a microarray experiment and enhance the quality and productivity of microarray core labs. The whole package is freely available at http://sourceforge.net/projects/goober. A demo web server is available at http://www.goober-array.org.

  13. Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.

    Science.gov (United States)

    Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick

    2017-11-03

    In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.

  14. Design of Computer Experiments

    DEFF Research Database (Denmark)

    Dehlendorff, Christian

    The main topic of this thesis is design and analysis of computer and simulation experiments and is dealt with in six papers and a summary report. Simulation and computer models have in recent years received increasingly more attention due to their increasing complexity and usability. Software...... packages make the development of rather complicated computer models using predefined building blocks possible. This implies that the range of phenomenas that are analyzed by means of a computer model has expanded significantly. As the complexity grows so does the need for efficient experimental designs...... and analysis methods, since the complex computer models often are expensive to use in terms of computer time. The choice of performance parameter is an important part of the analysis of computer and simulation models and Paper A introduces a new statistic for waiting times in health care units. The statistic...

  15. Current Knowledge on Microarray Technology - An Overview

    African Journals Online (AJOL)

    Erah

    This paper reviews basics and updates of each microarray technology and serves to .... through protein microarrays. Protein microarrays also known as protein chips are nothing but grids that ... conditioned media, patient sera, plasma and urine. Clontech ... based antibody arrays) is similar to membrane-based antibody ...

  16. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the post...

  17. Moving Toward Integrating Gene Expression Profiling into High-throughput Testing:A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), ...

  18. Translating microarray data for diagnostic testing in childhood leukaemia

    International Nuclear Information System (INIS)

    Hoffmann, Katrin; Firth, Martin J; Beesley, Alex H; Klerk, Nicholas H de; Kees, Ursula R

    2006-01-01

    and with microarray experiments being performed by a different research team

  19. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    Science.gov (United States)

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties

  20. Development and validation of a flax (Linum usitatissimum L. gene expression oligo microarray

    Directory of Open Access Journals (Sweden)

    Gutierrez Laurent

    2010-10-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars and its cellulose-rich fibres (fibre-flax cultivars used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well

  1. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    Directory of Open Access Journals (Sweden)

    Laurenzi Ian J

    2009-12-01

    Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

  2. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    Science.gov (United States)

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (psunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  3. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Archer Kellie J

    2008-02-01

    Full Text Available Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN to those with normal functioning allograft. Results The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. Conclusion We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been

  4. Integrating Biological Perspectives:. a Quantum Leap for Microarray Expression Analysis

    Science.gov (United States)

    Wanke, Dierk; Kilian, Joachim; Bloss, Ulrich; Mangelsen, Elke; Supper, Jochen; Harter, Klaus; Berendzen, Kenneth W.

    2009-02-01

    Biologists and bioinformatic scientists cope with the analysis of transcript abundance and the extraction of meaningful information from microarray expression data. By exploiting biological information accessible in public databases, we try to extend our current knowledge over the plant model organism Arabidopsis thaliana. Here, we give two examples of increasing the quality of information gained from large scale expression experiments by the integration of microarray-unrelated biological information: First, we utilize Arabidopsis microarray data to demonstrate that expression profiles are usually conserved between orthologous genes of different organisms. In an initial step of the analysis, orthology has to be inferred unambiguously, which then allows comparison of expression profiles between orthologs. We make use of the publicly available microarray expression data of Arabidopsis and barley, Hordeum vulgare. We found a generally positive correlation in expression trajectories between true orthologs although both organisms are only distantly related in evolutionary time scale. Second, extracting clusters of co-regulated genes implies similarities in transcriptional regulation via similar cis-regulatory elements (CREs). Vice versa approaches, where co-regulated gene clusters are found by investigating on CREs were not successful in general. Nonetheless, in some cases the presence of CREs in a defined position, orientation or CRE-combinations is positively correlated with co-regulated gene clusters. Here, we make use of genes involved in the phenylpropanoid biosynthetic pathway, to give one positive example for this approach.

  5. Microarray expression profiling of human dental pulp from single subject.

    Science.gov (United States)

    Tete, Stefano; Mastrangelo, Filiberto; Scioletti, Anna Paola; Tranasi, Michelangelo; Raicu, Florina; Paolantonio, Michele; Stuppia, Liborio; Vinci, Raffaele; Gherlone, Enrico; Ciampoli, Cristian; Sberna, Maria Teresa; Conti, Pio

    2008-01-01

    Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.

  6. Dynamic, electronically switchable surfaces for membrane protein microarrays.

    Science.gov (United States)

    Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J

    2006-02-01

    Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.

  7. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  8. Locative media and data-driven computing experiments

    Directory of Open Access Journals (Sweden)

    Sung-Yueh Perng

    2016-06-01

    Full Text Available Over the past two decades urban social life has undergone a rapid and pervasive geocoding, becoming mediated, augmented and anticipated by location-sensitive technologies and services that generate and utilise big, personal, locative data. The production of these data has prompted the development of exploratory data-driven computing experiments that seek to find ways to extract value and insight from them. These projects often start from the data, rather than from a question or theory, and try to imagine and identify their potential utility. In this paper, we explore the desires and mechanics of data-driven computing experiments. We demonstrate how both locative media data and computing experiments are ‘staged’ to create new values and computing techniques, which in turn are used to try and derive possible futures that are ridden with unintended consequences. We argue that using computing experiments to imagine potential urban futures produces effects that often have little to do with creating new urban practices. Instead, these experiments promote Big Data science and the prospect that data produced for one purpose can be recast for another and act as alternative mechanisms of envisioning urban futures.

  9. A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.

    Directory of Open Access Journals (Sweden)

    Daniel Vasiliu

    Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.

  10. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  11. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.

  12. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    Science.gov (United States)

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers

  13. cDNA microarray screening in food safety

    International Nuclear Information System (INIS)

    Roy, Sashwati; Sen, Chandan K.

    2006-01-01

    The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests

  14. Evaluation of gene expression data generated from expired Affymetrix GeneChip® microarrays using MAQC reference RNA samples

    Directory of Open Access Journals (Sweden)

    Tong Weida

    2010-10-01

    Full Text Available Abstract Background The Affymetrix GeneChip® system is a commonly used platform for microarray analysis but the technology is inherently expensive. Unfortunately, changes in experimental planning and execution, such as the unavailability of previously anticipated samples or a shift in research focus, may render significant numbers of pre-purchased GeneChip® microarrays unprocessed before their manufacturer’s expiration dates. Researchers and microarray core facilities wonder whether expired microarrays are still useful for gene expression analysis. In addition, it was not clear whether the two human reference RNA samples established by the MAQC project in 2005 still maintained their transcriptome integrity over a period of four years. Experiments were conducted to answer these questions. Results Microarray data were generated in 2009 in three replicates for each of the two MAQC samples with either expired Affymetrix U133A or unexpired U133Plus2 microarrays. These results were compared with data obtained in 2005 on the U133Plus2 microarray. The percentage of overlap between the lists of differentially expressed genes (DEGs from U133Plus2 microarray data generated in 2009 and in 2005 was 97.44%. While there was some degree of fold change compression in the expired U133A microarrays, the percentage of overlap between the lists of DEGs from the expired and unexpired microarrays was as high as 96.99%. Moreover, the microarray data generated using the expired U133A microarrays in 2009 were highly concordant with microarray and TaqMan® data generated by the MAQC project in 2005. Conclusions Our results demonstrated that microarray data generated using U133A microarrays, which were more than four years past the manufacturer’s expiration date, were highly specific and consistent with those from unexpired microarrays in identifying DEGs despite some appreciable fold change compression and decrease in sensitivity. Our data also suggested that the

  15. Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments

    Directory of Open Access Journals (Sweden)

    Pistoia Vito

    2008-10-01

    Full Text Available Abstract Background Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered as not differentially expressed, even if hidden subclasses with different expression values may exist. In this paper we propose a new method for identifying differentially expressed genes, based on the area between the ROC curve and the rising diagonal (ABCR. ABCR represents a more general approach than the standard area under the ROC curve (AUC, because it can identify both proper (i.e., concave and not proper ROC curves (NPRC. In particular, NPRC may correspond to those genes that tend to escape standard selection methods. Results We assessed the performance of our method using data from a publicly available database of 4026 genes, including 14 normal B cell samples (NBC and 20 heterogeneous lymphomas (namely: 9 follicular lymphomas and 11 chronic lymphocytic leukemias. Moreover, NBC also included two sub-classes, i.e., 6 heavily stimulated and 8 slightly or not stimulated samples. We identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%. Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on AUC and t statistics. Moreover, a simple inspection to the shape of such plots allowed to identify the two subclasses in either one class in 13 cases (81%. Conclusion NPRC represent a new useful tool for the analysis of microarray data.

  16. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  17. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  18. Pharmacology Experiments on the Computer.

    Science.gov (United States)

    Keller, Daniel

    1990-01-01

    A computer program that replaces a set of pharmacology and physiology laboratory experiments on live animals or isolated organs is described and illustrated. Five experiments are simulated: dose-effect relationships on smooth muscle, blood pressure and catecholamines, neuromuscular signal transmission, acetylcholine and the circulation, and…

  19. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  20. Hybrid Feature Selection Approach Based on GRASP for Cancer Microarray Data

    Directory of Open Access Journals (Sweden)

    Arpita Nagpal

    2017-01-01

    Full Text Available Microarray data usually contain a large number of genes, but a small number of samples. Feature subset selection for microarray data aims at reducing the number of genes so that useful information can be extracted from the samples. Reducing the dimension of data sets further helps in improving the computational efficiency of the learning model. In this paper, we propose a modified algorithm based on the tabu search as local search procedures to a Greedy Randomized Adaptive Search Procedure (GRASP for high dimensional microarray data sets. The proposed Tabu based Greedy Randomized Adaptive Search Procedure algorithm is named as TGRASP. In TGRASP, a new parameter has been introduced named as Tabu Tenure and the existing parameters, NumIter and size have been modified. We observed that different parameter settings affect the quality of the optimum. The second proposed algorithm known as FFGRASP (Firefly Greedy Randomized Adaptive Search Procedure uses a firefly optimization algorithm in the local search optimzation phase of the greedy randomized adaptive search procedure (GRASP. Firefly algorithm is one of the powerful algorithms for optimization of multimodal applications. Experimental results show that the proposed TGRASP and FFGRASP algorithms are much better than existing algorithm with respect to three performance parameters viz. accuracy, run time, number of a selected subset of features. We have also compared both the approaches with a unified metric (Extended Adjusted Ratio of Ratios which has shown that TGRASP approach outperforms existing approach for six out of nine cancer microarray datasets and FFGRASP performs better on seven out of nine datasets.

  1. Polyadenylation state microarray (PASTA) analysis.

    Science.gov (United States)

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  2. Advanced microarray technologies for clinical diagnostics

    NARCIS (Netherlands)

    Pierik, Anke

    2011-01-01

    DNA microarrays become increasingly important in the field of clinical diagnostics. These microarrays, also called DNA chips, are small solid substrates, typically having a maximum surface area of a few cm2, onto which many spots are arrayed in a pre-determined pattern. Each of these spots contains

  3. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    Science.gov (United States)

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  4. Sharing experience and knowledge with wearable computers

    OpenAIRE

    Nilsson, Marcus; Drugge, Mikael; Parnes, Peter

    2004-01-01

    Wearable computer have mostly been looked on when used in isolation. But the wearable computer with Internet connection is a good tool for communication and for sharing knowledge and experience with other people. The unobtrusiveness of this type of equipment makes it easy to communicate at most type of locations and contexts. The wearable computer makes it easy to be a mediator of other people knowledge and becoming a knowledgeable user. This paper describes the experience gained from testing...

  5. OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2006-01-01

    Full Text Available Abstract Background Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. Results OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. Conclusion Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/OpWise.

  6. Accurate detection of carcinoma cells by use of a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shohei Yamamura

    Full Text Available BACKGROUND: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. METHODS AND FINDINGS: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%, accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. CONCLUSION: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.

  7. Computational genomics of hyperthermophiles

    NARCIS (Netherlands)

    Werken, van de H.J.G.

    2008-01-01

    With the ever increasing number of completely sequenced prokaryotic genomes and the subsequent use of functional genomics tools, e.g. DNA microarray and proteomics, computational data analysis and the integration of microbial and molecular data is inevitable. This thesis describes the computational

  8. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  9. Nanotechnology: moving from microarrays toward nanoarrays.

    Science.gov (United States)

    Chen, Hua; Li, Jun

    2007-01-01

    Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

  10. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  11. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Directory of Open Access Journals (Sweden)

    Jouventin Pierre

    2010-05-01

    Full Text Available Abstract Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  12. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Directory of Open Access Journals (Sweden)

    Gravelat Fabrice

    2010-09-01

    Full Text Available Abstract Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments

  13. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  14. Experience With Rapid Microarray-Based Diagnostic Technology and Antimicrobial Stewardship for Patients With Gram-Positive Bacteremia.

    Science.gov (United States)

    Neuner, Elizabeth A; Pallotta, Andrea M; Lam, Simon W; Stowe, David; Gordon, Steven M; Procop, Gary W; Richter, Sandra S

    2016-11-01

    OBJECTIVE To describe the impact of rapid diagnostic microarray technology and antimicrobial stewardship for patients with Gram-positive blood cultures. DESIGN Retrospective pre-intervention/post-intervention study. SETTING A 1,200-bed academic medical center. PATIENTS Inpatients with blood cultures positive for Staphylococcus aureus, Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, S. pyogenes, S. agalactiae, S. anginosus, Streptococcus spp., and Listeria monocytogenes during the 6 months before and after implementation of Verigene Gram-positive blood culture microarray (BC-GP) with an antimicrobial stewardship intervention. METHODS Before the intervention, no rapid diagnostic technology was used or antimicrobial stewardship intervention was undertaken, except for the use of peptide nucleic acid fluorescent in situ hybridization and MRSA agar to identify staphylococcal isolates. After the intervention, all Gram-positive blood cultures underwent BC-GP microarray and the antimicrobial stewardship intervention consisting of real-time notification and pharmacist review. RESULTS In total, 513 patients with bacteremia were included in this study: 280 patients with S. aureus, 150 patients with enterococci, 82 patients with stretococci, and 1 patient with L. monocytogenes. The number of antimicrobial switches was similar in the pre-BC-GP (52%; 155 of 300) and post-BC-GP (50%; 107 of 213) periods. The time to antimicrobial switch was significantly shorter in the post-BC-GP group than in the pre-BC-GP group: 48±41 hours versus 75±46 hours, respectively (P<.001). The most common antimicrobial switch was de-escalation and time to de-escalation, was significantly shorter in the post-BC-GP group than in the pre-BC-GP group: 53±41 hours versus 82±48 hours, respectively (P<.001). There was no difference in mortality or hospital length of stay as a result of the intervention. CONCLUSIONS The combination of a rapid microarray diagnostic test with an antimicrobial

  15. Principles of gene microarray data analysis.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  16. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  17. Computing for an SSC experiment

    International Nuclear Information System (INIS)

    Gaines, I.

    1993-01-01

    The hardware and software problems for SSC experiments are similar to those faced by present day experiments but larger in scale. In particular, the Solenoidal Detector Collaboration (SDC) anticipates the need for close to 10**6 MIPS of off-line computing and will produce several Petabytes (10**15 bytes) of data per year. Software contributions will be made from large numbers of highly geographically dispersed physicists. Hardware and software architectures to meet these needs have been designed. Providing the requisites amount of computing power and providing tools to allow cooperative software development using extensions of existing techniques look achievable. The major challenges will be to provide efficient methods of accessing and manipulating the enormous quantities of data that will be produced at the SSC, and to enforce the use of software engineering tools that will ensure the open-quotes correctnessclose quotes of experiment critical software

  18. Cell-Based Microarrays for In Vitro Toxicology

    Science.gov (United States)

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  19. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  20. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  1. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  2. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L. gene expression oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Paula Fernandez

    Full Text Available Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de. The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons. The resulting Sunflower Unigen Resource (SUR version 1.0 was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01 allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  3. Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments

    Science.gov (United States)

    Jourdren, Laurent; Duclos, Aurélie; Brion, Christian; Portnoy, Thomas; Mathis, Hugues; Margeot, Antoine; Le Crom, Stéphane

    2010-01-01

    Despite the development of new high-throughput sequencing techniques, microarrays are still attractive tools to study small genome organisms, thanks to sample multiplexing and high-feature densities. However, the oligonucleotide design remains a delicate step for most users. A vast array of software is available to deal with this problem, but each program is developed with its own strategy, which makes the choice of the best solution difficult. Here we describe Teolenn, a universal probe design workflow developed with a flexible and customizable module organization allowing fixed or variable length oligonucleotide generation. In addition, our software is able to supply quality scores for each of the designed probes. In order to assess the relevance of these scores, we performed a real hybridization using a tiling array designed against the Trichoderma reesei fungus genome. We show that our scoring pipeline correlates with signal quality for 97.2% of all the designed probes, allowing for a posteriori comparisons between quality scores and signal intensities. This result is useful in discarding any bad scoring probes during the design step in order to get high-quality microarrays. Teolenn is available at http://transcriptome.ens.fr/teolenn/. PMID:20176570

  4. A cluster merging method for time series microarray with production values.

    Science.gov (United States)

    Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio

    2014-09-01

    A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.

  5. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  6. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays

    Directory of Open Access Journals (Sweden)

    Spitznagel Edward

    2003-11-01

    Full Text Available Abstract Background The assessment of data reproducibility is essential for application of microarray technology to exploration of biological pathways and disease states. Technical variability in data analysis largely depends on signal intensity. Within that context, the reproducibility of individual probe sets has not been hitherto addressed. Results We used an extraordinarily large replicate data set derived from human placental trophoblast to analyze probe-specific contribution to variability of gene expression. We found that signal variability, in addition to being signal-intensity dependant, is probe set-specific. Importantly, we developed a novel method to quantify the contribution of this probe set-specific variability. Furthermore, we devised a formula that incorporates a priori-computed, replicate-based information on probe set- and intensity-specific variability in determination of expression changes even without technical replicates. Conclusion The strategy of incorporating probe set-specific variability is superior to analysis based on arbitrary fold-change thresholds. We recommend its incorporation to any computation of gene expression changes using high-density DNA microarrays. A Java application implementing our T-score is available at http://www.sadovsky.wustl.edu/tscore.html.

  7. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Directory of Open Access Journals (Sweden)

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  8. An algorithm for finding biologically significant features in microarray data based on a priori manifold learning.

    Directory of Open Access Journals (Sweden)

    Zena M Hira

    Full Text Available Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process--it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap.

  9. Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing.

    Science.gov (United States)

    Foncy, Julie; Estève, Aurore; Degache, Amélie; Colin, Camille; Cau, Jean Christophe; Malaquin, Laurent; Vieu, Christophe; Trévisiol, Emmanuelle

    2018-01-01

    Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.

  10. Volunteer computing experience with ATLAS@Home

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068610; The ATLAS collaboration; Bianchi, Riccardo-Maria; Cameron, David; Filipčič, Andrej; Lançon, Eric; Wu, Wenjing

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  11. Volunteer Computing Experience with ATLAS@Home

    CERN Document Server

    Cameron, David; The ATLAS collaboration; Bourdarios, Claire; Lan\\c con, Eric

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers' resources make up a sizable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one job to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  12. Volunteer Computing Experience with ATLAS@Home

    Science.gov (United States)

    Adam-Bourdarios, C.; Bianchi, R.; Cameron, D.; Filipčič, A.; Isacchini, G.; Lançon, E.; Wu, W.; ATLAS Collaboration

    2017-10-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  13. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  14. Computing challenges of the CMS experiment

    International Nuclear Information System (INIS)

    Krammer, N.; Liko, D.

    2017-01-01

    The success of the LHC experiments is due to the magnificent performance of the detector systems and the excellent operating computing systems. The CMS offline software and computing system is successfully fulfilling the LHC Run 2 requirements. For the increased data rate of future LHC operation, together with high pileup interactions, improvements of the usage of the current computing facilities and new technologies became necessary. Especially for the challenge of the future HL-LHC a more flexible and sophisticated computing model is needed. In this presentation, I will discuss the current computing system used in the LHC Run 2 and future computing facilities for the HL-LHC runs using flexible computing technologies like commercial and academic computing clouds. The cloud resources are highly virtualized and can be deployed for a variety of computing tasks providing the capacities for the increasing needs of large scale scientific computing.

  15. Exploring the use of internal and externalcontrols for assessing microarray technical performance

    Directory of Open Access Journals (Sweden)

    Game Laurence

    2010-12-01

    Full Text Available Abstract Background The maturing of gene expression microarray technology and interest in the use of microarray-based applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript presents a retrospective study characterizing several approaches to assess technical performance of microarray data measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same information about technical performance as whole-array metrics and endogenous "housekeeping" genes. These results support the use of spike-in controls as general tools for performance assessment across time, experimenters and array batches, suggesting that they have potential for comparison of microarray data generated across species using different technologies. Results A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in hybridization, spike-in polyA+, internal RNA degradation, endogenous or "housekeeping genes" was used for the assessment of microarray data quality. The controls provide information on multiple stages of the experimental protocol (e.g., hybridization, RNA amplification. External spike-in, hybridization and RNA labeling controls provide information related to both assay and hybridization performance whereas internal endogenous controls provide quality information on the biological sample. We find that the variance of the data generated from the external and internal controls carries critical information about technical performance; the PCA dissection of this variance is consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC metrics. Conclusions These results provide support for the use of both external and internal RNA control data to assess the technical quality of microarray

  16. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  17. A comparative analysis of DNA barcode microarray feature size

    Directory of Open Access Journals (Sweden)

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  18. Improving the scaling normalization for high-density oligonucleotide GeneChip expression microarrays

    Directory of Open Access Journals (Sweden)

    Lu Chao

    2004-07-01

    Full Text Available Abstract Background Normalization is an important step for microarray data analysis to minimize biological and technical variations. Choosing a suitable approach can be critical. The default method in GeneChip expression microarray uses a constant factor, the scaling factor (SF, for every gene on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2% of the probe sets with the highest and the lowest values. Results Among the 76 U34A GeneChip experiments, the total signals on each array showed 25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals that were normally excluded from SF calculation accounted for 34% to 54% of the total signals (40.7% ± 4.4%, mean ± sd. In comparison with normalization factors obtained from the median signal or from the mean of the log transformed signal, SF showed the greatest variation. The normalization factors obtained from log transformed signals showed least variation. Conclusions Eliminating 40% of the signal data during SF calculation failed to show any benefit. Normalization factors obtained with log transformed signals performed the best. Thus, it is suggested to use the mean of the logarithm transformed data for normalization, rather than the arithmetic mean of signals in GeneChip gene expression microarrays.

  19. Comparing transformation methods for DNA microarray data

    Directory of Open Access Journals (Sweden)

    Zwinderman Aeilko H

    2004-06-01

    Full Text Available Abstract Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects, and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  20. Microarray-based screening of heat shock protein inhibitors.

    Science.gov (United States)

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. IsoGeneGUI : Multiple approaches for dose-response analysis of microarray data using R

    NARCIS (Netherlands)

    Otava, Martin; Sengupta, Rudradev; Shkedy, Ziv; Lin, Dan; Pramana, Setia; Verbeke, Tobias; Haldermans, Philippe; Hothorn, Ludwig A.; Gerhard, Daniel; Kuiper, Rebecca M.; Klinglmueller, Florian; Kasim, Adetayo

    2017-01-01

    The analysis of transcriptomic experiments with ordered covariates, such as dose-response data, has become a central topic in bioinformatics, in particular in omics studies. Consequently, multiple R packages on CRAN and Bioconductor are designed to analyse microarray data from various perspectives

  2. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    Science.gov (United States)

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  3. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia adhesion

    Directory of Open Access Journals (Sweden)

    Faisal Mohamed

    2010-05-01

    Full Text Available Abstract Background The zebra mussel (Dreissena polymorpha has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A, current velocity (Factor B, dissolved oxygen (Factor C, and byssogenesis status (Factor D. Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR. The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment.

  4. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia) adhesion.

    Science.gov (United States)

    Xu, Wei; Faisal, Mohamed

    2010-05-28

    The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment.

  5. Protein microarray: sensitive and effective immunodetection for drug residues

    Directory of Open Access Journals (Sweden)

    Zer Cindy

    2010-02-01

    Full Text Available Abstract Background Veterinary drugs such as clenbuterol (CL and sulfamethazine (SM2 are low molecular weight ( Results The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC50. Our microarray assay showed the IC50 were 39.6 ng/ml for CL and 48.8 ng/ml for SM2, while the traditional competitive indirect-ELISA (ci-ELISA showed the IC50 were 190.7 ng/ml for CL and 156.7 ng/ml for SM2. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g than the ci-ELISA (0.1 ng/g for detection of CL residues. Conclusions The protein microarrays showed 4.5 and 3.5 times lower IC50 than the ci-ELISA detection for CL and SM2, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.

  6. Evaluation of a gene information summarization system by users during the analysis process of microarray datasets

    Directory of Open Access Journals (Sweden)

    Cohen Aaron

    2009-02-01

    Full Text Available Abstract Background Summarization of gene information in the literature has the potential to help genomics researchers translate basic research into clinical benefits. Gene expression microarrays have been used to study biomarkers for disease and discover novel types of therapeutics and the task of finding information in journal articles on sets of genes is common for translational researchers working with microarray data. However, manually searching and scanning the literature references returned from PubMed is a time-consuming task for scientists. We built and evaluated an automatic summarizer of information on genes studied in microarray experiments. The Gene Information Clustering and Summarization System (GICSS is a system that integrates two related steps of the microarray data analysis process: functional gene clustering and gene information gathering. The system evaluation was conducted during the process of genomic researchers analyzing their own experimental microarray datasets. Results The clusters generated by GICSS were validated by scientists during their microarray analysis process. In addition, presenting sentences in the abstract provided significantly more important information to the users than just showing the title in the default PubMed format. Conclusion The evaluation results suggest that GICSS can be useful for researchers in genomic area. In addition, the hybrid evaluation method, partway between intrinsic and extrinsic system evaluation, may enable researchers to gauge the true usefulness of the tool for the scientists in their natural analysis workflow and also elicit suggestions for future enhancements. Availability GICSS can be accessed online at: http://ir.ohsu.edu/jianji/index.html

  7. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  8. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks.

    Science.gov (United States)

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J

    2015-05-14

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  9. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    Science.gov (United States)

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  10. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone.

    Directory of Open Access Journals (Sweden)

    Susann K J Ludwig

    Full Text Available Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1. Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this 'protein microarray on a smartphone'-concept for on-site testing, e.g., in food safety, environment and health monitoring.

  11. A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    Directory of Open Access Journals (Sweden)

    Vassal Aurélien

    2008-01-01

    Full Text Available Abstract Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM. Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with

  12. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.

    Science.gov (United States)

    Tsoi, Lam C; Qin, Tingting; Slate, Elizabeth H; Zheng, W Jim

    2011-11-11

    To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray

  13. Production of DNA microarray and expression analysis of genes from Xylella fastidiosa in different culture media

    Directory of Open Access Journals (Sweden)

    Regiane de Fátima Travensolo

    2009-06-01

    Full Text Available DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.DNA Microarray foi desenvolvida para monitorar a expressão de muitos genes de Xylella fastidiosa, permitindo a comparação de duas situações distintas em um único experimento. Os experimentos foram feitos utilizando células de X. fastidiosa cultivada em dois meios de cultura: BCYE e XDM2. Pares de oligonucleotídeos iniciadores foram sintetizados, depositados em lâminas de vidro e o arranjo foi hibridizado contra cDNAs marcados fluorescentemente. Os sinais emitidos foram quantificados, normalizados e os dados foram estatisticamente analisados para verificar os genes diferencialmente expressos. De acordo com nossos dados, 104 genes foram diferencialmente expressos para o meio de cultura XDM2 e 30 genes para o BCYE. No presente estudo, nós demonstramos que a técnica de DNA microarrays eficientemente diferencia genes expressos sob diferentes condições de cultivo.

  14. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    Science.gov (United States)

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  15. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells

    Directory of Open Access Journals (Sweden)

    Kim Han

    2012-07-01

    Full Text Available Abstract Background In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. Results Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1 was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2. Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. Conclusions Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that

  16. Experiment Dashboard for Monitoring of the LHC Distributed Computing Systems

    International Nuclear Information System (INIS)

    Andreeva, J; Campos, M Devesas; Cros, J Tarragon; Gaidioz, B; Karavakis, E; Kokoszkiewicz, L; Lanciotti, E; Maier, G; Ollivier, W; Nowotka, M; Rocha, R; Sadykov, T; Saiz, P; Sargsyan, L; Sidorova, I; Tuckett, D

    2011-01-01

    LHC experiments are currently taking collisions data. A distributed computing model chosen by the four main LHC experiments allows physicists to benefit from resources spread all over the world. The distributed model and the scale of LHC computing activities increase the level of complexity of middleware, and also the chances of possible failures or inefficiencies in involved components. In order to ensure the required performance and functionality of the LHC computing system, monitoring the status of the distributed sites and services as well as monitoring LHC computing activities are among the key factors. Over the last years, the Experiment Dashboard team has been working on a number of applications that facilitate the monitoring of different activities: including following up jobs, transfers, and also site and service availabilities. This presentation describes Experiment Dashboard applications used by the LHC experiments and experience gained during the first months of data taking.

  17. First Experiences with LHC Grid Computing and Distributed Analysis

    CERN Document Server

    Fisk, Ian

    2010-01-01

    In this presentation the experiences of the LHC experiments using grid computing were presented with a focus on experience with distributed analysis. After many years of development, preparation, exercises, and validation the LHC (Large Hadron Collider) experiments are in operations. The computing infrastructure has been heavily utilized in the first 6 months of data collection. The general experience of exploiting the grid infrastructure for organized processing and preparation is described, as well as the successes employing the infrastructure for distributed analysis. At the end the expected evolution and future plans are outlined.

  18. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Directory of Open Access Journals (Sweden)

    Bajcsy Peter

    2006-01-01

    Full Text Available This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.

  19. Evaluation of normalization methods for cDNA microarray data by k-NN classification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, Saira; Bissell, Mina J

    2004-12-17

    Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double

  20. The Computer Game as a Somatic Experience

    DEFF Research Database (Denmark)

    Nielsen, Henrik Smed

    2010-01-01

    This article describes the experience of playing computer games. With a media archaeological outset the relation between human and machine is emphasised as the key to understand the experience. This relation is further explored by drawing on a phenomenological philosophy of technology which...

  1. Using Computer Games for Instruction: The Student Experience

    Science.gov (United States)

    Grimley, Michael; Green, Richard; Nilsen, Trond; Thompson, David; Tomes, Russell

    2011-01-01

    Computer games are fun, exciting and motivational when used as leisure pursuits. But do they have similar attributes when utilized for educational purposes? This article investigates whether learning by computer game can improve student experiences compared with a more formal lecture approach and whether computer games have potential for improving…

  2. Mental Rotation Ability and Computer Game Experience

    Science.gov (United States)

    Gecu, Zeynep; Cagiltay, Kursat

    2015-01-01

    Computer games, which are currently very popular among students, can affect different cognitive abilities. The purpose of the present study is to examine undergraduate students' experiences and preferences in playing computer games as well as their mental rotation abilities. A total of 163 undergraduate students participated. The results showed a…

  3. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    Science.gov (United States)

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  4. The application of DNA microarrays in gene expression analysis.

    Science.gov (United States)

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  5. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates

    KAUST Repository

    Boopathi, Pon Arunachalam

    2016-10-09

    High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60 mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n =14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n = 85) present in the arrays showed perfect correlation (r(2) = 0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r >= 0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates. (C) 2016 Published by Elsevier B.V.

  6. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates

    KAUST Repository

    Boopathi, Pon Arunachalam; Subudhi, Amit; Middha, Sheetal; Acharya, Jyoti; Mugasimangalam, Raja Chinnadurai; Kochar, Sanjay Kumar; Kochar, Dhanpat Kumar; Das, Ashis

    2016-01-01

    High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60 mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n =14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n = 85) present in the arrays showed perfect correlation (r(2) = 0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r >= 0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates. (C) 2016 Published by Elsevier B.V.

  7. Reconstructing the temporal ordering of biological samples using microarray data.

    Science.gov (United States)

    Magwene, Paul M; Lizardi, Paul; Kim, Junhyong

    2003-05-01

    Accurate time series for biological processes are difficult to estimate due to problems of synchronization, temporal sampling and rate heterogeneity. Methods are needed that can utilize multi-dimensional data, such as those resulting from DNA microarray experiments, in order to reconstruct time series from unordered or poorly ordered sets of observations. We present a set of algorithms for estimating temporal orderings from unordered sets of sample elements. The techniques we describe are based on modifications of a minimum-spanning tree calculated from a weighted, undirected graph. We demonstrate the efficacy of our approach by applying these techniques to an artificial data set as well as several gene expression data sets derived from DNA microarray experiments. In addition to estimating orderings, the techniques we describe also provide useful heuristics for assessing relevant properties of sample datasets such as noise and sampling intensity, and we show how a data structure called a PQ-tree can be used to represent uncertainty in a reconstructed ordering. Academic implementations of the ordering algorithms are available as source code (in the programming language Python) on our web site, along with documentation on their use. The artificial 'jelly roll' data set upon which the algorithm was tested is also available from this web site. The publicly available gene expression data may be found at http://genome-www.stanford.edu/cellcycle/ and http://caulobacter.stanford.edu/CellCycle/.

  8. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    Directory of Open Access Journals (Sweden)

    Reinders Marcel JT

    2009-11-01

    . Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments.

  9. Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.

    Science.gov (United States)

    Matiasz, Nicholas J; Wood, Justin; Wang, Wei; Silva, Alcino J; Hsu, William

    2017-01-01

    Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning.

  10. Microarrays in brain research: the good, the bad and the ugly.

    Science.gov (United States)

    Mirnics, K

    2001-06-01

    Making sense of microarray data is a complex process, in which the interpretation of findings will depend on the overall experimental design and judgement of the investigator performing the analysis. As a result, differences in tissue harvesting, microarray types, sample labelling and data analysis procedures make post hoc sharing of microarray data a great challenge. To ensure rapid and meaningful data exchange, we need to create some order out of the existing chaos. In these ground-breaking microarray standardization and data sharing efforts, NIH agencies should take a leading role

  11. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  12. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  13. High-Throughput Quantification of SH2 Domain-Phosphopeptide Interactions with Cellulose-Peptide Conjugate Microarrays.

    Science.gov (United States)

    Engelmann, Brett W

    2017-01-01

    The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.

  14. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  15. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    Science.gov (United States)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  16. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  17. Significance analysis of lexical bias in microarray data

    Directory of Open Access Journals (Sweden)

    Falkow Stanley

    2003-04-01

    Full Text Available Abstract Background Genes that are determined to be significantly differentially regulated in microarray analyses often appear to have functional commonalities, such as being components of the same biochemical pathway. This results in certain words being under- or overrepresented in the list of genes. Distinguishing between biologically meaningful trends and artifacts of annotation and analysis procedures is of the utmost importance, as only true biological trends are of interest for further experimentation. A number of sophisticated methods for identification of significant lexical trends are currently available, but these methods are generally too cumbersome for practical use by most microarray users. Results We have developed a tool, LACK, for calculating the statistical significance of apparent lexical bias in microarray datasets. The frequency of a user-specified list of search terms in a list of genes which are differentially regulated is assessed for statistical significance by comparison to randomly generated datasets. The simplicity of the input files and user interface targets the average microarray user who wishes to have a statistical measure of apparent lexical trends in analyzed datasets without the need for bioinformatics skills. The software is available as Perl source or a Windows executable. Conclusion We have used LACK in our laboratory to generate biological hypotheses based on our microarray data. We demonstrate the program's utility using an example in which we confirm significant upregulation of SPI-2 pathogenicity island of Salmonella enterica serovar Typhimurium by the cation chelator dipyridyl.

  18. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    Science.gov (United States)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  19. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    Directory of Open Access Journals (Sweden)

    E. V. Thomas

    2009-01-01

    Full Text Available Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.

  20. Predictive modeling of liquid-sodium thermal–hydraulics experiments and computations

    International Nuclear Information System (INIS)

    Arslan, Erkan; Cacuci, Dan G.

    2014-01-01

    Highlights: • We applied the predictive modeling method of Cacuci and Ionescu-Bujor (2010). • We assimilated data from sodium flow experiments. • We used computational fluid dynamics simulations of sodium experiments. • The predictive modeling method greatly reduced uncertainties in predicted results. - Abstract: This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor (2010) to assimilate data from liquid-sodium thermal–hydraulics experiments in order to reduce systematically the uncertainties in the predictions of computational fluid dynamics (CFD) simulations. The predicted CFD-results for the best-estimate model parameters and results describing sodium-flow velocities and temperature distributions are shown to be significantly more precise than the original computations and experiments, in that the predicted uncertainties for the best-estimate results and model parameters are significantly smaller than both the originally computed and the experimental uncertainties

  1. Optimal designs for one- and two-color microarrays using mixed models: a comparative evaluation of their efficiencies.

    Science.gov (United States)

    Lima Passos, Valéria; Tan, Frans E S; Winkens, Bjorn; Berger, Martijn P F

    2009-01-01

    Comparative studies between the one- and two-color microarrays provide supportive evidence for similarities of results on differential gene expression. So far, no design comparisons between the two platforms have been undertaken. With the objective of comparing optimal designs of one- and two-color microarrays in their statistical efficiencies, techniques of design optimization were applied within a mixed model framework. A- and D-optimal designs for the one- and two-color platforms were sought for a 3 x 3 factorial experiment. The results suggest that the choice of the platform will not affect the "subjects to groups" allocation, being concordant in the two designs. However, under financial constraints, the two-color arrays are expected to have a slight upper hand in terms of efficiency of model parameters estimates, once the price of arrays is more expensive than that of subjects. This statement is especially valid for microarray studies envisaging class comparisons.

  2. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  3. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

    DEFF Research Database (Denmark)

    Pedersen, Henriette Lodberg; Fangel, Jonatan Ulrik; McCleary, Barry

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less establish...

  4. Remote Viewing and Computer Communications--An Experiment.

    Science.gov (United States)

    Vallee, Jacques

    1988-01-01

    A series of remote viewing experiments were run with 12 participants who communicated through a computer conferencing network. The correct target sample was identified in 8 out of 33 cases. This represented more than double the pure chance expectation. Appendices present protocol, instructions, and results of the experiments. (Author/YP)

  5. The application of DNA microarrays in gene expression analysis

    NARCIS (Netherlands)

    Hal, van N.L.W.; Vorst, O.; Houwelingen, van A.M.M.L.; Kok, E.J.; Peijnenburg, A.A.C.M.; Aharoni, A.; Tunen, van A.J.; Keijer, J.

    2000-01-01

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed.

  6. Investigating the effect of paralogs on microarray gene-set analysis

    LENUS (Irish Health Repository)

    Faure, Andre J

    2011-01-24

    Abstract Background In order to interpret the results obtained from a microarray experiment, researchers often shift focus from analysis of individual differentially expressed genes to analyses of sets of genes. These gene-set analysis (GSA) methods use previously accumulated biological knowledge to group genes into sets and then aim to rank these gene sets in a way that reflects their relative importance in the experimental situation in question. We suspect that the presence of paralogs affects the ability of GSA methods to accurately identify the most important sets of genes for subsequent research. Results We show that paralogs, which typically have high sequence identity and similar molecular functions, also exhibit high correlation in their expression patterns. We investigate this correlation as a potential confounding factor common to current GSA methods using Indygene http:\\/\\/www.cbio.uct.ac.za\\/indygene, a web tool that reduces a supplied list of genes so that it includes no pairwise paralogy relationships above a specified sequence similarity threshold. We use the tool to reanalyse previously published microarray datasets and determine the potential utility of accounting for the presence of paralogs. Conclusions The Indygene tool efficiently removes paralogy relationships from a given dataset and we found that such a reduction, performed prior to GSA, has the ability to generate significantly different results that often represent novel and plausible biological hypotheses. This was demonstrated for three different GSA approaches when applied to the reanalysis of previously published microarray datasets and suggests that the redundancy and non-independence of paralogs is an important consideration when dealing with GSA methodologies.

  7. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.

    Science.gov (United States)

    Bhargava, Apurva; Clabaugh, Ivory; To, Jenn P; Maxwell, Bridey B; Chiang, Yi-Hsuan; Schaller, G Eric; Loraine, Ann; Kieber, Joseph J

    2013-05-01

    Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.

  8. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  9. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  10. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  11. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  12. Microarrays for Universal Detection and Identification of Phytoplasmas

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Nyskjold, Henriette; Bertaccini, Assunta

    2013-01-01

    Detection and identification of phytoplasmas is a laborious process often involving nested PCR followed by restriction enzyme analysis and fine-resolution gel electrophoresis. To improve throughput, other methods are needed. Microarray technology offers a generic assay that can potentially detect...... and differentiate all types of phytoplasmas in one assay. The present protocol describes a microarray-based method for identification of phytoplasmas to 16Sr group level....

  13. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  14. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  15. ArraySolver: an algorithm for colour-coded graphical display and Wilcoxon signed-rank statistics for comparing microarray gene expression data.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

  16. Computer Based Road Accident Reconstruction Experiences

    Directory of Open Access Journals (Sweden)

    Milan Batista

    2005-03-01

    Full Text Available Since road accident analyses and reconstructions are increasinglybased on specific computer software for simulationof vehicle d1iving dynamics and collision dynamics, and forsimulation of a set of trial runs from which the model that bestdescribes a real event can be selected, the paper presents anoverview of some computer software and methods available toaccident reconstruction experts. Besides being time-saving,when properly used such computer software can provide moreauthentic and more trustworthy accident reconstruction, thereforepractical experiences while using computer software toolsfor road accident reconstruction obtained in the TransportSafety Laboratory at the Faculty for Maritime Studies andTransport of the University of Ljubljana are presented and discussed.This paper addresses also software technology for extractingmaximum information from the accident photo-documentationto support accident reconstruction based on the simulationsoftware, as well as the field work of reconstruction expertsor police on the road accident scene defined by this technology.

  17. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor

    2006-01-01

    . We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... that share similar compositional properties with the annotated exons and have significant homology to other plant proteins. Elucidating and mapping of all transcribed regions revealed an association between global transcription and cytological chromosome features, and an overall similarity of transcriptional......Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species...

  18. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  19. A Fisheye Viewer for microarray-based gene expression data.

    Science.gov (United States)

    Wu, Min; Thao, Cheng; Mu, Xiangming; Munson, Ethan V

    2006-10-13

    Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface--an electronic table (E-table) that uses fisheye distortion technology. The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  20. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  1. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  2. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Dimension reduction methods for microarray data: a review

    Directory of Open Access Journals (Sweden)

    Rabia Aziz

    2017-03-01

    Full Text Available Dimension reduction has become inevitable for pre-processing of high dimensional data. “Gene expression microarray data” is an instance of such high dimensional data. Gene expression microarray data displays the maximum number of genes (features simultaneously at a molecular level with a very small number of samples. The copious numbers of genes are usually provided to a learning algorithm for producing a complete characterization of the classification task. However, most of the times the majority of the genes are irrelevant or redundant to the learning task. It will deteriorate the learning accuracy and training speed as well as lead to the problem of overfitting. Thus, dimension reduction of microarray data is a crucial preprocessing step for prediction and classification of disease. Various feature selection and feature extraction techniques have been proposed in the literature to identify the genes, that have direct impact on the various machine learning algorithms for classification and eliminate the remaining ones. This paper describes the taxonomy of dimension reduction methods with their characteristics, evaluation criteria, advantages and disadvantages. It also presents a review of numerous dimension reduction approaches for microarray data, mainly those methods that have been proposed over the past few years.

  4. RC Circuits: Some Computer-Interfaced Experiments.

    Science.gov (United States)

    Jolly, Pratibha; Verma, Mallika

    1994-01-01

    Describes a simple computer-interface experiment for recording the response of an RC network to an arbitrary input excitation. The setup is used to pose a variety of open-ended investigations in network modeling by varying the initial conditions, input signal waveform, and the circuit topology. (DDR)

  5. The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.

    Science.gov (United States)

    Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng

    2017-05-01

    Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    Science.gov (United States)

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  7. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics.

    Science.gov (United States)

    Ma, Y; Dai, X; Hong, T; Munk, G B; Libera, M

    2016-12-19

    Despite their many advantages and successes, molecular beacon (MB) hybridization probes have not been extensively used in microarray formats because of the complicating probe-substrate interactions that increase the background intensity. We have previously shown that tethering to surface-patterned microgels is an effective means for localizing MB probes to specific surface locations in a microarray format while simultaneously maintaining them in as water-like an environment as possible and minimizing probe-surface interactions. Here we extend this approach to include both real-time detection together with integrated NASBA amplification. We fabricate small (∼250 μm × 250 μm) simplex, duplex, and five-plex assays with microarray spots of controllable size (∼20 μm diameter), position, and shape to detect bacteria and fungi in a bloodstream-infection model. The targets, primers, and microgel-tethered probes can be combined in a single isothermal reaction chamber with no post-amplification labelling. We extract total RNA from clinical blood samples and differentiate between Gram-positive and Gram-negative bloodstream infection in a duplex assay to detect RNA- amplicons. The sensitivity based on our current protocols in a simplex assay to detect specific ribosomal RNA sequences within total RNA extracted from S. aureus and E. coli cultures corresponds to tens of bacteria per ml. We furthermore show that the platform can detect RNA- amplicons from synthetic target DNA with 1 fM sensitivity in sample volumes that contain about 12 000 DNA molecules. These experiments demonstrate an alternative approach that can enable rapid and real-time microarray-based molecular diagnostics.

  8. Harshlight: a "corrective make-up" program for microarray chips

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-12-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans do show similar artifacts, which might affect subsequent analysis. Although all but the starkest blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs, few tools are available to help with the detection of those defects. Results We develop a novel tool, Harshlight, for the automatic detection and masking of blemishes in HDONA microarray chips. Harshlight uses a combination of statistic and image processing methods to identify three different types of defects: localized blemishes affecting a few probes, diffuse defects affecting larger areas, and extended defects which may invalidate an entire chip. Conclusion We demonstrate the use of Harshlight can materially improve analysis of HDONA chips, especially for experiments with subtle changes between samples. For the widely used MAS5 algorithm, we show that compact blemishes cause an average of 8 gene expression values per chip to change by more than 50%, two of them by more than twofold; our masking algorithm restores about two thirds of this damage. Large-scale artifacts are successfully detected and eliminated.

  9. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  10. Cross-platform comparison of microarray data using order restricted inference

    Science.gov (United States)

    Klinglmueller, Florian; Tuechler, Thomas; Posch, Martin

    2013-01-01

    Motivation Titration experiments measuring the gene expression from two different tissues, along with total RNA mixtures of the pure samples, are frequently used for quality evaluation of microarray technologies. Such a design implies that the true mRNA expression of each gene, is either constant or follows a monotonic trend between the mixtures, applying itself to the use of order restricted inference procedures. Exploiting only the postulated monotonicity of titration designs, we propose three statistical analysis methods for the validation of high-throughput genetic data and corresponding preprocessing techniques. Results Our methods allow for inference of accuracy, repeatability and cross-platform agreement, with minimal required assumptions regarding the underlying data generating process. Therefore, they are readily applicable to all sorts of genetic high-throughput data independent of the degree of preprocessing. An application to the EMERALD dataset was used to demonstrate how our methods provide a rich spectrum of easily interpretable quality metrics and allow the comparison of different microarray technologies and normalization methods. The results are on par with previous work, but provide additional new insights that cast doubt on the utility of popular preprocessing techniques, specifically concerning the EMERALD projects dataset. Availability All datasets are available on EBI’s ArrayExpress web site (http://www.ebi.ac.uk/microarray-as/ae/) under accession numbers E-TABM-536, E-TABM-554 and E-TABM-555. Source code implemented in C and R is available at: http://statistics.msi.meduniwien.ac.at/float/cross_platform/. Methods for testing and variance decomposition have been made available in the R-package orQA, which can be downloaded and installed from CRAN http://cran.r-project.org. PMID:21317143

  11. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2015-01-01

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  12. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  13. Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    KAUST Repository

    Maadooliat, Mehdi

    2012-07-26

    Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006).

  14. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    Directory of Open Access Journals (Sweden)

    Medrano Juan F

    2006-03-01

    Full Text Available Abstract Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis: Affymetrix430 2.0 (75.6%, ABI Genome Survey (81.24%, Agilent (79.33%, Codelink (78.09%, Sentrix (90.47%; and four array-ready oligosets: Sigma (47.95%, Operon v.3 (69.89%, Operon v.4 (84.03%, and MEEBO (84.03%. The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here

  15. Computer loss experience and predictions

    Science.gov (United States)

    Parker, Donn B.

    1996-03-01

    The types of losses organizations must anticipate have become more difficult to predict because of the eclectic nature of computers and the data communications and the decrease in news media reporting of computer-related losses as they become commonplace. Total business crime is conjectured to be decreasing in frequency and increasing in loss per case as a result of increasing computer use. Computer crimes are probably increasing, however, as their share of the decreasing business crime rate grows. Ultimately all business crime will involve computers in some way, and we could see a decline of both together. The important information security measures in high-loss business crime generally concern controls over authorized people engaged in unauthorized activities. Such controls include authentication of users, analysis of detailed audit records, unannounced audits, segregation of development and production systems and duties, shielding the viewing of screens, and security awareness and motivation controls in high-value transaction areas. Computer crimes that involve highly publicized intriguing computer misuse methods, such as privacy violations, radio frequency emanations eavesdropping, and computer viruses, have been reported in waves that periodically have saturated the news media during the past 20 years. We must be able to anticipate such highly publicized crimes and reduce the impact and embarrassment they cause. On the basis of our most recent experience, I propose nine new types of computer crime to be aware of: computer larceny (theft and burglary of small computers), automated hacking (use of computer programs to intrude), electronic data interchange fraud (business transaction fraud), Trojan bomb extortion and sabotage (code security inserted into others' systems that can be triggered to cause damage), LANarchy (unknown equipment in use), desktop forgery (computerized forgery and counterfeiting of documents), information anarchy (indiscriminate use of

  16. Performing quantum computing experiments in the cloud

    Science.gov (United States)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  17. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  18. A fisheye viewer for microarray-based gene expression data

    Directory of Open Access Journals (Sweden)

    Munson Ethan V

    2006-10-01

    Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  19. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions.

    Science.gov (United States)

    Kanoh, Naoki; Asami, Aya; Kawatani, Makoto; Honda, Kaori; Kumashiro, Saori; Takayama, Hiroshi; Simizu, Siro; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Hatakeyama, Satoru; Tsuganezawa, Keiko; Utata, Rei; Tanaka, Akiko; Yokoyama, Shigeyuki; Tashiro, Hideo; Osada, Hiroyuki

    2006-12-18

    We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.

  20. A pilot study of transcription unit analysis in rice using oligonucleotide tiling-path microarray

    DEFF Research Database (Denmark)

    Stolc, Viktor; Li, Lei; Wang, Xiangfeng

    2005-01-01

    As the international efforts to sequence the rice genome are completed, an immediate challenge and opportunity is to comprehensively and accurately define all transcription units in the rice genome. Here we describe a strategy of using high-density oligonucleotide tiling-path microarrays to map...... transcription of the japonica rice genome. In a pilot experiment to test this approach, one array representing the reverse strand of the last 11.2 Mb sequence of chromosome 10 was analyzed in detail based on a mathematical model developed in this study. Analysis of the array data detected 77% of the reference...... gene models in a mixture of four RNA populations. Moreover, significant transcriptional activities were found in many of the previously annotated intergenic regions. These preliminary results demonstrate the utility of genome tiling microarrays in evaluating annotated rice gene models...

  1. Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  2. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  3. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  4. Common Subcluster Mining in Microarray Data for Molecular Biomarker Discovery.

    Science.gov (United States)

    Sadhu, Arnab; Bhattacharyya, Balaram

    2017-10-11

    Molecular biomarkers can be potential facilitators for detection of cancer at early stage which is otherwise difficult through conventional biomarkers. Gene expression data from microarray experiments on both normal and diseased cell samples provide enormous scope to explore genetic relations of disease using computational techniques. Varied patterns of expressions of thousands of genes at different cell conditions along with inherent experimental error make the task of isolating disease related genes challenging. In this paper, we present a data mining method, common subcluster mining (CSM), to discover highly perturbed genes under diseased condition from differential expression patterns. The method builds heap through superposing near centroid clusters from gene expression data of normal samples and extracts its core part. It, thus, isolates genes exhibiting the most stable state across normal samples and constitute a reference set for each centroid. It performs the same operation on datasets from corresponding diseased samples and isolates the genes showing drastic changes in their expression patterns. The method thus finds the disease-sensitive genesets when applied to datasets of lung cancer, prostrate cancer, pancreatic cancer, breast cancer, leukemia and pulmonary arterial hypertension. In majority of the cases, few new genes are found over and above some previously reported ones. Genes with distinct deviations in diseased samples are prospective candidates for molecular biomarkers of the respective disease.

  5. Spacelab experiment computer study. Volume 1: Executive summary (presentation)

    Science.gov (United States)

    Lewis, J. L.; Hodges, B. C.; Christy, J. O.

    1976-01-01

    A quantitative cost for various Spacelab flight hardware configurations is provided along with varied software development options. A cost analysis of Spacelab computer hardware and software is presented. The cost study is discussed based on utilization of a central experiment computer with optional auxillary equipment. Groundrules and assumptions used in deriving the costing methods for all options in the Spacelab experiment study are presented. The groundrules and assumptions, are analysed and the options along with their cost considerations, are discussed. It is concluded that Spacelab program cost for software development and maintenance is independent of experimental hardware and software options, that distributed standard computer concept simplifies software integration without a significant increase in cost, and that decisions on flight computer hardware configurations should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

  6. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    Science.gov (United States)

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  7. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Science.gov (United States)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  8. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  9. A Customized DNA Microarray for Microbial Source Tracking ...

    Science.gov (United States)

    It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking (MST) method is needed to facilitate water quality assessment and impaired water remediation. We report a novel qualitative DNA microarray technology consisting of 453 probes for the detection of general fecal and host-associated bacteria, viruses, antibiotic resistance, and other environmentally relevant genetic indicators. A novel data normalization and reduction approach is also presented to help alleviate false positives often associated with high-density microarray applications. To evaluate the performance of the approach, DNA and cDNA was isolated from swine, cattle, duck, goose and gull fecal reference samples, as well as soiled poultry liter and raw municipal sewage. Based on nonmetric multidimensional scaling analysis of results, findings suggest that the novel microarray approach may be useful for pathogen detection and identification of fecal contamination in recreational waters. The ability to simultaneously detect a large collection of environmentally important genetic indicators in a single test has the potential to provide water quality managers with a wide range of information in a short period of time. Future research is warranted to measure microarray performance i

  10. Computing and data handling recent experiences at Fermilab and SLAC

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1990-01-01

    Computing has become evermore central to the doing of high energy physics. There are now major second and third generation experiments for which the largest single cost is computing. At the same time the availability of ''cheap'' computing has made possible experiments which were previously considered infeasible. The result of this trend has been an explosion of computing and computing needs. I will review here the magnitude of the problem, as seen at Fermilab and SLAC, and the present methods for dealing with it. I will then undertake the dangerous assignment of projecting the needs and solutions forthcoming in the next few years at both laboratories. I will concentrate on the ''offline'' problem; the process of turning terabytes of data tapes into pages of physics journals. 5 refs., 4 figs., 4 tabs

  11. See what you eat--broad GMO screening with microarrays.

    Science.gov (United States)

    von Götz, Franz

    2010-03-01

    Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.

  12. One Head Start Classroom's Experience: Computers and Young Children's Development.

    Science.gov (United States)

    Fischer, Melissa Anne; Gillespie, Catherine Wilson

    2003-01-01

    Contends that early childhood educators need to understand how exposure to computers and constructive computer programs affects the development of children. Specifically examines: (1) research on children's technology experiences; (2) determining best practices; and (3) addressing educators' concerns about computers replacing other developmentally…

  13. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  14. MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis

    Science.gov (United States)

    Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee

    2008-01-01

    We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698

  15. Recommendations for the use of microarrays in prenatal diagnosis.

    Science.gov (United States)

    Suela, Javier; López-Expósito, Isabel; Querejeta, María Eugenia; Martorell, Rosa; Cuatrecasas, Esther; Armengol, Lluis; Antolín, Eugenia; Domínguez Garrido, Elena; Trujillo-Tiebas, María José; Rosell, Jordi; García Planells, Javier; Cigudosa, Juan Cruz

    2017-04-07

    Microarray technology, recently implemented in international prenatal diagnosis systems, has become one of the main techniques in this field in terms of detection rate and objectivity of the results. This guideline attempts to provide background information on this technology, including technical and diagnostic aspects to be considered. Specifically, this guideline defines: the different prenatal sample types to be used, as well as their characteristics (chorionic villi samples, amniotic fluid, fetal cord blood or miscarriage tissue material); variant reporting policies (including variants of uncertain significance) to be considered in informed consents and prenatal microarray reports; microarray limitations inherent to the technique and which must be taken into account when recommending microarray testing for diagnosis; a detailed clinical algorithm recommending the use of microarray testing and its introduction into routine clinical practice within the context of other genetic tests, including pregnancies in families with a genetic history or specific syndrome suspicion, first trimester increased nuchal translucency or second trimester heart malformation and ultrasound findings not related to a known or specific syndrome. This guideline has been coordinated by the Spanish Association for Prenatal Diagnosis (AEDP, «Asociación Española de Diagnóstico Prenatal»), the Spanish Human Genetics Association (AEGH, «Asociación Española de Genética Humana») and the Spanish Society of Clinical Genetics and Dysmorphology (SEGCyD, «Sociedad Española de Genética Clínica y Dismorfología»). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. The Experiment Method for Manufacturing Grid Development on Single Computer

    Institute of Scientific and Technical Information of China (English)

    XIAO Youan; ZHOU Zude

    2006-01-01

    In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.

  17. A Versatile Microarray Platform for Capturing Rare Cells

    Science.gov (United States)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  18. Distributed computing grid experiences in CMS

    CERN Document Server

    Andreeva, Julia; Barrass, T; Bonacorsi, D; Bunn, Julian; Capiluppi, P; Corvo, M; Darmenov, N; De Filippis, N; Donno, F; Donvito, G; Eulisse, G; Fanfani, A; Fanzago, F; Filine, A; Grandi, C; Hernández, J M; Innocente, V; Jan, A; Lacaprara, S; Legrand, I; Metson, S; Newbold, D; Newman, H; Pierro, A; Silvestris, L; Steenberg, C; Stockinger, H; Taylor, Lucas; Thomas, M; Tuura, L; Van Lingen, F; Wildish, Tony

    2005-01-01

    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data- taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure ...

  19. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  20. Automatization of physical experiments on-line with the MINSK-32 computer

    International Nuclear Information System (INIS)

    Fefilov, B.V.; Mikhushkin, A.V.; Morozov, V.M.; Sukhov, A.M.; Chelnokov, L.P.

    1978-01-01

    The system for data acquisition and processing of complex multi-dimensional experiments is described. The system includes the autonomous modules in the CAMAC standard, the NAIRI-4 small computer and the MINSK-32 base computer. The NAIRI-4 computer effects preliminary storage, data processing and experiment control. Its software includes the microprogram software of the NAIRI-4 computer, the software of the NAIRI-2 computer, the software of the PDP-11 computer, the technological software on the Es computers. A crate controller and a display driver are connected to the main channel for the operation of the NAIRI-4 computer on line with experimental devices. An input-output channel commutator, which transforms the MINSK-32 computer levels to the TTL levels and vice versa, was developed to enlarge the possibilities of the connection of the measurement modules to the MINSK-32 computer. The graphic display on the basis of the HP-1300A monitor with a light pencil is used for highly effective spectrum processing

  1. Support vector machine classification and validation of cancer tissue samples using microarray expression data.

    Science.gov (United States)

    Furey, T S; Cristianini, N; Duffy, N; Bednarski, D W; Schummer, M; Haussler, D

    2000-10-01

    DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.

  2. Geiger mode avalanche photodiodes for microarray systems

    Science.gov (United States)

    Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan

    2002-06-01

    New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.

  3. Support vector machine and principal component analysis for microarray data classification

    Science.gov (United States)

    Astuti, Widi; Adiwijaya

    2018-03-01

    Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.

  4. Advanced Data Mining of Leukemia Cells Micro-Arrays

    OpenAIRE

    Richard S. Segall; Ryan M. Pierce

    2009-01-01

    This paper provides continuation and extensions of previous research by Segall and Pierce (2009a) that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM). As Segall and Pierce (2009a) and Segall and Pierce (2009b) the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is pro...

  5. Gene selection for microarray data classification via subspace learning and manifold regularization.

    Science.gov (United States)

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  6. An experiment for determining the Euler load by direct computation

    Science.gov (United States)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  7. Framework for emotional mobile computation for creating entertainment experience

    Science.gov (United States)

    Lugmayr, Artur R.

    2007-02-01

    Ambient media are media, which are manifesting in the natural environment of the consumer. The perceivable borders between the media and the context, where the media is used are getting more and more blurred. The consumer is moving through a digital space of services throughout his daily life. As we are developing towards an experience society, the central point in the development of services is the creation of a consumer experience. This paper reviews possibilities and potentials of the creation of entertainment experiences with mobile phone platforms. It reviews sensor network capable of acquiring consumer behavior data, interactivity strategies, psychological models for emotional computation on mobile phones, and lays the foundations of a nomadic experience society. The paper rounds up with a presentation of several different possible service scenarios in the field of entertainment and leisure computation on mobiles. The goal of this paper is to present a framework and evaluation of possibilities of applying sensor technology on mobile platforms to create an increasing consumer entertainment experience.

  8. Normal uniform mixture differential gene expression detection for cDNA microarrays

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2005-07-01

    Full Text Available Abstract Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002 1. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM, and Empirical Bayes for microarrays (EBarrays with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at http://www.bioconductor.org.

  9. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  10. Expertik: Experience with Artificial Intelligence and Mobile Computing

    Directory of Open Access Journals (Sweden)

    José Edward Beltrán Lozano

    2013-06-01

    Full Text Available This article presents the experience in the development of services based in Artificial Intelligence, Service Oriented Architecture, mobile computing. It aims to combine technology offered by mobile computing provides techniques and artificial intelligence through a service provide diagnostic solutions to problems in industrial maintenance. It aims to combine technology offered by mobile computing and the techniques artificial intelligence through a service to provide diagnostic solutions to problems in industrial maintenance. For service creation are identified the elements of an expert system, the knowledge base, the inference engine and knowledge acquisition interfaces and their consultation. The applications were developed in ASP.NET under architecture three layers. The data layer was developed conjunction in SQL Server with data management classes; business layer in VB.NET and the presentation layer in ASP.NET with XHTML. Web interfaces for knowledge acquisition and query developed in Web and Mobile Web. The inference engine was conducted in web service developed for the fuzzy logic model to resolve requests from applications consulting knowledge (initially an exact rule-based logic within this experience to resolve requests from applications consulting knowledge. This experience seeks to strengthen a technology-based company to offer services based on AI for service companies Colombia.

  11. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  12. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses

    Directory of Open Access Journals (Sweden)

    Deising Holger B

    2011-01-01

    . Comparative analyses with published microarray experiments obtained from two different nutritional stress conditions identified subsets of genes responding to different types of stress. Some of the genes that responded only to tebuconazole treatment appeared to be unique to the F. graminearum genome. Conclusions The novel F. graminearum 8 × 15 k microarray is a reliable and efficient high-throughput tool for genome-wide expression profiling experiments in fungicide research, and beyond, as shown by our data obtained for azole responses. The array data contribute to understanding mechanisms of fungicide resistance and allow identifying fungicide targets.

  13. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    Science.gov (United States)

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  14. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    Directory of Open Access Journals (Sweden)

    Zhiqing Guo

    2017-06-01

    Full Text Available A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR, a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  15. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    Science.gov (United States)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  16. Improved microarray-based decision support with graph encoded interactome data.

    Directory of Open Access Journals (Sweden)

    Anneleen Daemen

    Full Text Available In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG, protein-protein interactions (OPHID and miRNA-gene targeting (microRNA.org outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method.

  17. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  18. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  19. Fluorescent microarray for multiplexed quantification of environmental contaminants in seawater samples

    Science.gov (United States)

    The development of a fluorescent multiplexed microarray platform able to detect and quantify a wide variety of pollutants in seawater is reported. The microarray platform has been manufactured by spotting 6 different bioconjugate competitors and it uses a cocktail of 6 monoclonal and polyclonal anti...

  20. Calling biomarkers in milk using a protein microarray on your smartphone

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Tokarski, Christian; Lang, Stefan N.; Ginkel, Van L.A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, M.W.F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay

  1. The intraclass correlation coefficient applied for evaluation of data correction, labeling methods and rectal biopsy sampling in DNA microarray experiments

    NARCIS (Netherlands)

    Pellis, E.P.M.; Franssen-Hal, van N.L.W.; Burema, J.; Keijer, J.

    2003-01-01

    We show that the intraclass correlation coefficient (ICC) can be used as a relatively simple statistical measure to assess methodological and biological variation in DNA microarray analysis. The ICC is a measure that determines the reproducibility of a variable, which can easily be calculated from

  2. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    Directory of Open Access Journals (Sweden)

    Hyunseok P Kang

    2010-01-01

    Full Text Available Background: Tissue microarrays (TMAs are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF provides a flexible method to represent knowledge in triples, which take the form Subject- Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs, which are global in scope. We present an OWL (Web Ontology Language schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts.

  3. Using microarray analysis as a prognostic and predictive tool in oncology: focus on breast cancer and normal tissue toxicity

    NARCIS (Netherlands)

    Nuyten, Dimitry S. A.; van de Vijver, Marc J.

    2008-01-01

    Microarray analysis makes it possible to study the expression levels of tens of thousands of genes in one single experiment and is widely available for research purposes. Gene expression profiling is currently being used in many research projects aimed at identifying gene expression signatures in

  4. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  5. BioconductorBuntu: a Linux distribution that implements a web-based DNA microarray analysis server.

    Science.gov (United States)

    Geeleher, Paul; Morris, Dermot; Hinde, John P; Golden, Aaron

    2009-06-01

    BioconductorBuntu is a custom distribution of Ubuntu Linux that automatically installs a server-side microarray processing environment, providing a user-friendly web-based GUI to many of the tools developed by the Bioconductor Project, accessible locally or across a network. System installation is via booting off a CD image or by using a Debian package provided to upgrade an existing Ubuntu installation. In its current version, several microarray analysis pipelines are supported including oligonucleotide, dual-or single-dye experiments, including post-processing with Gene Set Enrichment Analysis. BioconductorBuntu is designed to be extensible, by server-side integration of further relevant Bioconductor modules as required, facilitated by its straightforward underlying Python-based infrastructure. BioconductorBuntu offers an ideal environment for the development of processing procedures to facilitate the analysis of next-generation sequencing datasets. BioconductorBuntu is available for download under a creative commons license along with additional documentation and a tutorial from (http://bioinf.nuigalway.ie).

  6. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  7. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    International Nuclear Information System (INIS)

    Herbáth, Melinda; Balogh, Andrea; Matkó, János; Papp, Krisztián; Prechl, József

    2014-01-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  8. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  9. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  10. Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France

    Directory of Open Access Journals (Sweden)

    Linda K. Medlin

    2013-03-01

    Full Text Available Harmful algal blooms (HABs occur worldwide, causing health problems and economic damages to fisheries and tourism. Monitoring agencies are therefore essential, yet monitoring is based only on time-consuming light microscopy, a level at which a correct identification can be limited by insufficient morphological characters. The project MIDTAL (Microarray Detection of Toxic Algae—an FP7-funded EU project—used rRNA genes (SSU and LSU as a target on microarrays to identify toxic species. Furthermore, toxins were detected with a newly developed multiplex optical Surface Plasmon Resonance biosensor (Multi SPR and compared with an enzyme-linked immunosorbent assay (ELISA. In this study, we demonstrate the latest generation of MIDTAL microarrays (version 3 and show the correlation between cell counts, detected toxin and microarray signals from field samples taken in Arcachon Bay in France in 2011. The MIDTAL microarray always detected more potentially toxic species than those detected by microscopic counts. The toxin detection was even more sensitive than both methods. Because of the universal nature of both toxin and species microarrays, they can be used to detect invasive species. Nevertheless, the MIDTAL microarray is not completely universal: first, because not all toxic species are on the chip, and second, because invasive species, such as Ostreopsis, already influence European coasts.

  11. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    Science.gov (United States)

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  13. Broad spectrum microarray for fingerprint-based bacterial species identification

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-02-01

    Full Text Available Abstract Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups.

  14. Microarrays: Molecular allergology and nanotechnology for personalised medicine (II).

    Science.gov (United States)

    Lucas, J M

    2010-01-01

    Progress in nanotechnology and DNA recombination techniques have produced tools for the diagnosis and investigation of allergy at molecular level. The most advanced examples of such progress are the microarray techniques, which have been expanded not only in research in the field of proteomics but also in application to the clinical setting. Microarrays of allergic components offer results relating to hundreds of allergenic components in a single test, and using a small amount of serum which can be obtained from capillary blood. The availability of new molecules will allow the development of panels including new allergenic components and sources, which will require evaluation for clinical use. Their application opens the door to component-based diagnosis, to the holistic perception of sensitisation as represented by molecular allergy, and to patient-centred medical practice by allowing great diagnostic accuracy and the definition of individualised immunotherapy for each patient. The present article reviews the application of allergenic component microarrays to allergology for diagnosis, management in the form of specific immunotherapy, and epidemiological studies. A review is also made of the use of protein and gene microarray techniques in basic research and in allergological diseases. Lastly, an evaluation is made of the challenges we face in introducing such techniques to clinical practice, and of the future perspectives of this new technology. Copyright 2010 SEICAP. Published by Elsevier Espana. All rights reserved.

  15. Computing activities for the P-bar ANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Messchendorp, Johan

    2010-01-01

    The P-bar ANDA experiment at the future facility FAIR will provide valuable data for our present understanding of the strong interaction. In preparation for the experiments, large-scale simulations for design and feasibility studies are performed exploiting a new software framework, P-bar ANDAROOT, which is based on FairROOT and the Virtual Monte Carlo interface, and which runs on a large-scale computing GRID environment exploiting the AliEn 2 middleware. In this paper, an overview is given of the P-bar ANDA experiment with the emphasis on the various developments which are pursuit to provide a user and developer friendly computing environment for the P-bar ANDA collaboration.

  16. THE MAQC PROJECT: ESTABLISHING QC METRICS AND THRESHOLDS FOR MICROARRAY QUALITY CONTROL

    Science.gov (United States)

    Microarrays represent a core technology in pharmacogenomics and toxicogenomics; however, before this technology can successfully and reliably be applied in clinical practice and regulatory decision-making, standards and quality measures need to be developed. The Microarray Qualit...

  17. Normalization and gene p-value estimation: issues in microarray data processing.

    Science.gov (United States)

    Fundel, Katrin; Küffner, Robert; Aigner, Thomas; Zimmer, Ralf

    2008-05-28

    Numerous methods exist for basic processing, e.g. normalization, of microarray gene expression data. These methods have an important effect on the final analysis outcome. Therefore, it is crucial to select methods appropriate for a given dataset in order to assure the validity and reliability of expression data analysis. Furthermore, biological interpretation requires expression values for genes, which are often represented by several spots or probe sets on a microarray. How to best integrate spot/probe set values into gene values has so far been a somewhat neglected problem. We present a case study comparing different between-array normalization methods with respect to the identification of differentially expressed genes. Our results show that it is feasible and necessary to use prior knowledge on gene expression measurements to select an adequate normalization method for the given data. Furthermore, we provide evidence that combining spot/probe set p-values into gene p-values for detecting differentially expressed genes has advantages compared to combining expression values for spots/probe sets into gene expression values. The comparison of different methods suggests to use Stouffer's method for this purpose. The study has been conducted on gene expression experiments investigating human joint cartilage samples of osteoarthritis related groups: a cDNA microarray (83 samples, four groups) and an Affymetrix (26 samples, two groups) data set. The apparently straight forward steps of gene expression data analysis, e.g. between-array normalization and detection of differentially regulated genes, can be accomplished by numerous different methods. We analyzed multiple methods and the possible effects and thereby demonstrate the importance of the single decisions taken during data processing. We give guidelines for evaluating normalization outcomes. An overview of these effects via appropriate measures and plots compared to prior knowledge is essential for the biological

  18. Computer simulation of Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.

    We present a computer simulation model of Wheeler's delayed-choice experiment that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315 (2007) 966). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not

  19. Computing for ongoing experiments on high energy physics in LPP, JINR

    International Nuclear Information System (INIS)

    Belosludtsev, D.A.; Zhil'tsov, V.E.; Zinchenko, A.I.; Kekelidze, V.D.; Madigozhin, D.T.; Potrebenikov, Yu.K.; Khabarov, S.V.; Shkarovskij, S.N.; Shchinov, B.G.

    2004-01-01

    The computer infrastructure made at the Laboratory of Particle Physics, JINR, purposed for active participation of JINR experts in ongoing experiments on particle and nuclear physics is presented. The principles of design and construction of the personal computer farm have been given and the used computer and informational services for effective application of distributed computer resources have been described

  20. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Directory of Open Access Journals (Sweden)

    Beaudoing Emmanuel

    2006-09-01

    Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

  1. TRANSFORMING RURAL SECONDARY SCHOOLS IN ZIMBABWE THROUGH TECHNOLOGY: LIVED EXPERIENCES OF STUDENT COMPUTER USERS

    Directory of Open Access Journals (Sweden)

    Gomba Clifford

    2016-04-01

    Full Text Available A technological divide exists in Zimbabwe between urban and rural schools that puts rural based students at a disadvantage. In Zimbabwe, the government, through the president donated computers to most rural schools in a bid to bridge the digital divide between rural and urban schools. The purpose of this phenomenological study was to understand the experiences of Advanced Level students using computers at two rural boarding Catholic High Schools in Zimbabwe. The study was guided by two research questions: (1 How do Advanced level students in the rural areas use computers at their school? and (2 What is the experience of using computers for Advanced Level students in the rural areas of Zimbabwe? By performing this study, it was possible to understand from the students’ experiences whether computer usage was for educational learning or not. The results of the phenomenological study showed that students’ experiences can be broadly classified into five themes, namely worthwhile (interesting experience, accessibility issues, teachers’ monopoly, research and social use, and Internet availability. The participants proposed teachers use computers, but not monopolize computer usage. The solution to the computer shortage may be solved by having donors and government help in the acquisitioning of more computers.

  2. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  3. Generalized Bell-inequality experiments and computation

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, Matty J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD (United Kingdom); Wallman, Joel J. [School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Browne, Dan E. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2011-12-15

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  4. Generalized Bell-inequality experiments and computation

    International Nuclear Information System (INIS)

    Hoban, Matty J.; Wallman, Joel J.; Browne, Dan E.

    2011-01-01

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  5. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  6. A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera.

    Science.gov (United States)

    Sachse, Konrad; Rahman, Kh Shamsur; Schnee, Christiane; Müller, Elke; Peisker, Madlen; Schumacher, Thomas; Schubert, Evelyn; Ruettger, Anke; Kaltenboeck, Bernhard; Ehricht, Ralf

    2018-03-16

    Serological analysis of Chlamydia (C.) spp. infections is still mainly based on micro-immunofluorescence and ELISA. To overcome the limitations of conventional serology, we have designed a novel microarray carrying 52 synthetic peptides representing B-cell epitopes from immunodominant proteins of all 11 chlamydial species. The new assay has been validated using monospecific mouse hyperimmune sera. Subsequently, serum samples from cattle, sheep and humans with a known history of chlamydial infection were examined. For instance, the specific humoral response of sheep to treatment with a C. abortus vaccine has been visualized against a background of C. pecorum carriership. In samples from humans, dual infection with C. trachomatis and C. pneumoniae could be demonstrated. The experiments revealed that the peptide microarray assay was capable of simultaneously identifying specific antibodies to each Chlamydia spp. The actual assay represents an open platform test that can be complemented through future advances in Chlamydia proteome research. The concept of the highly parallel multi-antigen microarray proven in this study has the potential to enhance our understanding of antibody responses by defining not only a single quantitative response, but also the pattern of this response. The added value of using peptide antigens will consist in unprecedented serodiagnostic specificity.

  7. A statistical framework for differential network analysis from microarray data

    Directory of Open Access Journals (Sweden)

    Datta Somnath

    2010-02-01

    Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the

  8. LNA-modified isothermal oligonucleotide microarray for ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... the advent of DNA microarray techniques (Lee et al. 2007). ... atoms of ribose to form a bicyclic ribosyl structure. It is the .... 532 nm and emission at 570 nm. The signal ..... sis and validation using real-time PCR. Nucleic Acids ...

  9. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification

    Directory of Open Access Journals (Sweden)

    Wang Lily

    2008-07-01

    Full Text Available Abstract Background Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work, however, suggests that random forest classifiers may outperform support vector machines in this domain. Results In the present paper we identify methodological biases of prior work comparing random forests and support vector machines and conduct a new rigorous evaluation of the two algorithms that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and show that support vector machines outperform random forests, often by a large margin. Our data also underlines the importance of sound research design in benchmarking and comparison of bioinformatics algorithms. Conclusion We found that both on average and in the majority of microarray datasets, random forests are outperformed by support vector machines both in the settings when no gene selection is performed and when several popular gene selection methods are used.

  10. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  11. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  12. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture. (DEN ... Keywords: Diabetes, Gene expression, Dendrobium mixture, Microarray testing ..... homeostasis in airway smooth muscle. Am J.

  13. Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes

    Directory of Open Access Journals (Sweden)

    Bihoreau Marie-Thérèse

    2009-02-01

    Full Text Available Abstract Background Microarray technologies are widely used to quantify the abundance of transcripts corresponding to thousands of genes. To maximise the robustness of transcriptome results, we have tested the performance and reproducibility of rat and mouse gene expression data obtained with Affymetrix, Illumina and Operon platforms. Results We present a thorough analysis of the degree of reproducibility provided by analysing the transcriptomic profile of the same animals of several experimental groups under different popular microarray technologies in different tissues. Concordant results from inter- and intra-platform comparisons were maximised by testing many popular computational methods for generating fold changes and significances and by only considering oligonucleotides giving high expression levels. The choice of Affymetrix signal extraction technique was shown to have the greatest effect on the concordance across platforms. In both species, when choosing optimal methods, the agreement between data generated on the Affymetrix and Illumina was excellent; this was verified using qRT-PCR on a selection of genes present on all platforms. Conclusion This study provides an extensive assessment of analytical methods best suited for processing data from different microarray technologies and can assist integration of technologically different gene expression datasets in biological systems.

  14. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    Directory of Open Access Journals (Sweden)

    Toome Kadri

    2011-02-01

    Full Text Available Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  15. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    LENUS (Irish Health Repository)

    Scheler, Ott

    2011-02-28

    Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification) amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal\\/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  16. Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips

    Science.gov (United States)

    Lee, Yun-Shien; Chen, Chun-Houh; Tsai, Chi-Neu; Tsai, Chia-Lung; Chao, Angel; Wang, Tzu-Hao

    2009-01-01

    Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11–20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that ‘labeling extension values (LEVs)’, which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukayotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of ‘laboratory signatures’. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data. PMID:19295132

  17. Biomarker Identification for Prostate Cancer and Lymph Node Metastasis from Microarray Data and Protein Interaction Network Using Gene Prioritization Method

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Arias

    2012-01-01

    Full Text Available Finding a genetic disease-related gene is not a trivial task. Therefore, computational methods are needed to present clues to the biomedical community to explore genes that are more likely to be related to a specific disease as biomarker. We present biomarker identification problem using gene prioritization method called gene prioritization from microarray data based on shortest paths, extended with structural and biological properties and edge flux using voting scheme (GP-MIDAS-VXEF. The method is based on finding relevant interactions on protein interaction networks, then scoring the genes using shortest paths and topological analysis, integrating the results using a voting scheme and a biological boosting. We applied two experiments, one is prostate primary and normal samples and the other is prostate primary tumor with and without lymph nodes metastasis. We used 137 truly prostate cancer genes as benchmark. In the first experiment, GP-MIDAS-VXEF outperforms all the other state-of-the-art methods in the benchmark by retrieving the truest related genes from the candidate set in the top 50 scores found. We applied the same technique to infer the significant biomarkers in prostate cancer with lymph nodes metastasis which is not established well.

  18. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    Science.gov (United States)

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  19. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    Science.gov (United States)

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  20. Immobilization Techniques for Microarray: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Satish Balasaheb Nimse

    2014-11-01

    Full Text Available The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.

  1. Computing for Lattice QCD: new developments from the APE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Biagioni, A; De Luca, S [INFN, Sezione di Roma, Roma (Italy)

    2008-06-15

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  2. Computing for Lattice QCD: new developments from the APE experiment

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; De Luca, S.

    2008-01-01

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  3. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    Science.gov (United States)

    2012-01-01

    Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In

  4. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  5. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice

    Science.gov (United States)

    van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.

    2015-01-01

    Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674

  6. Status of the Grid Computing for the ALICE Experiment in the Czech Republic

    International Nuclear Information System (INIS)

    Adamova, D; Hampl, J; Chudoba, J; Kouba, T; Svec, J; Mendez, Lorenzo P; Saiz, P

    2010-01-01

    The Czech Republic (CR) has been participating in the LHC Computing Grid project (LCG) ever since 2003 and gradually, a middle-sized Tier-2 center has been built in Prague, delivering computing services for national HEP experiments groups including the ALICE project at the LHC. We present a brief overview of the computing activities and services being performed in the CR for the ALICE experiment.

  7. The MGED Ontology: A Framework for Describing Functional Genomics Experiments

    OpenAIRE

    Stoeckert, Christian J.; Parkinson, Helen

    2003-01-01

    The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organism...

  8. Microarray analysis in the archaeon Halobacterium salinarum strain R1.

    Directory of Open Access Journals (Sweden)

    Jens Twellmeyer

    Full Text Available BACKGROUND: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. METHODOLOGY/PRINCIPAL FINDINGS: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. CONCLUSION/SIGNIFICANCE: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis.

  9. Reproducibility of gene expression across generations of Affymetrix microarrays

    Directory of Open Access Journals (Sweden)

    Haslett Judith N

    2003-06-01

    Full Text Available Abstract Background The development of large-scale gene expression profiling technologies is rapidly changing the norms of biological investigation. But the rapid pace of change itself presents challenges. Commercial microarrays are regularly modified to incorporate new genes and improved target sequences. Although the ability to compare datasets across generations is crucial for any long-term research project, to date no means to allow such comparisons have been developed. In this study the reproducibility of gene expression levels across two generations of Affymetrix GeneChips® (HuGeneFL and HG-U95A was measured. Results Correlation coefficients were computed for gene expression values across chip generations based on different measures of similarity. Comparing the absolute calls assigned to the individual probe sets across the generations found them to be largely unchanged. Conclusion We show that experimental replicates are highly reproducible, but that reproducibility across generations depends on the degree of similarity of the probe sets and the expression level of the corresponding transcript.

  10. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    Directory of Open Access Journals (Sweden)

    Kaplinski Lauris

    2009-05-01

    Full Text Available Abstract Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology.

  11. The BaBar experiment's distributed computing model

    International Nuclear Information System (INIS)

    Boutigny, D.

    2001-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multitier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT format and later in Objectivity format. GRID tools will be used for remote job submission

  12. The BaBar Experiment's Distributed Computing Model

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multi-tier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT[1] format and later in Objectivity[2] format. GRID tools will be used for remote job submission

  13. A probabilistic framework for microarray data analysis: fundamental probability models and statistical inference.

    Science.gov (United States)

    Ogunnaike, Babatunde A; Gelmi, Claudio A; Edwards, Jeremy S

    2010-05-21

    Gene expression studies generate large quantities of data with the defining characteristic that the number of genes (whose expression profiles are to be determined) exceed the number of available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to extract useful information for each gene on the basis of the number of available replicates, and thus plays to the weakness of microarrays. On the other hand, because of the data volume, treating the entire data set as an ensemble, and developing theoretical distributions for these ensembles provides a framework that plays instead to the strength of microarrays. We present theoretical results that under reasonable assumptions, the distribution of microarray intensities follows the Gamma model, with the biological interpretations of the model parameters emerging naturally. We subsequently establish that for each microarray data set, the fractional intensities can be represented as a mixture of Beta densities, and develop a procedure for using these results to draw statistical inference regarding differential gene expression. We illustrate the results with experimental data from gene expression studies on Deinococcus radiodurans following DNA damage using cDNA microarrays. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. CMS distributed computing workflow experience

    Science.gov (United States)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D.; Prosper, Harrison B.; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao, Junhui; Pin, Arnaud; Schul, Nicolas; De Lentdecker, Gilles; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey; Barge, Derek; Lahiff, Andrew

    2011-12-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  15. CMS distributed computing workflow experience

    International Nuclear Information System (INIS)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D; Prosper, Harrison B; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao Junhui; Pin, Arnaud; Schul, Nicolas; Lentdecker, Gilles De; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey

    2011-01-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  16. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  17. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    Science.gov (United States)

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  18. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  19. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    at identifying the exact breakpoints where DNA has been gained or lost. In this thesis, three popular methods are compared and a realistic simulation model is presented for generating artificial data with known breakpoints and known DNA copy number. By using simulated data, we obtain a realistic evaluation......During the past few years, innovations in the DNA sequencing technology has led to an explosion in available DNA sequence information. This has revolutionized biological research and promoted the development of high throughput analysis methods that can take advantage of the vast amount of sequence...... data. For this, the DNA microarray technology has gained enormous popularity due to its ability to measure the presence or the activity of thousands of genes simultaneously. Microarrays for high throughput data analyses are not limited to a few organisms but may be applied to everything from bacteria...

  20. Robust gene selection methods using weighting schemes for microarray data analysis.

    Science.gov (United States)

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  1. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  2. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    Directory of Open Access Journals (Sweden)

    Yamada Yoichi

    2012-12-01

    Full Text Available Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO. MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO correctly identified (p Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively.

  3. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  4. The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2010-03-01

    Full Text Available Abstract Background Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results The IronChip Evaluation Package (ICEP is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section and at: http://www.alice-dsl.net/evgeniy.vainshtein/ICEP/

  5. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  6. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    Science.gov (United States)

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct

  7. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  8. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  9. A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Primmer Craig R

    2009-09-01

    Full Text Available Abstract Background The use of microarray technology for describing changes in mRNA expression to address ecological and evolutionary questions is becoming increasingly popular. Since three-spine stickleback are an important ecological and evolutionary model-species as well as an emerging model for eco-toxicology, the ability to have a functional and flexible microarray platform for transcriptome studies will greatly enhance the research potential in these areas. Results We designed 43,392 unique oligonucleotide probes representing 19,274 genes (93% of the estimated total gene number, and tested the hybridization performance of both DNA and RNA from different populations to determine the efficacy of probe design for transcriptome analysis using the Agilent array platform. The majority of probes were functional as evidenced by the DNA hybridization success, and 30,946 probes (14,615 genes had a signal that was significantly above background for RNA isolated from liver tissue. Genes identified as being expressed in liver tissue were grouped into functional categories for each of the three Gene Ontology groups: biological process, molecular function, and cellular component. As expected, the highest proportions of functional categories belonged to those associated with metabolic functions: metabolic process, binding, catabolism, and organelles. Conclusion The probe and microarray design presented here provides an important step facilitating transcriptomics research for this important research organism by providing a set of over 43,000 probes whose hybridization success and specificity to liver expression has been demonstrated. Probes can easily be added or removed from the current design to tailor the array to specific experiments and additional flexibility lies in the ability to perform either one-color or two-color hybridizations.

  10. Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm

    Science.gov (United States)

    Annavarapu, Chandra Sekhara Rao; Dara, Suresh; Banka, Haider

    2016-01-01

    Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude domain features from the initial feature set. Since these pre-processed and reduced features are still high dimensional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive capability of those selected subsets. As these two objective functions are conflicting in nature, they are more suitable for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative study is also made to show the betterment or competitiveness of the proposed algorithm. PMID:27822174

  11. Comparing transformation methods for DNA microarray data

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2004-01-01

    Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include

  12. Constructing Tissue Microarrays: Protocols and Methods Considering Potential Advantages and Disadvantages for Downstream Use.

    Science.gov (United States)

    Bingle, Lynne; Fonseca, Felipe P; Farthing, Paula M

    2017-01-01

    Tissue microarrays were first constructed in the 1980s but were used by only a limited number of researchers for a considerable period of time. In the last 10 years there has been a dramatic increase in the number of publications describing the successful use of tissue microarrays in studies aimed at discovering and validating biomarkers. This, along with the increased availability of both manual and automated microarray builders on the market, has encouraged even greater use of this novel and powerful tool. This chapter describes the basic techniques required to build a tissue microarray using a manual method in order that the theory behind the practical steps can be fully explained. Guidance is given to ensure potential disadvantages of the technique are fully considered.

  13. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called

  14. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Detection of mutations using microarrays of poly(C)10-poly(T)10 modified DNA probes immobilized on agarose films

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Petersen, Jesper; Stoltenborg, M.

    2006-01-01

    Allele-specific hybridization to a DNA microarray call be a useful method for genotyping patient DNA. In this article, we demonstrate that 13- to 17-base oligonucleotides tagged with a poly(T)10-poly(C)10 tail (TC tag), but otherwise unmodified, can be crosslinked by UV light irradiation to an ag......Allele-specific hybridization to a DNA microarray call be a useful method for genotyping patient DNA. In this article, we demonstrate that 13- to 17-base oligonucleotides tagged with a poly(T)10-poly(C)10 tail (TC tag), but otherwise unmodified, can be crosslinked by UV light irradiation...... to an agarose film grafted onto unmodified glass. Microarrays of TC-tagged probes immobilized on the agarose film can be used to diagnose Mutations in the human P-globin gene, which encodes the beta-chains in hemoglobin. Although the probes differed widely regarding inciting point temperature (similar to 20...... degrees C), a single stringency wash still gave sufficiently high discrimination signals between perfect match and mismatch probes to allow robust mutation detection. In all, 270 genotypings were performed on patient materials, and no genotype was incorrectly classified. Quality control experiments...

  16. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    OpenAIRE

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulat...

  17. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    OpenAIRE

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surface...

  18. Precision grinding of microarray lens molding die with 4-axes controlled microwheel

    Directory of Open Access Journals (Sweden)

    Yuji Yamamoto, Hirofumi Suzuki, Takashi Onishi1, Tadashi Okino and Toshimichi Moriwaki

    2007-01-01

    Full Text Available This paper deals with precision grinding of microarray lens (fly eye molding die by using a resinoid bonded diamond wheel. An ultra-precision grinding system of microarray lens molding die and new truing method of resinoid bonded diamond wheel were developed. In this system, a grinding wheel was four-dimensionally controlled with 1 nm resolution by linear scale feedback system and scanned on the workpiece surface. New truing method by using a vanadium alloy tool was developed and its performance was obtained with high preciseness and low wheel wear. Finally, the microarray lens molding dies of fine grain tungsten carbide (WC was tested with the resinoid bonded diamond wheel to evaluate grinding performance.

  19. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

    DEFF Research Database (Denmark)

    Baum, Andreas; Dominiak, Malgorzata Maria; Vidal-Melgosa, Silvia

    2017-01-01

    and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal...... extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed......, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts....

  20. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    Science.gov (United States)

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  1. PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments

    Directory of Open Access Journals (Sweden)

    Hannah Matthew A

    2006-12-01

    Full Text Available Abstract Background Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Results Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs. PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis. PageMan offers a complete user's guide, a web-based over-representation analysis as

  2. CONFIRMING MICROARRAY DATA--IS IT REALLY NECESSARY?

    Science.gov (United States)

    The generation of corroborative data has become a commonly used approach for ensuring the veracity of microarray data. Indeed, the need to conduct corroborative studies has now become official editorial policy for at least two journals, and several more are considering introducin...

  3. FPGA Compute Acceleration for High-Throughput Data Processing in High-Energy Physics Experiments

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The upgrades of the four large experiments of the LHC at CERN in the coming years will result in a huge increase of data bandwidth for each experiment which needs to be processed very efficiently. For example the LHCb experiment will upgrade its detector 2019/2020 to a 'triggerless' readout scheme, where all of the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40MHz. This increases the data bandwidth from the detector down to the event filter farm to 40TBit/s, which must be processed to select the interesting proton-proton collisions for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered.    In the high performance computing sector more and more FPGA compute accelerators are being used to improve the compute performance and reduce the...

  4. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  5. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  6. Application verification research of cloud computing technology in the field of real time aerospace experiment

    Science.gov (United States)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  7. Improvement in the amine glass platform by bubbling method for a DNA microarray

    Directory of Open Access Journals (Sweden)

    Jee SH

    2015-10-01

    Full Text Available Seung Hyun Jee,1 Jong Won Kim,2 Ji Hyeong Lee,2 Young Soo Yoon11Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi, Republic of Korea; 2Genomics Clinical Research Institute, LabGenomics Co., Ltd., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of KoreaAbstract: A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. Keywords: DNA microarray, glass platform, bubbling method, self-assambled monolayer

  8. Fuzzy support vector machine for microarray imbalanced data classification

    Science.gov (United States)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  9. Development of a Genome-Proxy Microarray for Profiling Marine Microbial Communities and its Application to a Time Series in Monterey Bay, California

    Science.gov (United States)

    2008-09-01

    AutoGenprep 960 ( AutoGen , Holliston, Massachusetts) auto- mated extraction robot, followed by treatment to digest Eschehchia coli DNA with ATP-dependent...Acknowledgements We thank Joseph DeRisi and David Wang for advice about array design, Andrew Gracey and George Somero for microarray training , Dennis Ryan for...computational assis- tance, Penny Chisholm for incubator space and inocula for growing the Prochlorococcus cultures, and Matthew Sullivan for training

  10. 16S rRNA based microarray analysis of ten periodontal bacteria in patients with different forms of periodontitis.

    Science.gov (United States)

    Topcuoglu, Nursen; Kulekci, Guven

    2015-10-01

    DNA microarray analysis is a computer based technology, that a reverse capture, which targets 10 periodontal bacteria (ParoCheck) is available for rapid semi-quantitative determination. The aim of this three-year retrospective study was to display the microarray analysis results for the subgingival biofilm samples taken from patient cases diagnosed with different forms of periodontitis. A total of 84 patients with generalized aggressive periodontitis (GAP,n:29), generalized chronic periodontitis (GCP, n:25), peri-implantitis (PI,n:14), localized aggressive periodontitis (LAP,n:8) and refractory chronic periodontitis (RP,n:8) were consecutively selected from the archives of the Oral Microbiological Diagnostic Laboratory. The subgingival biofilm samples were analyzed by the microarray-based identification of 10 selected species. All the tested species were detected in the samples. The red complex bacteria were the most prevalent with very high levels in all groups. Fusobacterium nucleatum was detected in all samples at high levels. The green and blue complex bacteria were less prevalent compared with red and orange complex, except Aggregatibacter actinomycetemcomitas was detected in all LAP group. Positive correlations were found within all the red complex bacteria and between red and orange complex bacteria especially in GCP and GAP groups. Parocheck enables to monitoring of periodontal pathogens in all forms of periodontal disease and can be alternative to other guiding and reliable microbiologic tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Piya Lahiry

    Full Text Available BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Finally, we used gene ontology (GO to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively. Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation.

  12. Automating dChip: toward reproducible sharing of microarray data analysis

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-05-01

    Full Text Available Abstract Background During the past decade, many software packages have been developed for analysis and visualization of various types of microarrays. We have developed and maintained the widely used dChip as a microarray analysis software package accessible to both biologist and data analysts. However, challenges arise when dChip users want to analyze large number of arrays automatically and share data analysis procedures and parameters. Improvement is also needed when the dChip user support team tries to identify the causes of reported analysis errors or bugs from users. Results We report here implementation and application of the dChip automation module. Through this module, dChip automation files can be created to include menu steps, parameters, and data viewpoints to run automatically. A data-packaging function allows convenient transfer from one user to another of the dChip software, microarray data, and analysis procedures, so that the second user can reproduce the entire analysis session of the first user. An analysis report file can also be generated during an automated run, including analysis logs, user comments, and viewpoint screenshots. Conclusion The dChip automation module is a step toward reproducible research, and it can prompt a more convenient and reproducible mechanism for sharing microarray software, data, and analysis procedures and results. Automation data packages can also be used as publication supplements. Similar automation mechanisms could be valuable to the research community if implemented in other genomics and bioinformatics software packages.

  13. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  14. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    Science.gov (United States)

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  16. Computer based workstation for development of software for high energy physics experiments

    International Nuclear Information System (INIS)

    Ivanchenko, I.M.; Sedykh, Yu.V.

    1987-01-01

    Methodical principles and results of a successful attempt to create on the base of IBM-PC/AT personal computer of effective means for development of programs for high energy physics experiments are analysed. The obtained results permit to combine the best properties and a positive materialized experience accumulated on the existing time sharing collective systems with a high quality of data representation, reliability and convenience of personal computer applications

  17. Microarray-based RNA profiling of breast cancer

    DEFF Research Database (Denmark)

    Larsen, Martin J; Thomassen, Mads; Tan, Qihua

    2014-01-01

    analyzed the same 234 breast cancers on two different microarray platforms. One dataset contained known batch-effects associated with the fabrication procedure used. The aim was to assess the significance of correcting for systematic batch-effects when integrating data from different platforms. We here...

  18. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  19. Mismatch oligonucleotides in human and yeast: guidelines for probe design on tiling microarrays

    Directory of Open Access Journals (Sweden)

    Jee Justin

    2008-12-01

    Full Text Available Abstract Background Mismatched oligonucleotides are widely used on microarrays to differentiate specific from nonspecific hybridization. While many experiments rely on such oligos, the hybridization behavior of various degrees of mismatch (MM structure has not been extensively studied. Here, we present the results of two large-scale microarray experiments on S. cerevisiae and H. sapiens genomic DNA, to explore MM oligonucleotide behavior with real sample mixtures under tiling-array conditions. Results We examined all possible nucleotide substitutions at the central position of 36-nucleotide probes, and found that nonspecific binding by MM oligos depends upon the individual nucleotide substitutions they incorporate: C→A, C→G and T→A (yielding purine-purine mispairs are most disruptive, whereas A→X were least disruptive. We also quantify a marked GC skew effect: substitutions raising probe GC content exhibit higher intensity (and vice versa. This skew is small in highly-expressed regions (± 0.5% of total intensity range and large (± 2% or more elsewhere. Multiple mismatches per oligo are largely additive in effect: each MM added in a distributed fashion causes an additional 21% intensity drop relative to PM, three-fold more disruptive than adding adjacent mispairs (7% drop per MM. Conclusion We investigate several parameters for oligonucleotide design, including the effects of each central nucleotide substitution on array signal intensity and of multiple MM per oligo. To avoid GC skew, individual substitutions should not alter probe GC content. RNA sample mixture complexity may increase the amount of nonspecific hybridization, magnify GC skew and boost the intensity of MM oligos at all levels.

  20. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data

    Directory of Open Access Journals (Sweden)

    Harris Lyndsay N

    2006-04-01

    Full Text Available Abstract Background Like microarray-based investigations, high-throughput proteomics techniques require machine learning algorithms to identify biomarkers that are informative for biological classification problems. Feature selection and classification algorithms need to be robust to noise and outliers in the data. Results We developed a recursive support vector machine (R-SVM algorithm to select important genes/biomarkers for the classification of noisy data. We compared its performance to a similar, state-of-the-art method (SVM recursive feature elimination or SVM-RFE, paying special attention to the ability of recovering the true informative genes/biomarkers and the robustness to outliers in the data. Simulation experiments show that a 5 %-~20 % improvement over SVM-RFE can be achieved regard to these properties. The SVM-based methods are also compared with a conventional univariate method and their respective strengths and weaknesses are discussed. R-SVM was applied to two sets of SELDI-TOF-MS proteomics data, one from a human breast cancer study and the other from a study on rat liver cirrhosis. Important biomarkers found by the algorithm were validated by follow-up biological experiments. Conclusion The proposed R-SVM method is suitable for analyzing noisy high-throughput proteomics and microarray data and it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features. The multivariate SVM-based method outperforms the univariate method in the classification performance, but univariate methods can reveal more of the differentially expressed features especially when there are correlations between the features.

  1. DNA microarray unravels rapid changes in transcriptome of MK-801 treated rat brain

    Science.gov (United States)

    Kobayashi, Yuka; Kulikova, Sofya P; Shibato, Junko; Rakwal, Randeep; Satoh, Hiroyuki; Pinault, Didier; Masuo, Yoshinori

    2015-01-01

    AIM: To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS: Rats were treated with an intraperitoneal injection of MK-801 [0.08 (low-dose) and 0.16 (high-dose) mg/kg] or NaCl (vehicle control). In a first series of experiment, the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments, the whole brain of each animal was rapidly removed at 40 min post-injection, and different regions were separated: amygdala, cerebral cortex, hippocampus, hypothalamus, midbrain and ventral striatum on ice followed by DNA microarray (4 × 44 K whole rat genome chip) analysis. RESULTS: Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency (30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number (up- and down- regulations) of gene expressions in the cerebral cortex (378), midbrain (376), hippocampus (375), ventral striatum (353), amygdala (301), and hypothalamus (201) under low-dose (0.08 mg/kg) of MK-801. Under high-dose (0.16 mg/kg), ventral striatum (811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region. CONCLUSION: Acute MK-801 treatment increases synchrony of baseline gamma oscillations, and causes very early changes in gene expressions in six individual rat brain regions, a first report. PMID:26629322

  2. Development and Validation of Protein Microarray Technology for Simultaneous Inflammatory Mediator Detection in Human Sera

    Directory of Open Access Journals (Sweden)

    Senthooran Selvarajah

    2014-01-01

    Full Text Available Biomarkers, including cytokines, can help in the diagnosis, prognosis, and prediction of treatment response across a wide range of disease settings. Consequently, the recent emergence of protein microarray technology, which is able to quantify a range of inflammatory mediators in a large number of samples simultaneously, has become highly desirable. However, the cost of commercial systems remains somewhat prohibitive. Here we show the development, validation, and implementation of an in-house microarray platform which enables the simultaneous quantitative analysis of multiple protein biomarkers. The accuracy and precision of the in-house microarray system were investigated according to the Food and Drug Administration (FDA guidelines for pharmacokinetic assay validation. The assay fell within these limits for all but the very low-abundant cytokines, such as interleukin- (IL- 10. Additionally, there were no significant differences between cytokine detection using our microarray system and the “gold standard” ELISA format. Crucially, future biomarker detection need not be limited to the 16 cytokines shown here but could be expanded as required. In conclusion, we detail a bespoke protein microarray system, utilizing well-validated ELISA reagents, that allows accurate, precise, and reproducible multiplexed biomarker quantification, comparable with commercial ELISA, and allowing customization beyond that of similar commercial microarrays.

  3. Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis

    Directory of Open Access Journals (Sweden)

    Turnbull Arran K

    2012-08-01

    Full Text Available Abstract Background Affymetrix GeneChips and Illumina BeadArrays are the most widely used commercial single channel gene expression microarrays. Public data repositories are an extremely valuable resource, providing array-derived gene expression measurements from many thousands of experiments. Unfortunately many of these studies are underpowered and it is desirable to improve power by combining data from more than one study; we sought to determine whether platform-specific bias precludes direct integration of probe intensity signals for combined reanalysis. Results Using Affymetrix and Illumina data from the microarray quality control project, from our own clinical samples, and from additional publicly available datasets we evaluated several approaches to directly integrate intensity level expression data from the two platforms. After mapping probe sequences to Ensembl genes we demonstrate that, ComBat and cross platform normalisation (XPN, significantly outperform mean-centering and distance-weighted discrimination (DWD in terms of minimising inter-platform variance. In particular we observed that DWD, a popular method used in a number of previous studies, removed systematic bias at the expense of genuine biological variability, potentially reducing legitimate biological differences from integrated datasets. Conclusion Normalised and batch-corrected intensity-level data from Affymetrix and Illumina microarrays can be directly combined to generate biologically meaningful results with improved statistical power for robust, integrated reanalysis.

  4. Nanomedicine, microarrays and their applications in clinical microbiology

    Directory of Open Access Journals (Sweden)

    Özcan Deveci

    2010-12-01

    Full Text Available Growing interest in the future medical applications of nanotechnology is leading to the emergence of a new scientific field that called as “nanomedicine”. Nanomedicine may be defined as the investigating, treating, reconstructing and controlling human biology and health at the molecular level, using engineered nanodevices and nanostructures. Microarray technology is a revolutionary tool for elucidating roles of genes in infectious diseases, shifting from traditional methods of research to integrated approaches. This technology has great potential to provide medical diagnosis, monitor treatment and help in the development of new tools for infectious disease prevention and/or management. The aim of this paper is to provide an overview of the current application of microarray platforms and nanomedicine in the study of experimental microbiology and the impact of this technology in clinical settings.

  5. Gene Expression Analysis Using Agilent DNA Microarrays

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount ...

  6. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    OpenAIRE

    Yamada, Yoichi; Sawada, Hiroki; Hirotani, Ken-ichi; Oshima, Masanobu; Satou, Kenji

    2012-01-01

    Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO...

  7. Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues.

    Directory of Open Access Journals (Sweden)

    Maurizio Callari

    Full Text Available BACKGROUND: Microarray technology applied to microRNA (miRNA profiling is a promising tool in many research fields; nevertheless, independent studies characterizing the same pathology have often reported poorly overlapping results. miRNA analysis methods have only recently been systematically compared but only in few cases using clinical samples. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the inter-platform reproducibility of four miRNA microarray platforms (Agilent, Exiqon, Illumina, and Miltenyi, comparing nine paired tumor/normal colon tissues. The most concordant and selected discordant miRNAs were further studied by quantitative RT-PCR. Globally, a poor overlap among differentially expressed miRNAs identified by each platform was found. Nevertheless, for eight miRNAs high agreement in differential expression among the four platforms and comparability to qRT-PCR was observed. Furthermore, most of the miRNA sets identified by each platform are coherently enriched in data from the other platforms and the great majority of colon cancer associated miRNA sets derived from the literature were validated in our data, independently from the platform. Computational integration of miRNA and gene expression profiles suggested that anti-correlated predicted target genes of differentially expressed miRNAs are commonly enriched in cancer-related pathways and in genes involved in glycolysis and nutrient transport. CONCLUSIONS: Technical and analytical challenges in measuring miRNAs still remain and further research is required in order to increase consistency between different microarray-based methodologies. However, a better inter-platform agreement was found by looking at miRNA sets instead of single miRNAs and through a miRNAs - gene expression integration approach.

  8. Assessment of centrifugation using for accelerated immunological microarray analysis for blood cells investigation

    Directory of Open Access Journals (Sweden)

    A. V. Shishkin

    2011-01-01

    Full Text Available Phase of incubation microarray with cell suspension is prolonged when cells are investigated. It takes from 20 to 60 min if cell sedimentation on the surface of microarray is the result of gravity . Decrease of this stage duration is possible due to centrifugation. In th is article influence of centrifugation on results of analysis is considered. Changes of morphological description of cells are estimated when they a re precipitatedwith different acceleration. Also availability of centrifugation using when it is necessary to obtain the high density of cell binding in test regions of microarray if cells concentration in sample is small is demonstrated.

  9. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.

    Science.gov (United States)

    Parthasarathy, Narayanan; DeShazer, David; England, Marilyn; Waag, David M

    2006-11-01

    A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.

  10. Rapid Diagnosis of Bacterial Meningitis Using a Microarray

    Directory of Open Access Journals (Sweden)

    Ren-Jy Ben

    2008-06-01

    Conclusion: The microarray method provides a more accurate and rapid diagnostic tool for bacterial meningitis compared to traditional culture methods. Clinical application of this new technique may reduce the potential risk of delay in treatment.

  11. Computer network that assists in the planning, execution and evaluation of in-reactor experiments

    International Nuclear Information System (INIS)

    Bauer, T.H.; Froehle, P.H.; August, C.; Baldwin, R.D.; Johanson, E.W.; Kraimer, M.R.; Simms, R.; Klickman, A.E.

    1985-01-01

    For over 20 years complex, in-reactor experiments have been performed at Argonne National Laboratory (ANL) to investigate the performance of nuclear reactor fuel and to support the development of large computer codes that address questions of reactor safety in full-scale plants. Not only are computer codes an important end-product of the research, but computer analysis is also involved intimately at most stages of experiment planning, data reduction, and evaluation. For instance, many experiments are of sufficiently long duration or, if they are of brief duration, occur in such a purposeful sequence that need for speedy availability of on-line data is paramount. This is made possible most efficiently by computer assisted displays and evaluation. A purposeful linking of main-frame, mini, and micro computers has been effected over the past eight years which greatly enhances the speed with which experimental data are reduced to useful forms and applied to the relevant technological issues. This greater efficiency in data management led also to improvements in the planning and execution of subsequent experiments. Raw data from experiments performed at INEL is stored directly on disk and tape with the aid of minicomputers. Either during or shortly after an experiment, data may be transferred, via a direct link, to the Illinois offices of ANL where the data base is stored on a minicomputer system. This Idaho-to-Illinois link has both enhanced experiment performance and allowed rapid dissemination of results

  12. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Directory of Open Access Journals (Sweden)

    Helene Andersson-Svahn

    2011-11-01

    Full Text Available Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (< 30 ng/mL determination of antigen-specific antibodies in ten minutes of total assay time. Results were developed with gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings.

  13. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    Science.gov (United States)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  14. Gaussian mixture clustering and imputation of microarray data.

    Science.gov (United States)

    Ouyang, Ming; Welsh, William J; Georgopoulos, Panos

    2004-04-12

    In microarray experiments, missing entries arise from blemishes on the chips. In large-scale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses. This study compares methods of missing value estimation. Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of mis-clustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both time-series (correlated) and non-time series (uncorrelated) data sets.

  15. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  16. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  17. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  18. On-Line Digital Computer Applications in Gas Chromatography, An Undergraduate Analytical Experiment

    Science.gov (United States)

    Perone, S. P.; Eagleston, J. F.

    1971-01-01

    Presented are some descriptive background materials and the directions for an experiment which provides an introduction to on-line computer instrumentation. Assumes students are familiar with the Purdue Real-Time Basic (PRTB) laboratory computer system. (PR)

  19. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  20. Detection of selected plant viruses by microarrays

    OpenAIRE

    HRABÁKOVÁ, Lenka

    2013-01-01

    The main aim of this master thesis was the simultaneous detection of four selected plant viruses ? Apple mosaic virus, Plum pox virus, Prunus necrotic ringspot virus and Prune harf virus, by microarrays. The intermediate step in the process of the detection was optimizing of multiplex polymerase chain reaction (PCR).

  1. Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong; Li, Ning

    2016-12-01

    Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC ( n = 65) and healthy control subjects ( n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC.

  2. A Discrete Wavelet Based Feature Extraction and Hybrid Classification Technique for Microarray Data Analysis

    Directory of Open Access Journals (Sweden)

    Jaison Bennet

    2014-01-01

    Full Text Available Cancer classification by doctors and radiologists was based on morphological and clinical features and had limited diagnostic ability in olden days. The recent arrival of DNA microarray technology has led to the concurrent monitoring of thousands of gene expressions in a single chip which stimulates the progress in cancer classification. In this paper, we have proposed a hybrid approach for microarray data classification based on nearest neighbor (KNN, naive Bayes, and support vector machine (SVM. Feature selection prior to classification plays a vital role and a feature selection technique which combines discrete wavelet transform (DWT and moving window technique (MWT is used. The performance of the proposed method is compared with the conventional classifiers like support vector machine, nearest neighbor, and naive Bayes. Experiments have been conducted on both real and benchmark datasets and the results indicate that the ensemble approach produces higher classification accuracy than conventional classifiers. This paper serves as an automated system for the classification of cancer and can be applied by doctors in real cases which serve as a boon to the medical community. This work further reduces the misclassification of cancers which is highly not allowed in cancer detection.

  3. Expert Knowledge Influences Decision-Making for Couples Receiving Positive Prenatal Chromosomal Microarray Testing Results.

    Science.gov (United States)

    Rubel, M A; Werner-Lin, A; Barg, F K; Bernhardt, B A

    2017-09-01

    To assess how participants receiving abnormal prenatal genetic testing results seek information and understand the implications of results, 27 US female patients and 12 of their male partners receiving positive prenatal microarray testing results completed semi-structured phone interviews. These interviews documented participant experiences with chromosomal microarray testing, understanding of and emotional response to receiving results, factors affecting decision-making about testing and pregnancy termination, and psychosocial needs throughout the testing process. Interview data were analyzed using a modified grounded theory approach. In the absence of certainty about the implications of results, understanding of results is shaped by biomedical expert knowledge (BEK) and cultural expert knowledge (CEK). When there is a dearth of BEK, as in the case of receiving results of uncertain significance, participants rely on CEK, including religious/spiritual beliefs, "gut instinct," embodied knowledge, and social network informants. CEK is a powerful platform to guide understanding of prenatal genetic testing results. The utility of culturally situated expert knowledge during testing uncertainty emphasizes that decision-making occurs within discourses beyond the biomedical domain. These forms of "knowing" may be integrated into clinical consideration of efficacious patient assessment and counseling.

  4. Investigation of the computer experiences and attitudes of pre-service mathematics teachers: new evidence from Turkey.

    Science.gov (United States)

    Birgin, Osman; Catlioğlu, Hakan; Gürbüz, Ramazan; Aydin, Serhat

    2010-10-01

    This study aimed to investigate the experiences of pre-service mathematics (PSM) teachers with computers and their attitudes toward them. The Computer Attitude Scale, Computer Competency Survey, and Computer Use Information Form were administered to 180 Turkish PSM teachers. Results revealed that most PSM teachers used computers at home and at Internet cafes, and that their competency was generally intermediate and upper level. The study concludes that PSM teachers' attitudes about computers differ according to their years of study, computer ownership, level of computer competency, frequency of computer use, computer experience, and whether they had attended a computer-aided instruction course. However, computer attitudes were not affected by gender.

  5. A kernel-based multivariate feature selection method for microarray data classification.

    Directory of Open Access Journals (Sweden)

    Shiquan Sun

    Full Text Available High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to data classification to enhance prediction performance. In general, filter methods can be considered as principal or auxiliary selection mechanism because of their simplicity, scalability, and low computational complexity. However, a series of trivial examples show that filter methods result in less accurate performance because they ignore the dependencies of features. Although few publications have devoted their attention to reveal the relationship of features by multivariate-based methods, these methods describe relationships among features only by linear methods. While simple linear combination relationship restrict the improvement in performance. In this paper, we used kernel method to discover inherent nonlinear correlations among features as well as between feature and target. Moreover, the number of orthogonal components was determined by kernel Fishers linear discriminant analysis (FLDA in a self-adaptive manner rather than by manual parameter settings. In order to reveal the effectiveness of our method we performed several experiments and compared the results between our method and other competitive multivariate-based features selectors. In our comparison, we used two classifiers (support vector machine, [Formula: see text]-nearest neighbor on two group datasets, namely two-class and multi-class datasets. Experimental results demonstrate that the performance of our method is better than others, especially on three hard-classify datasets, namely Wang's Breast Cancer, Gordon's Lung Adenocarcinoma and Pomeroy's Medulloblastoma.

  6. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  7. Coupling between eddy currents and rigid body rotation: analysis, computation, and experiments

    International Nuclear Information System (INIS)

    Hua, T.Q.; Turner, L.R.

    1985-01-01

    Computation and experiment show that the coupling between eddy currents and the angular deflections resulting from those eddy currents can reduce electromagnetic effects such as forces, torques, and power dissipation to levels far less severe than would be predicted without regard for the coupling. This paper explores the coupling effects beyond the parameter range that has been explored experimentally, using analytical means and the eddy-current computer code EDDYNET. The paper also describes upcoming FELIX experiments with cantilevered beams

  8. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  9. Assessing the Clinical Utility of SNP Microarray for Prader-Willi Syndrome due to Uniparental Disomy.

    Science.gov (United States)

    Santoro, Stephanie L; Hashimoto, Sayaka; McKinney, Aimee; Mihalic Mosher, Theresa; Pyatt, Robert; Reshmi, Shalini C; Astbury, Caroline; Hickey, Scott E

    2017-01-01

    Maternal uniparental disomy (UPD) 15 is one of the molecular causes of Prader-Willi syndrome (PWS), a multisystem disorder which presents with neonatal hypotonia and feeding difficulty. Current diagnostic algorithms differ regarding the use of SNP microarray to detect PWS. We retrospectively examined the frequency with which SNP microarray could identify regions of homozygosity (ROH) in patients with PWS. We determined that 7/12 (58%) patients with previously confirmed PWS by methylation analysis and microsatellite-positive UPD studies had ROH (>10 Mb) by SNP microarray. Additional assessment of 5,000 clinical microarrays, performed from 2013 to present, determined that only a single case of ROH for chromosome 15 was not caused by an imprinting disorder or identity by descent. We observed that ROH for chromosome 15 is rarely incidental and strongly associated with hypotonic infants having features of PWS. Although UPD microsatellite studies remain essential to definitively establish the presence of UPD, SNP microarray has important utility in the timely diagnostic algorithm for PWS. © 2017 S. Karger AG, Basel.

  10. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2008-05-01

    Full Text Available Abstract Background We report the development of a microarray platform for rapid and cost-effective genetic mapping, and its evaluation using rice as a model. In contrast to methods employing whole-genome tiling microarrays for genotyping, our method is based on low-cost spotted microarray production, focusing only on known polymorphic features. Results We have produced a genotyping microarray for rice, comprising 880 single feature polymorphism (SFP elements derived from insertions/deletions identified by aligning genomic sequences of the japonica cultivar Nipponbare and the indica cultivar 93-11. The SFPs were experimentally verified by hybridization with labeled genomic DNA prepared from the two cultivars. Using the genotyping microarrays, we found high levels of polymorphism across diverse rice accessions, and were able to classify all five subpopulations of rice with high bootstrap support. The microarrays were used for mapping of a gene conferring resistance to Magnaporthe grisea, the causative organism of rice blast disease, by quantitative genotyping of samples from a recombinant inbred line population pooled by phenotype. Conclusion We anticipate this microarray-based genotyping platform, based on its low cost-per-sample, to be particularly useful in applications requiring whole-genome molecular marker coverage across large numbers of individuals.

  11. Immunohistochemistry - Microarray Analysis of Patients with Peritoneal Metastases of Appendiceal or Colorectal Origin

    Directory of Open Access Journals (Sweden)

    Danielle E Green

    2015-01-01

    Full Text Available BackgroundThe value of immunohistochemistry (IHC-microarray analysis of pathological specimens in the management of patients is controversial although preliminary data suggests potential benefit. We describe the characteristics of patients undergoing a commercially available IHC-microarray method in patients with peritoneal metastases (PM and the feasibility of this technique in this population.MethodsWe retrospectively analyzed consecutive patients with pathologically confirmed PM from appendiceal or colorectal primary who underwent Caris Molecular IntelligenceTM testing. IHC, microarray, FISH and mutational analysis were included and stratified by PCI score, histology and treatment characteristics. Statistical analysis was performed using non-parametric tests.ResultsOur study included 5 patients with appendiceal and 11 with colorectal PM. The median age of patients was 51 (IQR 39-65 years, with 11(68% female. The median PCI score of the patients was 17(IQR 10-25. Hyperthermic intra-peritoneal chemoperfusion (HIPEC was performed in 4 (80% patients with appendiceal primary tumors and 4 (36% with colorectal primary. KRAS mutations were encountered in 40% of appendiceal vs. 30% colorectal tumors, while BRAF mutations were seen in 40% of colorectal PM and none of the patients with appendiceal PM (p=0.06. IHC biomarker expression was not significantly different between the two primaries. Sufficient tumor for microarray analysis was found in 44% (n=7 patients, which was not associated with previous use of chemotherapy (p>0.20 for 5-FU/LV, Irinotecan and Oxaliplatin.ConclusionsIn a small sample of patients with peritoneal metastases, the feasibility and results of IHC-microarray staining based on a commercially available test is reported. The apparent high incidence of the BRAF mutation in patients with PM may potentially offer opportunities for novel therapeutics and suggest that IHC-microarray is a method that can be used in this population.

  12. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    Science.gov (United States)

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier

  13. Application of a New Genetic Deafness Microarray for Detecting Mutations in the Deaf in China.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available The aim of this study was to evaluate the GoldenGate microarray as a diagnostic tool and to elucidate the contribution of the genes on this array to the development of both nonsyndromic and syndromic sensorineural hearing loss in China.We developed a microarray to detect 240 mutations underlying syndromic and nonsyndromic sensorineural hearing loss. The microarray was then used for analysis of 382 patients with nonsyndromic sensorineural hearing loss (including 15 patients with enlarged vestibular aqueduct syndrome, 21 patients with Waardenburg syndrome, and 60 unrelated controls. Subsequently, we analyzed the sensitivity, specificity, and reproducibility of this new approach after Sanger sequencing-based verification, and also determined the contribution of the genes on this array to the development of distinct hearing disorders.The sensitivity and specificity of the microarray chip were 98.73% and 98.34%, respectively. Genetic defects were identified in 61.26% of the patients with nonsyndromic sensorineural hearing loss, and 9 causative genes were identified. The molecular etiology was confirmed in 19.05% and 46.67% of the patients with Waardenburg syndrome and enlarged vestibular aqueduct syndrome, respectively.Our new mutation-based microarray comprises an accurate and comprehensive genetic tool for the detection of sensorineural hearing loss. This microarray-based detection method could serve as a first-pass screening (before next-generation-sequencing screening for deafness-causing mutations in China.

  14. Advances in Grid Computing for the FabrIc for Frontier Experiments Project at Fermialb

    Energy Technology Data Exchange (ETDEWEB)

    Herner, K. [Fermilab; Alba Hernandex, A. F. [Fermilab; Bhat, S. [Fermilab; Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Levshina, T. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab; Teheran, J. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientic Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of diering size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certicate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have signicantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the eorts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production work ows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular work ows, and support troubleshooting and triage in case of problems. Recently a new certicate management infrastructure called Distributed

  15. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  16. Analyses of Aloe polysaccharides using carbohydrate microarray profiling

    DEFF Research Database (Denmark)

    Isager Ahl, Louise; Grace, Olwen M; Pedersen, Henriette Lodberg

    2018-01-01

    As the popularity of Aloe vera extracts continues to rise, a desire to fully understand the individual polymer components of the leaf mesophyll, their relation to one another and the effects they have on the human body are increasing. Polysaccharides present in the leaf mesophyll have been...... identified as the components responsible for the biological activities of Aloe vera, and they have been widely studied in the past decades. However, the commonly used methods do not provide the desired platform to conduct large comparative studies of polysaccharide compositions as most of them require...... a complete or near-complete fractionation of the polymers. The objective for this study was to assess whether carbohydrate microarrays could be used for the high-throughput analysis of cell wall polysaccharides in Aloe leaf mesophyll. The method we chose is known as Comprehensive Microarray Polymer Profiling...

  17. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  18. Development and application of a computer model for large-scale flame acceleration experiments

    International Nuclear Information System (INIS)

    Marx, K.D.

    1987-07-01

    A new computational model for large-scale premixed flames is developed and applied to the simulation of flame acceleration experiments. The primary objective is to circumvent the necessity for resolving turbulent flame fronts; this is imperative because of the relatively coarse computational grids which must be used in engineering calculations. The essence of the model is to artificially thicken the flame by increasing the appropriate diffusivities and decreasing the combustion rate, but to do this in such a way that the burn velocity varies with pressure, temperature, and turbulence intensity according to prespecified phenomenological characteristics. The model is particularly aimed at implementation in computer codes which simulate compressible flows. To this end, it is applied to the two-dimensional simulation of hydrogen-air flame acceleration experiments in which the flame speeds and gas flow velocities attain or exceed the speed of sound in the gas. It is shown that many of the features of the flame trajectories and pressure histories in the experiments are simulated quite well by the model. Using the comparison of experimental and computational results as a guide, some insight is developed into the processes which occur in such experiments. 34 refs., 25 figs., 4 tabs

  19. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  20. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong; Ma, Yanyuan; Carroll, Raymond J.

    2009-01-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing

  1. A random variance model for detection of differential gene expression in small microarray experiments.

    Science.gov (United States)

    Wright, George W; Simon, Richard M

    2003-12-12

    Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf

  2. SAMGrid experiences with the Condor technology in Run II computing

    International Nuclear Information System (INIS)

    Baranovski, A.; Loebel-Carpenter, L.; Garzoglio, G.; Herber, R.; Illingworth, R.; Kennedy, R.; Kreymer, A.; Kumar, A.; Lueking, L.; Lyon, A.; Merritt, W.; Terekhov, I.; Trumbo, J.; Veseli, S.; White, S.; St. Denis, R.; Jain, S.; Nishandar, A.

    2004-01-01

    SAMGrid is a globally distributed system for data handling and job management, developed at Fermilab for the D0 and CDF experiments in Run II. The Condor system is being developed at the University of Wisconsin for management of distributed resources, computational and otherwise. We briefly review the SAMGrid architecture and its interaction with Condor, which was presented earlier. We then present our experiences using the system in production, which have two distinct aspects. At the global level, we deployed Condor-G, the Grid-extended Condor, for the resource brokering and global scheduling of our jobs. At the heart of the system is Condor's Matchmaking Service. As a more recent work at the computing element level, we have been benefiting from the large computing cluster at the University of Wisconsin campus. The architecture of the computing facility and the philosophy of Condor's resource management have prompted us to improve the application infrastructure for D0 and CDF, in aspects such as parting with the shared file system or reliance on resources being dedicated. As a result, we have increased productivity and made our applications more portable and Grid-ready. Our fruitful collaboration with the Condor team has been made possible by the Particle Physics Data Grid

  3. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients

    DEFF Research Database (Denmark)

    Győrffy, Balázs; Lánczky, András; Szállási, Zoltán

    2012-01-01

    was set up using gene expression data and survival information of 1287 ovarian cancer patients downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays). After quality control and normalization, only probes present on all......). A Kaplan–Meier survival plot was generated and significance was computed. The tool can be accessed online at www.kmplot.com/ovar. We used this integrative data analysis tool to validate the prognostic power of 37 biomarkers identified in the literature. Of these, CA125 (MUC16; P=3.7x10–5, hazard ratio (HR...... biomarker validation platform that mines all available microarray data to assess the prognostic power of 22 277 genes in 1287 ovarian cancer patients. We specifically used this tool to evaluate the effect of 37 previously published biomarkers on ovarian cancer prognosis....

  4. ATLAS experience with HEP software at the Argonne leadership computing facility

    International Nuclear Information System (INIS)

    Uram, Thomas D; LeCompte, Thomas J; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  5. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  6. Elucidation of the antibacterial mechanism of the Curvularia haloperoxidase system by DNA microarray profiling

    DEFF Research Database (Denmark)

    Hansen, E.H.; Schembri, Mark; Klemm, Per

    2004-01-01

    was the wild type. Our results demonstrate that DNA microarray technology cannot be used as the only technique to investigate the mechanisms of action of new antimicrobial compounds. However, by combining DNA microarray analysis with the subsequent creation of knockout mutants, we were able to pinpoint one...

  7. Evaluation of gene importance in microarray data based upon probability of selection

    Directory of Open Access Journals (Sweden)

    Fu Li M

    2005-03-01

    Full Text Available Abstract Background Microarray devices permit a genome-scale evaluation of gene function. This technology has catalyzed biomedical research and development in recent years. As many important diseases can be traced down to the gene level, a long-standing research problem is to identify specific gene expression patterns linking to metabolic characteristics that contribute to disease development and progression. The microarray approach offers an expedited solution to this problem. However, it has posed a challenging issue to recognize disease-related genes expression patterns embedded in the microarray data. In selecting a small set of biologically significant genes for classifier design, the nature of high data dimensionality inherent in this problem creates substantial amount of uncertainty. Results Here we present a model for probability analysis of selected genes in order to determine their importance. Our contribution is that we show how to derive the P value of each selected gene in multiple gene selection trials based on different combinations of data samples and how to conduct a reliability analysis accordingly. The importance of a gene is indicated by its associated P value in that a smaller value implies higher information content from information theory. On the microarray data concerning the subtype classification of small round blue cell tumors, we demonstrate that the method is capable of finding the smallest set of genes (19 genes with optimal classification performance, compared with results reported in the literature. Conclusion In classifier design based on microarray data, the probability value derived from gene selection based on multiple combinations of data samples enables an effective mechanism for reducing the tendency of fitting local data particularities.

  8. Knowledge-based analysis of microarrays for the discovery of transcriptional regulation relationships.

    Science.gov (United States)

    Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong

    2010-01-18

    The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.

  9. Microarray-based cancer prediction using soft computing approach.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  10. Printing Proteins as Microarrays for High-Throughput Function Determination

    Science.gov (United States)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  11. Bayesian meta-analysis models for microarray data: a comparative study

    Directory of Open Access Journals (Sweden)

    Song Joon J

    2007-03-01

    Full Text Available Abstract Background With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods. Results Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets

  12. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    OpenAIRE

    Wu, Hong; Huo, Qisheng; Varnum, Susan; Wang, Jun; Liu, Guodong; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-01-01

    We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, Interleukin-6 (IL-6), on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as ...

  13. Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies

    DEFF Research Database (Denmark)

    Dufva, Martin; Petersen, Jesper; Poulsen, Lena

    2009-01-01

    DNA microarrays have for a decade been the only platform for genome-wide analysis and have provided a wealth of information about living organisms. DNA microarrays are processed today under one condition only, which puts large demands on assay development because all probes on the array need to f...

  14. Novel R pipeline for analyzing Biolog Phenotypic MicroArray data.

    Directory of Open Access Journals (Sweden)

    Minna Vehkala

    Full Text Available Data produced by Biolog Phenotype MicroArrays are longitudinal measurements of cells' respiration on distinct substrates. We introduce a three-step pipeline to analyze phenotypic microarray data with novel procedures for grouping, normalization and effect identification. Grouping and normalization are standard problems in the analysis of phenotype microarrays defined as categorizing bacterial responses into active and non-active, and removing systematic errors from the experimental data, respectively. We expand existing solutions by introducing an important assumption that active and non-active bacteria manifest completely different metabolism and thus should be treated separately. Effect identification, in turn, provides new insights into detecting differing respiration patterns between experimental conditions, e.g. between different combinations of strains and temperatures, as not only the main effects but also their interactions can be evaluated. In the effect identification, the multilevel data are effectively processed by a hierarchical model in the Bayesian framework. The pipeline is tested on a data set of 12 phenotypic plates with bacterium Yersinia enterocolitica. Our pipeline is implemented in R language on the top of opm R package and is freely available for research purposes.

  15. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning.

    Science.gov (United States)

    Sun, Xiuhua; Wang, Huaixin; Wang, Yuanyuan; Gui, Taijiang; Wang, Ke; Gao, Changlu

    2018-04-15

    Nonspecific binding or adsorption of biomolecules presents as a major obstacle to higher sensitivity, specificity and reproducibility in microarray technology. We report herein a method to fabricate antifouling microarray via photopolymerization of biomimetic betaine compounds. In brief, carboxybetaine methacrylate was polymerized as arrays for protein sensing, while sulfobetaine methacrylate was polymerized as background. With the abundant carboxyl groups on array surfaces and zwitterionic polymers on the entire surfaces, this microarray allows biomolecular immobilization and recognition with low nonspecific interactions due to its antifouling property. Therefore, low concentration of target molecules can be captured and detected by this microarray. It was proved that a concentration of 10ngmL -1 bovine serum albumin in the sample matrix of bovine serum can be detected by the microarray derivatized with anti-bovine serum albumin. Moreover, with proper hydrophilic-hydrophobic designs, this approach can be applied to fabricate surface-tension droplet arrays, which allows surface-directed cell adhesion and growth. These light controllable approaches constitute a clear improvement in the design of antifouling interfaces, which may lead to greater flexibility in the development of interfacial architectures and wider application in blood contact microdevices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process

    Directory of Open Access Journals (Sweden)

    Sirasa Yodmongkol

    2016-03-01

    Full Text Available In this study, protein microarrays based on sandwich immunoassays are generated to quantify the amount of alpha fetoprotein (AFP in blood serum. For chip generation a mixture of capture antibody and a photoactive copolymer consisting of N,N-dimethylacrylamide (DMAA, methacryloyloxy benzophenone (MaBP, and Na-4-styrenesulfonate (SSNa was spotted onto unmodified polymethyl methacrylate (PMMA substrates. Subsequently to printing of the microarray, the polymer and protein were photochemically cross-linked and the forming, biofunctionalized hydrogels simultaneously bound to the chip surface by short UV- irradiation. The obtained biochip was incubated with AFP antigen, followed by biotinylated AFP antibody and streptavidin-Cy5 and the fluorescence signal read-out. The developed microarray biochip covers the range of AFP in serum samples such as maternal serum in the range of 5 and 100 ng/ml. The chip production process is based on a fast and simple immobilization process, which can be applied to conventional plastic surfaces. Therefore, this protein microarray production process is a promising method to fabricate biochips for AFP screening processes. Keywords: Photo-immobilization, Protein microarray, Alpha fetoprotein, Hydrogel, 3D surface, Down syndrome

  17. Microarray-based genotyping of Salmonella: Inter-laboratory evaluation of reproducibility and standardization potential

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Riber, Leise; Vigre, Håkan

    2011-01-01

    Bacterial food-borne infections in humans caused by Salmonella spp. are considered a crucial food safety issue. Therefore, it is important for the risk assessments of Salmonella to consider the genomic variationamong different isolates in order to control pathogen-induced infections. Microarray...... critical methodology parameters that differed between the two labs were identified. These related to printing facilities, choice of hybridization buffer,wash buffers used following the hybridization and choice of procedure for purifying genomic DNA. Critical parameters were randomized in a four......DNA and different wash buffers. However, less agreement (Kappa=0.2–0.6) between microarray results were observed when using different hybridization buffers, indicating this parameter as being highly criticalwhen transferring a standard microarray assay between laboratories. In conclusion, this study indicates...

  18. Microarray-Based Identification of Transcription Factor Target Genes

    NARCIS (Netherlands)

    Gorte, M.; Horstman, A.; Page, R.B.; Heidstra, R.; Stromberg, A.; Boutilier, K.A.

    2011-01-01

    Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF

  19. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?

    Science.gov (United States)

    Peterson, Jess F.; Aggarwal, Nidhi; Smith, Clayton A.; Gollin, Susanne M.; Surti, Urvashi; Rajkovic, Aleksandar; Swerdlow, Steven H.; Yatsenko, Svetlana A.

    2015-01-01

    Purpose To evaluate the clinical utility, diagnostic yield and rationale of integrating microarray analysis in the clinical diagnosis of hematological malignancies in comparison with classical chromosome karyotyping/fluorescence in situ hybridization (FISH). Methods G-banded chromosome analysis, FISH and microarray studies using customized CGH and CGH+SNP designs were performed on 27 samples from patients with hematological malignancies. A comprehensive comparison of the results obtained by three methods was conducted to evaluate benefits and limitations of these techniques for clinical diagnosis. Results Overall, 89.7% of chromosomal abnormalities identified by karyotyping/FISH studies were also detectable by microarray. Among 183 acquired copy number alterations (CNAs) identified by microarray, 94 were additional findings revealed in 14 cases (52%), and at least 30% of CNAs were in genomic regions of diagnostic/prognostic significance. Approximately 30% of novel alterations detected by microarray were >20 Mb in size. Balanced abnormalities were not detected by microarray; however, of the 19 apparently “balanced” rearrangements, 55% (6/11) of recurrent and 13% (1/8) of non-recurrent translocations had alterations at the breakpoints discovered by microarray. Conclusion Microarray technology enables accurate, cost-effective and time-efficient whole-genome analysis at a resolution significantly higher than that of conventional karyotyping and FISH. Array-CGH showed advantage in identification of cryptic imbalances and detection of clonal aberrations in population of non-dividing cancer cells and samples with poor chromosome morphology. The integration of microarray analysis into the cytogenetic diagnosis of hematologic malignancies has the potential to improve patient management by providing clinicians with additional disease specific and potentially clinically actionable genomic alterations. PMID:26299921

  20. Microarray analysis of thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2006-01-01

    It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats

  1. Microarrays in ecological research: A case study of a cDNA microarray for plant-herbivore interactions

    Directory of Open Access Journals (Sweden)

    Gase Klaus

    2004-09-01

    Full Text Available Abstract Background Microarray technology allows researchers to simultaneously monitor changes in the expression ratios (ERs of hundreds of genes and has thereby revolutionized most of biology. Although this technique has the potential of elucidating early stages in an organism's phenotypic response to complex ecological interactions, to date, it has not been fully incorporated into ecological research. This is partially due to a lack of simple procedures of handling and analyzing the expression ratio (ER data produced from microarrays. Results We describe an analysis of the sources of variation in ERs from 73 hybridized cDNA microarrays, each with 234 herbivory-elicited genes from the model ecological expression system, Nicotiana attenuata, using procedures that are commonly used in ecologic research. Each gene is represented by two independently labeled PCR products and each product was arrayed in quadruplicate. We present a robust method of normalizing and analyzing ERs based on arbitrary thresholds and statistical criteria, and characterize a "norm of reaction" of ERs for 6 genes (4 of known function, 2 of unknown with different ERs as determined across all analyzed arrays to provide a biologically-informed alternative to the use of arbitrary expression ratios in determining significance of expression. These gene-specific ERs and their variance (gene CV were used to calculate array-based variances (array CV, which, in turn, were used to study the effects of array age, probe cDNA quantity and quality, and quality of spotted PCR products as estimates of technical variation. Cluster analysis and a Principal Component Analysis (PCA were used to reveal associations among the transcriptional "imprints" of arrays hybridized with cDNA probes derived from mRNA from N. attenuata plants variously elicited and attacked by different herbivore species and from three congeners: N. quadrivalis, N. longiflora and N. clevelandii. Additionally, the PCA

  2. Model and Computing Experiment for Research and Aerosols Usage Management

    Directory of Open Access Journals (Sweden)

    Daler K. Sharipov

    2012-09-01

    Full Text Available The article deals with a math model for research and management of aerosols released into the atmosphere as well as numerical algorithm used as hardware and software systems for conducting computing experiment.

  3. Development of a genotyping microarray for Usher syndrome.

    Science.gov (United States)

    Cremers, Frans P M; Kimberling, William J; Külm, Maigi; de Brouwer, Arjan P; van Wijk, Erwin; te Brinke, Heleen; Cremers, Cor W R J; Hoefsloot, Lies H; Banfi, Sandro; Simonelli, Francesca; Fleischhauer, Johannes C; Berger, Wolfgang; Kelley, Phil M; Haralambous, Elene; Bitner-Glindzicz, Maria; Webster, Andrew R; Saihan, Zubin; De Baere, Elfride; Leroy, Bart P; Silvestri, Giuliana; McKay, Gareth J; Koenekoop, Robert K; Millan, Jose M; Rosenberg, Thomas; Joensuu, Tarja; Sankila, Eeva-Marja; Weil, Dominique; Weston, Mike D; Wissinger, Bernd; Kremer, Hannie

    2007-02-01

    Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.

  4. The microarray detecting six fruit-tree viruses

    Czech Academy of Sciences Publication Activity Database

    Lenz, Ondřej; Petrzik, Karel; Špak, Josef

    2009-01-01

    Roč. 148, July (2009), s. 27 ISSN 1866-590X. [International Conference on Virus and other Graft Transmissible Diseases of Fruit Crops /21./. 05.07.2009-10.07.2009, Neustadt] R&D Projects: GA MŠk OC 853.001 Institutional research plan: CEZ:AV0Z50510513 Keywords : microarray * detection * virus Subject RIV: EE - Microbiology, Virology

  5. Microarrays (DNA Chips) for the Classroom Laboratory

    Science.gov (United States)

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The…

  6. Experience of BESIII data production with local cluster and distributed computing model

    International Nuclear Information System (INIS)

    Deng, Z Y; Li, W D; Liu, H M; Sun, Y Z; Zhang, X M; Lin, L; Nicholson, C; Zhemchugov, A

    2012-01-01

    The BES III detector is a new spectrometer which works on the upgraded high-luminosity collider, BEPCII. The BES III experiment studies physics in the tau-charm energy region from 2 GeV to 4.6 GeV . From 2009 to 2011, BEPCII has produced 106M ψ(2S) events, 225M J/ψ events, 2.8 fb −1 ψ(3770) data, and 500 pb −1 data at 4.01 GeV. All the data samples were processed successfully and many important physics results have been achieved based on these samples. Doing data production correctly and efficiently with limited CPU and storage resources is a big challenge. This paper will describe the implementation of the experiment-specific data production for BESIII in detail, including data calibration with event-level parallel computing model, data reconstruction, inclusive Monte Carlo generation, random trigger background mixing and multi-stream data skimming. Now, with the data sample increasing rapidly, there is a growing demand to move from solely using a local cluster to a more distributed computing model. A distributed computing environment is being set up and expected to go into production use in 2012. The experience of BESIII data production, both with a local cluster and with a distributed computing model, is presented here.

  7. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  8. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data.

    Science.gov (United States)

    Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S

    2005-05-15

    Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE

  9. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  10. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    Directory of Open Access Journals (Sweden)

    Joachim Goschnick

    2004-05-01

    Full Text Available Abstract: The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 oC/mm and 6.7 oC/mm, applied across the sensor elements (segments of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  11. A Parallel Software Pipeline for DMET Microarray Genotyping Data Analysis

    Directory of Open Access Journals (Sweden)

    Giuseppe Agapito

    2018-06-01

    Full Text Available Personalized medicine is an aspect of the P4 medicine (predictive, preventive, personalized and participatory based precisely on the customization of all medical characters of each subject. In personalized medicine, the development of medical treatments and drugs is tailored to the individual characteristics and needs of each subject, according to the study of diseases at different scales from genotype to phenotype scale. To make concrete the goal of personalized medicine, it is necessary to employ high-throughput methodologies such as Next Generation Sequencing (NGS, Genome-Wide Association Studies (GWAS, Mass Spectrometry or Microarrays, that are able to investigate a single disease from a broader perspective. A side effect of high-throughput methodologies is the massive amount of data produced for each single experiment, that poses several challenges (e.g., high execution time and required memory to bioinformatic software. Thus a main requirement of modern bioinformatic softwares, is the use of good software engineering methods and efficient programming techniques, able to face those challenges, that include the use of parallel programming and efficient and compact data structures. This paper presents the design and the experimentation of a comprehensive software pipeline, named microPipe, for the preprocessing, annotation and analysis of microarray-based Single Nucleotide Polymorphism (SNP genotyping data. A use case in pharmacogenomics is presented. The main advantages of using microPipe are: the reduction of errors that may happen when trying to make data compatible among different tools; the possibility to analyze in parallel huge datasets; the easy annotation and integration of data. microPipe is available under Creative Commons license, and is freely downloadable for academic and not-for-profit institutions.

  12. Topographic evolution of sandbars: Flume experiment and computational modeling

    Science.gov (United States)

    Kinzel, Paul J.; Nelson, Jonathan M.; McDonald, Richard R.; Logan, Brandy L.

    2010-01-01

    Measurements of sandbar formation and evolution were carried out in a laboratory flume and the topographic characteristics of these barforms were compared to predictions from a computational flow and sediment transport model with bed evolution. The flume experiment produced sandbars with approximate mode 2, whereas numerical simulations produced a bed morphology better approximated as alternate bars, mode 1. In addition, bar formation occurred more rapidly in the laboratory channel than for the model channel. This paper focuses on a steady-flow laboratory experiment without upstream sediment supply. Future experiments will examine the effects of unsteady flow and sediment supply and the use of numerical models to simulate the response of barform topography to these influences.

  13. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering

    Directory of Open Access Journals (Sweden)

    Ashlock Daniel

    2009-08-01

    Full Text Available Abstract Background Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. Results We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. Conclusion The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors.

  14. MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering.

    Science.gov (United States)

    Kim, Eun-Youn; Kim, Seon-Young; Ashlock, Daniel; Nam, Dougu

    2009-08-22

    Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focus on clusters with compact shapes and do not reflect the geometric complexity of the high dimensional microarray clusters, which limits their performance. We present a cluster-number-based ensemble clustering algorithm, called MULTI-K, for microarray sample classification, which demonstrates remarkable accuracy. The method amalgamates multiple k-means runs by varying the number of clusters and identifies clusters that manifest the most robust co-memberships of elements. In addition to the original algorithm, we newly devised the entropy-plot to control the separation of singletons or small clusters. MULTI-K, unlike the simple k-means or other widely used methods, was able to capture clusters with complex and high-dimensional structures accurately. MULTI-K outperformed other methods including a recently developed ensemble clustering algorithm in tests with five simulated and eight real gene-expression data sets. The geometric complexity of clusters should be taken into account for accurate classification of microarray data, and ensemble clustering applied to the number of clusters tackles the problem very well. The C++ code and the data sets tested are available from the authors.

  15. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  16. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  17. "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2008-08-01

    Full Text Available Abstract Background Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics. Results In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated. Conclusion The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics

  18. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  19. Methods of physical experiment and installation automation on the base of computers

    International Nuclear Information System (INIS)

    Stupin, Yu.V.

    1983-01-01

    Peculiarities of using computers for physical experiment and installation automation are considered. Systems for data acquisition and processing on the base of microprocessors, micro- and mini-computers, CAMAC equipment and real time operational systems as well as systems intended for automation of physical experiments on accelerators and installations of laser thermonuclear fusion and installations for plasma investigation are dpscribed. The problems of multimachine complex and multi-user system, arrangement, development of automated systems for collective use, arrangement of intermachine data exchange and control of experimental data base are discussed. Data on software systems used for complex experimental data processing are presented. It is concluded that application of new computers in combination with new possibilities provided for users by universal operational systems essentially exceeds efficiency of a scientist work

  20. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    Science.gov (United States)

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley

  1. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    Science.gov (United States)

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit

  2. Application of Microarray technology in research and diagnostics

    DEFF Research Database (Denmark)

    Helweg-Larsen, Rehannah Borup

    The overall purpose of this thesis is to evaluate the use of microarray analysis to investigate the transcriptome of human cancers and human follicular cells and define the correlation between expression of human genes and specific cancer types as well as the developmental competence of the oocyte...

  3. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    Science.gov (United States)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  4. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DNA microarray technology in nutraceutical and food safety.

    Science.gov (United States)

    Liu-Stratton, Yiwen; Roy, Sashwati; Sen, Chandan K

    2004-04-15

    The quality and quantity of diet is a key determinant of health and disease. Molecular diagnostics may play a key role in food safety related to genetically modified foods, food-borne pathogens and novel nutraceuticals. Functional outcomes in biology are determined, for the most part, by net balance between sets of genes related to the specific outcome in question. The DNA microarray technology offers a new dimension of strength in molecular diagnostics by permitting the simultaneous analysis of large sets of genes. Automation of assay and novel bioinformatics tools make DNA microarrays a robust technology for diagnostics. Since its development a few years ago, this technology has been used for the applications of toxicogenomics, pharmacogenomics, cell biology, and clinical investigations addressing the prevention and intervention of diseases. Optimization of this technology to specifically address food safety is a vast resource that remains to be mined. Efforts to develop diagnostic custom arrays and simplified bioinformatics tools for field use are warranted.

  6. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  7. Comparing Computer Game and Traditional Lecture Using Experience Ratings from High and Low Achieving Students

    Science.gov (United States)

    Grimley, Michael; Green, Richard; Nilsen, Trond; Thompson, David

    2012-01-01

    Computer games are purported to be effective instructional tools that enhance motivation and improve engagement. The aim of this study was to investigate how tertiary student experiences change when instruction was computer game based compared to lecture based, and whether experiences differed between high and low achieving students. Participants…

  8. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  9. Exploring Lactobacillus plantarum genome diversity by using microarrays

    NARCIS (Netherlands)

    Molenaar, D.; Bringel, F.; Schuren, F.H.; Vos, de W.M.; Siezen, R.J.; Kleerebezem, M.

    2005-01-01

    Lactobacillus plantarum is a versatile and flexible species that is encountered in a variety of niches and can utilize a broad range of fermentable carbon sources. To assess if this versatility is linked to a variable gene pool, microarrays containing a subset of small genomic fragments of L.

  10. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  11. Development of a genotyping microarray for Usher syndrome

    Science.gov (United States)

    Cremers, Frans P M; Kimberling, William J; Külm, Maigi; de Brouwer, Arjan P; van Wijk, Erwin; te Brinke, Heleen; Cremers, Cor W R J; Hoefsloot, Lies H; Banfi, Sandro; Simonelli, Francesca; Fleischhauer, Johannes C; Berger, Wolfgang; Kelley, Phil M; Haralambous, Elene; Bitner‐Glindzicz, Maria; Webster, Andrew R; Saihan, Zubin; De Baere, Elfride; Leroy, Bart P; Silvestri, Giuliana; McKay, Gareth J; Koenekoop, Robert K; Millan, Jose M; Rosenberg, Thomas; Joensuu, Tarja; Sankila, Eeva‐Marja; Weil, Dominique; Weston, Mike D; Wissinger, Bernd; Kremer, Hannie

    2007-01-01

    Background Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein‐coding exons. Methods: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele‐specific oligonucleotides corresponding to all 298 Usher syndrome‐associated sequence variants known to date, 76 of which are novel, were arrayed. Results Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. Conclusion The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first‐pass screening tool. PMID:16963483

  12. File management for experiment control parameters within a distributed function computer network

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1976-10-01

    An attempt to design and implement a computer system for control of and data collection from a set of laboratory experiments reveals that many of the experiments in the set require an extensive collection of parameters for their control. The operation of the experiments can be greatly simplified if a means can be found for storing these parameters between experiments and automatically accessing them as they are required. A subsystem for managing files of such experiment control parameters is discussed. 3 figures

  13. DrugSig: A resource for computational drug repositioning utilizing gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Hongyu Wu

    Full Text Available Computational drug repositioning has been proved as an effective approach to develop new drug uses. However, currently existing strategies strongly rely on drug response gene signatures which scattered in separated or individual experimental data, and resulted in low efficient outputs. So, a fully drug response gene signatures database will be very helpful to these methods. We collected drug response microarray data and annotated related drug and targets information from public databases and scientific literature. By selecting top 500 up-regulated and down-regulated genes as drug signatures, we manually established the DrugSig database. Currently DrugSig contains more than 1300 drugs, 7000 microarray and 800 targets. Moreover, we developed the signature based and target based functions to aid drug repositioning. The constructed database can serve as a resource to quicken computational drug repositioning. Database URL: http://biotechlab.fudan.edu.cn/database/drugsig/.

  14. Computer-assisted training experiment used in the field of thermal energy production (EDF)

    International Nuclear Information System (INIS)

    Felgines, R.

    1982-01-01

    In 1981, the EDF carried out an experiment with computer-assisted training (EAO). This new approach, which continued until June 1982, involved about 700 employees all of whom operated nuclear power stations. The different stages of this experiment and the lessons which can be drawn from it are given the lessons were of a positive nature and make it possible to envisage complete coverage of all nuclear power stations by computer-assisted training within a very short space of time [fr

  15. In silico design and performance of peptide microarrays for breast cancer tumour-auto-antibody testing

    Directory of Open Access Journals (Sweden)

    Andreas Weinhäusel

    2012-06-01

    Full Text Available The simplicity and potential of minimally invasive testing using sera from patients makes auto-antibody based biomarkers a very promising tool for use in cancer diagnostics. Protein microarrays have been used for the identification of such auto-antibody signatures. Because high throughput protein expression and purification is laborious, synthetic peptides might be a good alternative for microarray generation and multiplexed analyses. In this study, we designed 1185 antigenic peptides, deduced from proteins expressed by 642 cDNA expression clones found to be sero-reactive in both breast tumour patients and controls. The sero-reactive proteins and the corresponding peptides were used for the production of protein and peptide microarrays. Serum samples from females with benign and malignant breast tumours and healthy control sera (n=16 per group were then analysed. Correct classification of the serum samples on peptide microarrays were 78% for discrimination of ‘malignant versus healthy controls’, 72% for ‘benign versus malignant’ and 94% for ‘benign versus controls’. On protein arrays, correct classification for these contrasts was 69%, 59% and 59%, respectively. The over-representation analysis of the classifiers derived from class prediction showed enrichment of genes associated with ribosomes, spliceosomes, endocytosis and the pentose phosphate pathway. Sequence analyses of the peptides with the highest sero-reactivity demonstrated enrichment of the zinc-finger domain. Peptides’ sero-reactivities were found negatively correlated with hydrophobicity and positively correlated with positive charge, high inter-residue protein contact energies and a secondary structure propensity bias. This study hints at the possibility of using in silico designed antigenic peptide microarrays as an alternative to protein microarrays for the improvement of tumour auto-antibody based diagnostics.

  16. Computer assisted treatments for image pattern data of laser plasma experiments

    International Nuclear Information System (INIS)

    Yaoita, Akira; Matsushima, Isao

    1987-01-01

    An image data processing system for laser-plasma experiments has been constructed. These image data are two dimensional images taken by X-ray, UV, infrared and visible light television cameras and also taken by streak cameras. They are digitized by frame memories. The digitized image data are stored in disk memories with the aid of a microcomputer. The data are processed by a host computer and stored in the files of the host computer and on magnetic tapes. In this paper, the over view of the image data processing system and some software for data handling in the host computer are reported. (author)

  17. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    Science.gov (United States)

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  18. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method

    International Nuclear Information System (INIS)

    Lu, Heng; Wen, Juan; Wang, Xu; Yuan, Kun; Lu, Huibin; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen; Li, Wei; Ruan, Kangcheng

    2010-01-01

    The specific binding between Cy5-labeled goat anti-mouse Immunoglobulin G (IgG) and mouse IgG with a concentration range from 625 to 10 4 µg ml −1 has been detected successfully by the oblique-incidence reflectivity difference (OI-RD) method in each procedure of microarray fabrication. The experimental data prove that the OI-RD method can be employed not only to distinguish the different concentrations in label-free fashion but also to detect the antibody–antigen capture. In addition, the differential treatment of the OI-RD signals can decrease the negative influences of glass slide as the microarray upholder. Therefore the OI-RD technique has promising applications for the label-free and high-throughput detection of protein microarrays

  19. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  20. A flexible representation of omic knowledge for thorough analysis of microarray data

    Directory of Open Access Journals (Sweden)

    Demura Taku

    2006-03-01

    Full Text Available Abstract Background In order to understand microarray data reasonably in the context of other existing biological knowledge, it is necessary to conduct a thorough examination of the data utilizing every aspect of available omic knowledge libraries. So far, a number of bioinformatics tools have been developed. However, each of them is restricted to deal with one type of omic knowledge, e.g., pathways, interactions or gene ontology. Now that the varieties of omic knowledge are expanding, analysis tools need a way to deal with any type of omic knowledge. Hence, we have designed the Omic Space Markup Language (OSML that can represent a wide range of omic knowledge, and also, we have developed a tool named GSCope3, which can statistically analyze microarray data in comparison with the OSML-formatted omic knowledge data. Results In order to test the applicability of OSML to represent a variety of omic knowledge specifically useful for analysis of Arabidopsis thaliana microarray data, we have constructed a Biological Knowledge Library (BiKLi by converting eight different types of omic knowledge into OSML-formatted datasets. We applied GSCope3 and BiKLi to previously reported A. thaliana microarray data, so as to extract any additional insights from the data. As a result, we have discovered a new insight that lignin formation resists drought stress and activates transcription of many water channel genes to oppose drought stress; and most of the 20S proteasome subunit genes show similar expression profiles under drought stress. In addition to this novel discovery, similar findings previously reported were also quickly confirmed using GSCope3 and BiKLi. Conclusion GSCope3 can statistically analyze microarray data in the context of any OSML-represented omic knowledge. OSML is not restricted to a specific data type structure, but it can represent a wide range of omic knowledge. It allows us to convert new types of omic knowledge into datasets that can be