WorldWideScience

Sample records for microalgae isochrysis zhangjiangensis

  1. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    Science.gov (United States)

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition

    Science.gov (United States)

    Wu, Shuang; Zhou, Jiannan; Cao, Xupeng; Xue, Song

    2016-02-01

    Isochrysis zhangjiangensis is a potential marine microalga for biodiesel production, which accumulates lipid under nitrogen limitation conditions, but the mechanism on molecular level is veiled. Quantitative real-time polymerase chain reaction (qPCR) provides the possibility to investigate the gene expression levels, and a valid reference for data normalization is an essential prerequisite for firing up the analysis. In this study, five housekeeping genes, actin (ACT), α-tubulin (TUA), ß-tubulin (TUB), ubiquitin (UBI), 18S rRNA (18S) and one target gene, diacylglycerol acyltransferase (DGAT), were used for determining the reference. By analyzing the stabilities based on calculation of the stability index and on operating the two types of software, geNorm and bestkeeper, it showed that the reference genes widely used in higher plant and microalgae, such as UBI, TUA and 18S, were not the most stable ones in nitrogen-stressed I. zhangjiangensis, and thus are not suitable for exploring the mRNA expression levels under these experimental conditions. Our results show that ACT together with TUB is the most feasible internal control for investigating gene expression under nitrogen-stressed conditions. Our findings will contribute not only to future qPCR studies of I. zhangjiangensis, but also to verification of comparative transcriptomics studies of the microalgae under similar conditions.

  3. Catalytic pyrolysis of Tetraselmis and Isochrysis microalgae by nickel ceria based catalysts for hydrocarbon production

    International Nuclear Information System (INIS)

    Aysu, Tevfik; Abd Rahman, Nur Adilah; Sanna, Aimaro

    2016-01-01

    The catalytic pyrolysis of Tetraselmis sp. and Isochrysis sp. was carried out over ceria based catalysts in a fixed bed reactor. There was a clear effect of the catalysts on the product yields and quality, with the catalysts able to recover a large fraction of the starting microalgae energy (67–77%) in the bio-oils. Bio-oil yield was found to be higher in presence of Ni–Ce/Al_2O_3 and Ni–Ce/ZrO_2 (26 wt.%). The produced bio-oils had HHVs (higher heating values) of 34–35 MJ/kg and suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. Also, 15–20% N removal was obtained using the ceria based catalysts. The oxygen contents in the bio-oils were remarkably lower than those previously obtained using ZSM-5 (25%) and other species without catalyst (17–24%). "1H NMR and GC–MS analysis showed that the bio-oils were enriched in aliphatics and depleted in N-compounds and water using the ceria based catalysts. - Highlights: • Nickel-ceria based catalysts were evaluated for the in-situ conversion of Tetraselmis and Isochrysis microalgae. • Catalysts recovered 72–77% of the starting microalgae energy in bio-oils. • Bio-oils suffered strong deoxygenation, with O level decreased from 40–41% in the starting microalgae to 9–15%. • Bio-oils were enriched in aliphatics and depleted in N-compounds.

  4. Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti

    Science.gov (United States)

    Widowati, Ita; Zainuri, Muhammad; Pancasakti Kusumaningrum, Hermien; Susilowati, Ragil; Hardivillier, Yann; Leignel, Vincent; Bourgougnon, Nathalie; Mouget, Jean-Luc

    2017-02-01

    Natural alternatives antioxidant source has become a trending topic in the past decades to replace synthetic antioxidant. Microalgae have been mentioned to show interesting bioactive properties and one of them is its antioxidant activity. This study aims to evaluate the potential of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbanaas new source of natural antioxidant. Proximate analysis and total phenolic content of D. salina, T. chuii and I. galbanas were determined. Antioxidant activity of methanolic extracts of these three species prepared in different concentration (50, 100, 250, 500, and 1000 ppm) was performed through DPPH assay. I. galbana clone Tahiti demonstrated a highest antioxidant potential with 61.64 of inhibition at 50 ppm followed by D. salina with 58.45 % of inhibition and T. chuii with 52.58 % of inhibition. I. galbana clone Tahiti was the best antioxidant with total phenol content of 17.798 mg GAE g-1 extract at 50 ppm; followed by T. chuii 16.868 mg GAE g-1 extract and the lowest was D. salina with 4.672 mg GAE g-1 extract. Results suggest that these microalgae posses antioxidant potential which could be considered for future applications in medicine, dietary supplements, cosmetics or food industries.

  5. PYROLYSIS OF ISOCHRYSIS MICROALGAE WITH METAL OXIDE CATALYSTS FOR BIO-OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TEVFİK AYSU

    2016-12-01

    Full Text Available Pyrolysis of Isochrysis microalgae was carried out in a fixed-bed reactor without and with metal oxide catalysts (CeO2, TiO2, Al2O3 at the temperatures of 450, 500 and 550 oC with a constant heating rate of 40 oC/min. The pyrolysis conditions including catalyst and temperature were studied in terms of their effects on the yields of pyrolysis products and quality. The amount of bio-char, bio-oil and gas products was calculated. The composition of the produced bio-oils was determined by Elemental analysis (EA, Fourier transform infrared spectroscopy (FT-IR, proton nuclear magnetic resonance (1H NMR and Gas chromatography/mass spectrometry (GC–MS techniques. As a result of the pyrolysis experiments, it is shown that there have been significant effects of both catalyst and temperature on the conversion of Isochrysis microalgae into solid, liquid (bio-oil and gas products. The highest bio-oil yield (24.30 % including aqueous phase was obtained in the presence of TiO2 (50% as catalyst at 500 °C. 98 different compounds were identified by GC-MS in bio-oils obtained at 500 oC. According to 1H NMR analysis, bio-oils contained ∼60-64 % aliphatic and ∼17-19 % aromatic structural units. EA showed that the bio-oils contained ∼66-69 % C and having 31-34 MJ/kg higher heating values.

  6. Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos

    Directory of Open Access Journals (Sweden)

    María Fernanda Pereira Gutiérrez

    2017-09-01

    Full Text Available En la producción de alimento vivo, representado principalmente por microalgas, se buscan nuevas técnicas de medios de cultivo sustituyendo las fórmulas tradicionales en aras de reducir costos. Teniendo en cuenta esto, se usó un medio no convencional (fertilizantes industriales para producir las microalgas Isochrysis galbana y Nannochloropsis sp. en cultivos estáticos, y se alcanzaron densidades de 7,5 × 106 cel mL–1 de Nannochloropsis sp. en 1000 L y 0,265 × 106 cel mL–1 de I. galbana en 250 L. Hubo un crecimiento exponencial, que se alcanzó entre los tres y los ocho días, en que se duplicaron las densidades iniciales. Se sugiere cosechar en lapsos cortos (hasta cuatro días, debido a la proliferación de contaminantes y la disminución de la calidad de las células con el tiempo. Se concluye que el medio diseñado para el enriquecimiento del cultivo es una alternativa viable para la producción de las microalgas que permite satisfacer la demanda alimenticia en el levante de larvas de peces marinos.

  7. Antimicrobial, antioxidant, cytotoxic and anticholinesterase activities of water-soluble polysaccharides extracted from microalgae Isochrysis galbana and Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Ben Hafsa Mhammed

    2017-01-01

    Full Text Available The present work is carried out to evaluate potential applications of aqueous extracts of two microalgae Isochrysis galbana (PEA and Nannochloropsis oculata (PEB containing mainly polysaccharides. The monosaccharide composition of microalgal extracts was determined. GC–MS analyses after derivatization show that glucose is the major compound in both microalgae PEA (56.88 % and PEB (68.23 %. Mannitol (38.8 % and inositol (20.32 % are respectively the second major compounds in PEA and PEB. Silylation of monosaccharides allows the determination of sorbitol that attained 3.38 % in PEB. The determination of antioxidant, antimicrobial and cytotoxic properties were also analyzed. Antioxidant activity was evaluated from the DPPH scavenging activity. PEA and PEB show a concentration dependent DPPH·radical scavenging activity. At concentration of 10 mg/mL, both PEA and PEB exhibit an antioxidant activity of 41.45 and 59.07 %, respectively. PEB and PEA are able to inhibit the growth of Gram-negative bacteria, Grampositive bacteria and three Candida species. Cytotoxic activity was evaluated on human HeLa cervical cancer cells. HeLa cell proliferation was totally inhibited after treatment with PEA and PEB (1 mg/mL and the inhibition was dose dependent (from 0.031 to 1 mg/mL. Their anticholinesterase activity was also investigated against butyrylcholinesterase enzymes. These polysaccharides possess interesting antimicrobial, anticancer and anticholinesterase activities that could represent an additional value for these microalgal products.

  8. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.

    Science.gov (United States)

    Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul

    2012-11-01

    Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.

  9. Optimal growth conditions for Isochrysis galbana

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D; Cohen, Z; Abeliovich, A

    1986-01-01

    Environmental and nutritional growth conditions of the unicellular microalga Isochrysis galbana were studied under laboratory conditions. The information obtained was used for cultivating the alga in outdoor miniponds. Outdoor cultures stayed monoalgal and free of predators as long as the temperature did not fall below 19 degrees C and the rate of dilution did not exceed 40% of the culture's volume. Isochrysis galbana grown in outdoor cultures provided lipid concentrations of 24-28% of ash free dry matter. 12 references.

  10. Efeito do meio Erd Schreiber no cultivo das microalgas Dunaliella salina, Tetraselmis chuii e Isochrysis galbana = Erd Schreiber medium effect in culture of microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana

    Directory of Open Access Journals (Sweden)

    Vera Lucia Mota Klein

    2006-04-01

    Full Text Available As microalgas são utilizadas como fonte de alimento em aqüicultura. Neste trabalho cultivaram-se D. salina, T. chuii e I. galbana. O objetivo do trabalho consistiu em determinar o efeito do meio Erd Schreiber sobre o seu crescimento. Iniciou-se o cultivo com a mistura de 200 mg de Na2HPO4,7H2O, 100 mg de NaNO3 e 50 mL de extrato de solo. No monitoramento, manteve-se a temperatura entre 24 - 28 oC, a salinidade a 34 ppt, à iluminação constante, a densidade celular com uma câmara de Neubauer e um microscópio binocular modelo ZEISS. Como resultado, I. galbana, D. salina e T. chuii atingiram 969 104 cel/mL, 457 x 104 cel/mL e 258,66 x 104 cel/mL, respectivamente, e oscoeficientes angulares b foram 3,76 x 104 cel./mL/dia, 6,84 x 104 cel./mL/dia e 2,08 x 104 cel./mL/dia respectivamente, indicando bom desempenho de todas as microalgas no meio Erd Shreiber.The microalgae is used as food source in aqüicultura. In this work they had cultivated D. salina , T. chuii and I. galbana . The objective of the work is to determine the effect of Erd Schreiber´s culture medium on the microalgae growth. The culture initiated mixting 200mg of Na2HPO4,7H2O, 100 mg of NaNO3 and 50 mL of soil extract. During the culture the temperature had varied between 24 and 28oC, the salinity was fixed on 34 %o, and the illumination was maintained constant. The assessment of the culture was made by a chamber of Neubauer and a binocular microscope ZEISS model. As result I. galbana D. salina and T.chuii reached 969 104 cel/mL, 457 x 104cel/mL and 258,66 x 104 cel/mL respectively and as angular coefficient 3,76 x 104 cel/mL/dia, 6,84 x 104 cel/mL/dia and 2,08 104 x cel/mL/dia respectively, showing good answer of the microalgae to the effect of Erd Schreiber´ s medium.

  11. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  12. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    International Nuclear Information System (INIS)

    Yahya, Liyana; Chik, Muhammad Nazry; Pang, Mohd Asyraf Mohd Azmir

    2013-01-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive – observed by increases in optical densities, number of cells and weights – in the presence of actual coal-fired flue gas containing on average 4.08 % O 2 , 200.21 mg/m 3 SO 2 , 212.29 mg/m 3 NO x , 4.73 % CO 2 and 50.72 mg/m 3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  13. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  14. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae.

    Science.gov (United States)

    Lananan, Fathurrahman; Jusoh, Ahmad; Ali, Nora'aini; Lam, Su Shiung; Endut, Azizah

    2013-08-01

    A study was performed to determine the effect of Conway and f/2 media on the growth of microalgae genera. Genera of Chlorella sp., Dunaliella sp., Isochrysis sp., Chaetoceros sp., Pavlova sp. and Tetraselmis sp. were isolated from the South China Sea. During the cultivation period, the density of cells were determined using Syringe Liquid Sampler Particle Measuring System (SLS-PMS) that also generated the population distribution curve based on the size of the cells. The population of the microalgae genera is thought to consist of mother and daughter generations since these microalgae genera reproduce by releasing small non-motile reproductive cells (autospores). It was found that the reproduction of Tetraselmis sp., Dunaliella sp. and Pavlova sp. could be sustained longer in f/2 Medium. Higher cell density was achieved by genus Dunaliella, Chlorella and Isochrysis in Conway Medium. Different genera of microalgae had a preference for different types of cultivation media. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Topical Application of Glycolipids from Isochrysis galbana Prevents Epidermal Hyperplasia in Mice

    Directory of Open Access Journals (Sweden)

    Azahara Rodríguez-Luna

    2017-12-01

    Full Text Available Chronic inflammatory skin diseases such as psoriasis have a significant impact on society. Currently, the major topical treatments have many side effects, making their continued use in patients difficult. Microalgae have emerged as a source of bio-active molecules such as glycolipids with potent anti-inflammatory properties. We aimed to investigate the effects of a glycolipid (MGMG-A and a glycolipid fraction (MGDG obtained from the microalga Isochrysis galbana on a TPA-induced epidermal hyperplasia murine model. In a first set of experiments, we examined the preventive effects of MGMG-A and MGDG dissolved in acetone on TPA-induced hyperplasia model in mice. In a second step, we performed an in vivo permeability study by using rhodamine-containing cream, ointment, or gel to determinate the formulation that preserves the skin architecture and reaches deeper. The selected formulation was assayed to ensure the stability and enhanced permeation properties of the samples in an ex vivo experiment. Finally, MGDG-containing cream was assessed in the hyperplasia murine model. The results showed that pre-treatment with acetone-dissolved glycolipids reduced skin edema, epidermal thickness, and pro-inflammatory cytokine production (TNF-α, IL-1β, IL-6, IL-17 in epidermal tissue. The in vivo and ex vivo permeation studies showed that the cream formulation had the best permeability profile. In the same way, MGDG-cream formulation showed better permeation than acetone-dissolved preparation. MGDG-cream application attenuated TPA-induced skin edema, improved histopathological features, and showed a reduction of the inflammatory cell infiltrate. In addition, this formulation inhibited epidermal expression of COX-2 in a similar way to dexamethasone. Our results suggest that an MGDG-containing cream could be an emerging therapeutic strategy for the treatment of inflammatory skin pathologies such as psoriasis.

  16. Evaluation of growth, cell size and biomass of Isochrysis aff. galbana (T-ISO with two LED regimes

    Directory of Open Access Journals (Sweden)

    Miguel Victor Cordoba-Matson

    2013-04-01

    Full Text Available In contrast to crops, there are fewer studies using LED-based light with green microalgae and none cultivating the microalga Isochrysis aff. galbana (T-ISO even though of its importance in marine aquaculture. The objective was to evaluate of white and red LEDs as an alternative source of light to cultivate I. aff. galbana (T-ISO. In order to carry this out white and red LEDs were used with a laboratory built Erlenmeyer-type photobioreactor to determine productivity, cell number and size and biomass composition. Results were compared with standard fluorescent lights of the same light intensity. The culture system consisted of 3 flasks for applying red LEDs and three for white LEDs and 3 control group flasks illuminated with the normal fluorescent lighting at the similar light intensity of ~60 mM m–2 s–1. It was found that the population cell density did not significantly increase with either red LEDs or white LEDs (p > 0.05, if at all. Standard fluorescent lighting (control group showed significant increases in population cell number (p < 0.05. Through microscopic observation cell size was found to be smaller for white LEDS and even smaller for red LEDs compared to fluorescent lighting. Biochemical composition of proteins, carbohydrates and lipids was similar for all light regimes. The authors suggest that the unexpected non-growth I. aff. galbana (T-ISO, a haptophyte microalga, with white and red LEDs is possibly due to fact that to initiate cell growth this microalgae requires other wavelengths (possibly green besides red and blue, to allow other pigments, probably fucoxanthin, to capture light

  17. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens.

    Science.gov (United States)

    Lemahieu, Charlotte; Bruneel, Charlotte; Termote-Verhalle, Romina; Muylaert, Koenraad; Buyse, Johan; Foubert, Imogen

    2013-12-15

    Four different omega-3 rich autotrophic microalgae, Phaeodactylum tricornutum, Nannochloropsis oculata, Isochrysis galbana and Chlorella fusca, were supplemented to the diet of laying hens in order to increase the level of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in egg yolk. The microalgae were supplemented in two doses: 125 mg and 250 mg extra n-3 PUFA per 100g feed. Supplementing these microalgae resulted in increased but different n-3 LC-PUFA levels in egg yolk, mainly docosahexaenoic acid enrichment. Only supplementation of Chlorella gave rise to mainly α-linolenic acid enrichment. The highest efficiency of n-3 LC-PUFA enrichment was obtained by supplementation of Phaeodactylum and Isochrysis. Furthermore, yolk colour shifted from yellow to a more intense red colour with supplementation of Phaeodactylum, Nannochloropsis and Isochrysis, due to transfer of carotenoids from microalgae to eggs. This study shows that besides Nannochloropsis other microalgae offer an alternative to current sources for enrichment of hen eggs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Diseño de pan con masa madre y microalgas

    OpenAIRE

    Lara Martínez, Irene Fernán

    2015-01-01

    [EN] Bread is a food with high consumption in the Spanish population. Demand of different varieties of it is increasing, moreover it has to provide extra health nutritional benefits. For this reason this paper aims to the formulation, preparation and subsequent rating of 4 breads made from 4 sourdough which were incorporated 1.5% of 4 different species of microalgae to each of them: Isochrysis galbana, Tetraselmis suecica, Scenedesmus almeriensis and Nannochloropsis gaditana. ...

  19. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  20. Real-time PCR detection and quantification of fish probiotic Phaeobacter strain 27-4 and fish pathogenic Vibrio in microalgae, rotifer, Artemia and first feeding turbot (Psetta maxima) larvae

    DEFF Research Database (Denmark)

    Prol, M.J.; Bruhn, Jesper Bartholin; Pintado, J.

    2009-01-01

    and in presence of microalgae (Isochrysis galbana), rotifers (Brachionus plicatilis), Artemia nauplii or turbot (Psetta maxima) larvae by real-time PCR based on primers directed at genetic loci coding for antagonistic and virulence-related functions respectively. The optimized protocol was used to study...

  1. Growth of microalgae in autotrophic stationary systems

    Directory of Open Access Journals (Sweden)

    Paulo Cunha

    2008-06-01

    Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.

  2. Kinetics of polychlorinated biphenyl partitioning to marine Chrysophyte Isochrysis galbana

    International Nuclear Information System (INIS)

    Ko, Fung-Chi; Baker, Joel E.; Tew, Kwee S.

    2012-01-01

    This study focused on the uptake kinetics of polychlorinated biphenyl (PCB) congeners by the Chrysophyte, Isochrysis galbana. A gas-purging experimental system was used to maintain constant dissolved PCB concentrations. Three phases of absorption were observed: first, a rapid absorption phase within the first 15 min, second, a first order process reaching the maximum concentration within 48 h of exposure, and third, a plateau phase as yet to be determined with very slight increases in concentration. In this study, the percentage of the maximum concentration reached within the first phase varied from 10% to 67%, depending on the size of the PCB (as determined by molecular weight and total surface area), whereas the uptake rate (k u ) during the second phase was more comparable across different PCBs. In addition, for the first phase, the bioconcentration factor (BCF) of PCBs deviated from its expected relationship with hydrophobicity, as determined by K ow , and was instead related to the molecular structure of the compound.

  3. Effects of petroleum hydrocarbons on the growth of a microalga, Isochrysis sp. (Chrysophyta)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Saldanha, M.C.; Rajkumar, R.

    the growth of the alga in a concentration above 10%, while crude oil at a similar concentration had little effect on the growth. Hydrocarbon would cause environmental damage through selective effects on natural biota in the marine environment....

  4. Microalgae Nutraceuticals

    Directory of Open Access Journals (Sweden)

    Marcello Nicoletti

    2016-08-01

    Full Text Available Among the new entries in the food supplements sector, an important place must be assigned to nutraceuticals containing microalgae, nowadays accounting for a large and rapidly expanding market. The marketed products are mainly based on three production strains, i.e., Spirulina and Chlorella, followed at a distance by Klamath. It is a composite situation, since two of them are cyanobacteria and the second one is eukaryotic. The reality is that each presents similarities in shape and appearance concerning the marketed form and several utilizations, and peculiarities that need special attention and adequate studies. First, general information is reported about the current scientific knowledge on each microalga, in particular the nutritional value and properties in prevention and wellbeing. Second, original studies are presented concerning the quality control of marketed products. Quality control is a key argument in nutraceuticals validation. Microalgae are particular organisms that need specific approaches to confirm identity and validate properties. The proposed control of quality is based on microscopic analysis of the morphologic characteristics. The final parts of this paper are dedicated to the need for specificity in uses and claims and to considerations about the future of microalgae in food supplements.

  5. Ingestion of Brachionus plicatilis under different microalgae conditions

    Science.gov (United States)

    Zhou, Wenli; Tang, Xuexi; Qiao, Xiuting; Wang, You; Wang, Renjun; Feng, Lei

    2009-09-01

    The effects of four microalgae, Chlorella vulgaris, Platymonas helgolandicavar, Isochrysis galbana, and Nitzschia closterium on the grazing and filtering rates of the marine rotifer, Brachionus plicatilis, were evaluated under laboratory conditions. The grazing rates in separate cultures of the four microalga were as follows: C. vulgaris > P. helgolandicavar > I. galbana > N. closterium. However, the filtering rates occurred in the following order: P. helgolandicavar > N. closterium > C. vulgaris > I. galbana. A mixed diets experiment revealed that P. helgolandicavar was the preferred diet of B. plicatilis. In addition, the grazing rate of B. plicatilis increased gradually as the density of the microalgae increased, until concentrations of 2.5×106 cells mL-1 for C. vulgaris and 1.5×106 cells mL-1 for I. galbana were obtained. Furthermore, the filtering rate increased slightly when the density of the microalgae was low, after which it declined as the microalgal density increased. The grazing rates of B. plicatilis were as follows during the different growth phases: stationary phase > exponential phase > lag phase > decline phase. Additionally, the filtering rates during the growth phases were: exponential phase > lag phase > stationary phase > decline phase. The results of this study provide foundational information that can be used to explore the optimal culture conditions for rotifers and to promote the development of aquaculture.

  6. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata.

    Science.gov (United States)

    Paredes, E; Perez, S; Rodil, R; Quintana, J B; Beiras, R

    2014-06-01

    Due to the concern about the negative effects of exposure to sunlight, combinations of UV filters like 4-Methylbenzylidene-camphor (4-MBC), Benzophenone-3 (BP-3), Benzophenone-4 (BP-4) and 2-Ethylhexyl-4-methoxycinnamate (EHMC) are being introduced in all kind of cosmetic formulas. These chemicals are acquiring a concerning status due to their increasingly common use and the potential risk for the environment. The aim of this study is to assess the behaviour of these compounds in seawater, the toxicity to marine organisms from three trophic levels including autotrophs (Isochrysis galbana), herbivores (Mytilus galloprovincialis and Paracentrotus lividus) and carnivores (Siriella armata), and set a preliminary assessment of potential ecological risk of UV filters in coastal ecosystems. In general, EC50 results show that both EHMC and 4-MBC are the most toxic for our test species, followed by BP-3 and finally BP-4. The most affected species by the presence of these UV filters are the microalgae I. galbana, which showed toxicity thresholds in the range of μg L(-1) units, followed by S. armata>P. Lividus>M. galloprovincialis. The UV filter concentrations measured in the sampled beach water were in the range of tens or even hundreds of ng L(-1). The resulting risk quotients showed appreciable environmental risk in coastal environments for BP-3 and 4-MBC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-12-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of a algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a liqid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 35 figs.

  8. In vitro populations of rotifer Brachionus plicatilis Müller demonstrate inhibition when fed with copper-preaccumulating microalgae.

    Science.gov (United States)

    Moreno-Garrido, I; Lubián, L M; Soares, A M

    1999-10-01

    Four marine microalgal species (Chlorella autotrophyca, Nannochloropsis gaditana, Tetraiselmis chuii, and Isochrysis aff. galbana) were exposed for 24 h to 1 mg L(-1) dissolved copper and then transferred to fresh medium. After that, a group of 10 neonate rotifers were fed with these four microalgal species. The levels of accumulated copper in cellular concentrations of the microalgae were checked, with the result of around 40% of original concentration, with the exception of I. aff. galbana (25% of original concentration). In all cases, cells with preaccumulated metal caused a delay of 1 or 2 days in populational development of rotifers (increase in "lag phase"). The microalgae that were not fed to rotifers (disposed in parallel series) did not significantly transfer metal to the medium after the first day.

  9. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  10. Growth and survival of Octopus vulgaris (Cuvier 1797 paralarvae fed on three Artemia-based diets complemented with frozen fish flakes, crushed zooplankton and marine microalgae

    Directory of Open Access Journals (Sweden)

    Lidia Fuentes

    2011-07-01

    Full Text Available During one month, paralarvae of common octopus (Octopus vulgaris were fed 3 different diets: (1 Artemia sp. enriched with Isochrysis galbana (AI complemented with sand eel (Hyperoplus lanceolatus flakes (AH; (2 Artemia sp. enriched with crushed marine zooplankton (AZ; and (3 Artemia sp. cultured with Isochrysis galbana and further enriched with the microalga Nannochloropsis sp. (AN. The highest dry weight (1.6179±0.3861 mg was registered with the AN diet and the best average survival (67.0% with the AZ diet. Considering the highest dry weight obtained, the moderate high survival and the fact that with this diet it was possible to attain the adult stage, the AN diet was the most appropriate. The reasons for the best result in growth observed with AN are discussed as: (1 the combination of docosahexaenoic acid (DHA provided by Isochrysis galbana and the high eicosapentaenoic acid (EPA content present in Nannochloropsis sp.; (2 the fact that the higher protein/lipid ratio of this diet improves the final dry weight of the paralarvae; and (3 the fact that Nannochloropsis sp. could inhibit the harmful microflora growth in the rearing tank. Regarding nutritional aspects, DHA content per se is not the only determinant factor for growth and survival of O. vulgaris paralarvae, but the presence of a high protein/lipid ratio and a high phospholipid content in the diet could possibly explain the better quality and strength of the paralarvae.

  11. Tackling Carbon Emission with Nature: Effectiveness of Indigenous Microalgae Mixed Culture

    Directory of Open Access Journals (Sweden)

    Chik M. Nazry

    2016-01-01

    Full Text Available Marine microalgae species was isolated and identified from its native condition of sea water discharge canals at the TNB Janamanjung Sdn Bhd’s coal-fired power station. The species was expected to be a robust one based on the prevalent harsh upstream conditions and processes the survived ones endured. The isolation involves streaking-plating method as well as serial dilution and liquid media culture propagation. Morphological and molecular identification were both carried out before satisfactory identification of Chlorella sp. be made. This species was later mixed with marine Isochrysis sp. with varying volumetric proportions and cultured in five separate air-lift bubbling column photobioreactors, as part of the experiment to determine which optimum volumetric culture ratio is best to fix CO2 from the power plant. Results indicate that a more dominant ratio of Chlorella sp. 75% and Isochrysis sp. 25% by volume provide gives a better growth profile and indicates a better CO2 fixation rates.

  12. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae

    International Nuclear Information System (INIS)

    Kurpan Nogueira, Daniel P.; Silva, Anita F.; Araújo, Ofélia Q.F.; Chaloub, Ricardo M.

    2015-01-01

    Triacylglycerol (TAG) productivity of Isochrysis galbana, Nannochloropsis oceanica and Phaeodactylum tricornutum was compared to study their suitability for biotechnological applications. Photoautotrophic batch cultures grown at 20 °C and 50 μmol photons m −2  s −1 showed that N. oceanica had the least TAG content and TAG productivity of the three microalgae. Hence, effects of temperature and light intensity on growth rate and accumulation of TAG were subsequently assessed only in I. galbana and P. tricornutum by cultivation at 20 and 30 °C under 50, 300 and 600 μmol photons m −2  s −1 . Although P. tricornutum did not grow at temperatures higher than 20 °C, an increase in both TAG content (from 28.37 to 39.53%) and productivity (from 15.58 to 31.39 mg L −1  d −1 ) was observed at the highest irradiance values. We also found that combined effects of temperature and light intensity enhanced TAG content (from 18.59 to 31.71%) and productivity (from 11.76 to 21.67 mg L −1  d −1 ) in I. galbana. - Highlights: • Productivity of oil and biomass in batch-cultured marine microalgae was compared. • Increase in temperature and irradiance rose oil productivity in Isochrysis galbana. • An increase in light intensity rose oil productivity in Phaeodactylum tricornutum. • Phaeodactylum tricornutum showed the highest productivity in biomass and neutral lipids

  14. Biotechnological applications of microalgae

    OpenAIRE

    Wan-Loy Chu

    2012-01-01

    Microalgae are important biologicalresources that have a wide range of biotechnologicalapplications. Due to their high nutritional value,microalgae such as Spirulina and Chlorella are beingmass cultured for health food. A variety of high-valueproducts including polyunsaturated fatty acids (PUFA),pigments such as carotenoids and phycobiliproteins, andbioactive compounds are useful as nutraceuticals andpharmaceuticals, as well as for industrial applications. Interms of environmental biotechnolo...

  15. Uptake and biotransformation of 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species

    Science.gov (United States)

    Po, Beverly H. K.; Ho, Ka-Lok; Lam, Michael H. W.; Giesy, John P.; Chiu, Jill M. Y.

    2017-03-01

    Hydroxylated- and methoxylated- polybrominated diphenyl ethers (OH-PBDEs and MeO-PBDEs) are more toxic than PBDEs and occur widely in the marine environment, and yet their origins remain controversial. In this study, four species of microalgae (Isochrysis galbana, Prorocentrum minimum, Skeletonema grethae and Thalassiosira pseudonana) were exposed to BDE-47, which is synthetic and is the predominant congener of PBDEs in the environment. By chemical analysis after incubation of 2 to 6 days, the efficiency of uptake of BDE-47 and, more importantly, the potential of undergoing biotransformation to form OH-PBDEs and MeO-PBDEs by the microalgae were investigated. Growth rates of these axenic microalgae were not affected upon exposure to environmentally relevant concentrations (0.2-20 μg BDE-47 L-1), and accumulation ranged from 0.772 ± 0.092 μg BDE-47 g-1 lipid to 215 ± 54 μg BDE-47 g-1 lipid within 2 days. Debromination of BDE-47 and formation of BDE-28 occurred in all microalgae species (0.01 to 0.87%), but biotransformation to OH-PBDEs was only found in I. galbana upon exposure to extremely high concentration. The results of this study showed that biotransformation of microalgae species is unlikely an explanation for the OH-PBDEs and MeO-PBDEs found in the marine environment.

  16. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

  17. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  18. Produção de biomassa e teores de carbono, hidrogênio, nitrogênio e proteína em microalgas Production of biomass and carbon, hydrogen, nitrogen and protein contents in microalgae

    Directory of Open Access Journals (Sweden)

    Silvana Ohse

    2009-09-01

    Full Text Available O aumento da emissão de CO2 e de outros gases efeito estufa tem gerado debates em nível mundial sobre alterações climáticas e estimulado o desenvolvimento de estratégias mitigadoras. Trabalhos nessa área incluem sequestro de CO2 por meio da produção de microalgas aquáticas. Por essa razão, desenvolveu-se um estudo visando determinar os teores de carbono, hidrogênio, nitrogênio e proteína e a produção de biomassa seca de nove espécies de microalgas marinhas (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii Chaetoceros muelleri, Thalassiosira fluviatilis e Isochrysis sp. e uma de água doce (Chlorella vulgaris, em cultivo autotrófico estacionário com objetivo de identificar as mais produtivas e com maior capacidade de fixação de carbono. O experimento foi desenvolvido em sala de cultivo, na Universidade Federal de Santa Catarina, com iluminação contínua e radiação em torno de 150µmol m-2 s-1, temperatura de 25±2°C, suplementação de ar constante, sendo utilizados erlenmeyers com 800mL de meio de cultura. O delineamento experimental foi de blocos casualizados no tempo com três repetições. As espécies C. vulgaris e T. suecica são menos produtivas. Quando se visa à suplementação alimentar, as espécies C. vulgaris e T. Chuii são consideradas interessantes, uma vez que apresentam altos teores de C, N, H e proteína. As espécies N. Oculata, T. pseudonana e C. vulgaris apresentam altos teores de C, demonstrando alta capacidade de fixação de carbono.The increase of CO2 emission and other gases greenhouse effect, caused global debates about climatic alterations and stimulated the development of mitigative strategies. Researches in this area includes CO2 kidnapping through the aquatic microalgae production. For this reason, a study was developed aiming to determine the production of dry biomass, carbon content, hydrogen

  19. Biofuels from Microalgae

    NARCIS (Netherlands)

    Barbosa, M.J.; Wijffels, R.H.

    2013-01-01

    Microalgae are a promising feedstock for sustaineble production of biofuela due to their unique capacity to reach high lipid productivities. Although the promises are there, production costs and energy requirements are high and the technology is still ammature for the production of bulk products. It

  20. Economics of microalgae production

    NARCIS (Netherlands)

    Acién, F.G.; Molina, E.; Fernández-Sevilla, J.M.; Barbosa, M.; Gouveia, L.; Sepúlveda, C.; Bazaes, J.; Arbib, Z.

    2017-01-01

    The economic analysis of biomass production is a critical step in ensuring the success of any microalgae-based industry. Until recently, only small-scale facilities of less than 10. ha have been in operation, but now large-scale facilities of more than 200. ha are being built and operated.

  1. Food commodities from microalgae

    NARCIS (Netherlands)

    Draaisma, R.B.; Wijffels, R.H.; Slegers, P.M.; Brentner, L.B.; Roy, A.; Barbosa, M.J.

    2013-01-01

    The prospect of sustainable production of food ingredients from photoautotrophic microalgae was reviewed. Clearly, there is scope for microalgal oils to replace functions of major vegetable oils, and in addition to deliver health benefits to food products. Furthermore, with a limited production

  2. Functional ingredients from microalgae

    NARCIS (Netherlands)

    Buono, S.; Langellotti, A.L.; Martello, A.; Rinna, F.; Fogliano, V.

    2014-01-01

    A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years

  3. The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifer) in Intensive Culture System.

    Science.gov (United States)

    Rahman, Abdull Razak Abd; Cob, Zaidi Che; Jamari, Zainoddin; Mohamed, Abdul Majid; Toda, Tatsuki; Ross, Othman Haji

    2018-03-01

    Brachionus plicatilis is used to feed fish and crustacean larvae in the aquaculture industry. It is well established that the type of microalgae may influence rotifer production. This experiment was conducted to determine the effect of five different locally available microalgae species at Fisheries Research Institute (FRI), Kampung Pulau Sayak, Kedah, Malaysia on the instantaneous growth rate (μ) of rotifer. Nannochloris sp., Tetraselmis sp., Isochrysis sp., Chlorella sp., and Nannochloropsis sp. were used as feed at different algae densities (0.1, 0.3, 0.7 and 1.5 × 10 6 cells/ml) and culture volumes (20, 70 and 210 ml). At algae densities ranging from 0.3 to 1.5 × 10 6 cells/ml, an average μ value of more than 0.90 per day were recorded for all algae species. However, at density of 0.1 × 10 6 cells/ml, only Tetraselmis sp. resulted in the significantly highest μ value compared with others ( p < 0.05). In terms of volume, smaller culture volume of Tetraselmis sp. (20 ml) showed significantly higher μ compared with higher volume (70 and 210 ml cultures).

  4. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(III)-microalgae suspension in an aqueous solution.

    Science.gov (United States)

    Ge, Liyun; Deng, Huanhuan

    2015-04-01

    The widespread presence of fluoroquinolone antibiotics (FQs) in natural ecosystems is a health hazard for humans and other living organisms. In this work, the photochemical degradation process of two antibiotics in the presence of Fe(III) and marine microalgae has been studied. Two fluoroquinolone (FQ) antibiotics, enrofloxacin (ENR) and ciprofloxacin hydrochloride (CIP), and two marine microalgae, Platymonas subcordiformis and Isochrysis galbana, were investigated under irradiation with a high-pressure mercury lamp (HPML) in a laboratory-scale experiment. The effects of the initial concentration of antibiotics on the degradation of these two FQs in Fe(III)-algae suspensions were also investigated. On the basis of the information in this study, compared to other systems, the efficiency of photo-degradation of the two FQs is better at lower FQ concentrations in the Fe(III)-algae system. Moreover, the low initial concentration of antibiotics benefits the photochemical process of antibiotics. This work demonstrated that the Fe(III)-algae system is an interesting and valuable research area and could be considered as a promising photochemical system for seawater remediation.

  5. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae.

    Science.gov (United States)

    Aussant, Justine; Guihéneuf, Freddy; Stengel, Dagmar B

    2018-04-25

    Microalgae are considered a sustainable source of high-value products with health benefits. Marine algae-derived omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are considered dietary elements with effects on mental health, cognition enhancement, and cardiovascular protection. This study investigated the temperature effect on omega-3 LC-PUFA production in eight species of microalgae from various taxonomic groups, with a focus on achieving an optimal balance between omega-3 accumulation and efficient growth performance. Samples were batch-cultivated at four different temperatures, with constant light, and fatty acid methyl esters (FAME) were analyzed by gas chromatography. Several nutritional indices were calculated to assess the potential value of biomass produced for human consumption. Two promising candidates were identified suitable for batch cultivation and large-scale production: Nannochloropsis oculata for EPA and Isochrysis galbana for DHA production, with optimum productivities obtained between 14 and 20 °C, and nutritional indices falling within the range required for nutritional benefit.

  6. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    Science.gov (United States)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  7. Advances in editing microalgae genomes

    OpenAIRE

    Daboussi, Fayza

    2017-01-01

    There have been significant advances in microalgal genomics over the last decade. Nevertheless, there are still insufficient tools for the manipulation of microalgae genomes and the development of microalgae as industrial biofactories. Several research groups have recently contributed to progress by demonstrating that particular nucleases can be used for targeted and stable modifications of the genomes of some microalgae species. The nucleases include Meganucleases, Zinc Finger nucleases, TAL...

  8. Fuels from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Many species of aquatic plants can provide a source of renewable energy. Some species of microalgae, in particular, produce lipids -- oils that can be extracted and converted to a diesel fuel substitute or to gasoline. Since 1979 the Aquatic Species Program element of the Biofuels Program, has supported fundamental and applied research to develop the technology for using this renewable energy resource. This document, produced by the Solar Technical Information Program, provides an overview of the DOE/SERI Aquatic Species Program element. Chapter 1 is an introduction to the program and to the microalgae. Chapter 2 is an overview of the general principles involved in making fuels from microalgae. It also outlines the technical challenges to producing economic, high-energy transportation fuels. Chapter 3 provides an overview of the Algal Production and Economic Model (APEM). This model was developed by researchers within the program to identify aspects of the process critical to performance with the greatest potential to reduce costs. The analysis using this model has helped direct research sponsored by the program. Finally, Chapter 4 provides an overview of the Aquatic Species Program and describes current research. 28 refs., 17 figs.

  9. Sobrevivencia, metamorfosis y crecimiento de larvas del camarón Penaeus californiensis (Decapoda: Peneidae alimentadas con diferentes microalgas

    Directory of Open Access Journals (Sweden)

    José Naranjo

    1999-12-01

    Full Text Available Se realizó una prueba experimental en un Centro de Producción Ostrícola en Bahía de Kino, Sonora, con el fin de evaluar el efecto de diferentes microalgas en el desarrollo de larvas de camarón café Penaeus californiensis. Las microalgas evaluadas fueron la diatomea Chaetoceros gracilis y los fitoflagelados Isochrysis galbana y Dunalliella sp., solas o en combinación y adición de nauplios de Artemia sp. a partir del estadio de zoea III, excepto en un tratamiento donde no se adicionó Artemia sp. Se utilizaron 24 unidades experimentales (tres por tratamiento, consistentes en garrafones plásticos de 16 l de capacidad, una densidad de siembra de 50 nauplios/l, una temperatura de 25°C controlada mediante calentadores sumergibles de 50 watts y una salinidad de 35 ppmil. C. gracilis produjo la mejor sobrevivencia (55%, siguiendole la combinación de C. gracilis con Dunaliella sp. (48%, la más baja sobrevivencia fue para el tratamiento donde se utilizó Dunaliella sp. fueron evidentes un retraso en la velocidad de metamorfosis para los tratamientos donde C. gracilis no fue utilizada y diferencias significativas (pThe effect of three microalgae, Chaetoceros gracilis, Isochrysis galbana, and Dunalliella sp. on the larval development of yellowleg shrimp Penaeus californiensis, was evaluated in the Oyster Production Center of Bahia Kino, Sonora, México. The effects of each microalgae (1 individually, (2 combined and (3 mixed with Artemia nauplii (from zoea III stage, were considered. Twenty four experimental units (three 16.0 l plastic bottles per treatment were used. During the experiment temperature was maintained around 25°C, and salinity around 35 ppt. The stocking density of nauplii was 50/l. The best survival was obtained with C. gracilis (55%, followed by the combination of C. gracilis and Dunalliella sp (48%. The worst survival was obtained in the treatment with Dunalliella sp. An evident delay in the metamorphosis times was observed in

  10. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi).

    Science.gov (United States)

    Tato, Tania; Salgueiro-González, Noelia; León, Víctor M; González, Sergio; Beiras, Ricardo

    2018-01-01

    This study assessed the environmental risk on coastal ecosystems posed by three phenolic compounds of special environmental and human health concern used in plastics and household products: bisphenol A (BPA), triclosan (TCS) and 4-nonylphenol (4-NP). These three chemicals are among the organic contaminants most frequently detected in wastewater. The most toxic compound tested was 4-NP, with 10% effective concentration at 11.1 μg L -1 for Isochrysis galbana, 110.5 μg L -1 for Mytilus galloprovincialis, 53.8 μg L -1 for Paracentrotus lividus, and 29.0 μg L -1 for Acartia clausi, followed by TCS (14.6 μg L -1 for I. galbana, 149.8 μg L -1 for M. galloprovincialis, 129.9 μg L -1 for P. lividus, and 64.8 μg L -1 for A. clausi). For all species tested, BPA was the less toxic chemical, with toxicity thresholds ranging between 400 and 1200 μg L -1 except for A. clausi nauplii (186 μg L -1 ). The relatively narrow range of variation in toxicity considering the broad physiological differences among the biological models used point at non-selective mechanisms of toxicity for these aromatic organics. Microalgae, the main primary producers in pelagic ecosystems, showed particularly high susceptibility to the chemicals tested. When the toxicity thresholds experimentally obtained were compared to the maximum environmental concentrations reported in coastal waters, the risk quotients obtained correspond to very low or low risk for BPA and TCS, and from low to high for 4-NP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Phototrophic pigment production with microalgae

    NARCIS (Netherlands)

    Mulders, K.J.M.

    2014-01-01

    Abstract

    Microalgal pigments are regarded as natural alternatives for food colorants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary

  12. Multi-Product Microalgae Biorefineries

    NARCIS (Netherlands)

    Lam, 't G.P.; Vermuë, M.H.; Eppink, M.H.M.; Wijffels, R.H.; Berg, van den C.

    2018-01-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too

  13. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    Science.gov (United States)

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  16. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Nannochloropsis gaditana is a microalgae belonging to the class of Eustigmatophyceae. This particular microalga is the most studied species. For its richness in lipids, it is used for the biodiesel production.

  17. Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Pingping Song

    Full Text Available The differentially co-expressed proteins in N-deprived and N-enriched I. galbana were comparatively analyzed by using two dimensional electrophoresis (2-DE and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight-mass spectrometry (MALDI-TOF/TOF-MS with the aim of better understanding lipid metabolism in this oleaginous microalga. Forty-five of the 900 protein spots showed dramatic changes in N-deprived I. galbana compared with the N-enriched cells. Of these, 36 protein spots were analyzed and 27 proteins were successfully identified. The identified proteins were classified into seven groups by their molecular functions, including the proteins related to energy production and transformation, substance metabolism, signal transduction, molecular chaperone, transcription and translation, immune defense and cytoskeleton. These altered proteins slowed cell growth and photosynthesis of I. galbana directly or indirectly, but at the same time increased lipid accumulation. Eight key enzymes involved in lipid metabolism via different pathways were identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH, phosphoglycerate kinase (PGK, enolase, aspartate aminotransferase (AST, fumarate hydratase (FH, citrate synthase (CS, O-acetyl-serine lyase (OAS-L and ATP sulfurylase (ATPS. The results suggested that the glycolytic pathway and citrate transport system might be the main routes for lipid anabolism in N-deprived I. galbana, and that the tricarboxylic acid (TCA cycle, glyoxylate cycle and sulfur assimilation system might be the major pathways involved in lipid catabolism.

  18. Microalgae harvesting techniques: A review.

    Science.gov (United States)

    Singh, Gulab; Patidar, S K

    2018-07-01

    Microalgae with wide range of commercial applications have attracted a lot of attention of the researchers in the last few decades. However, microalgae utilization is not economically sustainable due to high cost of harvesting. A wide range of solid - liquid separation techniques are available for microalgae harvesting. The techniques include coagulation and flocculation, flotation, centrifugation and filtration or a combination of various techniques. Despite the importance of harvesting to the economics and energy balance, there is no universal harvesting technique for microalgae. Therefore, this review focuses on assessing technical, economical and application potential of various harvesting techniques so as to allow selection of an appropriate technology for cost effectively harvesting of microalgae from their culture medium. Various harvesting and concentrating techniques of microalgae were reviewed to suggest order of suitability of the techniques for four main microalgae applications i.e biofuel, human and animal food, high valued products, and water quality restoration. For deciding the order of suitability, a comparative analysis of various harvesting techniques based on the six common criterions (i.e biomass quality, cost, biomass quantity, processing time, species specific and toxicity) has been done. Based on the order of various techniques vis-a-vis various criteria and preferred order of criteria for various applications, order of suitability of harvesting techniques for various applications has been decided. Among various harvesting techniques, coagulation and flocculation, centrifugation and filtration were found to be most suitable for considered applications. These techniques may be used alone or in combination for increasing the harvesting efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Yields, photosynthetic efficiencies, and proximate chemical composition of dense cultures of marine microalgae. A subcontract report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Seibert, D.L.R.; Alden, M.; Eldridge, P.; Neori, A.

    1983-07-01

    The yields, photosynthetic efficiencies, and proximate composition of several microalgae were compared in dense cultures grown at light intensities up to 70% sunlight. Yields ranged from 3.4 to 21.7 g dry weight/m/sup 2/ day. The highest yield was obtained with Phaeodactylum; the lowest in Botryococcus cultures. The same species had the highest and lowest efficiencies of utilization of photosynthetically active radiation. In nitrogen-sufficient cells of all but one species, most of the dry weight consisted of protein. Lipid content of all species was 20 to 29%, and carbohydrate content 11 to 23%. Lipid content increased somewhat in N-deficient Phaeodactylum and Isochrysis cells, but decreased in deficient Monallanthus cells. Because the overall dry weight yield was reduced by deficiency, lipid yields did not increase. However, since the carbohydrate content increased to about 65% in N-deficient Dunaliella and Tetraselmis cells, the carbohydrate yield increased. In Phaeodactylum the optimum light intensity was about 40% of full sunlight. Most experimets with this alga included a CUSO/sub 4/ filter to decrease infrared irradiance. When this filter was removed, the yield increased because more red light in the photosynthetically active spectral range was included. These results should prove useful to workers attempting to maximize yields and efficiencies, but additional studies are needed. 69 references, 27 figures, 18 tables.

  20. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  2. Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Sonnenschein, Eva; Pu, Yuan; Beld, Joris

    2016-01-01

    available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases...... in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism...

  3. Airborne Microalgae: Insights, Opportunities, and Challenges

    Science.gov (United States)

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  4. Cell disruption for microalgae biorefineries

    NARCIS (Netherlands)

    Günerken, E.; Hondt, d' E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H.

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of

  5. Efficient recovery of uranium using genetically improved microalgae; Recuperacion eficaz de uranio utilizando microalgas geneticamente mejoradas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodas, V.; Gonzalez Conde, E.; Garcia-Balboa, C.

    2014-07-01

    Although bioaccumulation is an enzymatic process that requires live microalgae bio sorption is based on physicochemical interactions, and it is not necessary that microalgae are alive, whereby dried microalgae biomass achieves the same results. This alternative could represent a new safe and inexpensive way to recover U. (Author)

  6. Evaluation of the nutritional quality of Chaetoceros muelleri Schütt (Chaetocerotales: Chaetocerotaceae and Isochrysis sp. (Isochrysidales: isochrysidaceae grown outdoors for the larval development of Litopenaeus vannamei (Boone, 1931 (Decapoda: Penaeidae

    Directory of Open Access Journals (Sweden)

    Rodríguez Erika O.

    2012-01-01

    Full Text Available The biomass, proximal composition and fatty acid profile of Isochrysis sp., Chaetoceros muelleri and their mixture, grown under greenhouse conditions, were evaluated. The nutritional value of both species supplied as the monoalgal (Chaetoceros muelleri: Diet I, and Isochrysis sp. Diet II and mixed diet (Diet III for larval Litopenaeus vannamei was also assessed on the basis of the development and biochemical composition of the larvae. The highest protein levels were obtained in Diets I and II (40% and 35%, respectively. No significant differences in larval survival were found among the diets; however, larvae fed on Diet II had the lowest mean larval length.

  7. Microalgae Culture Collection: 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The Microalgae Culture Collection at the Solar Energy Research Institute has been established for the maintenance and distribution of strains that have been characterized for biomass fuel applications.

  8. Microalgae as embedded environmental monitors

    International Nuclear Information System (INIS)

    Ogburn, Zachary L.; Vogt, Frank

    2017-01-01

    In marine ecosystems, microalgae are an important component as they transform large quantities of inorganic compounds into biomass and thereby impact environmental chemistry. Of particular relevance is phytoplankton's sequestration of atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algae blooms. On the other hand, microalgae sensitively respond to changes in their chemical environment, which initiates an adaptation of their chemical composition. Analytical methodologies were developed in this study that utilize microalgae's adaptation as a novel approach for in-situ environmental monitoring. Longterm applications of these novel methods are investigations of environmental impacts on phytoplankton's sequestration performance and their nutritional value to higher organisms feeding on them. In order to analyze the chemical composition of live microalgae cells (Nannochloropsis oculata), FTIR-ATR spectroscopy has been employed. From time series of IR spectra, the formation of bio-sediment can be monitored and it has been shown that the nutrient availability has a small but observable impact. Since this bio-sediment formation is governed by several biological parameters of the cells such as growth rate, size, buoyancy, number of cells, etc., this enables studies of chemical environment's impact on biomass formation and the cells' physical parameters. Moreover, the spectroscopic signature of these microalgae has been determined from cultures grown under 25 different CO 2 and NO 3 − mixtures (200 ppm-600 ppm CO 2 , 0.35 mM-0.75 mM NO 3 − ). A novel, nonlinear modeling methodology coined ‘Predictor Surfaces’ is being presented by means of which the nonlinear responses of the cells to their chemical environment could reliably be described. This approach has been utilized to measure the CO 2 concentration in the atmosphere over the phytoplankton culture as well as the nitrate concentration dissolved in their growing

  9. Microalgae as embedded environmental monitors

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, Zachary L.; Vogt, Frank, E-mail: fvogt@utk.edu

    2017-02-15

    In marine ecosystems, microalgae are an important component as they transform large quantities of inorganic compounds into biomass and thereby impact environmental chemistry. Of particular relevance is phytoplankton's sequestration of atmospheric CO{sub 2}, a greenhouse gas, and nitrate, one cause of harmful algae blooms. On the other hand, microalgae sensitively respond to changes in their chemical environment, which initiates an adaptation of their chemical composition. Analytical methodologies were developed in this study that utilize microalgae's adaptation as a novel approach for in-situ environmental monitoring. Longterm applications of these novel methods are investigations of environmental impacts on phytoplankton's sequestration performance and their nutritional value to higher organisms feeding on them. In order to analyze the chemical composition of live microalgae cells (Nannochloropsis oculata), FTIR-ATR spectroscopy has been employed. From time series of IR spectra, the formation of bio-sediment can be monitored and it has been shown that the nutrient availability has a small but observable impact. Since this bio-sediment formation is governed by several biological parameters of the cells such as growth rate, size, buoyancy, number of cells, etc., this enables studies of chemical environment's impact on biomass formation and the cells' physical parameters. Moreover, the spectroscopic signature of these microalgae has been determined from cultures grown under 25 different CO{sub 2} and NO{sub 3}{sup −} mixtures (200 ppm-600 ppm CO{sub 2}, 0.35 mM-0.75 mM NO{sub 3}{sup −}). A novel, nonlinear modeling methodology coined ‘Predictor Surfaces’ is being presented by means of which the nonlinear responses of the cells to their chemical environment could reliably be described. This approach has been utilized to measure the CO{sub 2} concentration in the atmosphere over the phytoplankton culture as well as the nitrate

  10. Biodiesel from microalgae beats bioethanol.

    Science.gov (United States)

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  11. Microalgae production in a biofilm photobioreactor

    NARCIS (Netherlands)

    Blanken, Ward

    2016-01-01

    Microalgae can be used to produce high-value compounds, such as pigments or high value fatty acids, or as a feedstock for lower value products such as food and feed compounds, biochemicals, and biofuels. In order to produce these bulk products competitively, it is required to lower microalgae

  12. Production of biofuels obtained from microalgae

    Directory of Open Access Journals (Sweden)

    Luis Carlos Fernández-Linares

    2012-09-01

    Full Text Available A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importance of the genetic manipulation to highly lipid-producing microalgae (example: Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans and Nitschia sp.. A study of the advantages and disadvantages of the different systems of cultivation of microalgae is also made. Finally, it is shown a perspective of biofuels from microalgae. Among the main challenges to overcome to produce biodiesel from microalgae are: the cost of production of biomass, which involves the optimization of media, selection and manipulation of strains and photobioreactors design. The processof separation of biomass, the extraction of oils and by-products, the optimization of the process of transesterification, purification and use of by-products must also be considered.

  13. Harvesting and cell disruption of microalgae

    NARCIS (Netherlands)

    Lam, 't Gerard Pieter

    2017-01-01

    Microalgae are a potential feedstock for various products. At the moment, they are already used as feedstock for high-valuable products (e.g. aquaculture and pigments).

    Microalgae pre-dominantly consist out of proteins, lipids and carbohydrates. This makes algae an interesting feedstock

  14. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    This review presents the current classification of biofuels, with special focus on microalgae and their applicability for the production of biodiesel. The paper considered issues related with the processing and culturing of microalgae, for not only those that are involved in biofuel production, but as well as the possibility of their ...

  15. Highly valuable microalgae: biochemical and topological aspects.

    Science.gov (United States)

    Pignolet, Olivier; Jubeau, Sébastien; Vaca-Garcia, Carlos; Michaud, Philippe

    2013-08-01

    The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.

  16. Magnetically modified microalgae and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Procházková, G.; Pospíšková, K.; Brányik, T.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 931-941 ISSN 0738-8551 R&D Projects: GA ČR GA13-13709S; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : oleaginous chlorella sp * fresh-water microalgae * magnetophoretic separation * high-gradient * harvesting microalgae * alexandrium-fundyense * polymer binder * algal blooms * cells * removal * Harvesting algal cells * magnetic labeling * magnetic modification * magnetic separation * microalgae Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.542, year: 2016

  17. Screening of antioxidant activity in microalgae

    Directory of Open Access Journals (Sweden)

    Mariana F.G. Assunção

    2014-06-01

    Both sets of results indicate an interesting antioxidant potential in microalgae belonging to the groups Eustigmatophyceae and Chlorophyceae. Tested species of these groups showed ABTS•+ values comparable to grape and raspberry ethanolic extracts, confirmed also by the DPPH• method.

  18. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  19. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  20. From tiny microalgae to huge biorefineries

    OpenAIRE

    Gouveia, L.

    2014-01-01

    Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...

  1. Comparison between direct transesterification of microalgae and hydrochar

    Directory of Open Access Journals (Sweden)

    Vo Thanh Phuoc

    2017-07-01

    Full Text Available Hydrothermal carbonization (HTC of microalgae is one of processes that can effectively remove moisture from microalgae. In addition, the hydrochar retains most of fatty acids from microalgae feedstock, and the content of fatty acids in hydrochar is doubled. This research concentrates on the comparison between direct transesterification of microalgae and hydrochar. The result shows that the biodiesel yields of hydrochar were higher than those of microalgae at the same reaction conditions due to the higher extraction rate of fatty acids from hydrochar. Finally, the amount of methanol and catalyst which is required for a given amount of microalgae can be reduced to a half through the direct transesterification of hydrochar.

  2. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  3. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  4. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, Cristian; Fabbri, Daniele; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Cultivation of Desmodesmus sp. microalgae in the recycled aqueous phase (AP) recovered after Hydrothermal Liquefaction (HTL) of the same microalgae was studied to evaluate the potential of nutrients recycling. AP dilution ratio was systematically varied, using either water or water enriched with

  5. Microalgae bulk growth model with application to industrial scale systems

    NARCIS (Netherlands)

    Quinn, J.; Winter, de L.; Bradley, T.

    2011-01-01

    The scalability of microalgae growth systems is a primary research topic in anticipation of the commercialization of microalgae-based biofuels. To date, there is little published data on the productivity of microalgae in growth systems that are scalable to commercially viable footprints. To inform

  6. Harvesting microalgae by bio-flocculation and autoflocculation

    NARCIS (Netherlands)

    Salim, S.

    2013-01-01

    Harvesting in commercial microalgae production plants is generally done by centrifugation, but this requires upto about 50% of the total energy gained from the microalgae. The energy needed for harvesting can be reduced considerably by pre-concentration of the microalgae prior to further dewatering.

  7. Cultivation of the microalga, Chlorella pyrenoidosa , in biogas ...

    African Journals Online (AJOL)

    Therefore, the microalga was introduced to be cultivated in the biogas wastewater, which could not only bioremediate the wastewater, but also produce plenty of the microalga biomass that could be used for the exploitation of fertilizers, feed additives and biofuels. This study showed that the microalga, C. pyrenoidosa could ...

  8. An Overview of Biocement Production from Microalgae

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2011-12-01

    Full Text Available The invention of microorganism’s involvement in carbonate precipitation, has lead the exploration of this process in the field of construction engineering. Biocement is a product innovation from developing bioprocess technology called biocementation. Biocement refers to CaCO3 deposit that formed due to microorganism activity in the system rich of calcium ion. The primary role of microorganism in carbonate precipitation is mainly due to their ability to create an alkaline environment (high pH and DIC increase through their various physiological activities. Three main groups of microorganism that can induce the carbonate precipitation: (i photosynthetic microorganism such as cyanobacteria and microalgae; (ii sulphate reducing bacteria; and (iii some species of microorganism involved in nitrogen cycle. Microalgae are photosynthetic microorganism and utilize urea using urease or urea amidolyase enzyme, based on that it is possible to use microalgae as media to produce biocement through biocementation. This paper overviews biocement in general, biocementation, type of microorganism and their pathways in inducing carbonate precipitation and the prospect of microalgae to be used in biocement production.  Keywords— Biocement, Biocementation, Microalgae, CaCO3 precipitation

  9. Selenium Utilization Strategy by Microalgae

    Directory of Open Access Journals (Sweden)

    Hiroya Araie

    2009-11-01

    Full Text Available The diversity of selenoproteins raises the question of why so many life forms require selenium. Selenoproteins are found in bacteria, archaea, and many eukaryotes. In photosynthetic microorganisms, the essential requirement for selenium has been reported in 33 species belonging to six phyla, although its biochemical significance is still unclear. According to genome databases, 20 species are defined as selenoprotein-producing organisms, including five photosynthetic organisms. In a marine coccolithophorid, Emiliania huxleyi (Haptophyta, we recently found unique characteristics of selenium utilization and novel selenoproteins using 75Se-tracer experiments. In E. huxleyi, selenite, not selenate, is the main substrate used and its uptake is driven by an ATP-dependent highaffinity, active transport system. Selenite is immediately metabolized to low-molecular mass compounds and partly converted to at least six selenoproteins, named EhSEP1–6. The most (EhSEP2 and second-most abundant selenoproteins (EhSEP1 are disulfide isomerase (PDI homologous protein and thioredoxin reductase (TR 1, respectively. Involvement of selenium in PDI is unique in this organism, while TR1 is also found in other organisms. In this review, we summarize physiological, biochemical, and molecular aspects of selenium utilization by microalgae and discuss their strategy of selenium utilization.

  10. Can Microalgae Remove Pharmaceutical Contaminants from Water?

    Science.gov (United States)

    Xiong, Jiu-Qiang; Kurade, Mayur B; Jeon, Byong-Hun

    2018-01-01

    The increase in worldwide water contamination with numerous pharmaceutical contaminants (PCs) has become an emerging environmental concern due to their considerable ecotoxicities and associated health issues. Microalgae-mediated bioremediation of PCs has recently gained scientific attention, as microalgal bioremediation is a solar-power driven, ecologically comprehensive, and sustainable reclamation strategy. In this review, we comprehensively describe the current research on the possible roles and applications of microalgae for removing PCs from aqueous media. We summarize several novel approaches including constructing microbial consortia, acclimation, and cometabolism for enhanced removal of PCs by microalgae, which would improve practical feasibility of these technologies. Some novel concepts for degrading PCs using integrated processes and genetic modifications to realize algal-based bioremediation technologies are also recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    Science.gov (United States)

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  12. MICROALGAS E SEU POTENCIAL DE USO

    OpenAIRE

    Barcellos, Amanda Desireux; UFBA; Barreto, Antonio Geraldo da Silva Sá; UFBA; Machado, Bruna Aparecida Souza; UFBA; Druzian, Janice Izabel; UFBA

    2014-01-01

    As microalgas são organismos predominantemente microscópicos unicelulares, procariontes ou eucariontes, dotados de pigmentos e fotoautotróficos. Estes seres possuem um alto potencial biológico, ecológico e econômico. O objetivo desta prospecção tecnológica foi identificar as patentes, teses e artigos científicos referentes a microalgas quanto ao seu emprego nos mais diversos setores, bem como sua tecnologia de cultivo. Para tanto, foi realizada uma pesquisa aos bancos de dados de patentes nac...

  13. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.

    Science.gov (United States)

    Aida, Taku Michael; Maruta, Ryouma; Tanabe, Yuuhiko; Oshima, Minori; Nonaka, Toshiyuki; Kujiraoka, Hiroki; Kumagai, Yasuaki; Ota, Masaki; Suzuki, Iwane; Watanabe, Makoto M; Inomata, Hiroshi; Smith, Richard L

    2017-03-01

    Defatted heterotrophic microalgae (Aurantiochytrium limacinum SR21) was treated with high temperature water (175-350°C, 10-90min) to obtain nitrogen and phosphorous nutrients as a water soluble fraction (WS). Yields of nitrogen and phosphorous recovered in WS varied from 38 to 100% and from 57 to 99%, respectively. Maximum yields of nitrogen containing compounds in WS were proteins (43%), amino acids (12%) and ammonia (60%) at treatment temperatures of 175, 250 and 350°C, respectively. Maximum yield of phosphorous in WS was 99% at a treatment temperature of 250°C. Cultivation experiments of microalgae (A. limacinum SR21) using WS obtained at 200 and 250°C showed positive growth. Water soluble fractions from hydrothermal treatment of defatted microalgae are effective nitrogen and phosphorous nutrient sources for microalgae cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. EFFECT OF SALINITY, TEMPERATURE, AND FOOD VALUE OF FOUR MICROALGAE TO OYSTER, Crassostrea iredalei LARVAL GROWTH

    Directory of Open Access Journals (Sweden)

    Achmad Sudradjat

    2006-12-01

    Full Text Available Published accounts of Crassostrea iredalei are only of its distribution in the Philippines. In Indonesia, this species is known to occur on the coast of South Sulawesi as well as in Banten. The purposes of the present studies were to investigate effect of salinity, temperature and food value of four microalgae to C. iredalei larval growth. Fine filtration of water was carried out using Sartorius capsule filter cartridge (1.2 ìm and 0.2 ìm and sterilization was achieved by passing the water through an ultraviolet light unit. Low-salinity water was prepared by diluting filtered seawater with distilled water. High-salinity water was made by adding synthetic sea salts. All cultures were kept in constant temperature baths. Experiments of 8-days (for temperature and salinity trials and 10-days (for diet trial duration were duplicated in 500 mL glass beakers with larval density of 104 per liter. Seawater was changed every 48 h. The algae, Isochrysis galbana, I. galbana clone T-ISO, and Pavlova lutheri were added to the glass beakers at a rate of 100 cells/ìL; cell density of Chaetoceros calsitrans was 250 cells/ìl at the start of the experiment and after every water change. Using thermostat chambers, 5 temperatures were tested, ranging from 14o to 34o in 5 steps. Four salinities were used, they ranged from 10 to 35‰ in 5‰ steps. For environmental condition trial, I. galbana as food was used. In diet trials, 4 species of algae were tested e.g. I. galbana, I. galbana T-ISO, P. lutheri, C. calcitrans and a mixture of algae, T-ISO/C. calcitrans. The optimum salinity range for growth of larvae was recorded at 20‰—30‰ at which the mean shell length was 85.1—87.7 ìm. The highest survival rate was recorded at salinity of 25‰—30‰, it was 91.6%—92.7%. There were significant differences in larval growth between temperature treatments. The optimum temperature for larval growth was at 24°C—29°C, with survival rate of 91.6%—93.0%. P

  15. Potentials of Microalgae Biodiesel Production in Nigeria

    African Journals Online (AJOL)

    Prof. Ogunji

    production industries in Nigeria will have positive effects on socio-economic development ... Keywords: bio-energy; climatic conditions; fossil fuel; microalgae; production economics ... of affordable land and labour (Sielhorst et al., ..... by clouds. Closed photobioreactors are scarcely influenced by rainfall pattern; however, ...

  16. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  17. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  18. Harvesting of microalgae by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H.

    2011-01-01

    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the

  19. Microalgae biorefineries: The Brazilian scenario in perspective.

    Science.gov (United States)

    Brasil, B S A F; Silva, F C P; Siqueira, F G

    2017-10-25

    Biorefineries have the potential to meet a significant part of the growing demand for energy, fuels, chemicals and materials worldwide. Indeed, the bio-based industry is expected to play a major role in energy security and climate change mitigation during the 21th century. Despite this, there are challenges related to resource consumption, processing optimization and waste minimization that still need to be overcome. In this context, microalgae appear as a promising non-edible feedstock with advantages over traditional land crops, such as high productivity, continuous harvesting throughout the year and minimal problems regarding land use. Importantly, both cultivation and microalgae processing can take place at the same site, which increases the possibilities for process integration and a reduction in logistic costs at biorefinery facilities. This review describes the actual scenario for microalgae biorefineries integration to the biofuels and petrochemical industries in Brazil, while highlighting the major challenges and recent advances in microalgae large-scale production. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antenna size reduction in microalgae mass culture

    NARCIS (Netherlands)

    Mooij, de T.

    2016-01-01

    The thesis describes the potential of microalgae with a reduced light harvesting antenna for biomass production under mass culture conditions (high biomass density, high light intensity). Theoretically, the lower chlorophyll content reduces the light harvesting capacity and with that the amount

  1. Production of structured triacylglycerols from microalgae

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2014-01-01

    Roč. 104, AUG 2014 (2014), s. 95-104 ISSN 0031-9422 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 ; RVO:67985939 Keywords : microalgae * enantiomers * chiral LC Subject RIV: EE - Microbiology, Virology Impact factor: 2.547, year: 2014

  2. Investigation of microalgae with photon density waves

    Science.gov (United States)

    Frankovitch, Christine; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2007-09-01

    Phototropic microalgae have a large potential for producing valuable substances for the feed, food, cosmetics, pigment, bioremediation, and pharmacy industries as well as for biotechnological processes. Today it is estimated that the microalgal aquaculture worldwide production is 5000 tons of dry matter per year (not taking into account processed products) making it an approximately $1.25 billion U.S. per year industry. For effective observation of the photosynthetic growth processes, fast on-line sensor systems that analyze the relevant biological and technical process parameters are preferred. The optical properties of the microalgae culture influence the transport of light in the photobioreactor and can be used to extract relevant information for efficient cultivation practices. Microalgae cultivation media show a combination of light absorption and scattering, which are influenced by the concentrations and the physical and chemical properties of the different absorbing and scattering species (e.g. pigments, cell components, etc.). Investigations with frequency domain photon density waves (PDW) allow for the examination of absorption and scattering properties of turbid media, namely the absorption and reduced scattering coefficient. The reduced scattering coefficient can be used to characterize physical and morphological properties of the medium, including the cell concentration, whereas the absorption coefficient correlates with the pigment content. Nannochloropsis oculata, a single-cell species of microalgae, were examined in a nutrient solution with photon density waves. The absorption and reduced scattering coefficients were experimentally determined throughout the cultivation process, and applied to gain information about the cell concentration and average cell radius.

  3. hydroprocessing processing processing microalgae derived h

    African Journals Online (AJOL)

    eobe

    higher yield of fuel per unit microalgae than the other ... used for the bio-crude production, it is not mandatory ... convert the whole biomass into primarily liquid .... Typical catalysts reportedly used for hydroprocessing ... design and economics for the conversion of whole ... separate reactors or a two-in-one reactor with a.

  4. Scenario evaluation of open pond microalgae production

    NARCIS (Netherlands)

    Slegers, P.M.; Lösing, M.B.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    To evaluate microalgae production in large scale open ponds under different climatologic conditions, a model-based framework is used to study the effect of light conditions, water temperature and reactor design on trends in algae productivity. Scenario analyses have been done for two algae species

  5. Harvesting microalgae with microwave synthesized magnetic microparticles

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Šafařík, Ivo; Brányik, T.

    2013-01-01

    Roč. 130, FEB (2013), s. 472-477 ISSN 0960-8524 R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : harvesting microalgae * iron oxide magnetic microparticles * non-covalent interactions * microwave treatment * cell demagnetization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.039, year: 2013

  6. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Vermuë, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of ratio between autoflocculating and target microalgae in bio-flocculation was studied with emphasis on the recovery, sedimentation rate and energy demand for harvesting the target microalgae. When the autoflocculating microalgae Ettlia texensis, Ankistrodesmus falcatus and Scenedesmus

  7. Evaluation of the Antioxidant Activity of Cell Extracts from Microalgae

    OpenAIRE

    F. Xavier Malcata; Pedro Moradas-Ferreira; Paula Tamagnini; A. C. Silva Ferreira; Maria S. Gião; Rui Seabra; A. Catarina Guedes

    2013-01-01

    A growing market for novel antioxidants obtained from non-expensive sources justifies educated screening of microalgae for their potential antioxidant features. Characterization of the antioxidant profile of 18 species of cyanobacteria (prokaryotic microalgae) and 23 species of (eukaryotic) microalgae is accordingly reported in this paper. The total antioxidant capacity, accounted for by both water- and lipid-soluble antioxidants, was evaluated by the (radical cation) ABTS method. For complem...

  8. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  9. Review on biofuel oil and gas production processes from microalgae

    International Nuclear Information System (INIS)

    Amin, Sarmidi

    2009-01-01

    Microalgae, as biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuel oil and gas. This paper presents a brief review on the main conversion processes of microalgae becoming energy. Since microalgae have high water content, not all biomass energy conversion processes can be applied. By using thermochemical processes, oil and gas can be produced, and by using biochemical processes, ethanol and biodiesel can be produced. The properties of the microalgae product are almost similar to those of offish and vegetable oils, and therefore, it can be considered as a substitute of fossil oil.

  10. Learning sustainability by developing a solar dryer for microalgae retrieval

    Directory of Open Access Journals (Sweden)

    Benedita Malheiro

    2016-01-01

    Full Text Available Excessive fossil fuel consumption is driving the search for alternative energy production solutions and, in particular, for sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. After producing the microalgae, they must be harvested and dried. Existing drying solutions consume too much energy and are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the team’s sustainable development awareness, active learning and motivation.

  11. Microalgae: cultivation techniques and wastewater phycoremediation.

    Science.gov (United States)

    Pacheco, Marcondes M; Hoeltz, Michele; Moraes, Maria S A; Schneider, Rosana C S

    2015-01-01

    Generation of liquid and gaseous effluents is associated with almost all anthropogenic activities. The discharge of these effluents into the environment without treatment has reduced the availability and quality of natural resources, representing a serious threat to the balance of different ecosystems and human health. Universal access to water and global warming are topics of intense concern and are listed as priorities in the vast majority of global scientific, social and political guidelines. Conventional techniques to treat liquid and gaseous effluents pose economic and/or environmental limitations that prevent their use in certain applications. The technique of phycoremediation, which uses microalgae, macroalgae, and cyanobacteria for the removal or biotransformation of pollutants, is an emerging technology that has been highlighted due to its economic viability and environmental sustainability. This literature review discusses different techniques of microalgae cultivation and their use in the phycoremediation of contaminants in wastewater.

  12. Microalgae for Biofuels and Animal Feeds

    Directory of Open Access Journals (Sweden)

    John Benemann

    2013-11-01

    Full Text Available The potential of microalgae biomass production for low-cost commodities—biofuels and animal feeds—using sunlight and CO2 is reviewed. Microalgae are currently cultivated in relatively small-scale systems, mainly for high value human nutritional products. For commodities, production costs must be decreased by an order of magnitude, and high productivity algal strains must be developed that can be stably cultivated in large open ponds and harvested by low-cost processes. For animal feeds, the algal biomass must be high in digestible protein and long-chain omega-3 fatty acids that can substitute for fish meal and fish oils. Biofuels will require a high content of vegetable oils (preferably triglycerides, hydrocarbons or fermentable carbohydrates. Many different cultivation systems, algal species, harvesting methods, and biomass processing technologies are being developed worldwide. However, only raceway-type open pond systems are suitable for the production of low-cost commodities.

  13. Antioxidant activity of the microalga Spirulina maxima

    OpenAIRE

    Miranda M.S.; Cintra R.G.; Barros S.B.M.; Mancini-Filho J.

    1998-01-01

    Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated ...

  14. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  15. Innovative natural functional ingredients from microalgae.

    Science.gov (United States)

    Plaza, Merichel; Herrero, Miguel; Cifuentes, Alejandro; Ibáñez, Elena

    2009-08-26

    Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.

  16. Production of biodiesel from Coelastrella sp. microalgae

    Science.gov (United States)

    Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan

    2017-11-01

    Microalgae have a wide area of usage and one of them it can be used for biodiesel production. In biodiesel production, lipids containing triglyceride or free fatty acid are converted into methyl ester through trans/esterification reactions. Lipids from microalgae can be extracted by acetone and dimethyl carbonate using homogenizer. Esterification of the lipids was investigated using various catalysts and source of methyl group. Activity of homogeneous catalyst such as HCl and H2SO4 and heterogeneous catalysts such as montmorillonit K-10 and ledgestone was investigated. Moreover, methanol and dimethyl carbonate as source of methyl group were also studied. Among of catalysts with methanol as source of methyl group, it was found that yield of crude biodiesel derived from Choelestrella Sp. microalgae was high over H2SO4 catalyst. On the other hand, over H2SO4 catalyst using dimethyl carbonate as source of methyl group, yield of crude biodiesel significant increase. However, FAME composition of crude biodiesel was high over HCl catalyst.

  17. Efficient recovery of uranium using genetically improved microalgae; Recuperacion eficaz de uranio utilizando microalgas geneticamente mejoradas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodas, V.; Conde Vilda, E.; Garcia-Balboa, C.

    2015-07-01

    We propose an alternative process for the efficient recovery of dissolved uranium based on genetically improved microalgae. We isolate Chlamydomonas cf. fonticola from a pond extremely contaminated by uranium (∼ 25 ppm) from ENUSA U-mine, Saelices (Salamanca, Spain). After a process of genetic improvement we obtained a strain capable to recover 115 mg of U per g of dry weight, by mean of bio-adsorption on the cell wall (mostly) and intra-cytoplasm bioaccumulation. Such a genetically improved microalgae resist extremes of acidity and pollution, but even its dead biomass is still able to recover a large amount of uranium. (Author)

  18. Assessment of microalgae-influenced biodeterioration of concrete ...

    African Journals Online (AJOL)

    The aim of this study was to isolate microalga involved in the biodeterioration of concrete structures. The growth of algae was monitored between day 1 and 18 using a spectrophotometer (Spectronic 721 model) at varying pH (4.2 and 9.4). To identify the microalgae, aliquots of the isolates was placed on microscope slides ...

  19. Novel protocol for lutein extraction from microalga Chlorella vulgaris

    DEFF Research Database (Denmark)

    D'Este, Martina; De Francisci, Davide; Angelidaki, Irini

    2017-01-01

    Lutein is a pigment generally extracted from marigold flowers. However, lutein is also found in considerable amounts in microalgae. In this study a novel method was developed to improve the extraction efficiency of lutein from microalga C. vulgaris. Differently from conventional methods, ethanol...

  20. Chemical Profiles of Microalgae with Emphasis on Lipids: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.; Suen, Y.; Hubbard, J.; Tornabene, T. G.

    1986-02-01

    This final report details progress during the third year of this subcontract. The overall objective of this subcontract was two fold: to provide the analytical capability required for selecting microalgae strains with high energy contents and to develop fundamental knowledge required for optimizing the energy yield from microalgae cultures. The progress made towards these objectives during this year is detailed in this report.

  1. Techno-economical evaluation of protein extraction for microalgae biorefinery

    NARCIS (Netherlands)

    Sari, Y.W.; Sanders, J.P.M.; Bruins, M.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other

  2. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  3. Microalgae for Bioenergy; Key Technology Nodes

    Czech Academy of Sciences Publication Activity Database

    Maléterová, Ywetta; Kaštánek, František; Rousková, Milena; Matějková, Martina; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 2015, č. 2015 (2015), s. 597618 ISSN 1537-744X R&D Projects: GA MŠk LJ12002 Institutional support: RVO:67985858 Keywords : microalgae * oil production * water recycling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.219, year: 2013 http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=14&SID=V2kH1WLyceq9ctvzW8I&page=1&doc=1

  4. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  5. Photobioreactor cultivation strategies for microalgae and cyanobacteria.

    Science.gov (United States)

    Johnson, Tylor J; Katuwal, Sarmila; Anderson, Gary A; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2018-03-08

    The current burden on fossil-derived chemicals and fuels combined with the rapidly increasing global population has led to a crucial need to develop renewable and sustainable sources of chemicals and biofuels. Photoautotrophic microorganisms, including cyanobacteria and microalgae, have garnered a great deal of attention for their capability to produce these chemicals from carbon dioxide, mineralized water, and solar energy. While there have been substantial amounts of research directed at scaling-up production from these microorganisms, several factors have proven difficult to overcome, including high costs associated with cultivation, photobioreactor construction, and artificial lighting. Decreasing these costs will substantially increase the economic feasibility of these production processes. Thus, the purpose of this review is to describe various photobioreactor designs, and then provide an overview on lighting systems, mixing, gas transfer, and the hydrodynamics of bubbles. These factors must be considered when the goal of a production process is economic feasibility. Targets for improving microalgae and cyanobacteria cultivation media, including water reduction strategies will also be described. As fossil fuel reserves continue to be depleted and the world population continues to increase, it is imperative that renewable chemical and biofuel production processes be developed toward becoming economically feasible. Thus, it is essential that future research is directed toward improving these processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  6. Emergent Sources of Prebiotics: Seaweeds and Microalgae.

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2016-01-28

    In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen.

  7. Emergent Sources of Prebiotics: Seaweeds and Microalgae

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2016-01-01

    Full Text Available In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen.

  8. Electrokinetically controlled fluid injection into unicellular microalgae.

    Science.gov (United States)

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-10-01

    Electrokinetically controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely studied model microalga Chlamydomonas reinhardtii. A microinjection system using glass capillary pipettes was developed to capture and impale the motile cells. To apply an electric field and induce electrokinetic flow (e.g., electrophoresis and electroosmosis), an electrode was inserted directly into the solution inside the impaling injection pipette and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate/propidium iodide dual fluorescent dye based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the injection pipette. Successful electrokinetic microinjection into cells was confirmed by both an increase in cell volume under an applied voltage and electric field dependent delivery of fluorescent fluorescein molecules into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heterotrophic cultivation of microalgae for production of biodiesel.

    Science.gov (United States)

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  10. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  11. Isolation, Characterization and Identification of Microalgae from the Red Sea

    KAUST Repository

    Luque Alaní s, Patricio

    2013-01-01

    Eukaryotic microalgae from the Red Sea were isolated, characterized and identified with the purpose of building a culture collection that will serve future research activities in the area of industrial microbiology. Seven sampling locations were

  12. Phototrophic pigment production with microalgae: biological constraints and opportunities

    NARCIS (Netherlands)

    Mulders, K.J.M.; Lamers, P.P.; Martens, D.E.; Wijffels, R.H.

    2014-01-01

    There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the

  13. Hydrothermal Disintegration and Extraction of Different Microalgae Species

    Directory of Open Access Journals (Sweden)

    Michael Kröger

    2018-02-01

    Full Text Available For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina to determine whether it has an advantage in comparison to other disintegration methods for lipid extraction. It was shown, that hydrothermal treatment is a reasonable opportunity to utilize microalgae without drying and increase the lipid yield of an algae extraction process. For three of the four microalgae species, the extraction yield with a prior hydrothermal treatment elevated the lipid yield up to six times in comparison to direct extraction. Only Scenedesmus rubescens showed a different behaviour. Reason can be found in the different cell wall of the species. The investigation of the differences in cell wall composition of the used species indicate that the existence of algaenan as a cell wall compound plays a major role in stability.

  14. Isolation of microalgae species from arid environments and ...

    African Journals Online (AJOL)

    Isolation of microalgae species from arid environments and evaluation of their potentials for biodiesel production. ... African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives.

  15. Climate conditions, and changes, affect microalgae communities… should we worry?

    Science.gov (United States)

    Gimenez Papiol, Gemma

    2018-03-01

    Microalgae play a pivotal role in the regulation of Earth's climate and its cycles, but are also affected by climate change, mainly by changes in temperature, light, ocean acidification, water stratification, and precipitation-induced nutrient inputs. The changes and impacts on microalgae communities are difficult to study, predict, and manage, but there is no doubt that there will be changes. These changes will have impacts beyond microalgae communities, and many of them will be negative. Some actions are currently ongoing for the mitigation of some of the negative impacts, such as harmful algal blooms and water quality, but global efforts for reducing CO 2 emissions, temperature rises, and ocean acidification are paramount for reducing the impact of climate change on microalgae communities, and eventually, on human well-being. Integr Environ Assess Manag 2018;14:181-184. © 2018 SETAC. © 2018 SETAC.

  16. Microalgae as healthy ingredients for functional food: a review.

    Science.gov (United States)

    Matos, J; Cardoso, C; Bandarra, N M; Afonso, C

    2017-08-01

    Microalgae are very interesting and valuable natural sources of highly valuable bioactive compounds, such as vitamins, essential amino acids, polyunsaturated fatty acids, minerals, carotenoids, enzymes and fibre. Due to their potential, microalgae have become some of the most promising and innovative sources of new food and functional products. Moreover, microalgae can be used as functional ingredients to enhance the nutritional value of foods and, thus, to favourably affect human health by improving the well-being and quality of life, but also by curtailing disease and illness risks. This review provides an overview of the current knowledge of the health benefits associated with the consumption of microalgae, bioactive compounds, functional ingredients, and health foods.

  17. Antibacterial and antifungal activities of selected microalgae and cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Najdenski, H. M.; Gigova, L. G.; Iliev, I. I.; Pilarski, P. S.; Lukavský, Jaromír; Tsvetkova, I. V.; Ninova, M. S.; Kussovski, V. K.

    2013-01-01

    Roč. 48, č. 7 (2013), s. 1533-1540 ISSN 0950-5423 Institutional support: RVO:67985939 Keywords : antimicrobial activity * cyanobacteria * microalgae Subject RIV: EF - Botanics Impact factor: 1.354, year: 2013

  18. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    Science.gov (United States)

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  19. Microalgae, a Potential Natural Functional Food Source – a Review

    Directory of Open Access Journals (Sweden)

    Villarruel-López Angélica

    2017-12-01

    Full Text Available Microalgae are a group of microorganisms used in aquaculture. The number of studies regarding their use as a functional food has recently increased due to their nutritional and bioactive compounds such as polysaccharides, fatty acids, bioactive peptides, and pigments. Specific microalgal glucans (polysaccharides can activate the immune system or exert antioxidant and hypocholesterolemic effects. The importance of algal lipids is based on their polyunsaturated fatty acids, their anti-inflammatory effects, their modulation of lipid pathways, and their neuroprotective action. Microalgae peptides can bind or inhibit specific receptors in cardiovascular diseases and cancer, while carotenoids can act as potent antioxidants. The beneficial biological activity will depend on the specific microalga and its chemical constituents. Therefore, knowledge of the composition of microalgae would aid in identifying, selecting, and studying their functional effects.

  20. POSSIBILITIES OF CARBON DIOXIDE FIXATION BY MICROALGAE IN REFINERY

    OpenAIRE

    Šingliar, Michal; Mikulec, Jozef; Kušnir, Patrik; Polakovičova, Gabriela

    2013-01-01

    Capture and sequestration of carbon dioxide is one of the most critical challenges today for businesses and governments worldwide. Thousands of emitting power plants and industries worldwide face this costly challenge – reduce the CO2 emissions or pay penalties. One possibility for carbon dioxide sequestration is its fixation in microalgae. Microalgae can sequester CO2 from flue gases emitted from fossil fuel-fired refinery plants and units, thereby reducing emissions of a major greenhouse ga...

  1. Biodiesel de microalgas: avanços e desafios

    Directory of Open Access Journals (Sweden)

    André Luiz Custódio Franco

    2013-01-01

    Full Text Available Microalgae biomass has been described by several authors as the raw material with the greatest potential to meet the goals of replacing petroleum diesel by biodiesel while not competing with arable land suitable for food production. Research groups in different countries are seeking the most appropriate production model for productivity, economic viability and environmental sustainability. This review focused on recent advances and challenges of technology for the production of biodiesel from microalgae, including the procedures used to obtain biomass.

  2. Lipid profiling of some authotrophic microalgae grown on waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    Microalgae can be a new source of lipids for the aquaculture industry. Moreover, their potential as natural sources of antioxidants has gained recent attention. About 40 species of microalgae are used in aquaculture worldwide. A full characterization of lipid components is critical for selecting...... by membrane microfiltration and analyzed for fatty acid (GC), triacylglycerol (HPLC), sterol (GC) and tochol (HPLC) composition and also for amounts of phospholipids . Lipid composition in micro algae varied strongly between species....

  3. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert

    2012-01-01

    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  4. Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant

    Science.gov (United States)

    Rinanti, A.; Purwadi, R.

    2018-01-01

    This study is particularly expected to provide information on the diversity of microalgae as the flocculant agent that gives the highest biomass yield. Bioflocculation was done by using one of the flocculating microalgae i.e. Scenedesmus obliquus to concentrate on non-flocculating microalgae Chlorella vulgaris. The freshwater microalgae S. obliquus tested it ability to harvest other non-flocculating microalgae, increased sedimentation rate in the flocculation process and increased biomass yield. The flocculation of biomass microalgae with chemical flocculant as comparison was done by adding alum (K2SO4·Al2 (SO4)3·24H2O). The addition of alum (K2SO4·Al2 (SO4)3·24H2O) as flocculant at pH 11 and S. obliquus sp. as bioflocculant caused significant alteration of nutrition of microalgae. Overall, the essential content produced by flocculation method with addition of alum or with bioflocculation (%, mg/100 mg dry weight) are lipid 31,64; 38,69, protein 30,79; 38.50%, and chlorophyll 0.6253; 0.8420). Harvesting with bioflocculation methods conducted at the end of the cultivation period increase the amount of biomass significantly and can accelerate the settling time of biomass. Harvesting microalgae cells by bioflocculation method becomes an economically competitive harvesting method compared to alum as a chemical flocculant because of the cheaper cost of flocculant, not toxic so it does not require further water treatment after harvesting due to the use of alum as chemical flocculants.

  5. Techno-Economic Assessment of Micro-Algae Production Systems

    OpenAIRE

    Hoffman, Justin

    2016-01-01

    Global oil consumption is rising at an unprecedented rate renewing interest in alternative fuels. Micro-algae represents a promising feedstock due to inherent advantages such as high solar energy efficiencies, large lipid fractions, and utilization of various waste streams including industrial flue gas. Current technological challenges have limited the commercial viability of microalgae based biofuel production systems. This study directly evaluates and compares the economic viability of biom...

  6. Vibrating membrane filtration as improved technology for microalgae dewatering

    OpenAIRE

    Nurra, C.; Clavero, E.; Salvadó, J.; Torras, C.

    2014-01-01

    10.1016/j.biortech.2014.01.115 The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean ...

  7. Bacterial influence on alkenones in live microalgae.

    Science.gov (United States)

    Segev, Einat; Castañeda, Isla S; Sikes, Elisabeth L; Vlamakis, Hera; Kolter, Roberto

    2016-02-01

    The microalga Emiliania huxleyi produces alkenone lipids that are important proxies for estimating past sea surface temperatures. Field calibrations of this proxy are robust but highly variable results are obtained in culture. Here, we present results suggesting that algal-bacterial interactions may be responsible for some of this variability. Co-cultures of E. huxleyi and the bacterium Phaeobacter inhibens resulted in a 2.5-fold decrease in algal alkenone-containing lipid bodies. In addition levels of unsaturated alkenones increase in co-cultures. These changes result in an increase in the reconstructed growth temperature of up to 2°C relative to axenic algal cultures. © 2015 Phycological Society of America.

  8. Marine microalgae attack and feed on metazoans

    DEFF Research Database (Denmark)

    Berge, Terje; Poulsen, Louise K.; Moldrup, Morten

    2012-01-01

    Free-living microalgae from the dinoflagellate genus Karlodinium are known to formmassive blooms in eutrophic coastal waters worldwide and are often associated with fish kills. Natural bloom populations, recently shown to consist of the two mixotrophic and toxic species Karlodinium armiger...... and Karlodinium veneficum have caused fast paralysis and mortality of finfish and copepods in the laboratory, and have been associated with reduced metazooplankton biomass in-situ. Here we show that a strain of K. armiger (K-0688) immobilises the common marine copepod Acartia tonsa in a densitydependent manner...... and collectively ingests the grazer to promote its own growth rate. In contrast, four strains of K. veneficum did not attack or affect the motility and survival of the copepods. Copepod immobilisation by the K. armiger strain was fast (within 15min) and caused by attacks of swarming cells, likely through...

  9. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  11. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  13. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  14. TECHNOLOGICAL APPLICATION OF MICROALGAE IN POWER INDUSTRY AND ENVIRONMENTAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Ilmutdin M. Abdulagatov

    2018-01-01

    Full Text Available Abstract. Aim. The aim of the study is to show the possibility and efficiency of large-scale industrial production of microalgae in the Republic of Dagestan for the development of agriculture (feed for animals and poultry and other technological applications in the food and pharmaceutical industries for the production of algalin flour (eco bread, polyunsaturated fatty acids (omega-3, omega-6 physiologically necessary for humans, biologically active substances (astaxanthin, phycocyanin, new-generation antibiotics, biofuels and other high added value biotechnological products. The problems of using microalgae for bioremediation of the environment, in particular, purification of geothermal waters from phenols before discharging into the sewage system are considered. Methods. Microalgae are grown in closed and open type plants. Valuable algae components can be extracted using supercritical fluid technology of continuous action. Results. We give a comparative evaluation of the efficiency of using microalgae as a biological raw material in comparison with traditionally used oilseeds. Conclusion. For Dagestan, located on the shore of the Caspian Sea, with its warm climate and an abundance of solar and geothermal energy, the development of this technology is a task of great economic importance. The advantages of microalgae technologies are the basis for the creation of large-scale production of microalgae in southern Russia. Biotechnology in Dagestan can become not only profitable, but also a high-tech and innovative industry.

  15. Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC

    Directory of Open Access Journals (Sweden)

    da Costa Carlito

    2018-01-01

    Full Text Available Microbial fuel cell is an ecological innovative technology producing bioelectricity by utilizing microbes activity. Substituent energy is produced by changing the chemical energy to electrical energy through the catalytic reaction of microorganism. The research aims to find out the potency of bioelectricity produced by microalgae microbial fuel cell technology by utilizing the combination of tapioca wastewater and microalgae cultivation. This research is conducted through the ingredients preparation stage – microalgae culture, wastewater characterization, membrane and graphite activation, and the providing of other supporting equipment. The next stage is the MMFC arrangement, while the last one is bioelectricity measurement. The result of optimal bioelectricity production on the comparison of electrode 2 : 2, the power density is 44,33 mW/m2 on day 6, meanwhile, on that of 1 : 1, 20,18 mW/m2 power density on day 1 is obtained. It shows that bioelectricity can be produced from the combination of tapioca wastewater and microalgae culture through the microalgae-microbial fuel cell (MMFC technology.This research is expected to be a reference for the next research particularly the one that observes the utilizing of microalgae as the part of new and renewable energy sources.

  16. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species

    DEFF Research Database (Denmark)

    Yao, Shuo; Brandt, Anders Bøving; Egsgaard, Helge

    2012-01-01

    Triacylglycerols, an energy storage compound in microalgae, are known to be accumulated after nitrogen starvation of microalgae cells. Microalgae could be of importance for future biodiesel production due to their fast growth rate and high oil content. In collections of temperature sensitive...... accumulation in microalgae and suggest possibilities for biodiesel production by specific induction of lipid accumulation in miroalgal cultures by cell-cycle inhibition....

  17. Benefits of Microalgae for Human Space Exploration

    Science.gov (United States)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  18. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  19. BIOREMOVAL OF LEAD IN INDUSTRIAL WASTEWATER BY MICROALGAE

    Directory of Open Access Journals (Sweden)

    M. RANITHA

    2016-07-01

    Full Text Available The removal of heavy metals from our environment especially wastewater is now shifting from the use of conventional removal method such as chemical precipitation, coagulation and membrane filtration to the use of bioremoval method. The presence of heavy metals in the environment is of major concern because of their toxicity, bioaccumulating tendency, and threat to human life and the environment. In recent years, many low cost sorbents such as microalgae, fungi bacteria and lignocellulosic agricultural by-products have been investigated for their biosorption capacity towards heavy metals. In this project, the focus is on bioremoval of heavy metals in wastewater using marine microalgae. The study will be emphasize on the efficiency of two marine microalgae named Nannochloropsis oculata and Tetraselmis chuii in treating the Lead (Pb content in industrial wasterwater. An experiment on the effect of various Pb concentration (10/20/40/60/80/100mg/L towards the microalgae has been studied. The obtained result showed that the content of chlorophyll-A in the microalgae sample, after 7 days of exposures to Pb, decreased as the Pb concentration increased. Besides that, Tetraselmis chuii was found to be more sensitive compared to Nannochloropsis oculata where both were able to tolerate the Pb concentration of up to only 20mg/L and 60mg/L, respectively.

  20. Monitoring Growth and Lipid Production of Some Egyptian Microalgae

    International Nuclear Information System (INIS)

    El-Baghdady, K.Z.; Zakaria, A.E.; Mousa, L.A.; Sadek, H.N.; Abd El Fatah, H.M.

    2016-01-01

    Microalgae bio diesel is a green and renewable energy resource. This study aims to examine growth and lipid production by various isolates of icroalgae using different growth media and lipid extraction techniques. Ten microalgae isolates were isolated from different samples collected from Egypt. The purified isolates were identified microscopically as: Lyngbya confervoides, Phormidium bohneri, Oscillatoria pseudogeminata, Amorphonostoc sp., Nostoc paludosum, Anabaena sphaerica related to cyanobacteria (blue green algae) and Chlorella vulgaris, Chlorella ellipsoidea, Scened esmusacutus acutus, Chlamydomonas globose related to green algae. These organisms were cultivated on two media: Bold's Basal Medium(BBM medium) and Blue Green Medium (BG-11 medium) to examine the favorite medium which supports the growth of each isolate In order to examine lipid production potentials by cyanobacterial isolates and green microalgae, two solvent systems were applied for lipid extraction, the first was (Chloroform - methanol 1:1 ) and the second was (Hexane-ethanol 1:1). Chlorella vulgaris and Anabaena sphaerica were selected as models of green microalgae and cyanobacteria espectively. Hexane-ethanol solvent system revealed higher lipid extraction capacity as compared to Chloroform- methanol system. A comparison between ten organisms for lipid production was carried out by the selected solvent mixture. The percentages of lipid to dry weight produced by Oscillatoria pseudogeminata and Chlamydomonas globose were 19.8% and14 .6% respectively recording the highest lipid to dry weight percentage. They can be considered as a promising lipid producing microalgae

  1. Uptake of uranium from sea water by microalgae

    International Nuclear Information System (INIS)

    Sakaguchi, Takashi; Horikoshi, Takao; Nakajima, Akira

    1978-01-01

    The uptake of uranium from aqueous systems especially from sea water by various microalgae was investigated. The freshwater microalgae, Chlorella regularis, Scenedesmus bijuga, Scenedesmus chloreloides, Scenedesmus obliquus, Chlamydomonas angulosa, Chlamydomonas reinhardtii, accumulated relatively large amounts of uranium from the solution containing uranium only. The concentration factors of the above mentioned algae were: Chlorella regularis 3930, Chlamydomonas 2330 - 3400, Scenedesmus 803 - 1920. The uptake of uranium from sea water by Chlorella regularis was inhibited markedly by the co-existence of carbonate ions. Chlorella cells could take up a great quantity of uranium from decarbonated sea water. The uptake of uranium was affected by the pH of sea water, and the amount of uranium absorbed was maximum at pH 5. The experiment was carried out to screen marine microalgae which have the ability to accumulate a large amount of uranium from sea water. The uptake of uranium from sea water by marine microalgae of different species turned out to be in the following decreasing order: Synechococcus > Chlamydomonas >> Chlorella > Dunaliella > Platymonas > Calothrix > Porphyridium. The amount of uranium absorbed differed markedly with different species of marine microalgae. (author)

  2. Influence of Microalgae onto submerged surfaces on Fouling

    Science.gov (United States)

    Kong, M.; Eom, C.; Yoon, B.; Yoon, H.; Kim, B.; Chung, K.

    2012-12-01

    Lots of algae together with organic matter deposited on the submerged surface can be easily observed occurring in the shallower water along the coast. This is mainly because only those organisms with the ability to adapt to the new situations created by man can firmly adhere enough to avoid being washed off. Chemical and microbiological characteristics of the fouling microalgae developed on various surfaces in contact with the seawater were made. The microbial compositions of the microalgae formed on the submerged surfaces were tested for. The quantities of the diverse microalgae in the samples developed on the prohibiting submerged surface were larger when there was no concern about materials for special selection for fouling. To confirm formation of microalgae on adsorbents was done SEM-EDS (Scanning Electron Microscope-Spectrometer) analysis. Microbial identified using optical microscope. In addition to, we quantified attaching microalgae as pass time. Experiment results, ten species which are Nitzshhia sp., Eucampia sp., Coscinodiscus sp., Licmophora sp., Rhizosolenia sp., Cylindrotheca sp., Striateela sp., Thalassionema sp., Guinardia sp., and Helicostomella sp. discovered to reservoir formed biofouling. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater.

  3. Fuels from microalgae: Technology status, potential, and research requirements

    Energy Technology Data Exchange (ETDEWEB)

    Neenan, B.; Feinberg, D.; Hill, A.; McIntosh, R.; Terry, K.

    1986-08-01

    Although numerous options for the production of fuels from microalgae have been proposed, our analysis indicates that only two qualify for extensive development - gasoline and ester fuel. In developing the comparisons that support this conclusion, we have identified the major areas of microalgae production and processing that require extensive development. Technology success requires developing and testing processes that fully utilize the polar and nonpolar lipids produced by microalgae. Process designs used in these analyses were derived from fragmented, preliminary laboratory data. These results must be substantiated and integrated processes proposed, tested, and refined to be able to evaluate the commercial feasibility from microalgae. The production of algal feedstocks for processing to gasoline or ester fuel requires algae of high productivity and high lipid content that efficiently utilize saline waters. Species screening and development suggest that algae can achieve required standards taken individually, but algae that can meet the integrated requirements still elude researchers. Effective development of fuels from microalgae technology requires that R and D be directed toward meeting the integrated standards set out in the analysis. As technology analysts, it is inappropriate for us to dictate how the R and D effort should proceed to meet these standards. We end our role by noting that alternative approaches to meeting the feasibility targets have been identified, and it is now the task of program managers and scientists to choose the appropriate approach to assure the greatest likelihood of realizing a commercially viable technology. 70 refs., 39 figs., 35 tabs.

  4. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  5. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  6. Microalgae culture collection, 1986-1987

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, W.; Johansen, J.; Chelf, P.; Nagle, N.; Roessler, P.; Lemke, P.

    1986-12-01

    The SERI Microalgae Culture Collection provides a repository for strains identified or developed for mass culture biomass production and makes these strains readily available to the research community. The strains in the collection have been selected for their potential in biomass fuel applications, and many produce significant quantities of cellular storage lipids. All of the newly added strains have been recently isolated by SERI and its subcontractors in organized screening programs. Many have been tested in outdoor mass culture systems, and several have demonstrated excellent performance as biomass producers. The strains added to the collection this year have been isolated from inland saline waters and marine waters. We believe that the strains in this collection can provide a source of extremely useful organisms, both for laboratory experimentation and for mass culture research. Most of the strains are currently nonaxenic. Again this year, cultures will be shipped free of charge to interested researchers. An important function of the culture collection catalog, in addition to listing the available strains, is to provide culture and performance data for each of the organisms. By collecting a summary of the requirements and characteristics of these organisms, we hope to allow requestors of cultures to begin productive research with a minimum of preliminary work on culture techniques.

  7. Microalgae Culture Collection, 1985-1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The SERI Microalgae Culture Collection was established in support of the US Department of Energy's Biofuels Program to provide a repository for strains identified or developed for mass culture biomass production and to make these strains readily available to the research community. The strains in the collection have been selected for their potential in biomass fuel applications, and many produce significant quantities of cellular storage lipids. The Culture Collection Catalog lists 20 strains of ten species. Many have been tested in outdoor mass culture systems, and several have demonstrated excellent performance as biomass producers, with yields of up to 40 grams of organic matter per square meter per day. The majority of strains added to the collection this year have been isolated from inland saline waters, although marine species are included as well. We believe that the strains in this collection can provide a source of extremely useful organisms, both for laboratory experimentation and for mass culture research. 98 refs., 31 figs., 52 tabs.

  8. Antioxidant activity of the microalga Spirulina maxima

    Directory of Open Access Journals (Sweden)

    M.S. Miranda

    1998-08-01

    Full Text Available Spirulina maxima, which is used as a food additive, is a microalga rich in protein and other essential nutrients. Spirulina contains phenolic acids, tocopherols and ß-carotene which are known to exhibit antioxidant properties. The aim of the present study was to evaluate the antioxidant capacity of a Spirulina extract. The antioxidant activity of a methanolic extract of Spirulina was determined in vitro and in vivo. The in vitro antioxidant capacity was tested on a brain homogenate incubated with and without the extract at 37oC. The IC50 (concentration which causes a 50% reduction of oxidation of the extract in this system was 0.18 mg/ml. The in vivo antioxidant capacity was evaluated in plasma and liver of animals receiving a daily dose of 5 mg for 2 and 7 weeks. Plasma antioxidant capacity was measured in brain homogenate incubated for 1 h at 37oC. The production of oxidized compounds in liver after 2 h of incubation at 37oC was measured in terms of thiobarbituric acid reactant substances (TBARS in control and experimental groups. Upon treatment, the antioxidant capacity of plasma was 71% for the experimental group and 54% for the control group. Data from liver spontaneous peroxidation studies were not significantly different between groups. The amounts of phenolic acids, a-tocopherol and ß-carotene were determined in Spirulina extracts. The results obtained indicate that Spirulina provides some antioxidant protection for both in vitro and in vivo systems.

  9. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  10. Microalgae as bioreactors for bioplastic production

    Directory of Open Access Journals (Sweden)

    Steinbüchel Alexander

    2011-10-01

    Full Text Available Abstract Background Poly-3-hydroxybutyrate (PHB is a polyester with thermoplastic properties that is naturally occurring and produced by such bacteria as Ralstonia eutropha H16 and Bacillus megaterium. In contrast to currently utilized plastics and most synthetic polymers, PHB is biodegradable, and its production is not dependent on fossil resources making this bioplastic interesting for various industrial applications. Results In this study, we report on introducing the bacterial PHB pathway of R. eutropha H16 into the diatom Phaeodactylum tricornutum, thereby demonstrating for the first time that PHB production is feasible in a microalgal system. Expression of the bacterial enzymes was sufficient to result in PHB levels of up to 10.6% of algal dry weight. The bioplastic accumulated in granule-like structures in the cytosol of the cells, as shown by light and electron microscopy. Conclusions Our studies demonstrate the great potential of microalgae like the diatom P. tricornutum to serve as solar-powered expression factories and reveal great advantages compared to plant based production systems.

  11. A Holistic Approach to Managing Microalgae for Biofuel Applications

    Directory of Open Access Journals (Sweden)

    Pau Loke Show

    2017-01-01

    Full Text Available Microalgae contribute up to 60% of the oxygen content in the Earth’s atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.

  12. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  13. Multi-Product Microalgae Biorefineries: From Concept Towards Reality.

    Science.gov (United States)

    't Lam, G P; Vermuë, M H; Eppink, M H M; Wijffels, R H; van den Berg, C

    2018-02-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too expensive. Typically, downstream processing of industrial biotechnological bulk products accounts for 20-40% of the total production costs, while for a microalgae multi-product biorefinery the costs are substantially higher (50-60%). These costs are high due to the lack of appropriate and mild technologies to access the different product fractions such as proteins, carbohydrates, and lipids. To reduce the costs, simplified processes need to be developed for the main unit operations including harvesting, cell disruption, extraction, and possibly fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heterotrophic cultivation of microalgae for pigment production: A review.

    Science.gov (United States)

    Hu, Jianjun; Nagarajan, Dillirani; Zhang, Quanguo; Chang, Jo-Shu; Lee, Duu-Jong

    Pigments (mainly carotenoids) are important nutraceuticals known for their potent anti-oxidant activities and have been used extensively as high end health supplements. Microalgae are the most promising sources of natural carotenoids and are devoid of the toxic effects associated with synthetic derivatives. Compared to photoautotrophic cultivation, heterotrophic cultivation of microalgae in well-controlled bioreactors for pigments production has attracted much attention for commercial applications due to overcoming the difficulties associated with the supply of CO 2 and light, as well as avoiding the contamination problems and land requirements in open autotrophic culture systems. In this review, the heterotrophic metabolic potential of microalgae and their uses in pigment production are comprehensively described. Strategies to enhance pigment production under heterotrophic conditions are critically discussed and the challenges faced in heterotrophic pigment production with possible alternative solutions are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Microalgae Isolation and Selection for Prospective Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2012-06-01

    Full Text Available Biodiesel production from microalgae is being widely developed at different scales as a potential source of renewable energy with both economic and environmental benefits. Although many microalgae species have been identified and isolated for lipid production, there is currently no consensus as to which species provide the highest productivity. Different species are expected to function best at different aquatic, geographical and climatic conditions. In addition, other value-added products are now being considered for commercial production which necessitates the selection of the most capable algae strains suitable for multiple-product algae biorefineries. Here we present and review practical issues of several simple and robust methods for microalgae isolation and selection for traits that maybe most relevant for commercial biodiesel production. A combination of conventional and modern techniques is likely to be the most efficient route from isolation to large-scale cultivation.

  16. Cultivation Of Microalgae (Chlorella vulgaris For Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Blinová Lenka

    2015-06-01

    Full Text Available Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  17. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  18. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    Science.gov (United States)

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.

    Science.gov (United States)

    Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo

    2015-12-01

    The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ultrasonic assisted biodiesel production of microalgae by direct transesterification

    Science.gov (United States)

    Kalsum, Ummu; Mahfud, Mahfud; Roesyadi, Achmad

    2017-03-01

    Microalgae are considered as the third generation source of biofuel and an excellent candidate for biofuel production to replace the fossil energy. The use of ultrasonic in producing biodiesel by direct transesterification of Nannochloropsis occulata using KOH as catalyst and methanol as a solvent was investigated. The following condition were determined as an optimum by experimental evaluates:: 1: 15 microalga to methanol (molar ratio); 3% catalyst concentration at temperature 40°C after 30 minute of ultrasonication. The highest yield of biodiesel produced was 30.3%. The main components of methyl ester from Nannochloropsis occulata were palmitic (C16 :0),, oleic (C18:1), stearic (C18;0), arahidic (C20:0) and myristic (C14:0). This stated that the application of ultrasounic for direct transesterificaiton of microalgae effectively reduced the reaction time compared to the reported values of conventional heating systems.

  1. Microalgae as source of biofuel: technology and prospective

    Science.gov (United States)

    Ferraro, Angelo

    2017-12-01

    Microalgae are autotrophic organisms found in solitary cells or in groups of single cells connected together. Their natural environment are typically freshwater and marine systems. Microalgae produce, via photosynthesis, approximately one-half of oxygen generated on earth while simultaneously consume carbon dioxide (CO2). Among the technologies being examined to produce green fuels (e.g. biodiesel, bioethanol and syngas), microalgae are viewed by many in the scientific community as having the greatest potential to become economically viable fuels. Nevertheless, to reach economic parity with fossil fuels there are still several challenges to be tackle. These include improving harvesting and oil extraction processes as well as increasing biomass productivity and oil content. All of these challenges can be impacted by genetic, molecular, and ultimately synthetic biology techniques.

  2. Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications.

    Science.gov (United States)

    Luo, Xuan; Su, Peng; Zhang, Wei

    2015-07-09

    Microalgae contain a variety of bioactive lipids with potential applications in aquaculture feed, biofuel, food and pharmaceutical industries. While microalgae-derived polyunsaturated fatty acid (PUFA) and their roles in promoting human health have been extensively studied, other lipid types from this resource, such as phytosterols, have been poorly explored. Phytosterols have been used as additives in many food products such as spread, dairy products and salad dressing. This review focuses on the recent advances in microalgae-derived phytosterols with functional bioactivities and their potential applications in functional food and pharmaceutical industries. It highlights the importance of microalgae-derived lipids other than PUFA for the development of an advanced microalgae industry.

  3. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  4. Advances and perspectives in using microalgae to produce biodiesel

    International Nuclear Information System (INIS)

    Amaro, Helena M.; Guedes, A. Catarina; Malcata, F. Xavier

    2011-01-01

    Carbon-neutral renewable liquid biofuels are needed to displace petroleum-derived transport fuels in the near future - which contribute to global warming and are of a limited availability. A promising alternative is conveyed by microalgae, the oil content of which may exceed 80% (w/w DW ) - as compared with 5% of the best agricultural oil crops. However, current implementation of microalga-based systems has been economically constrained by their still poor volumetric efficiencies - which lead to excessively high costs, as compared with petrofuel prices. Technological improvements of such processes are thus critical - and this will require a multiple approach, both on the biocatalyst and bioreactor levels. Several bottlenecks indeed exist at present that preclude the full industrial exploitation of microalgal cells: the number of species that have been subjected to successful genetic transformation is scarce, which hampers a global understanding (and thus a rational design) of novel blue-biotechnological processes; the mechanisms that control regulation of gene expression are not fully elucidated, as required before effective bioprocesses based on microalgae can be scaled-up; and new molecular biology tools are needed to standardize genetic modifications in microalgae - including efficient nuclear transformation, availability of promoter or selectable marker genes, and stable expression of transgenes. On the other hand, a number of pending technological issues are also present: the relatively low microalga intrinsic lipid productivity; the maximum cell concentration attainable; the efficiency of harvest and sequential recovery of bulk lipids; and the possibility of by-product upgrade. This review briefly covers the state of the art regarding microalgae toward production of biofuels, both from the point of view of the microalgal cell itself and of the supporting bioreactor; and discusses, in a critical manner, current limitations and promising perspectives in this

  5. Microalgae as a raw material for biofuels production.

    Science.gov (United States)

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  6. Terpenes as Green Solvents for Extraction of Oil from Microalgae

    Directory of Open Access Journals (Sweden)

    Celine Dejoye Tanzi

    2012-07-01

    Full Text Available Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  7. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-04-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitutecurrent fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17%of our energy mix program. Even though, most of the area in Indonesia is covered by sea, howeverthe utilization of microalgae as biofuel production is still limited. The biodiesel from currentsources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oilcannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed asthe new potential of energy (biodiesel sources.

  8. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oil cannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed as the new potential of energy (biodiesel sources.

  9. Microalgae: An alternative as sustainable source of biofuels?

    International Nuclear Information System (INIS)

    Amaro, Helena M.; Macedo, Ângela C.; Malcata, F. Xavier

    2012-01-01

    In recent decades, the world has been confronted with an energy crisis associated with irreversible depletion of traditional sources of fossil fuels, coupled with atmospheric accumulation of greenhouse gases that cause global warming. The urgent need to replace traditional fuels led to emergence of biodiesel and biohydrogen as interesting alternatives, both of which can be obtained via microalga-mediated routes. Microalgae are ubiquitous eukaryotic microorganisms, characterized by a remarkable metabolic plasticity. Their oil productivities are much higher than those of higher terrestrial plants, and they do not require high quality agricultural land. Microalgae may indeed be cultivated in brackish and wastewaters that provide suitable nutrients (e.g. NH 4 + ,NO 3 − andPO 4 3− ), at the expense of only sunlight and atmospheric CO 2 . On the other hand, metabolic engineering permits release of molecular hydrogen also via photosynthetic routes, which will easily be converted to electricity in fuel cells or mechanical power in explosion engines, with only water vapor as exhaust product in both cases. However, large-scale implementation of microalga-based systems to manufacture biodiesel and biohydrogen has been economically constrained by their still poor volumetric efficiencies, which imply excessively high costs when compared with current petrofuel prices. Technological improvements are accordingly critical, both on the biocatalyst and the bioreactor levels. The current bottlenecks that have apparently precluded full industrial exploitation of microalgae cells are critically discussed here, viz. those derived from the scarce knowledge on the mechanisms that control regulation of gene expression, the reduced number of species subjected to successful genetic transformation, the relatively low cell density attainable, the poor efficiency in harvesting, and the difficulties in light capture and use. Therefore, this paper provides an overview of the feasibility of

  10. Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods

    Science.gov (United States)

    Pancasakti Kusumaningrum, Hermin; Zainuri, Muhammad; Marhaendrajaya, Indras; Subagio, Agus

    2018-05-01

    Microbial contamination has caused public health problems in the world population. This problem has spurred the development of methods to overcome and prevent microbial invasion. The extensive use of antibiotics has facilitated the continued emergence and spread of resistant organisms. Synthesized of silver nanoparticle (AgNPs) on microalgae Chlorella pyrenoidosa offer environmentally safe antimicrobial agent. The present study is focused on the biosynthesis of AgNPs using microalgae C. pyrenoidosa. The research methods was conducted by insertion of nanosilver particle into microalgae cells with and without agitation to speed up the process of formation nanosilver microalgae. The formation of microalgae SNP was analyzes by UV-Vis spectrophotometer, Scanning Electron Micrograph (SEM) and Energy-dispersive X-ray spectroscopy (EDX) methods. The research result showed that nanosilver microalgae biosynthesis using the agitation treatment was exhibited better performance in particle insertion and cell stability, comparing with no agitation treatment. However, synthesis of nanosilver microalgae tend to reduce the cell size.

  11. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating

    International Nuclear Information System (INIS)

    Bach, Quang-Vu; Chen, Wei-Hsin; Lin, Shih-Cheng; Sheen, Herng-Kuang; Chang, Jo-Shu

    2017-01-01

    Highlights: • A microwave-assisted heating system is used for wet torrefaction (WT) of microalga. • Microalga Chlorella vulgaris ESP-31 is adopted as the feedstock. • The ash content in the microalga is reduced after WT. • The calorific value of the microalga can be intensified up to 21% after WT. • At least 61.5% of energy in the biomass is retained after WT. - Abstract: Microalgae are a prime source of third generation biofuels. Many thermochemical processes can be applied to convert them into fuels and other valuable products. However, some types of microalgae are characterized by very high moisture and ash contents, thereby causing several problems in further conversion processes. This study presents wet torrefaction (WT) as a promising pretreatment method to overcome the aforementioned drawbacks coupled with microalgal biomass. For this purpose, a microwave-assisted heating system was used for WT of microalga Chlorella vulgaris ESP-31 at different reaction temperatures (160, 170, and 180 °C) and durations (5, 10, and 30 min). The results show several improvements in the fuel properties of the microalga after WT such as increased calorific value and hydrophobicity as well as reduced ash content. A correlation in terms of elemental analysis can be adopted to predict the higher heating value of the torrefied microalga. The structure analysis by Fourier transform infrared (FT-IR) spectroscopy reveals that the carbohydrate content in the torrefied microalgae is lowered, whereas their protein and lipid contents are increased if the WT extent is not severe. However, the protein and lipid contents are reduced significantly at more severe WT conditions. The thermogravimetric analysis shows that the torrefied microalgae have lower ignition temperatures but higher burnout temperatures than the raw microalga, revealing significant impact of WT on the combustion reactivity of the microalga. Overall, the calorific value of the microalga can be intensified up to

  12. Management of autotrophic mass cultures of micro-algae

    CSIR Research Space (South Africa)

    Toerien, DF

    1987-01-01

    Full Text Available Interest in the mass cultivation of micro-algae as feed and foodstuff has existed since the turn of the century (Robinson and Toerien, 1962). Experiments using algae in photosynthetic research (Warburg, 1919) also led to an appreciation...

  13. High Lipid Induction in Microalgae for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Peer M. Schenk

    2012-05-01

    Full Text Available Oil-accumulating microalgae have the potential to enable large-scale biodiesel production without competing for arable land or biodiverse natural landscapes. High lipid productivity of dominant, fast-growing algae is a major prerequisite for commercial production of microalgal oil-derived biodiesel. However, under optimal growth conditions, large amounts of algal biomass are produced, but with relatively low lipid contents, while species with high lipid contents are typically slow growing. Major advances in this area can be made through the induction of lipid biosynthesis, e.g., by environmental stresses. Lipids, in the form of triacylglycerides typically provide a storage function in the cell that enables microalgae to endure adverse environmental conditions. Essentially algal biomass and triacylglycerides compete for photosynthetic assimilate and a reprogramming of physiological pathways is required to stimulate lipid biosynthesis. There has been a wide range of studies carried out to identify and develop efficient lipid induction techniques in microalgae such as nutrients stress (e.g., nitrogen and/or phosphorus starvation, osmotic stress, radiation, pH, temperature, heavy metals and other chemicals. In addition, several genetic strategies for increased triacylglycerides production and inducibility are currently being developed. In this review, we discuss the potential of lipid induction techniques in microalgae and also their application at commercial scale for the production of biodiesel.

  14. Improving microalgae for biotechnology - From genetics to synthetic biology

    Czech Academy of Sciences Publication Activity Database

    Hlavová, Monika; Turóczy, Zoltán; Bišová, Kateřina

    2015-01-01

    Roč. 33, č. 6 (2015), s. 1194-1203 ISSN 0734-9750 R&D Projects: GA MŠk EE2.3.30.0059; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Microalgae * Genetics * Mutagenesis Subject RIV: EE - Microbiology, Virology Impact factor: 9.848, year: 2015

  15. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  16. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  17. Photoacclimation state determines the photobehaviour of motile microalgae

    DEFF Research Database (Denmark)

    Ezequiel, João; Laviale, Martin; Frankenbach, Silja

    2015-01-01

    High productivity in intertidal microphytobenthic communities is achieved despite exposure to extreme and dynamic conditions (e.g. light, salinity, temperature). As an adaptation to this hostile environment, most of the microalgae species inhabiting fine-sediment habitats are motile, being able...

  18. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  19. Technical Note: Development of a Photobioreactor for Microalgae ...

    African Journals Online (AJOL)

    In view of the technical and biological limitations of open pond systems, a study was conducted to develop a cost-effective experimental photobioreactor that would permit efficient cultivation of microalgae for biodiesel production. The photobioreactor was developed using low cost materi- als, cylindrical translucent tubes ...

  20. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  1. Cultivation of microalgae on artificial light comes at a cost

    NARCIS (Netherlands)

    Blanken, W.M.; Cuaresma Franco, M.; Wijffels, R.H.; Janssen, M.G.J.

    2013-01-01

    Microalgae are potential producers of bulk food and feed compounds, chemicals, and biofuels. To produce these bulk products competitively, it is important to keep costs of raw material low. Light energy can be provided by sun or lamps. Sunlight is free and abundant. Disadvantages of sunlight,

  2. Cultivation of microalgae in a high irradiance area

    NARCIS (Netherlands)

    Cuaresma, M.

    2011-01-01


    Microalgae are a promising source of high-value products (i.e. carotenoids, ω-3 fatty acids), as well as feedstocks for food, bulk chemicals and biofuels. Industrial production is, however, still limited because the technology needs further development. One of the main bottlenecks is the

  3. Microalgae for the production of bulk chemicals and biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M.

    2010-01-01

    The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the

  4. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microalgae respond differently to nitrogen availability during culturing

    Indian Academy of Sciences (India)

    Variations in the exogenous nitrogen level are known to significantly affect the physiological status and metabolism of microalgae. However, responses of red, green and yellow-green algae to nitrogen (N) availability have not been compared yet. Porphyridium cruentum, Scenedesmus incrassatulus and Trachydiscus ...

  6. Cultivation of micro-algae in closed tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gudin, C.; Bernard, A.; Chaumont, D.

    1983-11-01

    A description is presented of the three culture pilot utilities in activity under natural light, including glass tubular solar collector (30 mm diameter) in which the microalgae culture circulates. The utility is controled automatically (thermal regulation, gaseous transfers, continuous culture organization). The tests were conducted for the production of polysaccharides (Porphyridium cruentum, chlamydomonas mexicana) or hydrocarbons (Botriococcus braunii).

  7. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  8. Production of bio-jet fuel from microalgae

    Science.gov (United States)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  9. Evaluation of the Antioxidant Activity of Cell Extracts from Microalgae

    Directory of Open Access Journals (Sweden)

    F. Xavier Malcata

    2013-04-01

    Full Text Available A growing market for novel antioxidants obtained from non-expensive sources justifies educated screening of microalgae for their potential antioxidant features. Characterization of the antioxidant profile of 18 species of cyanobacteria (prokaryotic microalgae and 23 species of (eukaryotic microalgae is accordingly reported in this paper. The total antioxidant capacity, accounted for by both water- and lipid-soluble antioxidants, was evaluated by the (radical cation ABTS method. For complementary characterization of cell extracts, a deoxyribose assay was carried out, as well as a bacteriophage P22/Salmonella-mediated approach. The microalga Scenedesmus obliquus strain M2-1 exhibited the highest (p > 0.05 total antioxidant capacity (149 ± 47 AAU of intracellular extracts. Its scavenger activity correlated well with its protective effects against DNA oxidative damage induced by copper(II-ascorbic acid; and against decay in bacteriophage infection capacity induced by H2O2. Finally, performance of an Ames test revealed no mutagenic effects of the said extract.

  10. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  11. Biomass of Microalgae as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Głowacka Natalia

    2017-05-01

    Full Text Available Algae represent a potential source of energy via anaerobic digestion. The aim of the study was to obtain the possible potential of green microalgae, which could replace the commonly used corn silage for the production of biogas in the future. The intensive construction of new biogas plants stations across Europe and the lack of arable land suitable for the cultivation of biomass for energy purposes are the fundamental reasons behind looking for the alternative raw materials for energy production as a substitute for commonly used input materials. When comparing green microalgae with conventional crops the high productivity potential (high oil content as well as the possibility of their production during the whole year can be noticed. It is necessary to find the effective way to produce biomass from green microalgae, proper for energy conversion, while ensuring the economic and environmental aspects. The interim research results mentioned in this article indicate that microalgae present appropriate alternative material for the process of anaerobic digestion.

  12. Biodiesel Production from Microalgae by Extraction – Transesterification Method

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2013-11-01

    Full Text Available The environmental impact of using petroleum fuels has led to a quest to find a suitable alternative fuel source. In this study, microalgae were explored as a highly potential feedstock to produce biodiesel fuel. Firstly, algal oil is extracted from algal biomass by using organic solvents (n–hexan.  Lipid is contained in microalgae up to 60% of their weight. Then, Biodiesel is created through a chemical reaction known as transesterification between algal oil and alcohol (methanol with strong acid (such as H2SO4 as the catalyst. The extraction – transesterification method resulted in a high biodiesel yield (10 % of algal biomass and high FAMEs content (5.2 % of algal biomass. Biodiesel production from microalgae was studied through experimental investigation of transesterification conditions such as reaction time, methanol to oil ration and catalyst dosage which are deemed to have main impact on reaction conversion efficiency. All the parameters which were characterized for purified biodiesel such as free glycerin, total glycerin, flash point, sulfur content were analyzed according to ASTM standardDoi: http://dx.doi.org/10.12777/wastech.1.1.6-9Citation:  Thao, N.T.P., Tin, N.T., and Thanh, B.X. 2013. Biodiesel Production from Microalgae by Extraction – Transesterification Method. Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.6-9

  13. Prospective of biodiesel production utilizing microalgae as the cell ...

    African Journals Online (AJOL)

    Microalgae are sunlight-driven miniature factories that convert atmospheric CO2 to polar and neutral lipids which after esterification can be utilized as an alternative source of petroleum. Further, other metabolic products such as bioethanol and biohydrogen produced by algal cells are also being considered for the same ...

  14. Physicochemical approach to freshwater microalgae harvesting with magnetic particles

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Podolová, N.; Šafařík, Ivo; Zachleder, Vilém; Brányik, T.

    2013-01-01

    Roč. 112, DEC 2013 (2013), s. 213-218 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GAP503/10/1270 Institutional support: RVO:67179843 ; RVO:61388971 Keywords : microalgae * cell adhesion * magnetic beads * surface interactions * XDLVO theory Subject RIV: EH - Ecology, Behaviour; EI - Biotechnology ; Bionics (MBU-M) Impact factor: 4.287, year: 2013

  15. Lichen microalgae are sensitive to environmental concentrations of atrazine.

    Science.gov (United States)

    Traba, Helena Moreno; Domínguez-Morueco, Noelia; Barreno, Eva; Catalá, Myriam

    2017-04-03

    The identification of new organisms for environmental toxicology bioassays is currently a priority, since these tools are strongly limited by the ecological relevance of taxa used to study global change. Lichens are sensitive bioindicators of air quality and their microalgae are an untapped source for new low-cost miniaturized bioassays with ecological importance. In order to increase the availability of a wider range of taxa for bioassays, the sensitivity of two symbiotic lichen microalgae, Asterochloris erici and Trebouxia sp. TR9, to atrazine was evaluated. To achieve this goal, axenic cultures of these phycobionts in suspension were exposed to a range of environmental concentrations of the herbicide atrazine, a common water pollutant. Optical density and chlorophyll autofluorescence were used as endpoints of ecotoxicity and ecophysiology on cell suspensions. Results show that lichen microalgae show high sensitivity to very low doses of atrazine, being higher in Asterochloris erici than in Trebouxia sp. TR9. We conclude that environmental concentrations of atrazine could modify population dynamics probably through a shift in reproduction strategies of these organisms. This seminal work is a breakthrough in the use of lichen microalgae in the assessment of micropollution effects on biodiversity.

  16. Edible oils from microalgae: insights in TAG accumulation

    NARCIS (Netherlands)

    Klok, A.J.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H.

    2014-01-01

    Microalgae are a promising future source for sustainable edible oils. To make microalgal oil a cost-effective alternative for common vegetable oils, increasing TAG productivity and TAG content are of high importance. Fulfilling these targets requires proper understanding of lipid metabolism in

  17. Hazard and risk of herbicides for marine microalgae

    NARCIS (Netherlands)

    Sjollema, S.B.; Martínez-García, G.; van der Geest, H.G.; Kraak, M.H.S.; Booij, P.; Vethaak, A.D.; Admiraal, W.

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects

  18. Hazard and risk of herbicides for marine microalgae

    International Nuclear Information System (INIS)

    Sjollema, Sascha B.; MartínezGarcía, Gema; Geest, Harm G. van der; Kraak, Michiel H.S.; Booij, Petra; Vethaak, A. Dick; Admiraal, Wim

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol ® 1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. - Highlights: • The hazard of herbicides for microalgae is compound and species specific. • In general a low risk although occasional potential effect levels are reached. • Current legislation does not protect marine microalgae sufficiently. - The hazard of herbicides in the coastal waters is compound and species specific and although the general risk in the field is low, occasionally potential effect levels are reached

  19. Analysis and stability of fatty acid esterified xanthophylls from microalgae

    NARCIS (Netherlands)

    Weesepoel, Y.J.A.

    2014-01-01

    Fatty acid esterified xanthophylls (e.g. astaxanthin) produced by microalgae are regarded as a natural alternative for food colourants, but little is known on the stability of these compounds in foods. The aims of this research were (i) to develop protocols to analyze esterified

  20. Vibrating membrane filtration as improved technology for microalgae dewatering.

    Science.gov (United States)

    Nurra, Claudia; Clavero, Ester; Salvadó, Joan; Torras, Carles

    2014-04-01

    The effect of shear-enhanced filtration by vibratory process in microalgae dewatering is presented in this paper. The aim of this research was to investigate the technical performance and improvement of vibrating membrane filtration compared with conventional tangential cross-flow filtration in microalgae concentration. An industrial-scale available commercial set-up was used. Several membrane materials as polyethersulfone, polyacrylonitrile, etc., and mean pore sizes (from 7000Da to 0.2μm) were tested and compared in both filtration set-ups. Experiments were carried-out with Nannochloropsis gaditana and Phaeodactylum tricornutum microalgae. It has been demonstrated that, even if the choice of the membrane depends on its cut-off, its material and the type of microalgae filtrated, dynamic filtration is always the best technology over a conventional one. If with conventional filtration permeability values were in the vicinity of 10L/h/m(2)/bar in steady state phase, with dynamic filtration these values increased to 30L/h/m(2)/bar or more. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A techno-economic analysis of biodiesel production from microalgae

    NARCIS (Netherlands)

    Olivieri, G.; Guida, T.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The preliminary assessment of a cost-effective flow-sheet for the production of biodiesel from microalgae lipid fraction was carried out. The study was based on approximated cost-estimation methods integrated with the simulation software Aspen Plus (R). Several scenarios were investigated to compare

  2. Suitability of Nigerian Weather Conditions for Cultivation of Microalgae

    African Journals Online (AJOL)

    Client

    compared with optimal conditions for cultivation of various species of microalgae. ... The results of average hours of sunshine showed that Jos has the lowest number of hours ... Temperature stratification in ponds within Abakaliki was ... question of how we will feed the starving masses of our ever increasing world population.

  3. Techno-economical evaluation of protein extraction for microalgae biorefinery

    Science.gov (United States)

    Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.

  4. From transient response of a compact photobioreactor for microalgae cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Dilay, Emerson; Ribeiro, Robert Luis Lara; Pulliam, Raevon; Mariano, Andre Bellin [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Nucleo de Pesquisa e Desenvolvimento em Energia Auto-Sustentavel; Ordonez, Juan Carlos [Florida State University, Tallahassee, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], E-mail: ordonez@caps.fsu.edu; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Biofuels from microalgae are currently the subject of funded scientific research in many countries due to their high productivity of oil when compared with other crops. Microalgae can also be used in many important applications such as to obtain compounds of interest for food, chemicals, and pharmaceuticals. The high productivity of microalgae when compared with other crops is achieved because agricultural land is not mandatory for their cultivation, since they can be grown in open ponds, sea or vertical photo bioreactors. In this paper, a mathematical model is introduced for assessing the transient microalgae growth as a function of variable light intensity, temperature and environmental conditions in the daily cycle. Photo bioreactor geometry is considered as well. Light intensity is obtained from sun position, photo bioreactor geometry, and the installation location in the world. The photo bioreactor was discretized in space by the the volume element method. Balances of energy and species together with thermodynamics, heat transfer and chemistry empirical and theoretical correlations are applied to each volume element. Therefore, a system of ordinary differential equations with respect to time only is capable of delivering temperatures and concentrations as functions of space and time, even with a coarse mesh. The numerical results are capable of predicting the transient and steady state photo bioreactor biomass production with low computational time. Microalgae specific growth rate as a function of average light intensity inside the tubes and time was calculated. As a result, the model is expected to be a useful tool for simulation, design, and optimization of compact photo bioreactors. (author)

  5. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus.

    Science.gov (United States)

    Bougaran, Gaël; Bernard, Olivier; Sciandra, Antoine

    2010-08-07

    It is well documented that the combination of low nitrogen and phosphorus resources can lead to situations where colimitation of phytoplankton growth arises, yet the underlying mechanisms are not fully understood. Here, we propose a Droop-based model built on the idea that colimitation by nitrogen and phosphorus arises from the uptake of nitrogen. Indeed, since N-porters are active systems, they require energy that could be related to the phosphorus status of the cell. Therefore, we assumed that N uptake is enhanced by the P quota. Our model also accounts for the biological observations that uptake of a nutrient can be down-regulated by its own internal quota, and succeeds in describing the strong contrast for the non-limiting quotas under N-limited and P-limited conditions that was observed on continuous cultures with Selenastrum minutum and with Isochrysis affinis galbana. Our analysis suggests that, regarding the colimitation concept, N and P would be better considered as biochemically dependent rather than biochemically independent nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects.

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.

  7. Transgene Expression in Microalgae-From Tools to Applications.

    Science.gov (United States)

    Doron, Lior; Segal, Na'ama; Shapira, Michal

    2016-01-01

    Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation

  8. Transgene expression in microalgae – from tools to applications

    Directory of Open Access Journals (Sweden)

    Lior eDoron

    2016-04-01

    Full Text Available Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide

  9. Effects of Fluctuating Environments on the Selection of High Yielding Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.

    1987-02-27

    Microalgae have the potential of producing biomass with a high content of lipids at high productivities using seawater or saline ground water resources. Microalgal lipids are similar to vegetable oils and suitable for processing to liquid fuels. Engineering cost analysis studies have concluded that, at a favorable site, microalgae cultivation for fuel production could be economically viable. The major uncertainties involve the microalgae themselves: biomass and lipid productivity and culture stability.

  10. A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation.

    Science.gov (United States)

    Li, Song; Cao, Xupeng; Wang, Yan; Zhu, Zhen; Zhang, Haowei; Xue, Song; Tian, Jing

    2017-11-01

    With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

  11. Potential of microalgae in the bioremediation of water with chloride content

    OpenAIRE

    Ramírez, M. E.; Vélez, Y. H.; Rendón, L.; Alzate, E.

    2017-01-01

    Abstract In this work it was carried out the bioremediation of water containing chlorides with native microalgae (MCA) provided by the Centre for study and research in biotechnology (CIBIOT) at Universidad Pontificia Bolivariana. Microalgae presented an adaptation to the water and so the conditions evaluated reaching a production of CO2 in mg L-1 of 53.0, 26.6, 56.0, 16.0 and 30.0 and chloride removal efficiencies of 16.37, 26.03, 40.04, 25.96 and 20.25% for microalgae1, microalgae2, microalg...

  12. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  13. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  14. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.

    Science.gov (United States)

    Granada-Moreno, C I; Aburto-Medina, A; de Los Cobos Vasconcelos, D; González-Sánchez, A

    2017-10-01

    To achieve the functional specialization of a microalgae community through operational tuning of an open photobioreactor used for biogas upgrading under alkaline conditions. An open photobioreactor was inoculated with an indigenous microalgae sample from the Texcoco Soda Lake. A microalgae community was adapted to fix CO 2 from synthetic biogas through different culture conditions reaching a maximum of 220 mg CO 2  l -1 per day. Picochlorum sp. and Scenedesmus sp. were identified as the prominent microalgae genera by molecular fingerprinting (partial sequencing of 16S rRNA and 18S rRNA genes) but only the first was detected by microscopy screening. Changes in the microalgae community profile were monitored by a range-weighted richness index, reaching the lowest value when biogas was upgraded. A robust microalgae community in the open photobioreactor was obtained after different culture conditions. The specialization of microalgae community for CO 2 fixation under H 2 S presence was driven by biogas upgrading conditions. The alkaline conditions enhance the CO 2 absorption from biogas and could optimize specialized microalgae communities in the open photobioreactor. Denaturing gradient gel electrophoresis fingerprinting and richness index comparison are useful methods for the evaluation of microalgae community shifts and photosynthetic activity performance, particularly in systems intended for CO 2 removal from biogas where the CO 2 assimilation potential can be related to the microbial richness. © 2017 The Society for Applied Microbiology.

  15. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  16. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  17. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  18. Harvesting and processing of microalgae biomass fractions for biodiesel production

    International Nuclear Information System (INIS)

    Munir, M.; Sharif, N.; Naz, S.; Saleem, F.; Manzoor, F.

    2013-01-01

    There has been a recent resurgent interest in microalgae as an oil producer for biofuel applications. An adequate supply of nutrients and carbon dioxide enables algae to successfully transform light energy of the sun into energy - rich chemical compounds through photosynthesis. A strain with high lipids, successfully grown and harvested, could provide oil for most of our process by volume, which would then provide the most profitable output. Significant advances have also been made in upstream processing to generate cellular biomass and oil. However, the process of extracting and purifying of oil from algae continues to prove a significant challenge in producing both microalgae bioproducts and biofuel, as the oil extraction from algae is relatively energy-intensive and expensive. The aim of this review is to focus on different harvesting and extraction processes of algae for biodiesel production reported within the last decade. (author)

  19. Hazard and risk of herbicides for marine microalgae.

    Science.gov (United States)

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate......Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place......, bringing together both microalgae and macroalgae on the same platform. It provides a brief overview on the mechanism of different biofuel production from algae. Factors affecting the biofuel process and the associated challenges have been highlighted alongwith analysis of techno-economic study available...

  1. Biorefinery of microalgae - opportunities and constraints for different production scenarios.

    Science.gov (United States)

    Hariskos, Ioanna; Posten, Clemens

    2014-06-01

    In order to design economically feasible production processes it is necessary, as part of the biorefinery concept, to valorize all constituents of the microalgal biomass. Such an approach requires appropriate biorefinery side-process strategies to be adapted to production of the primary product. These strategies are particularly valid for microalgae, since the composition and amount of residual biomass can vary significantly depending on cell stoichiometry and cultivation techniques. This review investigates opportunities and constraints for biorefinery concepts in production scenarios for four different products from microalgae with different market volumes, including high- and medium-value products, whole cells and biodiesel. Approaches to close material and energy balances, as well as to adapt the biorefinery according to biological potential, process routes, and market needs are presented, which will further contribute to making the biorefinery concept a success. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel

    International Nuclear Information System (INIS)

    Ishak, Nur Izzati; Muniandy, S V; Periasamy, Vengadesh; Ng, Fong-Lee; Phang, Siew-Moi

    2017-01-01

    In this work, we study the regional dependence of transport behavior of microalgae Chlorella vulgaris inside microfluidic channel on applied fluid flow rate. The microalgae are treated as spherical naturally buoyant particles. Deviation from the normal diffusion or Brownian transport is characterized based on the scaling behavior of the mean square displacement (MSD) of the particle trajectories by resolving the displacements in the streamwise (flow) and perpendicular directions. The channel is divided into three different flow regions, namely center region of the channel and two near-wall boundaries and the particle motions are analyzed at different flow rates. We use the scaled Brownian motion to model the transitional characteristics in the scaling behavior of the MSDs. We find that there exist anisotropic anomalous transports in all the three flow regions with mixed sub-diffusive, normal and super-diffusive behavior in both longitudinal and transverse directions. (paper)

  3. Improving biogas production from microalgae by enzymatic pretreatment.

    Science.gov (United States)

    Passos, Fabiana; Hom-Diaz, Andrea; Blanquez, Paqui; Vicent, Teresa; Ferrer, Ivet

    2016-01-01

    In this study, enzymatic pretreatment of microalgal biomass was investigated under different conditions and evaluated using biochemical methane potential (BMP) tests. Cellulase, glucohydrolase and an enzyme mix composed of cellulase, glucohydrolase and xylanase were selected based on the microalgae cell wall composition (cellulose, hemicellulose, pectin and glycoprotein). All of them increased organic matter solubilisation, obtaining high values already after 6h of pretreatment with an enzyme dose of 1% for cellulase and the enzyme mix. BMP tests with pretreated microalgae showed a methane yield increase of 8 and 15% for cellulase and the enzyme mix, respectively. Prospective research should evaluate enzymatic pretreatments in continuous anaerobic reactors so as to estimate the energy balance and economic cost of the process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    OpenAIRE

    Ahmad Yari Khosroushahi; Miguel de la Guardia; Mohamad Moradi Ghorakhlu; Ali Akbar Jamali; Fariba Akbari

    2012-01-01

    Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the ...

  5. A Novel Enclosed Online Control System for Microalgae Production

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-03-01

    Full Text Available Microalgae are single celled microscopic organisms which, like plants, convert solar energy into bio-energy through photosynthesis. They can be used to produce a variety of bio-based products, such as bio-food and biodiesel. Large scale algae production can be achieved in open or closed systems. An enclosed online microalgae control production system is presented in this paper. The designed system is composed of a reactor which is placed inside a box with light reflecting surface. Lighting system, CO2 supply, heating, as well as online cell mass monitoring via spectrophotometer, were integrated. The online monitoring of cell mass concentration is coupled to two pumps which remove a certain amount of cell suspension, and take fresh media as an alternative. Also, a LabView program was developed to collect data from a spectrophotometer and processed in a computer. Considering the limited experimental conditions and the pollution possibility for its high productivity if liquid is not properly disposed, food color was used to test the designed novel system in this paper. The results showed that, the system could detect a change in absorption over time with periodic sampling for every 4.8 minutes. When absorption value reach a pre-set gate, pump1 immediately starts to pump out a certain amount of solution?then pump2 starts to pump in fresh media according to the calculated time. The concentration could be controlled below the threshold value. From the continuous test using food color, the designed system showed good stability and controlling accuracy. It provides a good reference for the following microalgae testing experiment in future. Considering the applications of microalgae in agriculture, this research also provides resources for bio-fertilizer.

  6. "Rational" management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2013-01-01

    The microalga Scenedesmus obliquus exhibited the ability to biodegrade dichlorophenols (dcps) under specific autotrophic and mixotrophic conditions. According to their biodegradability, the dichlorophenols used can be separated into three distinct groups. Group I (2,4-dcp and 2,6 dcp - no meta-substitution) consisted of quite easily degraded dichlorophenols, since both chloride substituents are in less energetically demanding positions. Group II (2,3-dcp, 2,5-dcp and 3,4-dcp - one meta-chloride) was less susceptible to biodegradation, since one of the two substituents, the meta one, required higher energy for C-Cl-bond cleavage. Group III (3,5-dcp - two meta-chlorides) could not be biodegraded, since both chlorides possessed the most energy demanding positions. In general, when the dcp-toxicity exceeded a certain threshold, the microalga increased the energy offered for biodegradation and decreased the energy invested for biomass production. As a result, the biodegradation per cell volume of group II (higher toxicity) was higher, than group I (lower toxicity) and the biodegradation of dichlorophenols (higher toxicity) was higher than the corresponding monochlorophenols (lower toxicity). The participation of the photosynthetic apparatus and the respiratory mechanism of microalga to biodegrade the group I and the group II, highlighted different bioenergetic strategies for optimal management of the balance between dcp-toxicity, dcp-biodegradability and culture growth. Additionally, we took into consideration the possibility that the intermediates of each dcp-biodegradation pathway could influence differently the whole biodegradation procedures. For this reason, we tested all possible combinations of phenolic intermediates to check cometabolic interactions. The present contribution bring out the possibility of microalgae to operate as "smart" bioenergetic "machines", that have the ability to continuously "calculate" the energy reserves and "use" the most energetically

  7. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  8. CO{sub 2} capture and biofuels production with microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Microalgae cultivation in large open ponds is the only biological process capable of directly utilizing power plant flue gas CO{sub 2} for production of renewable fuels, such as biodiesel, thus mitigating the potential for global warming. Past and recent systems studies have concluded that in principle this concept could be economically feasible, but that this technology still requires both fundamental and applied long-term R&D.

  9. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  10. Microalgae dewatering based on forward osmosis employing proton exchange membrane.

    Science.gov (United States)

    Son, Jieun; Sung, Mina; Ryu, Hoyoung; Oh, You-Kwan; Han, Jong-In

    2017-11-01

    In this study, electrically-facilitated forward osmosis (FO) employing proton exchange membrane (PEM) was established for the purpose of microalgae dewatering. An increase in water flux was observed when an external voltage was applied to the FO equipped with the PEM; as expected, the trend became more dramatic with both concentration of draw solution and applied voltage raised. With this FO used for microalgae dewatering, 247% of increase in flux and 86% in final biomass concentration were observed. In addition to the effect on flux improvement, the electrically-facilitated FO exhibited the ability to remove chlorophyll from the dewatered biomass, down to 0.021±0015mg/g cell. All these suggest that the newly suggested electrically-facilitated FO, one particularly employed PEM, can indeed offer a workable way of dewatering of microalgae; it appeared to be so because it can also remove the ever-problematic chlorophyll from extracted lipids in a simultaneous fashion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Prospects of biodiesel production from microalgae in India

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shakeel A.; Hussain, Mir Z.; Prasad, S. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Rashmi; Banerjee, U.C. [Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, Phase X, S.A.S. Nagar, Mohali 160062, Punjab (India)

    2009-12-15

    Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO{sub 2} to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India. (author)

  12. Enzymatic cell disruption of microalgae biomass in biorefinery processes.

    Science.gov (United States)

    Demuez, Marie; Mahdy, Ahmed; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-10-01

    When employing biotechnological processes for the procurement of biofuels and bio-products from microalgae, one of the most critical steps affecting economy and yields is the "cell disruption" stage. Currently, enzymatic cell disruption has delivered effective and cost competitive results when compared to mechanical and chemical cell disruption methods. However, the introduction of enzymes implies additional associated cost within the overall process. In order to reduce this cost, autolysis of microalgae is proposed as alternative enzymatic cell disruption method. This review aims to provide the state of the art of enzymatic cell disruption treatments employed in biorefinery processes and highlights the use of endopeptidases. During the enzymatic processes of microalgae life cycle, some lytic enzymes involved in cell division and programmed cell death have been proven useful in performing cell lysis. In this context, the role of endopeptidases is emphasized. Mirroring these natural events, an alternative cell disruption approach is proposed and described with the potential to induce the autolysis process using intrinsic cell enzymes. Integrating induced autolysis within biofuel production processes offers a promising approach to reduce overall global costs and energetic input associated with those of current cell disruption methods. A number of options for further inquiry are also discussed. © 2015 Wiley Periodicals, Inc.

  13. Polishing of municipal secondary effluent using native microalgae consortia.

    Science.gov (United States)

    Beltrán-Rocha, Julio César; Barceló-Quintal, Icela Dagmar; García-Martínez, Magdalena; Osornio-Berthet, Luis; Saavedra-Villarreal, Nidia; Villarreal-Chiu, Juan; López-Chuken, Ulrico Javier

    2017-04-01

    This work evaluates the use of native microalgae consortia for a dual role: polishing treatment of municipal wastewater effluents and microalgae biomass feedstock potential for biodiesel or biofertilizer production. An initial screening was undertaken to test N and P removal from secondary effluents and biomass production by 12 consortia. A subsequent treatment was performed by selected consortia (01 and 12) under three operational conditions: stirring (S), S + 12 h of daily aeration (S + A) and S + A enriched with CO 2 (S + AC). All treatments resulted in compliance with environmental regulations (e.g. Directive 91/271/EEC) and high removal efficiency of nutrients: 64-79% and 80-94% of total N and PO 4 3- -P respectively. During the experiments it was shown that pH alkalinization due to microalgae growth benefits the chemical removal of ammonia and phosphorus. Moreover, advantages of pH increase could be accomplished by intermittent CO 2 addition which in this research (treatment S + AC) promoted higher yield and lipid concentration. The resulting dry biomass analysis showed a low lipid content (0.5-4.3%) not ideal for biodiesel production. Moreover, the high rate of ash (29.3-53.0%) suggests that biomass could be readily recycled as a biofertilizer due to mineral supply and organic constituents formed by C, N and P (e.g. carbohydrate, protein, and lipids).

  14. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  15. Biodiesel production from microalgae: cultivation parameters that affect lipid production

    International Nuclear Information System (INIS)

    Arias Penaranda, Martha Trinidad; Martinez Roldan, Alfredo de Jesus; Canizares Villanueva, Rosa Olivia

    2013-01-01

    The microalgae have the capacity to mitigate CO 2 emissions and to produce lipids, which are considered with potential to obtain third-generation biofuel. This review provides updated information of the influence of culture conditions on the lipids production with high productivity and profile suitable for the biodiesel production. This document presents a compilation of research conclusions over the last 13 years around the world. in the literature consulted, the authors conclude that although the behavior of microalgae at physiological stress conditions, varies between species; the nutrients limitation, especially nitrogen and phosphorus, associated with heterotrophic growth or high irradiances in phototrophy are considered the most efficient strategies to increase the lipid content in microalgae, particularly triglycerides (consisting of saturated and monounsaturated fatty acids), which are excellent for the production of biodiesel. Also, it is reported that the lipid content increase and the number of unsaturated fatty acids decrease with the addition of small amounts of CO 2 and harvesting the biomass it the stationary phase of growth.

  16. Utilization of organic residues using heterotrophic microalgae and insects.

    Science.gov (United States)

    Pleissner, Daniel; Rumpold, Birgit A

    2018-02-01

    Various organic residues occur globally in the form of straw, wood, green biomass, food waste, feces, manure etc. Other utilization strategies apart from anaerobic digestion, composting and incineration are needed to make use of the whole potential of organic residues as sources of various value added compounds. This review compares the cultivation of heterotrophic microalgae and insects using organic residues as nutrient sources and illuminates their potential with regard to biomass production, productivity and yield, and utilization strategies of produced biomasses. Furthermore, cultivation processes as well as advantages and disadvantages of utilization processes are identified and discussed. It was shown that both heterotrophic algae and insects are able to reduce a sufficient amount of organic residues by converting it into biomass. The biomass composition of both organisms is similar which allows similar utilization strategies in food and feed, chemicals and materials productions. Even though insect is the more complex organism, biomass production can be carried out using simple equipment without sterilization and hydrolysis of organic residues. Contrarily, heterotrophic microalgae require a pretreatment of organic residues in form of sterilization and in most cases hydrolysis. Interestingly, the volumetric productivity of insect biomass exceeds the productivity of algal biomass. Despite legal restrictions, it is expected that microalgae and insects will find application as alternative food and feed sources in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  18. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  19. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica

    Directory of Open Access Journals (Sweden)

    Qinhua Gan

    2018-04-01

    Full Text Available Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation. Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.

  20. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  1. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biodiesel renovável derivado de microalgas: avanços e perspectivas tecnológicas

    Directory of Open Access Journals (Sweden)

    Claudio M. P. Pereira

    2012-01-01

    Full Text Available Microalgae are a promising source of raw material for biodiesel production. This review discusses the latest developments related to the application of microalgae biomass for biodiesel production. Characterization of fatty acid of microalgae and comparisons with other sources of raw materials and processes are presented. Furthermore, technological perspectives and approaches for growing microalgae in photobioreactors, microalgal oil extraction techniques, and procedures for synthesizing biodiesel are reviewed.

  3. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch

    DEFF Research Database (Denmark)

    Letelier Gordo, Carlos Octavio; Holdt, Susan Løvstad; De Francisci, Davide

    2014-01-01

    In the present work, the flocculation efficiency of cationic starch (Greenfloc 120) was tested on the fresh water microalga Chlorella protothecoides under different conditions (pH and flocculant concentrations). Different concentrations of Greenfloc 120 (0, 2.5, 5, 10, 20, 40mgL-1) were screened...... to use, efficient and cost-effective flocculant for harvesting of microalgae....

  5. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  6. Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity

    NARCIS (Netherlands)

    Dominguez Teles, I.; Zwart, van der Mathijs; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M.J.

    2016-01-01

    Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological

  7. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling

    NARCIS (Netherlands)

    Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.

    2015-01-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25–145 gDW kg-1) over a range of agitator

  8. Lipid-based liquid biofuels from autotrophic microalgae: energetic and environmental performance

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Commercial cultivation of autotrophic microalgae for food production dates back to the 1950s. Autotrophic microalgae have also been proposed as a source for lipid-based liquid biofuels. As yet, there is no commercial production of such biofuels and estimated near-term prices are far in excess of

  9. Inventory of Sources of Available Saline Waters for Microalgae Mass Culture in the State of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, L. G.; Olson, K. L.; Wallace, M. G.; Osborn, M. D.

    1986-06-25

    The Solar Energy Research Institute (SERI) is conducting research on the development of microalgae biomass systems for the production of liquid fuels. Particularly appealing at this time, is the idea of using indigenous resources of the Southwest for large-scale production of microalgae.

  10. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains

    NARCIS (Netherlands)

    Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H.

    2012-01-01

    Microalgae-derived lipids are an alternative to vegetable and fossil oils, but lipid content and quality vary among microalgae strains. Selection of a suitable strain for lipid production is therefore of paramount importance. Based on published results for 96 species, nine strains were selected to

  11. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    Science.gov (United States)

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion of microalgae residues resulting from the biodiesel production process

    International Nuclear Information System (INIS)

    Ehimen, E.A.; Sun, Z.F.; Carrington, C.G.; Birch, E.J.; Eaton-Rye, J.J.

    2011-01-01

    The recovery of methane from post transesterified microalgae residues has the potential to improve the renewability of the 'microalgae biomass to biodiesel' conversion process as well as reduce its cost and environmental impact. This paper deals with the anaerobic digestion of microalgae biomass residues (post transesterification) using semi-continuously fed reactors. The influence of substrate loading concentrations and hydraulic retention times on the specific methane yield of the anaerobically digested microalgae residues was investigated. The co-digestion of the microalgae residues with glycerol as well as the influence of temperature was also examined. It was found that the hydraulic retention period was the most significant variable affecting methane production from the residues, with periods (>5 days) corresponding to higher energy recovery. The methane yield was also improved by a reduction in the substrate loading rates, with an optimum substrate carbon to nitrogen ratio of 12.44 seen to be required for the digestion process.

  14. Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications

    Science.gov (United States)

    Luo, Xuan; Su, Peng; Zhang, Wei

    2015-01-01

    Microalgae contain a variety of bioactive lipids with potential applications in aquaculture feed, biofuel, food and pharmaceutical industries. While microalgae-derived polyunsaturated fatty acid (PUFA) and their roles in promoting human health have been extensively studied, other lipid types from this resource, such as phytosterols, have been poorly explored. Phytosterols have been used as additives in many food products such as spread, dairy products and salad dressing. This review focuses on the recent advances in microalgae-derived phytosterols with functional bioactivities and their potential applications in functional food and pharmaceutical industries. It highlights the importance of microalgae-derived lipids other than PUFA for the development of an advanced microalgae industry. PMID:26184233

  15. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa [Silla Univ., Busan (Korea, Republic of)

    2013-07-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals.

  16. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    International Nuclear Information System (INIS)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa

    2013-01-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals

  17. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2014-07-01

    Full Text Available Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, different treatment methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic hydrolysates, as well as minor co-products, on growth and accumulation of target compounds in microalgae cultures is described. Finally, the possibilities of using lignocellulose hydrolysates as a common feedstock for microalgae cultures are evaluated.

  18. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    Science.gov (United States)

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  20. Research of Biogas Purification Using Microalgae Monoraphidium Griffithii Suspension

    Directory of Open Access Journals (Sweden)

    Živilė Bingelytė

    2017-09-01

    Full Text Available Using biogas instead of fossil fuels decreases pollutants such as solid particles, sulphur dioxide, nitrogen oxides concentrations in the environment. Green energy and development of relevant infrastructure improves air quality considerably. Chemical, physical, biological methods are used for biogas purification. The main difficulties using biological methods are selection of suitable microorganisms’ suspensions and making optimal conditions in photobioreactor. Different origin and structure microalgae suspensions are used applying biological treatment methods. Monoraphidium griffithi, which is widespread in fresh water, has relatively high potential. Microalgae’ cultures absorb the main components of biogas – carbon dioxide (CO2 and hydrogen sulphide (H2S. Absorbtion processes are based on photosynthesis. Microalgae absorb specific components of biogas when there are suitable light source and nutrient solvent. The main purposes of the research are to asses emission of biogas using different substrates (chicken manure and wastewater sludge. Also, it was measured main physical and chemical characteristics of both substrates: acidicy, temperature, redox potential, conductivity, biohemical oxygen demand. According results of the research, emission from wastewater sludge is greater than from chicken manure so sludge was chosen in teh next stage of the research. The next stage – asssessment of purification efficienty using Monoraphidium grifftihii suspension. Raw biogas was supplied to photobioreacor (with microalgae suspension. Alterations of methane, carbon dioxide, oxygen, hydrogen sulphide concentrations were measured precisely. According to results concentration of methane in the beginning of the researc was 62%, after 35 days – 69%. Meanwhile carbon dioxide – 37% and 31% by analogy. Experimental research alows to assess Monoraphidium griffithi absorption capacity of ballast components. Results were compared to different scientists

  1. Adaptation of microalgae to a gradient of continuous petroleum contamination

    International Nuclear Information System (INIS)

    Carrera-Martinez, Daniel; Mateos-Sanz, Aranzazu; Lopez-Rodas, Victoria; Costas, Eduardo

    2011-01-01

    In order to study adaptation of microalgae to petroleum contamination, we have examined an environmental stress gradient by crude oil contamination in the Arroyo Minero River (AMR), Argentina. Underground crude oil has constantly leaked out since 1915 as a consequence of test drilling for possible petroleum exploitation. Numerous microalgae species proliferated in AMR upstream of the crude oil spill. In contrast, only four microalgal species were detected in the crude oil spill area. Species richness increases again downstream. Microalgae biomass in the crude oil spill area is dominated by a mesophile species, Scenedesmus sp. Effects of oil samples from AMR spill on photosynthetic performance and growth were studied using laboratory cultures of two Scenedesmus sp. strains. One strain (Se-co) was isolated from the crude oil spill area. The other strain (Se-pr) was isolated from a pristine area without petroleum contamination. Crude oil has undetectable effects on Se-co strain. In contrast crude oil rapidly destroys Se-pr strain. However, Se-pr strain can adapt to low doses of petroleum (≤3% v/v total hydrocarbons/water) by means of physiological acclimatization. In contrast, only rare crude oil-resistant mutants are able to grow under high levels of crude oil (≥10% v/v total hydrocarbons/water). These crude oil-resistant mutants have arisen through rare spontaneous mutations that occur prior to crude oil exposure. Species richness in different areas of AMR is closely connected to the kind of mechanism (genetic adaptation vs. physiological acclimatization) that allows adaptation. Resistant-mutants are enough to assure the survival of microalgal species under catastrophic crude oil spill.

  2. Adaptation of microalgae to a gradient of continuous petroleum contamination

    Energy Technology Data Exchange (ETDEWEB)

    Carrera-Martinez, Daniel; Mateos-Sanz, Aranzazu [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Lopez-Rodas, Victoria [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Costas, Eduardo, E-mail: ecostas@vet.ucm.es [AlgasGen Biotecnologia, EBT-UCM, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain); Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Puerta de Hierro s/n, E-28040 Madrid (Spain)

    2011-01-25

    In order to study adaptation of microalgae to petroleum contamination, we have examined an environmental stress gradient by crude oil contamination in the Arroyo Minero River (AMR), Argentina. Underground crude oil has constantly leaked out since 1915 as a consequence of test drilling for possible petroleum exploitation. Numerous microalgae species proliferated in AMR upstream of the crude oil spill. In contrast, only four microalgal species were detected in the crude oil spill area. Species richness increases again downstream. Microalgae biomass in the crude oil spill area is dominated by a mesophile species, Scenedesmus sp. Effects of oil samples from AMR spill on photosynthetic performance and growth were studied using laboratory cultures of two Scenedesmus sp. strains. One strain (Se-co) was isolated from the crude oil spill area. The other strain (Se-pr) was isolated from a pristine area without petroleum contamination. Crude oil has undetectable effects on Se-co strain. In contrast crude oil rapidly destroys Se-pr strain. However, Se-pr strain can adapt to low doses of petroleum ({<=}3% v/v total hydrocarbons/water) by means of physiological acclimatization. In contrast, only rare crude oil-resistant mutants are able to grow under high levels of crude oil ({>=}10% v/v total hydrocarbons/water). These crude oil-resistant mutants have arisen through rare spontaneous mutations that occur prior to crude oil exposure. Species richness in different areas of AMR is closely connected to the kind of mechanism (genetic adaptation vs. physiological acclimatization) that allows adaptation. Resistant-mutants are enough to assure the survival of microalgal species under catastrophic crude oil spill.

  3. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil)

    2011-08-15

    Highlights: {yields} We studied the growth and CO{sub 2} fixation by Spirulina LEB18 and Chlorella kessleri. {yields} The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO{sub 2}. {yields} The microalgae presented growth during the 20 d of culture with up to 18% of CO{sub 2}. {yields} The use of CO{sub 2} from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO{sub 2}) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO{sub 2}. The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 {sup o}C and 39 {mu}E m{sup -2} s{sup -1} and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO{sub 2} injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L{sup -1}) and maximum daily fixation (0.21 g g{sup -1} d{sup -1}) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO{sub 2}. C. kessleri had maximum (p < 0.0008) specific growth rate (0.84 d{sup -1}) when grown with 18% (v/v) of CO{sub 2} in non-controlled conditions of cultivation.

  4. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    International Nuclear Information System (INIS)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → We studied the growth and CO 2 fixation by Spirulina LEB18 and Chlorella kessleri. → The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO 2 . → The microalgae presented growth during the 20 d of culture with up to 18% of CO 2 . → The use of CO 2 from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO 2 ) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO 2 . The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 o C and 39 μE m -2 s -1 and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO 2 injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L -1 ) and maximum daily fixation (0.21 g g -1 d -1 ) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO 2 . C. kessleri had maximum (p -1 ) when grown with 18% (v/v) of CO 2 in non-controlled conditions of cultivation.

  5. Removal of metal from acid mine drainage using a hybrid system including a pipes inserted microalgae reactor.

    Science.gov (United States)

    Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung

    2013-12-01

    In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Bacterial Influence on Alkenones in Live Microalgae1

    Science.gov (United States)

    Segev, Einat; Castañeda, Isla S.; Sikes, Elisabeth L.; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The microalga Emiliania huxleyi produces alkenone lipids which are important proxies for estimating past sea surface temperatures. Field calibrations of this proxy are robust but highly variable results are obtained in culture. Here we present results suggesting that algal-bacterial interactions may be responsible for some of this variability. Co-cultures of E. huxleyi and the bacterium Phaeobacter inhibens resulted in a 2.5-fold decrease in algal alkenone-containing lipid bodies. In addition levels of unsaturated alkenones increase in co-cultures. These changes result in an increase in the reconstructed growth temperature of up to 2°C relative to axenic algal cultures. PMID:26987094

  7. Potency of Microalgae as Biodiesel Source in Indonesia

    OpenAIRE

    Hadiyanto, H; Widayat, W; Cahyo Kumoro, Andri

    2012-01-01

    Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum) is still not able to cover all the needs if the fossil oil cannot be explored anymor...

  8. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy

    Directory of Open Access Journals (Sweden)

    M. Lourdes Mourelle

    2017-11-01

    Full Text Available The use of microalgae and cyanobacteria for nutritional purposes dates back thousands of years; during the last few decades, microalgae culture has improved to become one of the modern biotechnologies. This has allowed high amounts of algal biomass to be obtained for use in different applications. Currently, the global production of microalgae and cyanobacteria is predominately aimed at applications with high added value given that algal biomass contains pigments, proteins, essential fatty acids, polysaccharides, vitamins, and minerals, all of which are of great interest in the preparation of natural products, both as food and in cosmetics. Hence, the bioactive components from microalgae can be incorporated in cosmetic and cosmeceutical formulations, and can help achieve benefits including the maintenance of skin structure and function. Thalassotherapy involves using seawater and all related marine elements, including macroalgae, however, there has been limited use of microalgae. Microalgae and cyanobacteria could be incorporated into health and wellness treatments applied in thalassotherapy centers due to their high concentration of biologically active substances that are of interest in skin care. This paper briefly reviews the current and potential cosmetic and cosmeceutical applications of marine microalgae and cyanobacteria compounds and also recommends its use in thalassotherapy well-being treatments.

  9. Potential of microalgae in the bioremediation of water with chloride content.

    Science.gov (United States)

    Ramírez, M E; Vélez, Y H; Rendón, L; Alzate, E

    2017-10-23

    In this work it was carried out the bioremediation of water containing chlorides with native microalgae (MCA) provided by the Centre for study and research in biotechnology (CIBIOT) at Universidad Pontificia Bolivariana. Microalgae presented an adaptation to the water and so the conditions evaluated reaching a production of CO2 in mg L-1 of 53.0, 26.6, 56.0, 16.0 and 30.0 and chloride removal efficiencies of 16.37, 26.03, 40.04, 25.96 and 20.25% for microalgae1, microalgae2, microalgae3, microalgae4 and microalgae5 respectively. Water bioremediation process was carried out with content of chlorides in fed batch system with an initial concentration of chlorides of 20585 mg L-1 every 2 days. The Manipulated variables were: the flow of MCA3 (10% inoculum) for test one; NPK flow for test two, and flow of flow of MCA3+0.5 g L-1 NPK. Chloride removal efficiencies were 66.88%, 63.41% and 66.98% for test one, two and three respectively, for a total bioprocess time of 55 days.

  10. Potential of microalgae in the bioremediation of water with chloride content

    Directory of Open Access Journals (Sweden)

    M. E. Ramírez

    2017-10-01

    Full Text Available Abstract In this work it was carried out the bioremediation of water containing chlorides with native microalgae (MCA provided by the Centre for study and research in biotechnology (CIBIOT at Universidad Pontificia Bolivariana. Microalgae presented an adaptation to the water and so the conditions evaluated reaching a production of CO2 in mg L-1 of 53.0, 26.6, 56.0, 16.0 and 30.0 and chloride removal efficiencies of 16.37, 26.03, 40.04, 25.96 and 20.25% for microalgae1, microalgae2, microalgae3, microalgae4 and microalgae5 respectively. Water bioremediation process was carried out with content of chlorides in fed batch system with an initial concentration of chlorides of 20585 mg L-1 every 2 days. The Manipulated variables were: the flow of MCA3 (10% inoculum for test one; NPK flow for test two, and flow of flow of MCA3+0.5 g L-1 NPK. Chloride removal efficiencies were 66.88%, 63.41% and 66.98% for test one, two and three respectively, for a total bioprocess time of 55 days.

  11. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].

    Science.gov (United States)

    Su, Hongyang; Zhou, Xuefei; Xia, Xuefen; Sun, Zhen; Zhang, Yalei

    2011-09-01

    Wastewater resources, CO2 emission reduction and microalgae biodiesel are considered as current frontier fields of energy and environmental researches. In this paper, we reviewed the progress in system of microalgae culture for biodiesel production by wastewater and stack gas. Multiple factors including microalgal species, nutrition, culture methods and photobioreactor, which were crucial to the cultivation of microalgae for biodiesel production, were discussed in detail. A valuable culture system of microalgae for biodiesel production or other high value products combined with the treatment of wastewater by microalgae was put forward through the optimizations of algal species and culture technology. The culture system coupled with the treatment of wastewater, the reduction of CO2 emission with the cultivation of microalgae for biodiesel production will reduce the production cost of microalgal biofuel production and the treatment cost of wastewater simultaneously. Therefore, it would be a promising technology with important environmental value, social value and economic value to combine the treatment of wastewater with the cultivation of microalgae for biodiesel production.

  12. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  13. Microalgae and Its Premises towards Sustainable Energy Development

    Science.gov (United States)

    Chik, M. N.; Yahya, L.; Zainal, A.; Boosroh, M. H.

    2017-06-01

    This paper features the use of nature’s element as a tool to combat current global issues on environment. Through research works by TNB Research Sdn. Bhd. (TNBR), marine phototrophic microalgae is used in reducing CO2 emissions from its fossil-fuel based power plants using. The research program commenced in 2011 with the aim to develop capacity, capability and facilities in biological CO2 fixation. The research program focuses on improving and enhancing the CO2 fixation through four core measures; namely species selection, nutrient optimization, flue gas admission and photobioreactor (PBR) design and engineering. The measures lead to the migration and evolution of culture facilities from laboratory conditions to outdoor, from shake flasks to 6 x 250 liter pilot PBR facility at a live coal-fired power plant, from mono species to consortium of species. Increment of CO2 fixation rates is summarized with discussion on comparisons of other achievements reported elsewhere. A considerable amount of work on analysing the bioactive compound present in the algae - protein, amino acids, carbohydrate, lipid, fatty acids - and its encouraging results, as an impetus towards sustainable development, will also be shared. Premises and observations from various microalgae research works are collated and presented in a manner sufficient to highlight the eminent roles of this tiny creature to become our mentor in providing some solutions to our worldly problems.

  14. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 25�1�C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  15. Cultivating Microalgae in Domestic Wastewater for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Soha S.M. MOSTAFA

    2012-02-01

    Full Text Available The objective of this study was to evaluate the growth of nine species of microalgae (green and blue green microalgae on domestic waste water samples obtained from Zenein Waste Water Treatment Plant (ZWWTP, Giza governorate, Egypt. The species were cultivated in different kind of waste water; before treatment; after sterilization; with nutrients with sterilization and with nutrients without sterilization. The experiment was conducted in triplicate and cultures were incubated at 251C under continuous shaking (150 rpm and illumination (2000 Lux for 15 days. pH, electric conductivity (EC, optical density (OD , dry weight (DW, were done at the time of incubation and at the end of experiment, in addition to determine the percentage of lipid and biodiesel. The data revealed that, domestic waste water with nutrient media (T3 was promising for cultivation of five algal species when compared with conventional media, Moreover, domestic waste water after sterilization (T2 was selected media for cultivation of Oscillatoria sp and Phormedium sp. However, T1 media (waste water without treatment was the promising media for cultivation of Nostoc humifusum. The biodiesel produced from algal species cultivated in waste water media ranged from 3.8 to 11.80% when compared with the conventional method (3.90 to 12.52%. The results of this study suggest that growing algae in nutrient rich media offers a new option of applying algal process in ZWWTP to mange the nutrient load for growth and valuable biodiesel feedstock production.

  16. Lipid Extraction Methods from Microalgae: A Comprehensive Review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, Ramanathan [Department of Plant Biology and Plant Biotechnology, Shree Chandraprabhu Jain College, Chennai (India); Hanumantha Rao, Polur [Department of Microbiology, Madras Christian College, Chennai (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Division of Biotechnology, CSIR – National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum (India)

    2015-01-08

    Energy security has become a serious global issue and a lot of research is being carried out to look for economically viable and environment-friendly alternatives. The only solution that appears to meet futuristic needs is the use of renewable energy. Although various forms of renewable energy are being currently used, the prospects of producing carbon-neutral biofuels from microalgae appear bright because of their unique features such as suitability of growing in open ponds required for production of a commodity product, high CO{sub 2}-sequestering capability, and ability to grow in wastewater/seawater/brackish water and high-lipid productivity. The major process constraint in microalgal biofuel technology is the cost-effective and efficient extraction of lipids. The objective of this article is to provide a comprehensive review on various methods of lipid extraction from microalgae available, to date, as well as to discuss their advantages and disadvantages. The article covers all areas of lipid extraction procedures including solvent extraction procedures, mechanical approaches, and solvent-free procedures apart from some of the latest extraction technologies. Further research is required in this area for successful implementation of this technology at the production scale.

  17. Phycoremediation of Tannery Wastewater Using Microalgae Scenedesmus Species.

    Science.gov (United States)

    Ajayan, Kayil Veedu; Selvaraju, Muthusamy; Unnikannan, Pachikaran; Sruthi, Palliyath

    2015-01-01

    A number of microalgae species are efficient in removing toxicants from wastewater. Many of these potential species are a promising, eco-friendly, and sustainable option for tertiary wastewater treatment with a possible advantage of improving the economics of microalgae cultivation for biofuel production. The present study deals with the phycoremediation of tannery wastewater (TWW) using Scenedesmus sp. isolated from a local habitat. The test species was grown in TWW under laboratory conditions and harvested on the 12th day. The results revealed that the algal biomass during the growth period not only reduced the pollution load of heavy metals (Cr-81.2-96%, Cu-73.2-98%, Pb-75-98% and Zn-65-98%) but also the nutrients (NO3 >44.3% and PO4 >95%). Fourier Transform Infrared (FTIR) spectrums of Scenedesmus sp. biomass revealed the involvement of hydroxyl amino, carboxylic and carbonyl groups. The scanning electron micrograph (SEM) and Energy Dispersive X-ray Spectroscopic analysis (EDS) revealed the surface texture, morphology and element distribution of the biosorbent. Furthermore, the wastewater generated during wet-blue tanning process can support dense population of Scenedesmus sp., making it a potential growth medium for biomass production of the test alga for phycoremediation of toxicants in tannery wastewaters.

  18. Conversion of microalgae to jet fuel: process design and simulation.

    Science.gov (United States)

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Lipid Extraction Methods from Microalgae: A Comprehensive Review

    International Nuclear Information System (INIS)

    Ranjith Kumar, Ramanathan; Hanumantha Rao, Polur; Arumugam, Muthu

    2015-01-01

    Energy security has become a serious global issue and a lot of research is being carried out to look for economically viable and environment-friendly alternatives. The only solution that appears to meet futuristic needs is the use of renewable energy. Although various forms of renewable energy are being currently used, the prospects of producing carbon-neutral biofuels from microalgae appear bright because of their unique features such as suitability of growing in open ponds required for production of a commodity product, high CO 2 -sequestering capability, and ability to grow in wastewater/seawater/brackish water and high-lipid productivity. The major process constraint in microalgal biofuel technology is the cost-effective and efficient extraction of lipids. The objective of this article is to provide a comprehensive review on various methods of lipid extraction from microalgae available, to date, as well as to discuss their advantages and disadvantages. The article covers all areas of lipid extraction procedures including solvent extraction procedures, mechanical approaches, and solvent-free procedures apart from some of the latest extraction technologies. Further research is required in this area for successful implementation of this technology at the production scale.

  20. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    Science.gov (United States)

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  2. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  3. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  4. Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae

    Directory of Open Access Journals (Sweden)

    Yu Wei-Luen

    2011-11-01

    Full Text Available Abstract Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic pathways and rate limiting steps of triacylglycerol formation to enzymes required for the formation of triacylglycerol containing exotic lipids. Secondarily, we discuss techniques for genetic engineering and modification of various microalgae which can be combined with insights gained from research in higher plants to aid in the creation of production strains of microalgae.

  5. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Wen, Zhiyou; Zhou, Wenguang

    2018-05-01

    Hydrothermal liquefaction (HTL) of microalgae biomass generates an aqueous phase (AP) byproduct with limited energy value. Recycling the AP solution as a source of nutrients for microalgae cultivation provides an opportunity for a cost-effective production of HTL based biofuel and algal biomass feedstock for HTL, allowing a closed-loop biofuel production in microalgae HTL biofuel system. This paper aims to provide a comprehensive overview of characteristics of AP and its nutrients recycling for algae production. Inhibitory effects resulted from the toxic compounds in AP and alleviation strategies are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Use of Solid Waste from Thermoelectric Plants for the Cultivation of Microalgae

    Directory of Open Access Journals (Sweden)

    Bruna da Silva Vaz

    2016-01-01

    Full Text Available ABSTRACT The aim of this study was to analyze the influence of solid waste on the cultivation of the microalgae Spirulina sp. LEB 18 and Chlorella fusca LEB 111 with 0, 40, 80 and 120 ppm of mineral coal ash. The addition of the ash did not inhibit the cultivation of microalgae at the tested concentrations, showing that it could be used for the cultivation of these microalgae due to the minerals present in the ash, which might substitute the nutrients needed for their growth.

  7. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants

    International Nuclear Information System (INIS)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → Microalgae can help reduce global warming. → Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. → Microalgae were compared with Spirulina and Scenedesmus obliquus for CO 2 fixation. → Microalgae were exposed to CO 2 , SO 2 and NO, simulating a gas from coal combustion. → C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO 2 emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO 2 biofixation. The microalgae were exposed to 12% CO 2 , 60 ppm of SO 2 and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO 2 biofixation of the coal combustion gas, which would help reduce global warming.

  8. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  9. Using Benthic microalgae to asses groundwater ecological status

    International Nuclear Information System (INIS)

    Tolivia, Analia A.; Kundt, Mirian S.; Iglicki, A.

    2009-01-01

    The water resources have been evaluated for a long time by physicochemical parameters. These provide timely results and do not reveal much about the evolution of a pollutant load and resilient and buffering capacity of aquatic ecosystems. Techniques based on the evaluation of sensitivity index of living organisms in the presence of different impacts have been developed as an alternative to these procedures. Biological indicator species are unique environmental indicators as they offer a signal of the biological condition in a watershed. The use of bio indicators as an early warning of pollution or degradation in an ecosystem can help sustain critical resources. While indicator species is a term that is often used, it is somewhat inaccurate. Indicators are actually groups or types of biological resources that can be used to assess environmental condition. Within each group, individual species can be used to calculate metrics in an effort to assess water quality conditions. Aquatic invertebrates and microalgae are the two groups recommended in evaluations of water quality, both are required by DMA 2000. The aim of this study was to evaluate two water bodies to choose the most appropriate group of microalgae to use as a biological indicator and establish the proposed rates that adjust better to describe the ecological quality of waters in the ecoregions where are the sites of CNEA. Surveys were carried out for this recognition of environments in the Ezeiza Atomic Center (CAE) and the industrial mining complex Los Gigantes, phytobenthos samples were taken in three sites in the Ezeiza Atomic Center (CAE) and the industrial mining complex Los Gigantes, Cordoba. Water samples were collected for later determination of chlorophyll content and biomass estimation. Determination of microalgal species were carried out and established those most representative groups. From that observation diatoms were selected as best represented in both sites. Some of the genera found in the

  10. Isolation, Characterization and Identification of Microalgae from the Red Sea

    KAUST Repository

    Luque Alanís, Patricio

    2013-05-01

    Eukaryotic microalgae from the Red Sea were isolated, characterized and identified with the purpose of building a culture collection that will serve future research activities in the area of industrial microbiology. Seven sampling locations were surveyed using an in-house designed isolation protocol. Microalgae enrichment was carried out in vitro using the streak plate method and fluorescence activated cell sorting approaches. Colonial and cellular microscopy, growth media preference assays, as well as temperature, pH and salinity tolerance tests were carried out to describe the isolates. DNA extraction, PCR amplification, template sequencing and in silico analyses were carried out to identify the isolates and arrange them in a proper phylogenetic description. In total, 129 isolates were obtained. From these, only 39 were selected for characterization given their increased ability of accumulating large amounts of biomass in solid and liquid media in relatively short periods of time. All of these have a green color, are unicellular, non-motile, photosynthetic organisms and have a cell size ranging from 5 to 8 µm. More than half of them showed growth preference in Walne media, followed by F/2, MN and BG-11 SW. Maximum temperature tolerance of all organisms was around 38 ºC, while optimum growth was observed close to 25 ºC. pH preference was diverse and three groups were identified: acidic (6), intermediate (8 - 9) and alkaline (> 10) growing isolates. Salinity tests showed an overall growth preference at 25 PSU, approximately 10 units lower than that found at the sampling stations. Most isolates showed diminished growth at high salinity and high pH, except for OS3S1b which grew well in both cases, and could be an interesting strain to study further. Twenty four isolates were related to Ulvophyceae sp. MBIC10591 by BLAST approaches with a maximum identity of 96 - 97%. A maximum likelihood phylogenetic tree was created for these isolates, relative to the BLAST hits

  11. A Verhulst model for microalgae Botryococcus sp. growth and nutrient removal in wastewater

    Science.gov (United States)

    Jamaian, Siti Suhana; Bakeri, Noorhadila Mohd; Sunar, Norshuhaila Mohamed; Gani, Paran

    2017-08-01

    Microalgae Botryococcus sp. is a colonial green alga found in lakes and reservoirs in Malaysia. Previous studies reported that the potential of Botryococcus sp. photosynthesis as a source of fuel. The Botryococcus sp. contains hydrocarbon up to 75% of dry weight, which can be converted into petrol, diesel or turbine fuel or other liquid or gaseous hydrocarbons. Recently, an experimental study was conducted on phycoremediation technology for wastewater using Botryococcus sp. The phycoremediation technology is useful to remove the excess of nutrients such as nitrogen, phosphorus and also have the ability to remove various pollutants from wastewater. This research implements the Verhulst model to estimate the nutrient removal by microalgae Botryococcus sp. from the wastewater. This model has been validated with the experiments of microalgae Botryococcus sp. grown in domestic and palm oil wastewater. The results suggested that microalgae Botryococcus sp. could be cultured in domestic and palm oil wastewater while nutrients are reduced from these wastewaters.

  12. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    Science.gov (United States)

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Phytohormones and Effects on Growth and Metabolites of Microalgae: A Review

    Directory of Open Access Journals (Sweden)

    Xingfeng Han

    2018-04-01

    Full Text Available Microalgae cultivation is booming in agriculture, aquaculture, and bioenergy sectors. A wide range of bioactive compounds with attractive properties can be produced with microalgae, including pigments, vitamins, proteins, carbohydrates, and lipids. The biofuel yields from microalgae can exceed the yields obtained with energy crops by 10–100 times. Therefore, such cultivation is promising for the regulation of the biosynthesis of microalagae with phytohormones, which can enhance the production of high-valued bioproducts. This review reports the effect of auxins, abscisic acid, cytokinins, gibberellins, and ethylene on microalgal growth and metabolites, as well as the crosstalk of different phytohormones. The use of phytohormones is also promising because it can also reduce the inputs necessary to grow the selected microalgae and maximize the yields.

  14. Bio-gasification of post transesterified microalgae residues: A route to improving overall process renewabilities

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine

    Using results from experiments and process modelling tools, a renewability assessment was carried out for the use of the conventional and in-situ transesterification processes for a large scale microalgae biodiesel production. In a present day scenario, all the transesterification processes were...... shown to be non-renewable. The process renewability of biodiesel production from microalgae was found to significantly improve with the use of renewable electricity, reacting alcohols from biomass fermentation and process heating and biomass drying using heat from wood pellet combustion or heat pump...... technology. The anaerobic digestion of the microalgae residues to generate methane from was further seen to lead to positive renewabilities for the considered microalgae-biodiesel processes....

  15. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2017-01-01

    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  16. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Water use and its recycling in microalgae cultivation for biofuel application.

    Science.gov (United States)

    Farooq, Wasif; Suh, William I; Park, Min S; Yang, Ji-Won

    2015-05-01

    Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2013-11-01

    Full Text Available Cultivation of microalgae to utilize CO2 and nutrients in the wastewater to generate biofuel products is a promising research objective. However, the process faces tremendous technical difficulties, especially the harvest of microalgae cells, an economically challenging step. Several researchers recently reported co-culturing of filamentous fungi with microalgae so that microalgae cells can be co-pelletized in order to facilitate the cell harvest. This algae pelletization via the filamentous fungi represents an innovative approach to address both the cost and sustainability issues in algae biofuel production and also has potential with direct commercial applications. This paper reviews the current research status in this area and some possible drawbacks of this method in order to provide some possible directions for the future research.

  19. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    Science.gov (United States)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  20. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  1. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  2. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    Science.gov (United States)

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Marianela Cobos

    2017-02-01

    Full Text Available Biodiesel production from microalgae triacylglycerols is growing, because this feedstock is a more sustainable and advantageous alternative. In this study, we isolated and identified fourteen strains of native microalgae from the Peruvian Amazon. These strains showed great heterogeneity in biomass productivity, lipid productivity and lipid content, and thus, three of them (Acutodesmus obliquus, Ankistrodesmus sp. and Chlorella lewinii were selected for further evaluation under culture of nitrogen-sufficient (+N and nitrogen-deficient (−N Chu medium No. 10. These microalgae species showed modifications in biomolecule content (protein, lipid and carbohydrate with a pronounced increase of lipids and carbohydrate and a decrease of protein content under stress culture. Furthermore, the fatty acid profile was peculiar for each species, and these patterns showed evident changes, particularly in the proportion of saturated and monounsaturated fatty acids. The results of this research suggest that the isolated native microalgae, from the Peruvian Amazon, could be suitable candidates for biodiesel production

  4. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    Toxic effects of water soluble fractions (WSF) of four different fuel oils on a microalga. Tetraselmis gracilis, were examined and compared. On applying different concentrations of WSF, a decrease in cell population was observed. Depending...

  5. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  6. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts

    Czech Academy of Sciences Publication Activity Database

    Pushkareva, E.; Johansen, J. R.; Elster, Josef

    2016-01-01

    Roč. 39, č. 12 (2016), s. 2227-2240 ISSN 0722-4060 Institutional support: RVO:67985939 Keywords : Soil crust * Arctic * Cyanobacteria and eukaryotic microalgae Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  7. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons

    NARCIS (Netherlands)

    Pérez-López, Paula; Vree, de Jeroen H.; Feijoo, Gumersindo; Bosma, Rouke; Barbosa, Maria J.; Moreira, María Teresa; Wijffels, René H.; Boxtel, van Anton J.B.; Kleinegris, Dorinde M.M.

    2017-01-01

    Microalgae are promising natural resources for biofuels, chemical, food and feed products. Besides their economic potential, the environmental sustainability must be examined. Cultivation has a significant environmental impact that depends on reactor selection and operating conditions. To

  8. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  9. Development of harvesting and up concentration technologies for microalgae as an ingredient in fish feed

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    2014-01-01

    andfish oil. In applications of algae in fish feed, it is essential to produce a product comparable to fish proteinand fish oil both in terms of quality and costs.Downstream processing of microalgae includes harvest, dewatering, cell rupture, fractionation and drying.The dewatering and drying which...... ingredients forfish feed. Further we evaluate the chemical composition of six different microalgae species including;Nanochloropsis limnethica, Chlorella sorokiniana, Phaeodactylum tinctorium, Dunaliella salina,Nannochloropsis salina and Nannochloropsis occulata ....

  10. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae

    OpenAIRE

    Napan, Katerine; Hess, Derek; McNeil, Brian; Quinn, Jason C.

    2015-01-01

    Increasing demand for renewable fuels has researchers investigating the feasibility of alternative feedstocks, such as microalgae. Inherent advantages include high potential yield, use of non-arable land and integration with waste streams. The nutrient requirements of a large-scale microalgae production system will require the coupling of cultivation systems with industrial waste resources, such as carbon dioxide from flue gas and nutrients from wastewater. Inorganic contaminants present in t...

  11. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids.

    Science.gov (United States)

    Diprat, Andressa Bacalau; Menegol, Tania; Boelter, Juliana Ferreira; Zmozinski, Ariane; Rodrigues Vale, Maria Goreti; Rodrigues, Eliseu; Rech, Rosane

    2017-08-01

    Microalgae have been used as food supplements owing to their high protein, polyunsaturated fatty acid and carotenoid contents. As different carotenoids have distinct properties and the carotenoid composition of microalgae has been poorly explored in the literature, this study determined the complete carotenoid composition of two microalgae species, Heterochlorella luteoviridis and Dunaliella tertiolecta, using high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry (HPLC-DAD/MS 2 ). Additionally, the proximate composition and major minerals were evaluated. The carotenoid composition of the two microalgae was similar, with 13 carotenoids being found in H. luteoviridis and 12 in D. tertiolecta. The major carotenoids were all-trans-lutein (1.18 mg g -1 in H. luteoviridis and 1.59 mg g -1 in D. tertiolecta), all-trans-violaxanthin (0.52 mg g -1 in H. luteoviridis and 0.45 mg g -1 in D. tertiolecta) and all-trans-β-carotene (0.50 mg g -1 in H. luteoviridis and 0.62 mg g -1 in D. tertiolecta). All-trans-lutein was the predominant carotenoid in both microalgae, representing around 40% (mass fraction) of the total carotenoids. The lutein content found in these microalgae was significantly higher (2-40 times) than that in other important food sources of lutein (e.g. parsley, carrot, red pepper and broccoli). The microalgae H. luteoviridis and D. tertiolecta are excellent sources of lutein that could be commercially exploited by the food and pharmaceutical industries. Moreover, it was confirmed that both microalgae are good sources of protein, lipids and calcium. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Applications of Diatoms as Potential Microalgae in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Ahmad Yari Khosroushahi

    2012-05-01

    Full Text Available Introduction: Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora­tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Methods: Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. Results: In this review, we present the recent progress in this century on the application of diatoms in waste degradation, synthesis of biomaterial, biomineraliza­tion, toxicity and toxic effects of mineral elements evaluations. Conclusion: Diatoms can be considered as metal toxicity bioindicators and they can be applied for biomineralization, synthesis of biomaterials, and degradation of wastes.

  13. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  14. Extraction of oil from microalgae for biodiesel production: A review.

    Science.gov (United States)

    Halim, Ronald; Danquah, Michael K; Webley, Paul A

    2012-01-01

    The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Antifouling potential of the marine microalga Dunaliella salina.

    Science.gov (United States)

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.

  16. Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus.

    Science.gov (United States)

    Ji, Chunli; Wang, Junfeng; Liu, Tianzhong

    2015-10-01

    Biofilm cultivation of microalgae may be useful for biofuel production. However, many aspects for this cultivation method have not been well assessed. Accordingly, aeration strategy for biofilm cultivation of Scenedesmus dimorphus has been explored. Biomass, lipid and triacylglycerol (TAG) productivity in increased S. dimorphus as the CO2 concentration increased within 0.038-0.5% and kept constant with further increases. The biomass, lipid and TAG productivity increased with the speed increasing and an obvious threshold point was observed at 6.6 ml(-2) min(-1). The lipid and TAG content was unaffected by the aeration rate. Both the CO2 concentration as well as aeration speed affected the growth of S. dimorphus in biofilm cultivation. The optimized aeration strategy for biofilm cultivation was continuous air flow enriched with 1% CO2 (v/v) at 6.6 ml(-2) min(-1).

  17. Microalgae biorefinery symbiosis: screening, production, and process analytical technology

    DEFF Research Database (Denmark)

    Podevin, Michael Paul Ambrose

    sorokniana was grown on bioindustrial WW, inside a novel, solar tracking, 4000 L, airlift PBR. Despite cold temperatures and low irradiance, the microalgae reached a growth rate of 0.48 day-1 , in the four-day period immediately following inoculation of bioindustrial WW containing ammonium, as a primary...... to nitrate metabolism can severely stunt microalgal growth in the outdoor PBR under low temperature and irradiance. More importantly, the delay in growth did not appear to be due to deleterious effects of the contents of bioindustrial WW media, since rapid growth was observed early in the experiment...... vivo at large-scales. The complex and dynamic nature of large-scale outdoor microalgal reactions, when grown on dynamic WW media, encourages the need for on-line, real-time monitoring to improve automation models of PBRs. In outdoor conditions with fluctuating light and temperature, there are several...

  18. THIRD GENERATION BIODIESEL PRODUCTION FROM MICROALGAE Phormidium autumnale

    Directory of Open Access Journals (Sweden)

    S. F. Siqueira

    Full Text Available Abstract The aim of this work was to evaluate third generation biodiesel production by the microalgae Phormidium autumnale using sucrose as exogenous carbon source. The study focused on optimization of the different C/N ratios and on the analysis of biofuel quality. The results indicate that a C/N ratio of 40 improved the performance of the system, reaching single-cell oil productivities of 18.9 mg/L in steady-state conditions. This oil has a composition predominantly saturated (45.2% and monounsaturated (34.7% suitable for biodiesel synthesis (ester content of 99.8%, cetane number of 58.5%, iodine value of 67.2 gI2/100 g, unsaturation degree of 71.3% and a cold filter plugging point of 6.7 ºC.

  19. Carotenoids from microalgae: A review of recent developments.

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2016-12-01

    Carotenoids have been receiving increasing attention due to their potential health benefits. Microalgae are recognized as a natural source of carotenoids and other beneficial byproducts. However, the production of micro-algal carotenoids is not yet sufficiently cost-effective to compete with traditional chemical synthetic methods and other technologies such as extraction from plant based sources. This review presents the recent biotechnological developments in microalgal carotenoid production. The current technologies involved in their bioprocessing including cultivation, harvesting, extraction, and purification are discussed with a specific focus on downstream processing. The recent advances in chemical and biochemical synthesis of carotenoids are also reviewed for a better understanding of suitable and economically feasible biotechnological strategies. Some possible future directions are also proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Growth of locally isolated microalga in POME to produce lipid as alternative energy sources

    Science.gov (United States)

    Elvitriana; Munir, E.; Delvian; Wahyuningsih, H.

    2018-04-01

    Purpose of this study was to find the best growth of locally isolated microalgae that produce lipids from Palm Oil Mill Effluent (POME) as an alternative energy source. Microalgae was cultivated in POME in glass vessel at room temperature using a lighting intensity of 13,000 lux and continuously aeration for 24 and 12 hours, respectively. Biomass of microalgae were analyzed daily to get their growth by spectrophotometry at 624 nm wavelength, whereas Modified Bligh and Dyer method determined lipid content. Results show that the best growth occurred at 10% inoculum with lighting cycle and aeration of 24 hours (on/off) and resulting highest biomass content of 0.99 g dry weight/L followed by the decrease of organic substances in POME. The percentage reduction of COD, BOD, TSS, and oil at POME reached above 92%, while phosphate concentration reached 89.2%. Cultivation of microalgae in POME for 12 days showed its ability to reduce organic substances and nutrients in POME and produced biomass with lipid content of 35%. These results reached to the conclusion that locally isolated microalgae has an ability to treat POME safely for environment and POME can be used as a growing medium of microalgae that produces lipids.

  1. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Potential of Microalgae Cultivation in Dairy Wastewater as a Step in Low-Cost Biofuel Production

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2018-04-01

    Full Text Available The present study addresses adopting the organic and nutritious materials in dairy wastewater as media for cultivation of microalgae, which represent an important source of renewable energy. This study was carried out through cultivation of three types of microalgae; Chlorella sp., Synechococcus, and Anabaena. The results shows the success the cultivation of the Synechococcus and Chlorella Sp, while the Anabaena microalgae were in low-growth level. The highest growth was in the Synechococcus farm, followed by Chlorella and Anabaena. However, the growth of Synechococcus required 10 days to achieve this increase that represents a negative indicator of the adoption of this type of microalgae in this media to meet the desired aims. While Chlorella needs less than two days to start growing. Moreover, the data obtained from the experiment show that removal of chemical oxygen demand in Chlorella cultures was (72% more than that obtained from cultivation of other microalgae. Thus this microalgae is more efficient in wastewater treatment than other types.

  3. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.

    Science.gov (United States)

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-10-01

    A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction

    International Nuclear Information System (INIS)

    Wang, Xin; Tang, Xiaohan; Yang, Xiaoyi

    2017-01-01

    Highlights: • Pyrolysis experiments were conducted by model compounds of algal components. • Interaction affected little bio-crude yield of model compounds co-pyrolysis. • Some interaction pathways between microalgae components were recommended. • N-heterocyclic compounds were further pyrolysis products of Maillard reaction products. • Surfactant synthesis (lipid-amino acids and lipid-glucose) between algal components. - Abstract: Pyrolysis is one of important pathways to convert microalgae to liquid biofuels and key components of microalgae have different chemical composition and structure, which provides a barrier for large-scale microalgae-based liquid biofuel application. Microalgae component pyrolysis mechanism should be researched to optimal pyrolysis process parameters. In this study, single pyrolysis and co-pyrolysis of microalgal components (model compounds castor oil, soybean protein and glucose) were conducted to reveal interaction between them by thermogrametric analysis and bio-crude evaluation. Castor oil (model compound of lipid) has higher pyrolysis temperature than other model compounds and has the maximum contribution to bio-crude formation. Bio-crude from soybean protein has higher N-heterocyclic compounds as well as phenols, which could be important aromatic hydrocarbon source during biorefineries and alternative aviation biofuel production. Potential interaction pathways based on model compounds are recommended including further decomposition of Maillard reaction products (MRPs) and surfactant synthesis, which indicate that glucose played an important role on pyrolysis of microalgal protein and lipid components. The results should provide necessary information for microalgae pyrolysis process optimization and large-scale pyrolysis reactor design.

  5. Isolation and Characterisation of Some Microalgae Bioactive Molecules

    Directory of Open Access Journals (Sweden)

    Emeka Ugoala

    2016-12-01

    Full Text Available This study involved the isolation, structure elucidation, and biological screening of secondary metabolites in freshwater microalgae for bioactive and chemically novel compounds. Isolates were fractionated and purified from the methanol, ethyl acetate, dichloromethane, petroleum ether and aqueous extracts of microalgae via column chromatography technique over silica gel using a gradient mixture of solvents. The chemical structures of isolated compounds have been elucidated using Solid-state cross polarization (CP and magic angle spinning (MAS 13C-NMR spectroscopic technique at spectrometer frequency at a field strength corresponding to 91.3695 MHz for 13C and 363.331 MHz for 1H. Of the nine compounds isolated, eight have a glycan skeleton with attached amino acids units. Two of the eight contain beta amino acids units. These are not very common metabolites but hold promise as drug leads. The elements of diversity in the isolates were the gluco and manno configurations of the pyranose ring, the α-configurations at the anomeric centre, and the positions of the carbohydrate and amino acid sectors in the ring. These molecules are not easily available through gene technology since they are post translational products resulting from the activity of glycosyl hydrolases and transferases. The chemical shifts were rationalized in terms of the number of sugar residues, the sugar ring structures, the positions and anomeric configurations of the inter-sugar linkages. Considering all the NMR data, it was concluded that the compounds were glycylglycylglycylglycine, α-D-glucopyranosyl-2-amino-4-methylpentanoic acid, α-D-glucopyranosyl-2-methylamino-4-methylpentanoic acid, α-D-glucopyranosyl-2-amino-4-methylpentanoate, α-D-glucopyranosyl-glycylglycine, α-D-glucopyranosyl-3-aminobutanoic acid, α-D-glucopyranosyl-2,4,7-triaminooctantrioic acid, α-D-mannopyranosyl-2-amino-3-methylbutanoic acid and α-D-mannopyranosyl-3-aminobutanoic acid.

  6. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    Science.gov (United States)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  7. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2017-01-01

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative microalgal sources used for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. EFFECT OF MICROALGAE ON GROWTH AND FATTY ACID PROFILES OF HARPACTICOID COPEPOD, Tisbe holothuriae

    Directory of Open Access Journals (Sweden)

    Gede Suwarthama Sumiarsa

    2009-12-01

    Full Text Available Growth of marine copepods is influenced by feed. The purposes of this trial were to observe both growth and fatty acid compositions of harpacticoid copepod nauplii, Tisbe holothuriae by feeding with several microalgal species in laboratory: (A Isochrysis tahiti; (B Nannochloropsis oculata; (C Rhodomonas sp., and (D Tetraselmis chuii. The trial was carried out for 35 days with randomized complete design and triplicates in each treatment. The results showed that final copepod nauplii densities were not significantly different (P>0.05 in all treatments. However, lipid content of copepod nauplii fed with T. chuii was significantly higher (P<0.05 compared to that of other treatments while fatty acid profiles of EPA, DHA and DHA/EPA ratios showed both insignificant and significant differences among treatments.

  9. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Elodie eMathieu-Rivet

    2014-07-01

    Full Text Available Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodelling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.

  10. Mathematical modeling and experimental validation of Phaeodactylum tricornutum microalgae growth rate with glycerol addition

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Keli Cristiane Correia; Ribeiro, Robert Luis Lara; Santos, Kassiana Ribeiro dos; Mariano, Andre Bellin [Mariano Center for Research and Development of Sustainable Energy (NPDEAS), Curitiba, PR (Brazil); Vargas, Jose Viriato Coelho [Departament of Mechanical Engineering, Federal University of Parana (UFPR) Curitiba, PR (Brazil)

    2010-07-01

    The Brazilian National Program for Bio fuel Production has been encouraging diversification of feedstock for biofuel production. One of the most promising alternatives is the use of microalgae biomass for biofuel production. The cultivation of microalgae is conducted in aquatic systems, therefore microalgae oil production does not compete with agricultural land. Microalgae have greater photosynthetic efficiency than higher plants and are efficient fixing CO{sub 2}. The challenge is to reduce production costs, which can be minimized by increasing productivity and oil biomass. Aiming to increase the production of microalgae biomass, mixotrophic cultivation, with the addition of glycerol has been shown to be very promising. During the production of biodiesel from microalgae there is availability of glycerol as a side product of the transesterification reaction, which could be used as organic carbon source for microalgae mixotrophic growth, resulting in increased biomass productivity. In this paper, to study the effect of glycerol in experimental conditions, the batch culture of the diatom Phaeodactylum tricornutum was performed in a 2-liter flask in a temperature and light intensity controlled room. During 16 days of cultivation, the number of cells per ml was counted periodically in a Neubauer chamber. The calculation of dry biomass in the control experiment (without glycerol) was performed every two days by vacuum filtration. In the dry biomass mixotrophic experiment with glycerol concentration of 1.5 M, the number of cells was assessed similarly in the 10{sup th} and 14{sup th} days of cultivation. Through a volume element methodology, a mathematical model was written to calculate the microalgae growth rate. It was used an equation that describes the influence of irradiation and concentration of nutrients in the growth of microalgae. A simulation time of 16 days was used in the computations, with initial concentration of 0.1 g l{sup -1}. In order to compare

  11. A geographical assessment of vegetation carbon stocks and greenhouse gas emissions on potential microalgae-based biofuel facilities in the United States.

    Science.gov (United States)

    Quiroz Arita, Carlos; Yilmaz, Özge; Barlak, Semin; Catton, Kimberly B; Quinn, Jason C; Bradley, Thomas H

    2016-12-01

    The microalgae biofuels life cycle assessments (LCA) present in the literature have excluded the effects of direct land use change (DLUC) from facility construction under the assumption that DLUC effects are negligible. This study seeks to model the greenhouse gas (GHG) emissions of microalgae biofuels including DLUC by quantifying the CO 2 equivalence of carbon released to the atmosphere through the construction of microalgae facilities. The locations and types of biomass and Soil Organic Carbon that are disturbed through microalgae cultivation facility construction are quantified using geographical models of microalgae productivity potential including consideration of land availability. The results of this study demonstrate that previous LCA of microalgae to biofuel processes have overestimated GHG benefits of microalgae-based biofuels production by failing to include the effect of DLUC. Previous estimations of microalgae biofuel production potential have correspondingly overestimated the volume of biofuels that can be produced in compliance with U.S. environmental goals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Marine microalgae used as food supplements and their implication in preventing cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Mimouni Virginie

    2015-07-01

    Full Text Available Marine microalgae are photosynthetic microorganisms producing numerous bioactive molecules of interest for health and disease care such as lipids rich in omega-3 fatty acids -as eicosapentaenoic acid (EPA, 20:5 n-3 and docosahexaenoic acid (DHA, 22:6 n-3- and carotenoids (e.g., β-carotene, fucoxanthin, astaxanthin. It has already been shown that these molecules, individually used, are benefic in the prevention of diseases such as those associated with the cardiovascular risks, but also in some carcinomas. When these molecules are combined, synergistic effects may be observed. Microalgae, as a dietary supplement, can be used to study these synergistic effects in animal models in which dyslipidemia can be induced by a nutrition treatment. Different marine microalgae of interest are studied in this context to determine their potential effect as an alternative source to marine omega-3 rich fish oils, actually widely used for human health. Actually, the pharmaceutical and nutrition industries are developing health research programs involving microalgae, trying to limit the dramatic reduction of fish stocks and the associated pollution in the marine environment. The aim of this review is threefold: (1 to present research on lipids, particularly long chain polyunsaturated fatty acids, as components of marine microalgae used as food supplements; (2 to present the health benefits of some microalgae or their extracts, in particular in the prevention of cardiovascular diseases and (3 to highlight the role of Odontella aurita, a marine microalga rich in EPA used as food supplement with the aim of preventing cardiovascular diseases.

  13. Microalgae growth-promoting bacteria: A novel approach in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Luz E. de-Bashan

    2003-07-01

    Full Text Available Plant growth-promoting bacteria (PGPB from the genus Azospirillum are known to enhance the growth of numerous agricultural crops. The use of these bacteria is proposed as "micro-algae-growth promoting bacteria" (MGPB for enhancing freshwater micro-algae Chlorella vulgaris and C. sorokiniana capadty to clean polluted water. The deliberate inoculation of Chlorella sp. with a terrestrial PGPB has not been reported prior to these studies, perhaps because of the different origin of the two micro-organisms. Chlorella spp. is not known to harbour any plant growth-promoting bacteria and Azospirillum sp. is rarely used for inoculation in aquatic environments. Co-immobilisation of C. vulgaris and A. brasilense Cd in small alginate beads resulted in significant increases in numerous micro-algae growth parameters. Dry and fresh weight, total number of cells, micro-algal cluster (colonies size within the bead, number of micro-algal cells per cluster and micro-algal pigments levels significantly increased. Lipids and the variety of fatty adds also significantly increased, as did the combination of micro-algae. MGPB had superior capacity for removing ammonium and phosphorus from polluted synthetic and municipal wastewaters than the micro-algae by itself. Other PGPB (i.e. Flavobacterium sp. Azospirillum sp. and Azotobacter sp. are currently being tested in aquaculture; carp farming using enhanced phytoplankton growth and stabilising mass marine micro-algae culture for use as feed for marine organisms are both retuming promising results. This aspect of PGPB effect on water micro-organisms is currently in its infancy. We pro pose that co-immobilising micro-algae and plant growth-promoting bacteria represent an effective means of increasing micro-algal populations and also their capacity for cleaning polluted water. Key words: PGPB; micro-algae; wastewater treatment; co-immobilised

  14. Setting the conditions for phycoremediation of radionuclide microalgae Dunaliella salina and Chlorella vulgaris

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Kuruc, J.

    2016-01-01

    This presentation deals with bioremediation using microalgae - by phycoremediation. Microalgae are economically low profile compared to the plants, their cultivation can be carried out in laboratory conditions. They can survive in extreme conditions, they occur in all habitats and have faster growth. Halophilous green D. salina can accumulate heavy metals such as Zn, Cu and Cd. It occurs in hypersaline environment with tolerance (0.2 to 35) % NaCl. It contains high amounts of carotenoids, which protect it against formation of free radicals from UV radiation. Chlorella vulgaris is a representative of eukaryotic green microalgae with the highest chlorophyll content with the appearance in fresh water. Its phycoremediant ability are found in N and P elements, which are used as its nutritional components as well as for Cu, Cr, Cd, Pb, Au. The experiments were carried out using a peristaltic pump ISMATEC Model: ISM851 (flow rate 2 cm"3 min"-"1) followed by monitoring of time dependence of decrease of activity of the microalgae solutions. For evaluation of the samples was used HPGe gamma spectrometer (measurement time of the samples: 600 sec) from ORTEC Company and measured spectra were evaluated with software GammaVision from ORTEC. The measured results showed that the most effective phycoremediation of microalgae Dunaliella salina toke place in an environment of pH 3, and even more at pH 8. The fact that the D. salina is able of phycoremediation at so acidic pH can contribute to its applications in extreme conditions or in the coastal areas in view of that it is halophilic. At freshwater microalgae Chlorella vulgaris was found the best phytoremediation potential in its natural environment at pH of 6. Because this microalgae is freshwater, it may find application in inland or in liquid radioactive waste from nuclear facilities.(authors)

  15. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Directory of Open Access Journals (Sweden)

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  17. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1.

    Science.gov (United States)

    Wen, Xiaobin; Du, Kui; Wang, Zhongjie; Peng, Xinan; Luo, Liming; Tao, Huanping; Xu, Yan; Zhang, Dan; Geng, Yahong; Li, Yeguang

    2016-01-01

    Commercial production of microalgal biodiesel is not yet economically viable, largely because of low storage lipid yield in microalgae mass cultivation. Selection of lipid-rich microalgae, thus, becomes one of the key research topics for microalgal biodiesel production. However, the laboratory screening protocols alone cannot predict the ability of the strains to dominate and perform in outdoor ponds. Comprehensive assessment of microalgae species should be performed not only under the laboratory conditions, but also in the fields. Laboratory investigations using a bubbled column photobioreactor indicated the microalga Graesiella sp. WBG-1 to be the most productive species among the 63 Chlorophyta strains. In a 10 L reactor, mimicking the industrial circular pond, Graesiella sp. WBG-1 produced 12.03 g biomass m(-2) day(-1) and 5.44 g lipids (45.23 % DW) m(-2) day(-1) under 15 mol m(-2) day(-1) artificial light irradiations. The lipid content decreased to ~34 % DW when the microalga was cultured in 30 L tank PBR under natural solar irradiations, but the decline of lipid content with scaling up was the minimum among the tested strains. Based on these results, the microalga was further tested for its lipid production and culture competitiveness using a pilot-scale raceway pond (200 m(2) illuminated area, culture volume 40,000 L). Consequently, Graesiella sp. WBG-1 maintained a high lipid content (33.4 % DW), of which ~90 % was storage TAGs. Results from the outdoor experiments indicated the nice adaptability of the Graesiella sp. WBG-1 to strong and fluctuating natural solar irradiance and temperature, and also demonstrated several other features, such as large cell size (easy for harvest and resistant to swallow by protozoa) and tolerance to high culture pH (helpful to CO2 fixation). Graesiella sp. WBG-1 was a promising strain capable of accumulating large amount of storage lipid under nature solar irradiance and temperature. The high lipid content

  18. Adaptation of microalgae to lindane: a new approach for bioremediation.

    Science.gov (United States)

    González, Raquel; García-Balboa, Camino; Rouco, Mónica; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-03-01

    Lindane is especially worrisome because its persistence in aquatic ecosystems, tendency to bioaccumulation and toxicity. We studied the adaptation of freshwater cyanobacteria and microalgae to resist lindane using an experimental model to distinguish if lindane-resistant cells had their origin in random spontaneous pre-selective mutations (which occur prior to the lindane exposure), or if lindane-resistant cells arose by a mechanism of physiological acclimation during the exposure to the selective agent. Although further research is needed to determine the different mechanisms contributing to the bio-elimination of lindane, this study, however, provides an approach to the bioremediation abilities of the lindane-resistant cells. Wild type strains of the experimental organisms were exposed to increasing lindane levels to estimate lethal concentrations. Growth of wild-type cells was completely inhibited at 5mg/L concentration of lindane. However, after further incubation in lindane for several weeks, occasionally the growth of rare lindane-resistant cells was found. A fluctuation analysis demonstrated that lindane-resistant cells arise only by rare spontaneous mutations that occur randomly prior to exposure to lindane (lindane-resistance did not occur as a result of physiological mechanisms). The rate of mutation from lindane sensitivity to resistance was between 1.48 × 10(-5) and 2.35 × 10(-7) mutations per cell per generation. Lindane-resistant mutants exhibited a diminished fitness in the absence of lindane, but only these variants were able to grow at lindane concentrations higher than 5mg/L (until concentrations as high as 40 mg/L). Lindane-resistant mutants may be maintained in uncontaminated waters as the result of a balance between new resistant mutants arising from spontaneous mutation and resistant cells eliminated by natural selection waters via clone selection. The lindane-resistant cells were also used to test the potential of microalgae to remove

  19. Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.

    Science.gov (United States)

    González-Camejo, J; Barat, R; Pachés, M; Murgui, M; Seco, A; Ferrer, J

    2018-02-01

    The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 µE m -2  s -1 . Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125 µE m -2  s -1 , respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 µE m -2  s -1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9 mgVSS L -1  d -1 for a light intensity of 40, 85 and 125 µE m -2  s -1 , respectively.

  20. Moringa oleifera Seed Derivatives as Potential Bio-Coagulant for Microalgae Chlorella sp. Harvesting

    International Nuclear Information System (INIS)

    Azizah Endut; Azizah Endut; Siti Hajar Abdul Hamid; Fathurrahman Lananan; Helena Khatoon

    2016-01-01

    Microalgae is an economical and potential raw material of biomass energy, which offer a wide range of commercial potential to produce valuable substances for applications in aquaculture feed, pharmaceutical purposes and bio fuels production. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Hence, this study was performed to investigate the potentialities of Moringa oleifera seed derivatives as an environmentally bio-coagulant to harvest microalgae Chlorella sp. biomass from the water column, which acts as a binder to coagulate particulate impurities to form larger aggregates. Results shown M. oleifera to have better biomass recovery of 122.51 % as compared to 37.08 % of alum at similar dosages of 10 mgL"-"1. In addition, it was found that the zeta potential values of mixed microalgae-coagulant suspension shows positive correlation on the flocculation parameters. For biomass recovery, the correlation for M. oleifera protein powder showed the R"2-value of 0.9565 whereas the control chemical flocculant, alum with the R"2-value of 0.7920. It was evidence that M. oleifera has a great potential in efficient and economical for environmentally microalgae harvesting and the adaptation of biological harvesting technology especially for the purpose of aquaculture feed in Malaysia. (author)

  1. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    Science.gov (United States)

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule.

    Science.gov (United States)

    Magdalena, Jose Antonio; Ballesteros, Mercedes; González-Fernandez, Cristina

    2018-05-06

    Biogas generation is the least complex technology to transform microalgae biomass into bioenergy. Since hydrolysis has been pointed out as the rate limiting stage of anaerobic digestion, the main challenge for an efficient biogas production is the optimization of cell wall disruption/hydrolysis. Among all tested pretreatments, enzymatic treatments were demonstrated not only very effective in disruption/hydrolysis but they also revealed the impact of microalgae macromolecular composition in the anaerobic process. Although carbohydrates have been traditionally recognized as the polymers responsible for the low microalgae digestibility, protease addition resulted in the highest organic matter solubilization and the highest methane production. However, protein solubilization during the pretreatment can result in anaerobic digestion inhibition due to the release of large amounts of ammonium nitrogen. The possible solutions to overcome these negative effects include the reduction of protein biomass levels by culturing the microalgae in low nitrogen media and the use of ammonia tolerant anaerobic inocula. Overall, this review is intended to evidence the relevance of microalgae proteins in different stages of anaerobic digestion, namely hydrolysis and methanogenesis.

  3. Microalgae Oil Production: A Downstream Approach to Energy Requirements for the Minamisoma Pilot Plant

    Directory of Open Access Journals (Sweden)

    Dhani S. Wibawa

    2018-02-01

    Full Text Available This study investigates the potential of microalgae oil production as an alternative renewable energy source, in a pilot project located at Minamisoma City in the Fukushima Prefecture of Japan. The algal communities used in this research were the locally mixed species, which were mainly composed of Desmodesmus collected from the Minamisoma pilot project. The microalgae oil-production processes in Minamisoma consisted of three stages: cultivation, dewatering, and extraction. The estimated theoretical input-energy requirement for extracting oil was 137.25 MJ to process 50 m3 of microalgae, which was divided into cultivation 15.40 MJ, centrifuge 13.39 MJ, drum filter 14.17 MJ, and hydrothermal liquefaction (HTL 94.29 MJ. The energy profit ratio (EPR was 1.41. The total energy requirement was highest in the HTL process (68% followed by cultivation (11% and the drum filter (10%. The EPR value increased along with the yield in the cultivation process. Using HTL, the microalgae biomass could be converted to bio-crude oil to increase the oil yield in the extraction process. Therefore, in the long run, the HTL process could help lower production costs, due to the lack of chemical additions, for extracting oil in the downstream estimation of the energy requirements for microalgae oil production.

  4. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    Science.gov (United States)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  5. Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters.

    Directory of Open Access Journals (Sweden)

    David K Y Lim

    Full Text Available Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species.

  6. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  7. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  8. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  9. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-12-01

    Full Text Available Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2 extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2. Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73% compared to SCCO2 extraction alone (1.81%. Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM. SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  10. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  11. The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas

    International Nuclear Information System (INIS)

    Thiansathit, Worrarat; Keener, Tim C.; Khang, Soon-Jai; Ratpukdi, Thunyalux; Hovichitr, Patcharee

    2015-01-01

    Microalgae Scenedesmus obliquus was cultured in a laboratory photobioreactor to determine the efficacy of using biogas as a carbon source for the microalgae's growth. The biogas contained ∼60% CH 4 and ∼40% CO 2 , and was derived from an anaerobic digester operating from animal wastes, and an anaerobic reactor utilizing high strength wastewater. The results showed that biogas is a viable carbon source for microalgae growth and that significant portions of the biogas' CO 2 can be utilized for algae growth, resulting in a biogas having a high concentration of methane. This paper develops the kinetic expressions for the algae's growth by assuming an autocatalytic reaction between carbon substrate and microalgae. The maximum specific growth rate and biomass productivity of S. obliquus were 0.56 d −1 and 0.145 g L −1 d −1 respectively. The biomass contained 51.8% carbon and higher heating value (HHV) was 22.9 MJ kg −1 . - Highlights: • Biogas is a viable carbon source for microalgae growth. • Biomass production rate and characteristics were assessed. • Scenedesmus obliquus can adjust to grow with high concentration of CO 2 in the carbon source

  12. Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2014-08-19

    Microalgae have been currently recognized as a group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids, and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO{sub 2} fixation, NO{sub x}, and wastewater treatment) and biorefinery has been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO{sub 2} and NO{sub x}) and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g., food, medicine, wastewater treatment, and flue gas treatment) with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  13. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  14. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  15. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  16. Paper-based device for separation and cultivation of single microalga.

    Science.gov (United States)

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  18. Current status and outlook in the application of microalgae in biodiesel production and environmental protection

    Directory of Open Access Journals (Sweden)

    Xin eZhang

    2014-08-01

    Full Text Available Microalgae have been currently recognized as one group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOX and wastewater treatment and biorefinery have been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOX and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g. food, medicine, wastewater treatment and flue gas treatment with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  19. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    DEFF Research Database (Denmark)

    Safafar, Hamed; van Wagenen, Jonathan Myerson; Møller, Per

    2015-01-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella...... antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source....

  20. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Ayswarya Ravi

    2018-02-01

    Full Text Available Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN, a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT and Gallium-immobilized metal affinity chromatography (Ga-IMAC were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN.

  1. Culture of microalgae Spirulina platensis with isotope stable Carbon-13

    International Nuclear Information System (INIS)

    Cronemberger, Luiz C.A.; Costa, Vladimir E.

    2017-01-01

    Gastric emptying time abnormalities cause complications that affect the quality of life in humans and scintigraphy is the gold standard for this diagnosis. However its application has restrictions due to the use of the radiopharmaceutical 99m Tc. An alternative to this method is the stable carbon isotope respiratory test. This is a non-radioactive, noninvasive technique with no contraindications. Its application varies according to the substrate used. For evaluation of gastric emptying time one of the substrates that can be used in the respiratory test is Spirulina platensis labeled at 97% carbon atoms with the stable isotope carbon-13 ( 13 C). In Brazil, there is no production of this substrate and its high cost (US$475.00/g, excluding import taxes) makes it difficult to apply the test. Thus, the objective of the work is to cultivate labeled S. platensis at 97% of 13 C for use in the respiratory test for gastric emptying and to establish optimization parameters for the best cost-benefit of this culture. In the cultivation process the microalgae will be kept in a closed sterilized glass volumetric flask, with deionized water and a pure 13 C source. The light (photoperiod 12h light / dark), pH (∼ 9.5) and temperature (30 deg C) will be controlled and after 35-40 days of growth, the cyanobacteria will be lyophilized and ground for the acquisition of a powder that will be analyzed by IRMS and compared to S. platensis, which will be our reference standard

  2. Co-cultivation of microalgae in aquaponic systems.

    Science.gov (United States)

    Addy, Min M; Kabir, Faryal; Zhang, Renchuan; Lu, Qian; Deng, Xiangyuan; Current, Dean; Griffith, Richard; Ma, Yiwei; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2017-12-01

    Aquaponics is a sustainable system for the future farming. In aquaponic systems, the nutrient-rich wastewater generated by the fish provides nutrients needed for vegetable growth. In the present study, the role of microalgae of Chlorella sp. in the floating-raft aquaponic system was evaluated for ammonia control. The yields of algal biomass, vegetable, and removal of the key nutrients from the systems were monitored during the operation of the aquaponic systems. When the systems were in full operation, the algae production was about 4.15±0.19g/m 2 ·day (dry basis) which is considered low because the growth conditions are primarily tailored to fish and vegetable production. However, it was found that algae had a positive effect on balancing pH drop caused by nitrifying bacteria, and the ammonia could be controlled by algae since algae prefer for ammonia nitrogen over nitrate nitrogen. The algae are more efficient for overall nitrogen removal than vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phycoremediation of municipal wastewater by microalgae to produce biofuel.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi

    2017-09-02

    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.

  4. Microalga Scenedesmus obliquus as a potential source for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Shovon; Mallick, Nirupama [Indian Inst. of Technology, Kharagpur, West Bengal (India). Agricultural and Food Engineering Dept.

    2009-08-15

    Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely replace the petroleum-derived transport fuels. Therefore, improving lipid content of microalgal strains could be a cost-effective second generation feedstock for biodiesel production. Lipid accumulation in Scenedesmus obliquus was studied under various culture conditions. The most significant increase in lipid reached 43% of dry cell weight (dcw), which was recorded under N-deficiency (against 12.7% under control condition). Under P-deficiency and thiosulphate supplementation the lipid content also increased up to 30% (dcw). Application of response surface methodology in combination with central composite rotary design (CCRD) resulted in a lipid yield of 61.3% (against 58.3% obtained experimentally) at 0.04, 0.03, and 1.0 g l{sup -1} of nitrate, phosphate, and sodium thiosulphate, respectively for time culture of 8 days. Scenedesmus cells pre-grown in glucose (1.5%)-supplemented N 11 medium when subjected to the above optimized condition, the lipid accumulation was boosted up to 2.16 g l{sup -1}, the value {proportional_to}40-fold higher with respect to the control condition. The presence of palmitate and oleate as the major constituents makes S. obliquus biomass a suitable feedstock for biodiesel production. (orig.)

  5. Resource evaluation and site selection for microalgae production systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, E.L.; Folger, A.G.; Hogg, S.E.

    1985-05-01

    Climate, land, and water resource requirements of microalgae production systems (MPS) were examined relative to construction costs, operating costs, and biomass productivity. The objective was the stratification of the southwestern United States into zones of relative suitability for MPS. Maps of climate (insolation, freeze-free period, precipitation, evaporation, thunderstorm days), land (use/cover, ownership, slope), and water (saline groundwater) resource parameters were obtained. These maps were transformed into digital overlays permitting the cell-by-cell compositing of selected resource parameters to form maps representing relative productivity, make-up water, climate suitability, land suitability, water suitability, and overall suitability. The Southwest was selected for this study because of its high levels of insolation, saline water resources, and large areas of relatively low valued land. The stratification maps cannot be used for the selection of specific sites because of their low resolution (12,455-acre cells). They can be used to guide future resource studies and site selection efforts, however, by limiting these efforts to the most suitable regions. Future efforts should concentrate on saline water resources, for which only limited data are currently available. 13 refs., 44 figs., 5 tabs.

  6. Light transfer in agar immobilized microalgae cell cultures

    Science.gov (United States)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  7. Quantitative assessment of microalgae biomass and lipid stability post cultivation

    Directory of Open Access Journals (Sweden)

    Katerine eNapan

    2015-04-01

    Full Text Available Processing of microalgal biomass to biofuels and other products requires the removal of the culture from a well-controlled growth system to a containment or preprocessing step at non-ideal growth conditions, such as darkness, minimal gas exchange, and fluctuating temperatures. The conditions and the length of time between harvest and processing will impact microalgal metabolism resulting in biomass and lipid degradation. This study experimentally investigates the impact of time and temperature on Nannochloropsis salina harvested from outdoor plate photobioreactors. The impact of three temperatures, 4°, 40° or 70°C, on biomass and lipid content (as fatty acid methyl esters of the harvested microalgae was evaluated over a 156 hour time period. Results show that for N. salina, time and temperature are key factors that negatively impact biomass and lipid yields. The temperature of 70°C resulted in the highest degradation with the overall biofuel potential reduced by 30% over 156 hours. Short time periods, 24 hours, and low temperatures are shown to have little effect on the harvested biomass.

  8. Electromagnetic response of the protective pellicle of different unicellular microalgae

    Science.gov (United States)

    Inchaussandague, Marina E.; Skigin, Diana C.; Tolivia, Analía.; Fuertes Vila, Isabel; Conforti, Visitación

    2014-03-01

    Euglenoids are unicellular aquatic organisms. These microalgae show a typical surface structure that distinguishes them from the other protists. Most cells are naked and bounded by a plasma membrane surrounded by a pellicle formed by overlapping bands. It is well known that all terrestrial and aquatic organisms are exposed to UV-A and UV-B radiation. This radiation is potentially harmful to life and since it can penetrate up to 12 meters in the water, it can reduce survival, growth and production of phytoplankton. However, the organisms have developed numerous protection mechanisms intended to reduce such damage, such as the production of pigments and other repair mechanisms. However, the possible protection that could provide the first barriers before entering into the cell has not been explored yet. In this paper we investigate, from an electromagnetic point of view, the role played by the pellicle of euglenoids in the protection of the cell against UV radiation. To do so, we investigate the electromagnetic response of different species that exhibit different behaviors against the UV radiation. We solve the diffraction problem by using the Chandezon Method and obtain the reflectance of the pellicle for the UV wavelengths. The results show that the corrugated pellicle could contribute to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  9. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2016-05-01

    Full Text Available Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters.

  10. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-08-01

    Full Text Available Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  11. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    Science.gov (United States)

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microalgae wet extraction using N-ethyl butylamine for fatty acid production

    Directory of Open Access Journals (Sweden)

    Ying Du

    2016-04-01

    Full Text Available Microalgae are considered a promising feedstock for the production of food ingredients, cosmetics, pharmaceutical products and biofuels. The energy intensity of drying and cell breaking of algae and solvent recovery afterwards hindered the route of algae biorefinery. In this work the influences of freeze drying and cell breaking to the extraction efficiency of crude lipid yield and fatty acid yield were investigated. Results showed that drying and cell breaking are not necessary for N-ethyl butylamine extraction, because good yields were obtained without. Crude lipid yield and fatty acid yield using N-ethyl butylamine were comparable with Bligh & Dyer extraction, making N-ethyl butylamine a candidate for further development of an energy efficient lipid extraction technology for non-broken microalgae. Keywords: Microalgae, Lipids, Extraction, Switchable solvent, Secondary amine

  13. Bioprocess engineering of microalgae to produce a variety of consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Razif [Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria 3800 (Australia); Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 Serdang (Malaysia); Singh, Manjinder; Forde, Gareth M.; Danquah, Michael K. [Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria 3800 (Australia)

    2010-04-15

    Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass. (author)

  14. Bioprocess engineering of microalgae to produce a variety of consumer products

    International Nuclear Information System (INIS)

    Harun, Razif; Singh, Manjinder; Forde, Gareth M.; Danquah, Michael K.

    2010-01-01

    Microalgae biotechnology has recently emerged into the lime light owing to numerous consumer products that can be harnessed from microalgae. Product portfolio stretches from straightforward biomass production for food and animal feed to valuable products extracted from microalgal biomass, including triglycerides which can be converted into biodiesel. For most of these applications, the production process is moderately economically viable and the market is developing. Considering the enormous biodiversity of microalgae and recent developments in genetic and metabolic engineering, this group of organisms represents one of the most promising sources for new products and applications. With the development of detailed culture and screening techniques, microalgal biotechnology can meet the high demands of food, energy and pharmaceutical industries. This review article discusses the technology and production platforms for development and creation of different valuable consumer products from microalgal biomass. (author)

  15. Development of a Biosensor for Environmental Monitoring Based on Microalgae Immobilized in Silica Hydrogels

    Directory of Open Access Journals (Sweden)

    Claude Durrieu

    2012-12-01

    Full Text Available A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.

  16. Improvement of lipid yield from microalgae Spirulina platensis using ultrasound assisted osmotic shock extraction method

    Science.gov (United States)

    Adetya, NP; Hadiyanto, H.

    2018-01-01

    Microalgae Spirulina sp. has been identified as potential source of natural food supplement and food colorant. The high water content of microalgae (70-90%) causes an obstacle in biomass dehydration which requires large amounts of energy, eventually damaging the lipid in the microalgae. Therefore, the lipid must be extracted by using a suitable method which complies to wet biomass conditions. One of the methods is applying osmotic shock. This study was aimed to investigate the influence of osmotic agent (NaCl) concentration (10-30%) and extraction time (20-50 min) on yield of lipid and also to determine the optimal conditions in the extraction process through response surface methodology. The extraction was conducted at a temperature of 40°C under ultrasound frequency of 40 kHz. The result showed that the optimum yield lipid obtained was 6.39% in 16.98% NaCl concentration for 36 minutes 10 seconds.

  17. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    Science.gov (United States)

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  18. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2016-01-01

    Most microalgae abundantly accumulate lipid droplets (LDs) containing triacylglycerols (TAGs) under several stress conditions, but the underlying molecular mechanism of this accumulation remains unclear. In a recent study, we found that inhibition of TOR (target of rapamycin), a highly conserved protein kinase of eukaryotes, by rapamycin resulted in TAG accumulation in microalgae, indicating that TOR negatively regulates TAG accumulation. Here, we show that formation of intracellular LDs and TAG accumulation were also induced in the unicellular green alga Chlamydomonas reinhardtii after exposure to Torin1 or AZD8055, which are novel TOR inhibitors that inhibit TOR activity in a manner different from rapamycin. These results supported quite well our previous conclusion that TOR is a central regulator of TAG accumulation in microalgae.

  19. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases.

    Science.gov (United States)

    Raposo, Maria Filomena de Jesus; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2015-08-14

    Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  20. The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region

    Directory of Open Access Journals (Sweden)

    G.J. Griffin

    2013-10-01

    Full Text Available Capital and operating cost estimates for converting microalgae to oil or biodiesel are compared. These cost comparisons are based on Australian locations, which are expected to fall at the lower end of the cost spectrum in the Asia-Pacific Region and other parts of the world.  It is assumed that microalgae are grown in a concentrated saltwater medium in raceway ponds, then are harvested, dewatered and the oil is extracted and converted to biodiesel by transesterification. The size of the desired pond system affects the number of potential locations due to constraints in resource availability. Cost estimates vary significantly due to differences in the assumed oil productivity, the harvesting equipment and the method of converting residual biomass to electric power. A comparison is made with recent cost estimates from other parts of the world, in which the expected costs of microalgae oil production from a number of publicly available sources lay between 0.34–31.0 USD/L.  The resulting cost estimates of between 1.37—2.66 USD/L are at the lower end of this scale, thereby confirming that Australia has the potential to be a low-cost producer of algal oil and biodiesel in the Asia-Pacific Region.  It was significant that, despite similar assumptions for the microalgae-to-oil process, cost estimates for the final biodiesel or oil price differed by a factor of 2.  This highlights the high degree of uncertainty in such economic predictions. Keywords: Asia-Pacific region; biodiesel; economics; microalgaeThis article is cited as :Griffin, G., Batten, D., Beer, T., & Campbell, P. (2013. The Costs of Producing Biodiesel from Microalgae in the Asia-Pacific Region. International Journal Of Renewable Energy Development (IJRED, 2(3, 105-113. doi:10.14710/ijred.2.3.105-113Permalinkhttp://dx.doi.org/10.14710/ijred.2.3.105-113

  1. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  2. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  3. Phycoremediation of 137Cs and 60Co with selected species of aquatic microalgae

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Strisovska, J.

    2016-01-01

    The presentation is focused on finding a suitable pH for phycoremediation of 137 Cs and 60 Co w ith microalgae Dunaliella salina and Chlorella vulgaris. To ensure a dynamic course of remediation the peristaltic pump was used, through which the solution was washed with radionuclides. During individual measurements the decrease in solution activity over time was monitored . Decline in activity in the samples was determined using a semiconductor HPGe gamma detector. The measured results showed that the best environment for phycoremediation for microalgae Dunaliella salina was at pH = 8 and less, for Chlorella vulgaris the best value was pH = 6. (authors)

  4. Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    Microalgae have great potential as a feedstock for the production of a wide range of end-products under the broad concept of biorefinery. In an earlier work, we proposed a superstructure based optimization model to find the optimal processing pathway for the production of biodiesel from microalgal...... biomass, and identified several challenges with the focus being on utilizing lipids extracted microalgal biomass for economic and environmentally friendly production of useful energy products. In this paper, we expand the previous optimization framework by considering the processing of microalgae residue...

  5. Renewable energy technologies: enlargement of biofuels list and co-products from microalgae

    Directory of Open Access Journals (Sweden)

    Chernova Nadezhda I.

    2017-01-01

    Full Text Available Microalgae is a perspective feedstock for producing a wide variety of biofuels and co-products with high added value. An alternative to the traditional technology of biodiesel from algae by the transesterification is the technology of hydrothermal liquefaction (HTL. The article presents the results of promising strains screening and directed cultivation of microalgae for the processing by means of variety of technologies and production of valuable co-products. An algorithm for selecting suitable areas for industrial plantations of algae is presented.

  6. CO2 gasification of microalgae (N. Oculata – A thermodynamic study

    Directory of Open Access Journals (Sweden)

    Adnan Muflih Arisa

    2018-01-01

    Full Text Available A new model of CO2 gasification has been developed in the Aspen Plus. The potential of microalgae (N. oculata for CO2 gasification also has been investigated. The present gasification process utilizes the CO2 at atmospheric pressure as the gasifying agent. The steam is also injected to the gasification to enhance the H2 production. The composition of the producer gas and gasification system efficiency (GSE are used for performance evaluation. It is found that the CO2 gasification of microalgae produces a producer gas with a high concentration of CO and H2. The GSE indicates that the process works at high performance.

  7. HYDROPROCESSING OF MICROALGAE OIL FOR GREEN DIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available This research was carried out to simulate microalgae oil hydroprocessing plant using ASPEN HYSYS simulation package. The simulation is based on conditions and parameters (temperature, pressure and catalyst selectivity obtained from consulted literatures. After the successful completion of the simulation, total recovery of products for green diesel and propane was achieved as 85.6% and 4.01% (mass percentages respectively. The green diesel composition indicated 0.01, 0.0005, 0.0201, 0.0757, 0.0021, 0.0089, 0.0041, 0.1813, 0.6822, 0.0191, and 0.005 mass fractions of n-C15, n-C16, n-C17, n-C18, n-C21, i-C15, i-C16, i-C17, i-C18, i-C21 and H2O respectively. The quality specifications of the simulated Green diesel with Cetane number 86.7 fall within acceptable range and met the United State diesel standard ASTM D975. A complete disappearance of triglycerides in the product mixture at the hydrotreating temperature of 371 and deg;C and pressure of 20 bar was observed. Economic analysis of the simulated project gives a total capital cost of ₦5.184billion, total production cost of ₦5.01 billion and cash flow as revenue of ₦6.02 billion after the fourth year. It shows that the project is highly profitable and efficient with a pay-back period of approximately 4years.

  8. Hydrothermal Extraction of Microalgae Fatty Acid Influences Hydrochar Phytotoxicity

    Directory of Open Access Journals (Sweden)

    Christopher J. Ennis

    2017-08-01

    Full Text Available Hydrothermal carbonization (HTC of microalgae biomass for the production of triacylglycerides is a potentially valuable enabling technology for a waste water treatment-based integrated biorefinery. Here, HTC was used to treat Phaeodactylum tricornutum lipid-rich biomass producing a solid hydrochar from the surface of which adsorbed lipids were removed by hexane extraction following filtration of the solid hydrochar from the process liquid product. Approximately 7% of the input biomass was recovered and transesterified for qualitative and quantitative GC-MS analysis for fatty acid methyl esters. Transesterifiable lipids accounted for 94% of the material recovered by solvent extraction. Of the transesterified fatty acids (FA analyzed, the majority was monounsaturated (40.4% and saturated (37% C-16 FA. Other FA detected included saturated and monounsaturated C-18 (7.7 and 1.9% and saturated C-14 (5.3% and C-25 (1.5%. Thermal analysis (TGA/DSC of the hydrochar in air showed calorific values of 10.6 MJ kg−1 (delipidated hydrochar and 3.1 MJ kg−1 (non-delipidated hydrochar with the latter exhibiting the presence of volatalizable components. Germination trials were conducted to assess the potential phytotoxic effects of these hydrochars. Delipidated hydrochar showed a germination index of 73% suggesting the presence of some phytotoxicity. Non-delipidated hydrochar showed high germination index results of 102% (unground and 126% (ground. Taken together with the observation of reduced root hair proliferation in these two test conditions, this suggests the operation of a second phytotoxic effect that is removed by delipidation.

  9. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus.

    Science.gov (United States)

    Garcia-Gonzalez, Jesus; Sommerfeld, Milton

    Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. Cellular extracts and dry biomass of the green alga Acutodesmus dimorphus were applied as a seed primer, foliar spray, and biofertilizer, to evaluate seed germination, plant growth, and fruit production in Roma tomato plants. A. dimorphus culture, culture growth medium, and different concentrations (0, 1, 5, 10, 25, 50, 75, and 100 %) of aqueous cell extracts in distilled water were used as seed primers to determine effects on germination. Seeds treated with A. dimorphus culture and with extract concentrations higher than 50 % (0.75 g mL -1 ) triggered faster seed germination-2 days earlier than the control group. The aqueous extracts were also applied as foliar fertilizers at various concentrations (0, 10, 25, 50, 75, and 100 %) on tomato plants. Extract foliar application at 50 % (3.75 g mL -1 ) concentration resulted in increased plant height and greater numbers of flowers and branches per plant. Two dry biomass treatments (50 and 100 g) were applied 22 days prior to seedling transplant and at the time of transplant to assess whether the timing of the biofertilizer application influenced the effectiveness of the biofertilizer. Biofertilizer treatments applied 22 days prior to seedling transplant enhanced plant growth, including greater numbers of branches and flowers, compared to the control group and the biofertilizer treatments applied at the time of transplant. The A. dimorphus culture, cellular extract, and dry biomass applied as a biostimulant, foliar spray, and biofertilizer, respectively, were able to trigger faster germination and enhance plant growth and floral production in Roma tomato plants.

  10. Microalgae on dimension stone of a medieval castle in Thuringia

    Science.gov (United States)

    Hallmann, C.; Stannek, L.; Fritzlar, D.; Hoppert, M.

    2012-04-01

    Phototrophic microorganisms are important primary producers on hard rock substrata as well as on building facades. These eukaryotic microalgae and cyanobacteria, along with lichens, have also been recognized as important factors for rock weathering and stone decay. The rock substratum itself mostly provides extreme environmental conditions. Composition and diversity of sub-aeric phototrophic microbial communities is up to now poorly understood. Here we present a comparative study addressing the composition of algal biofilms on sandstone substrata based on the analysis of rDNA clone libraries from environmental samples and enrichment cultures. From a W-exposed, shaded wall area of a medieval castle ruin (Burg Gleichen, Thuringia, Germany cf. Hallmann et al., 2011), green algae like Prasiococcus, Prasiola and Elliptochloris could be retrieved. A ESE, sun-exposed wall section was colonized mainly by Apatococcus, Phyllosiphon and the lichen alga Trebouxia and Myrmecia. Accordingly, cyanobacterial communities show clear differences between both wall areas: the sun exposed area was dominated by Synechococcus-like organisms while on the W-exposed area cyanobacteria were almost absent. Just a few species, in particular Stichococcus-related strains, are ubiquitous in both areas. It is obvious that, apart from few generalists, different species colonize the wall areas that are situated in close vicinity, but provide different microclimatic conditions. These differences are discussed in view of biogenic weathering phenomena: certain microalgal species colonize crusts and scales along fracture planes and may contribute to rapid detachment and turnover of dimension stone surfaces. Hallmann, C., Fritzlar, D., Stannek, L., Hoppert, M. (2011) Ascomycete fungi on dimension stone of the "Burg Gleichen", Thuringia. Env. Earth Sci. 63, 1713-1722.

  11. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2013-11-01

    Full Text Available Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  12. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Science.gov (United States)

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  13. The Effects of Audible Sound for Enhancing the Growth Rate of Microalgae Haematococcus pluvialis in Vegetative Stage

    Directory of Open Access Journals (Sweden)

    Marcelinus Christwardana

    2017-07-01

    Full Text Available Physico-stimulant like audible sound is one of the new promising methods for enhancing microalgae growth rate. Here, microalgae Haematococcus pluvialis was cultivated with the addition of audible sound with titles “Blues for Elle” and “Far and Wide.” The objective of this research was to evaluate the effect of audible sound to the growth and productivity of microalgae. The experiment has been conducted by exposing the audible sound for 8 h in 22 days to microalgae cultivation. The result showed that microalgae H. pluvialis treated by the music “Blues for Elle” shows the highest growth rate (0.03 per day, and 58% higher than the one without audible sound. The average number of cells in stationary phase is 0.76 × 104 cells/mL culture and the productivity is 3.467 × 102 cells/mL/day. The pH of microalgae medium slightly decreases because of proton production during photosynthesis process. The kinetic rate constant (kapp is 0.078 per day, reaction half-life (t1/2 is 8.89 days, and catalytic surface (Ksurf is 1.66 × 10−5/day/cm2. In conclusion, this audible sound is very useful to stimulate microalgae growth rate, especially H. pluvialis.

  14. Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model

    Science.gov (United States)

    Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.

    2017-12-01

    The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.

  15. Microplate-based method for high-throughput screening of microalgae growth potential

    DEFF Research Database (Denmark)

    Van Wagenen, Jonathan; Holdt, Susan Løvstad; De Francisci, Davide

    2014-01-01

    Microalgae cultivation conditions in microplates will differ from large-scale photobioreactors in crucial parameters such as light profile, mixing and gas transfer. Hence volumetric productivity (Pv) measurements made in microplates cannot be directly scaled up. Here we demonstrate that it is pos...

  16. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  17. Numerical investigation of a bubble-column photo-bioreactor design for biodiesel production from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Seo, I.H.; Lee, I.B.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Kwon, K.S.; Choi, J.S.; Song, S.H. [Seoul National Univ., Seoul (Korea, Democratic People' s Republic of). Dept. of Rural Systems Engineering and Research Inst. for Agriculture and Life Sciences

    2010-07-01

    Biodiesel made from vegetable oil is among the most desirable of renewable energy sources because it can be a substitute for diesel oil. However, biodiesel from soybean or corn can be confronted with a food crisis. Microalgae is a new biodiesel source which contains high oil lipids with a high growth rate, and which also offers value-added products from the residue, such as cosmetics, health functional food or pharmaceuticals. Microalgae are best cultivated in photo-bioreactors (PBRs) where light, nutrients, carbon dioxide and temperature can be controlled. Despite the current availability of PBRs, only a few can be practically used for mass production. Computational fluid dynamics (CFD) was used in this study to design an optimum bubble-column PBR for mass production of microalgae. Multi-phase models including bubble movement, meshes and time step independent tests were considered to develop the 3-dimensional CFD model. Particle Image Velocimetry (PIV) tests were used to enhance and validate the model. Different types of PBRs were simulated and compared quantitatively with the microalgae's growth model.

  18. The analysis on energy and environmental impacts of microalgae-based fuel methanol in China

    International Nuclear Information System (INIS)

    Liu Jing; Ma Xiaoqian

    2009-01-01

    The whole life of methanol fuel, produced by microalgae biomass which is a kind of renewable energy, is evaluated by using a method of life cycle assessment (LCA). LCA has been used to identify and quantify the environment emissions and energy efficiency of the system throughout the whole life cycle, including microalgae cultivation, methanol conversion, transport, and end-use. Energy efficiency, defined as the ratio of the energy of methanol produced to the total required energy, is 1.24, the results indicate that it is plausible as an energy producing process. The environmental impact loading of microalgae-based fuel methanol is 0.187mPET 2000 in contrast to 0.828mPET 2000 for gasoline. The effect of photochemical ozone formation is the highest of all the calculated categorization impacts of the two fuels. Utilization of microalgae an raw material of producing methanol fuel is beneficial to both production of renewable fuels and improvement of the ecological environment. This Fuel methanol is friendly to the environment, which should take an important role in automobile industry development and gasoline fuel substitute

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  20. Ichthyotoxicity of the microalga Pseudochattonella farcimen under laboratory and field conditions in Danish waters

    DEFF Research Database (Denmark)

    Andersen, Nikolaj Gedsted; Hansen, Per Juel; Engell-Sørensen, Kirsten

    2015-01-01

    Blooms of the marine dictyochophyte Pseudochattonella farcimen have been associated with fish kills, but attempts to verify ichthyotoxicity of this microalga under experimental conditions have not been successful. In the early spring of 2009 and 2011, P. farcimen bloomed in the inner Danish waters...

  1. Co-cultivation of Green Microalgae and Methanotrophic Bacteria for Single Cell Protein Production from Wastewater

    DEFF Research Database (Denmark)

    Rasouli, Zahra; Valverde Pérez, Borja; D'Este, Martina

    2017-01-01

    microalgae – as a means to recover nutrients from industrial wastewater and upcycle them to feed grade single cell protein. Results demonstrated that both algae and bacteria could remove or assimilate most of the organic carbon present in the wastewater. However, their growth stopped before nutrients...

  2. Volatile Metabolites Emission by In Vivo Microalgae-An Overlooked Opportunity?

    Science.gov (United States)

    Achyuthan, Komandoor E; Harper, Jason C; Manginell, Ronald P; Moorman, Matthew W

    2017-07-31

    Fragrances and malodors are ubiquitous in the environment, arising from natural and artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has a broad range of civilian, industrial, military, medical, and national security applications. The VOC metabolic profile of an organism has been referred to as its 'volatilome' (or 'volatome') and the study of volatilome/volatome is characterized as 'volatilomics', a relatively new category in the 'omics' arena. There is considerable literature on VOCs extracted destructively from microalgae for applications such as food, natural products chemistry, and biofuels. VOC emissions from living (in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the organism's state of health (SoH) along with their contributions to the environment and ecology. This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical activities, predator-prey interactions, and general SoH.

  3. Effect of heavy metals on the growth of the tropical microalgae Tetrasermis chuii (Prasinophyceae)

    International Nuclear Information System (INIS)

    Cordero, Jiudith; Guevara, Miguel; Lodeiros, Cesar; Morales, Ever

    2005-01-01

    This paper determined the toxic effect of four metals, cadmium (Cd), copper (Cu), mercury (Hg) and lead (Pb), on the tropical microalgae Tetrasermis Chuii (Butcher, 1959). We exposed 50 ml of cultivated microalgae (f/2 Guillard) in the exponential growth phase, with three replicates, to concentrations of 0 (control), 0.1, 1.0, 5.0, 10.0 and 20.0 mg.l -1 with each metal for 96 hr. We evaluated the lethal effect daily, through the cellular count. In the control treatment (not exposed to any metal) we observed and increase in cellular density. In all treatments exposed to metals, we observed a decrease in cellular density, which accelerated in 48 h, after which it became less pronounced. There were exceptions with low concentrations of Cd and Cu at 24 h, as there was no significant decrease, probably due to their use as micro nutrients at these low concentrations. The metal that caused the most lethal effect was Pb, which killed 50% of the microalgae population at a concentration of 0.40 mg.l -1 . This concentration was 3 times lower than that of mercury and 13 times lower than those of cadmium and copper. The microalgae Tetrasermis chuii is recommended as a model species to estimate the toxic effects of xenobiotics on tropical seawater environments. (Author) [es

  4. On the potential application of polar and temperate marine microalgae for EPA and DHA production

    NARCIS (Netherlands)

    Boelen, P.; van Dijk, R.; Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Buma, A.G.J.

    2013-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid

  5. Contribution of benthic microalgae to the temporal variation in phytoplankton assemblages in a macrotidal system.

    Science.gov (United States)

    Hernández Fariñas, Tania; Ribeiro, Lourenço; Soudant, Dominique; Belin, Catherine; Bacher, Cédric; Lampert, Luis; Barillé, Laurent

    2017-10-01

    Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms. © 2017 Phycological Society of America.

  6. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.

    Science.gov (United States)

    Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-05-27

    Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  7. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    L. D. Zhu

    2016-01-01

    Full Text Available In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  8. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives.

    Science.gov (United States)

    Del Campo, José A; García-González, Mercedes; Guerrero, Miguel G

    2007-04-01

    Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on beta-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

  9. Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Cristina de Mello-Sampayo

    2017-07-01

    Full Text Available Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order to evaluate the microalgae-biomass assimilation and its health-benefits, single-dose (CD1-mice studies were followed by 66-days repeated-dose study in Wistar rats with the highest tested single-dose of microalgae equivalent to 101 mg/kg eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA. Microalgae-supplementation modulated EPA and docosapentaenoic acid enrichment at arachidonic acid content expenditure in erythrocytes and liver, while increasing EPA content of heart and adipose tissues of rats. Those fatty acid (FA changes confirmed the D. vlkianum-biomass FA assimilation. The principal component analyses discriminated brain from other tissues, which formed two other groups (erythrocytes, liver, and heart separated from kidney and adipose tissues, pointing to a distinct signature of FA deposition for the brain and for the other organs. The improved serum lipid profile, omega-3 index and erythrocyte plasticity support the cardiovascular benefits of D. vlkianum. These results bolster the potential of D. vlkianum-biomass to become a “heart-healthy” food supplement providing a safe and renewable source of bioavailable omega-3 FA.

  10. Erratum to: Selective Bioaccumulation of Rubidium by Microalgae from Industrial Wastewater Containing Rubidium and Lithium.

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, P.; Kronusová, O.; Kaštánek, František; Brányiková, Irena; Prochazková, G.; Jandová, J.; Brányik, T.; Bišová, Kateřina

    2018-01-01

    Roč. 30, č. 1 (2018), s. 469 ISSN 0921-8971 Institutional support: RVO:67985858 ; RVO:61388971 Keywords : rubidium * lithium * microalgae Subject RIV: CI - Industrial Chemistry, Chemical Engineering; EE - Microbiology, Virology (MBU-M) OBOR OECD: Chemical process engineering; Microbiology (MBU-M) Impact factor: 2.616, year: 2016

  11. Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae

    NARCIS (Netherlands)

    Ghafari, Mohsen; Rashidi, Behzad; Haznedaroglu, Berat Zeki

    2018-01-01

    In this study, effects of key macro and micronutrients on neutral lipid accumulation of six oleaginous microalgae species were investigated. For each nutrient, three different concentrations (0.5×, 1×, and 2×) were tested individually and compared to the most commonly utilized growth medium recipes.

  12. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans

    NARCIS (Netherlands)

    Lam, 't Gerard; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G.

    2017-01-01

    Pulsed Electric Field (PEF) is currently discussed as promising technology for mild and scalable cell disintegration of microalgae. In this study Chlorella vulgaris and Neochloris oleoabundans have been subjected to batch and continuous PEF treatments under a wide range of operating conditions

  13. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    Science.gov (United States)

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. C.L. Senior

    2001-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period from 1 October to 31 December 2000. During this period planning of chemostat experiments at Aquasearch was initiated. These experiments will be used to select microalgae for the photobioreactor demonstrations. An initial survey of techniques for removing CO{sub 2} from coal-fired flue gas was begun. Chemical adsorption using MEA is the most mature technology and looks to be the most economically viable in the near future.

  16. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  17. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  18. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  20. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  1. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant

    NARCIS (Netherlands)

    Rahman, D. Y.; Sarian, F. D.; van Wijk, A.; Martinez-Garcia, M.; van der Maarel, M. J. E. C.

    The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae

  2. Human intrinsic factor expression for bioavailable vitamin B12 enrichment in microalgae

    DEFF Research Database (Denmark)

    Lima, Serena; Webb, Conner L.; Deery, Evelyne

    2018-01-01

    Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B12(B12). Microalgae are making their way into the dietary supplement and functional food market but do not produce B12, and their B12 ...... that is suitable for vegetarians and, potentially, more bioavailable for humans....

  3. Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae

    NARCIS (Netherlands)

    Boelen, Peter; Van Mastrigt, Audrey; Van De Bovenkamp, Henk H.; Heeres, Hero J.; Buma, Anita G. J.

    Microalgae are the principal producers of long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine ecosystems. Algae are used in aquaculture systems as direct or indirect feed for zooplankton, filter-feeding mollusks and larval

  4. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae

    Czech Academy of Sciences Publication Activity Database

    Procházková, G.; Brányiková, Irena; Zachleder, Vilém; Brányik, T.

    2014-01-01

    Roč. 26, č. 3 (2014), s. 1359-1377 ISSN 0921-8971 R&D Projects: GA ČR(CZ) GAP503/10/1270 Institutional support: RVO:61388971 Keywords : nutrient * biomass * green microalgae Subject RIV: EE - Microbiology, Virology Impact factor: 2.559, year: 2014

  5. Green energy from microalgae: Usage of algae biomass for anaerobic digestion

    International Nuclear Information System (INIS)

    Skorupskaite, Virginija; Makarevicie, Violeta

    2014-01-01

    The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11 containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared i n different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogas. Key words: microalgae, biomass, biogas production, biogas quality

  6. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    Science.gov (United States)

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Pearce, Matthew; Shemfe, Mobolaji; Sansom, Christopher

    2016-01-01

    Highlights: • Hydrothermal liquefaction and concentrated solar power provide integrated biofuel technology. • Heat kinetics and energy efficiency Aspen plus modelling of CSP and HTL. • Microalgae biofuel minimum fuel sales price of $1.23/kg. - Abstract: Integration of Hydrothermal Liquefaction (HTL) of microalgae biomass with concentrated solar power thermal processing (CSP) for bio-oil production is a potential processing pathway for energy efficient generation of renewable biofuels. Solar HTL infrastructure avoids additional bolt-on components of conventional solar parabolic trough systems used for electricity production including heat transfer fluids, counter current heat exchangers, fluid transfer interconnectivity and electrical power control systems. The absence of such capital intensive additional equipment considerably reduces the production costs of solar HTL biofuels compared to electricity generation from conventional CSP power systems. An economic and market appraisal of variance and system economic resilience is presented. It is hypothesised that the combination of nutrient recycling with HTL/CSP unification has the potential for economically sustainable microalgae bio-oil production. A microalgae biofuel minimum fuel sales price of $1.23/kg has been modelled. Further experimental work would be able to validate this integrated model.

  8. Chapter 3: Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua-Michel, J.; Subramanian, Venkataramanan

    2017-01-01

    In this chapter, the current status of microalgal isoprenoids and the role of omics technologies, or otherwise specified, in bioproducts optimization and applications are reviewed. Emphasis is focused in the metabolic pathways of microalgae involved in the production of commercially important products, namely, hydrocarbons and biofuels, nutraceuticals, and pharmaceuticals.

  9. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga

    Directory of Open Access Journals (Sweden)

    Chukwuma Onumaegbu

    2018-03-01

    Full Text Available Cell disruption is an integral part of microalga production process, which improves the release of intracellular products that are essential for biofuel production. In this work, pre-treatment parameters that will enhance the efficiency of lipid production using high-pressure homogenizer on microalgae biomass will be investigated. The high-pressure homogenizer that is considered is a GYB40-10S/GY60-6S; with a pre-treatment pressure of 1000 psi, 2000 psi, and 3000 psi, the number of passes; 1, 2, and 3, a reaction time of 3, 3.5, and 4 h. Pressure and cavitation increase the efficiency of the pre-treatment process of the homogenizer. In addition, homogenization shear force and pressure are the basic significant factors that enhance the efficiency of microalgae cell rupture. Also, the use of modelling to simulate pre-treatment processes (Response Surface Methodology (RSM, Box-Behnken Designs (BBD, and design of experiment (DOE for process optimization will be adopted in this study. The results clearly demonstrate that high-pressure homogenization pre-treatment can effectively disrupt microalga cell walls to enhance lipid recovery efficiency, with a relatively short extraction time, both that are essential for maintaining a good quality of lipids for biofuel production. A maximum of 18% lipid yields were obtained after 3 h of HPH pre-treatment at 3000 psi.

  10. Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics

    Directory of Open Access Journals (Sweden)

    N. Kokkinos

    2015-11-01

    Full Text Available Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. Recent focus is on microalgae as the third generation feedstock. In the present research work, two indigenous fresh water and two marine Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3 as nutrient source. Gas chromatographic analysis data showed that microalgae biodiesel obtained from Chlorophyte strains biomass were composed of fatty acid methyl esters. The produced microalgae biodiesel achieved a range of 2.2 - 10.6 % total lipid content and an unsaturated FAME content between 49 mol% and 59 mol%. The iodine value, the cetane number, the cold filter plugging point, the oxidative stability as well as combustion specific characteristics of the final biodiesels were determined based on the compositions of the four microalgae strains. The calculated biodiesel properties compared then with the corresponding properties of biodiesel from known vegetable oils, from other algae strains and with the specifications in the EU (EN 14214 and US (ASTM D6751 standards. The derived biodiesels from indigenous Chlorophyte algae were significantly comparable in quality with other biodiesels.

  11. Life cycle costs for the optimized production of hydrogen and biogas from microalgae

    International Nuclear Information System (INIS)

    Meyer, Markus A.; Weiss, Annika

    2014-01-01

    Despite the known advantages of microalgae compared with other biomass providers or fossil fuels, microalgae are predominately produced for high-value products. Economic constraints might limit the commercial energetic use of microalgae. Therefore, we identify the LCCs (life cycle costs) and economic hot spots for photoautotrophic hydrogen generation from photoautotrophically grown Chlamydomonas reinhardtii in a novel staggered PBR (photobioreactor) and the anaerobic digestion of the residual biomass to obtain biogas. The novel PBR aims at minimizing energy consumption for mixing and aeration and at optimizing the light conditions for algal growth. The LCCs per MJ amounted to 12.17 Euro for hydrogen and 0.99 Euro for biogas in 2011 for Germany. Market prices per MJ of 0.02 Euro for biogas and 0.04 Euro for hydrogen are considerably exceeded. Major contributors to operating costs, about 70% of total LCCs, are personnel and overhead costs. The investment costs consist to about 92% of those for the PBR with a share of 61% membrane costs. The choice of Madrid as another production location with higher incident solar irradiation and lower personnel costs reduces LCCs by about 40%. Projecting LCCs to 2030 with experience curves, the LCCs still exceed future market prices. - Highlights: • Life cycle cost assessment of hydrogen and biogas from microalgae in a novel photobioreactor. • Current and future (2030) economically viable production unlikely in Germany. • Personnel and photobioreactor costs are major cost drivers. • Changing the production location may significantly reduce the life cycle costs

  12. Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique

    NARCIS (Netherlands)

    Barbosa, M.J.; Hoogakker, J.; Wijffels, R.H.

    2003-01-01

    Light availability inside the reactor is often the bottleneck in microalgal cultivation and for this reason much attention is being given to light limited growth kinetics of microalgae, aiming at the increase of productivity in photobioreactors. Steady-state culture characteristics are commonly used

  13. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    NARCIS (Netherlands)

    Casal, C.; Cuaresma, M.; Vega, J.M.; Vilchez, C.

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related

  14. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments.

    Science.gov (United States)

    Zeng, Fanxue; Huang, Jianke; Meng, Chen; Zhu, Fachao; Chen, Jianpei; Li, Yuanguang

    2016-01-01

    The open raceway ponds are nowadays the most used large-scale reactors for microalgae culture. To avoid the stacking of microalgae, the paddle wheels are the most widely used to circulate and mix the culture medium. In this paper, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of open raceway ponds with different types of paddle wheels (the traditional paddle wheels and the novel paddle wheels with specially inclined angle of the blades). The particle image velocimetry (PIV) was used to validate the reliability of the CFD model. The CFD simulation results showed that the novel raceway pond with 15° inclined angle of the blades had the best mixing efficiency under the same power consumption. Lastly, the results of microalgae culture experiments showed that the growth rates of Chlorella pyrenoidosa in the novel raceway pond with 15° inclined angle of the blades were higher than those in the traditional reactor. The results of the culture experiments and CFD simulations were identical with each other. Therefore, a novel paddle wheel with 15° inclined angle of the blades was obtained for better microalgae cultivation.

  15. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    Science.gov (United States)

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  17. Production of biodiesel from microalgae through biological carbon capture: a review.

    Science.gov (United States)

    Mondal, Madhumanti; Goswami, Shrayanti; Ghosh, Ashmita; Oinam, Gunapati; Tiwari, O N; Das, Papita; Gayen, K; Mandal, M K; Halder, G N

    2017-06-01

    Gradual increase in concentration of carbon dioxide (CO 2 ) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO 2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO 2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO 2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

  18. Strains of toxic and harmful microalgae, from waste water, marine, brackish and fresh water.

    Science.gov (United States)

    Rodríguez-Palacio, M C; Crisóstomo-Vázquez, L; Alvarez-Hernández, S; Lozano-Ramírez, C

    2012-01-01

    Some microalgae are economically important in Mexico and the world because they can be potentially toxic. Algal explosive population growths are named harmful algal blooms and are frequently recorded in Mexico. The authors set up potentially toxic microalgae cultures from the Gulf of Mexico (Garrapatas tideland, Barberena river, Carpintero lagoon in Tamaulipas State; Chalchoapan and Catemaco lakes in Veracruz State), from the Mexican Pacific Ocean, Guerrero, Colima and Michoacán States, and from interior water bodies such as Vicente Aguirre dam, Chapultepec lake and several waste water treatment plants. This research is about the diversity and abundance of phytoplankton in relation a specific site because of harmful algal bloom events. Microalgae cultures are useful in order to solve taxonomic problems, to know life cycles, molecular studies, for the study of toxic species, and the isolation of useful metabolites. The cultures for this research are clonal, non-axenic, semi-continuous, 12:12 light/dark photoperiod, 20 ± 1 °C temperature and 90.5 µmol m(-2)s(-1) illumination. Four different culture media were used. This collection is open to the worldwide scientific community as a source of organisms in controlled conditions that can be used as a useful tool for microalgae research work.

  19. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  20. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    International Nuclear Information System (INIS)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F.; LeDuc, P. R.

    2014-01-01

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  1. Discoloration of wastewater from a paint industry by the microalgae Chlorella sp

    Directory of Open Access Journals (Sweden)

    Edgardo Angulo M

    2017-09-01

    Full Text Available Objective. Decoloring wastewater from a paint factory making use of Chlorella sp., microalgae as a biological way of treatment. Materials and methods. Samples of this microalgae previously cultivated with nourishing fertilizer under photoperiods of light and darkness were taken to test the microalgae Chlorella sp., initial concentration effect in the bioremoval process. For this purpose, it was cultivated in 0.10, 0.20 and 0.30 units of absorbance in bioreactors with 200 mL wastewater with and without nutrients. The biotest with the best rate of colour removal was chosen and the DBO5 and DQO were marked out. The immobilized Chlorella sp., in kappa carrageenan was also tested. Results. In the tests colour decrease percentage were 81.7, 69.7 and 58.3% without nutrients in the initial concentrations of 0.10, 0.20 and 0.30 units of absorbance respectively and 72.6, 69.0 and 86.8% for 0.10, 0.20 and 0.30 units of absorbance with nutrients respectively in the day of maximum growth. The immobilized microalgae score were 72.60% and 78.36% of color removal for 0.4 and 1.6 units of absorbance respectively. The higher colour removal test score was that with nutrients at 0.30 units of absorbance with several changes in DBO5 and DQO values. Conclusion. The biological wastewater treatment making use of Chlorella sp., microalgae can be considered as an effective choice in decolorating wastewater.

  2. Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae.

    Directory of Open Access Journals (Sweden)

    Tony V L Bui

    Full Text Available The maintenance of traditional microalgae collections based on liquid and solid media is labour intensive, costly and subject to contamination and genetic drift. Cryopreservation is therefore the method of choice for the maintenance of microalgae culture collections, but success is limited for many species. Although the mechanisms underlying cryopreservation are understood in general, many technical variations are present in the literature and the impact of these are not always elaborated. This study describes two-step cryopreservation processes in which 3 microalgae strains representing different cell sizes were subjected to various experimental approaches to cryopreservation, the aim being to investigate mechanistic factors affecting cell viability. Sucrose and dimethyl sulfoxide (DMSO were used as cryoprotectants. They were found to have a synergistic effect in the recovery of cryopreserved samples of many algal strains, with 6.5% being the optimum DMSO concentration. The effect of sucrose was shown to be due to improved cell survival and recovery after thawing by comparing the effect of sucrose on cell viability before or after cryopreservation. Additional factors with a beneficial effect on recovery were the elimination of centrifugation steps (minimizing cell damage, the reduction of cell concentration (which is proposed to reduce the generation of toxic cell wall components and the use of low light levels during the recovery phase (proposed to reduce photooxidative damage. The use of the best conditions for each of these variables yielded an improved protocol which allowed the recovery and subsequent improved culture viability of a further 16 randomly chosen microalgae strains. These isolates included species from Chlorellaceae, Palmellaceae, Tetrasporaceae, Palmellopsis, Scenedesmaceae and Chlamydomonadaceae that differed greatly in cell diameter (3-50 µm, a variable that can affect cryopreservation success. The collective improvement

  3. Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.

    Science.gov (United States)

    Garibay-Hernández, Adriana; Barkla, Bronwyn J; Vera-Estrella, Rosario; Martinez, Alfredo; Pantoja, Omar

    2017-01-01

    Ettlia oleoabundans is a nonsequenced oleaginous green microalga. Despite the significant biotechnological interest in producing value-added compounds from the acyl lipids of this microalga, a basic understanding of the physiology and biochemistry of oleaginous microalgae is lacking, especially under nitrogen deprivation conditions known to trigger lipid accumulation. Using an RNA sequencing-based proteomics approach together with manual annotation, we are able to provide, to our knowledge, the first membrane proteome of an oleaginous microalga. This approach allowed the identification of novel proteins in E. oleoabundans, including two photoprotection-related proteins, Photosystem II Subunit S and Maintenance of Photosystem II under High Light1, which were considered exclusive to higher photosynthetic organisms, as well as Retinitis Pigmentosa Type 2-Clathrin Light Chain, a membrane protein with a novel domain architecture. Free-flow zonal electrophoresis of microalgal membranes coupled to liquid chromatography-tandem mass spectrometry proved to be a useful technique for determining the intracellular location of proteins of interest. Carbon-flow compartmentalization in E. oleoabundans was modeled using this information. Molecular phylogenetic analyses of protein markers and 18S ribosomal DNA support the reclassification of E. oleoabundans within the trebouxiophycean microalgae, rather than with the Chlorophyceae class, in which it is currently classified, indicating that it may not be closely related to the model green alga Chlamydomonas reinhardtii A detailed survey of biological processes taking place in the membranes of nitrogen-deprived E. oleoabundans, including lipid metabolism, provides insights into the basic biology of this nonmodel organism. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Microalgae as a source of liquid fuels. Final technical report. [200 references

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  5. Assessment of acute toxicity of water soluble fraction of diesel on ...

    African Journals Online (AJOL)

    Acute toxicity of water soluble fraction (WSF) of diesel fuel was assessed by evaluating its effects on growth of two marine microalgae, Isochrysis and Chaetoceros. Pure cultures of each of the two microalgae were exposed to concentrations of 0% (controls), 5%, 10%, 15% and 20% of diesel WSF (in triplicates) and allowed ...

  6. Recent Advances in Outdoor High-Density Cultivation of Novelty Micro-Algae Strain with High Content of Lipids

    OpenAIRE

    Kaštánek, Petr

    2012-01-01

    The objective of the study was the pilot plant examination of a newly developed integrated process for autotrophic cultivation of useful micro-algae. The process utilizes waste carbon dioxide as a source of carbon and yields simultaneously products that can be utilized in food and cosmetic industries, turned into biodiesel and/or used as a supplement in animal feed. At present, the cultivation of micro-algae merely for the production of biofuels is not economically viable. In the proposed pr...

  7. Successful large-scale hatchery culture of sandfish (Holothuria scabra using micro-algae concentrates as a larval food source

    Directory of Open Access Journals (Sweden)

    Thane A. Militz

    2018-02-01

    Full Text Available This paper reports methodology for large-scale hatchery culture of sandfish, Holothuria scabra, in the absence of live, cultured micro-algae. We demonstrate how commercially-available micro-algae concentrates can be incorporated into hatchery protocols as the sole larval food source to completely replace live, cultured micro-algae. Micro-algae concentrates supported comparable hatchery production of sandfish to that of live, cultured micro-algae traditionally used in large-scale hatchery culture. The hatchery protocol presented allowed a single technician to achieve production of more than 18,800 juvenile sandfish at 40 days post-fertilisation in a low-resource hatchery in Papua New Guinea. Growth of auricularia larvae fed micro-algae concentrates was represented by the equation length (μm = 307.8 × ln(day + 209.2 (R2 = 0.93 while survival over the entire 40 day hatchery cycle was described by the equation survival = 2 × day−1.06 (R2 = 0.74. These results show that micro-algae concentrates have great potential for simplifying hatchery culture of sea cucumbers by reducing infrastructural and technical resources required for live micro-algae culture. The hatchery methodology described in this study is likely to have applicability to low-resource hatcheries throughout the Indo-Pacific and could support regional expansion of sandfish hatchery production.

  8. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae

    OpenAIRE

    Loera Quesada, Maribel; Leyva González, Marco Antonio; Velázquez Juárez, Gilberto; Sánchez Calderón, Lenín; Do Nascimento, Mauro; López Arredondo, Damar; Herrera Estrella, Luis

    2017-01-01

    Microalgal cultivation that takes advantage of solar energy is one of the most cost-effective systems for the biotechnological production of biofuels, and a range of high value products, including pharmaceuticals, fertilizers and feed. However, one of the main constraints for the cultivation of microalgae is the potential contamination with biological pollutants, such as bacteria, fungi, zooplankton or other undesirable microalgae. In closed bioreactors, the control of contamination requires ...

  9. Preliminary Study on the Location Selection of Microalgae Cultivation In Nusa Tenggara Region As A Potential Feedstock For Bioavtur

    Science.gov (United States)

    Anggraini, Citrae Permata Kusuma; Sasongko, Nugroho Adi; Kuntjoro, Yanif Dwi

    2018-02-01

    NTT is a province located in strategic areas between Bali and South Sulawesi which has economic growth 5,08% in 2016. This causes air transportation in NTT to grow rapidly so the need for avtur is increased by 6% per year. To meet the needs of avtur in NTT would require energy diversification with bioavtur development in which one of them comes from microalgae. The content of lipid and hydrocarbon in microalgae can be used as a source of bioavtur feedstock. The suitability of location for cultivation will influence the success of microalgae cultivation that will be used as a source of bioavtur feedstock. The purpose of this research is to choose the best location for microalgae cultivation in NTT by AHP method. The criteria used in this research are nutrient, water and technology. Sub criteria of nutrient elements are coal power plant emission, cement industry emission and synthetic fertilizers, sub criteria from water that is sea water, brackish water and fresh water, while sub criteria of technology are Photobioreactor, Open Raceway Pond and membrane. The result of AHP analysis shows the selection of microalgae cultivation location in Kupang with the weight of 0.308, with the source of nutrient derived from coal power plant emission, the type of water used is sea water and the technology used is Photobioreactor. Microalgae species used were Nannochloropsis sp with a lipid content of 31-68%. Based on the author assumption, microalgae have the productivity for bioavtur manufacture which amount of 24.489kL/ha/ yr. That can be used to meet the needs of 2% avtur in NTT which amount of 1.052,22 kL/yr and the area requirement for microalgae cultivation is 2,14 hectare.

  10. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size.

    Science.gov (United States)

    Chen, Chih-Chung; Chen, Yu-An; Liu, Yi-Ju; Yao, Da-Jeng

    2014-04-21

    Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.

  11. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review.

    Science.gov (United States)

    Bach, Quang-Vu; Chen, Wei-Hsin

    2017-12-01

    Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Uso de Microalgas para Produção de Biodiesel

    Directory of Open Access Journals (Sweden)

    Gillianne Assis Carneiro

    2018-01-01

    Full Text Available A maioria das demandas energéticas da sociedade ainda são atendidas pelos combustíveis de origem fóssil. Porém, essa fonte vem sendo substituída por outras renováveis, menos agressivas ao meio ambiente e com melhor custo/benefício. Como exemplo, podemos mencionar os biocombustíveis produzidos a partir de plantas oleaginosas e microrganismos, que são capazes de substituir os derivados do petróleo com eficiência equivalente. Graças a sua elevada produção de lipídios, as microalgas, cujo diâmetro não ultrapassa 2 mm, são objeto de estudos e estão sendo aplicadas na produção de biocombustíveis, em especial, do biodiesel, sendo que, cerca de 150 espécies de microalgas são usadas comercialmente. O objetivo deste trabalho foi realizar uma revisão de literatura sobre a produção de biodiesel a partir de microalgas. Este estudo é do tipo teórico-conceitual, visto que foi elaborado a partir da realização de pesquisas na literatura nacional e internacional sobre a produção de biocombustíveis a partir de microalgas, além da consulta a órgãos governamentais e legislações pertinentes.  Ademais, pretende-se apresentar as principais técnicas de cultivo e de produção, bem como as principais vantagens e desvantagens da utilização das microalgas para produção de biodiesel. A partir da problemática ambiental e da redução das reservas fósseis faz-se necessário o investimento em fontes alternativas, sendo o biodiesel produzido a partir de microalgas uma opção a ser considerada e aperfeiçoada para produção e utilização em escala comercial.

  13. Thorium (IV) toxicity of green microalgae from Scenedesmus and Monoraphidium genera; Toxicidade do torio (IV) para microalgas verdes dos generos Monoraphidium e Scenedesmus

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Juliana Cristina de

    2009-07-01

    The toxicity of thorium by two green microalgae species, Monoraphidium sp. and Scenedesmus sp was studied. During the toxicity tests, the microalgae cultures were inoculated in ASM-I culture medium in the presence and absence of thorium (cultures at pH 8.0 and 6.0 in the absence of thorium, - control - and at pH 6.0 for thorium concentrations ranging from 0.5 to 100.0 mg/L Th). Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with the help of software developed by the group during the experiments. The difference in pH value in the culture medium did not affect the growth of the microalgae, and pH 6.0 was chosen as a reference in order not to compromise solubility and speciation of thorium in solution. The toxicity of the metal over the species was observed just for thorium concentrations over 50.0 mg/L. A Monoraphidium sp. culture containing 6.25x10{sup 5} microorganisms/mL reached a final concentration of 5.52x10{sup 7} microorganisms/mL in the presence of thorium in the concentration of 10.0 mg/L. If we consider the 100.0 ppm thorium solution reached a final concentration of 8.57x10{sup 6} microorganisms/mL. Control tests indicated a final concentration of 2.51x10{sup 7} microorganisms/mL at the end of the growth. Scenedesmus sp. cells proved to be more resistant to the presence of thorium in solution. Low concentrations of the radionuclide favored the growth of these microalgae. A culture containing 7.65x10{sup 5} microorganisms/mL reached a final concentration of 2.25x10{sup 6} microorganisms/mL, in the absence of thorium in the medium. Toxicological tests indicated a final culture concentration of 5.87x10{sup 6} microorganisms/mL in the presence of 0.5 mg/L thorium. The software used for comparison of direct count method proved to be very useful for the improvement of accuracy of the results obtained and a decrease in the uncertainty in counting. Beyond these advantages it also allowed recording of the data. From the present results

  14. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.

    Science.gov (United States)

    Postma, P R; Miron, T L; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M

    2015-05-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Metal removal from tailings ponds water using indigenous micro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, H.; Ulrich, A.; Liu, Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Each barrel of oil produced by oil sands produce 1.25 m{sup 3} of tailings. The tailings are collected in ponds located at mining sites. The tailing pond water (TPW) must be reclaimed and released into the environment. This PowerPoint presentation discussed a method of removing metals from tailings pond water that used indigenous micro-algae. The in situ experimental method used Parachlorella kessliri to treat 2 ponds. The TPW was enriched with low and high concentrations of nutrients. Dry cell biomass analyses were then conducted, and the pH of the resulting samples was compared. Inductively coupled plasma mass spectrometry analysis methods were used to determine the initial metal concentrations in the raw TPWs. The study showed that the micro-algae remove significantly more metals when high levels of nutrients are used. tabs., figs.

  16. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control.

    Science.gov (United States)

    Zerrifi, Soukaina El Amrani; El Khalloufi, Fatima; Oudra, Brahim; Vasconcelos, Vitor

    2018-02-09

    Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.

  17. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    Science.gov (United States)

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.

  18. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  19. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    Science.gov (United States)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  1. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    International Nuclear Information System (INIS)

    Selmani, Nabila; Mirghani, Mohamed E S; Alam, Md Zahangir

    2013-01-01

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett–Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  2. The impact of environmental factors on carbon dioxide fixation by microalgae.

    Science.gov (United States)

    Morales, Marcia; Sánchez, León; Revah, Sergio

    2018-02-01

    Microalgae are among the most productive biological systems for converting sunlight into chemical energy, which is used to capture and transform inorganic carbon into biomass. The efficiency of carbon dioxide capture depends on the cultivation system configuration (photobioreactors or open systems) and can vary according to the state of the algal physiology, the chemical composition of the nutrient medium, and environmental factors such as irradiance, temperature and pH. This mini-review is focused on some of the most important environmental factors determining photosynthetic activity, carbon dioxide biofixation, cell growth rate and biomass productivity by microalgae. These include carbon dioxide and O2 concentrations, light intensity, cultivation temperature and nutrients. Finally, a review of the operation of microalgal cultivation systems outdoors is presented as an example of the impact of environmental conditions on biomass productivity and carbon dioxide fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post......-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas...... in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins....

  4. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  5. Rapid screening and guided extraction of antioxidants from microalgae using voltammetric methods.

    Science.gov (United States)

    Goiris, Koen; De Vreese, Peter; De Cooman, Luc; Muylaert, Koenraad

    2012-08-01

    Currently, microalgae draw much attention as a promising source of natural antioxidants to replace synthetic antioxidants for food applications. In this paper, the use of voltammetric techniques as a fast alternative for chemical assays to determine the antioxidant power of microalgal biomass is discussed. It was found that antioxidant activities determined by square wave voltammetry correlate well with the results from other established antioxidant assays, such as Trolox equivalent antioxidant capacity (R(2) = 0.737), ferric reducing antioxidant potential (R(2) = 0.729), and AAPH-induced oxidation of linoleic acid (R(2) = 0.566). Besides yielding quantitative data on the antioxidant activity, square wave voltammetry provides additional information on the antioxidant profile of microalgal biomass as the peak potentials of antioxidant components are determined. Consequently, square wave voltammetry can be used as a tool for optimizing the extraction processes to recover antioxidant components from microalgae.

  6. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC).

    Science.gov (United States)

    Cerón-García, M C; González-López, C V; Camacho-Rodríguez, J; López-Rosales, L; García-Camacho, F; Molina-Grima, E

    2018-08-15

    Microalgae are an interesting source of natural pigments that have valuable applications. However, further research is necessary to develop processes that allow us to achieve high levels of carotenoid recovery while avoiding degradation. This work presents a comprehensive study on the recovery of carotenoids from several microalgae genera, optimizing carotenoid extraction using alkaline saponification at various temperatures and KOH concentrations. Results show that I. galbana requires a temperature of 60 °C and saponification, P. reticulatum requires 40 °C and 10% KOH, T. suecica and H. pluvialis require 25 °C and 40% KOH while C. sp. and S. almeriensis require 80 °C and 40% KOH. The influence of the solvent on carotenoid recovery was also studied. In general terms, an ethanol:hexane:water (77:17:6 v/v/v) mixture results in good yields. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification.

    Science.gov (United States)

    Li, Hua-Bin; Jiang, Yue; Chen, Feng

    2002-02-27

    A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.

  8. Culture of microalgae biomass for valorization of table olive processing water

    Directory of Open Access Journals (Sweden)

    Contreras, C. G.

    2016-09-01

    Full Text Available Table olive processing water (TOPW contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80% in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%. Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS. Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment.El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de Nannochloropsis gaditana en TOPW a distintas concentraciones (10-80% con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%. Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  9. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium

    International Nuclear Information System (INIS)

    Folgar, S.; Torres, E.; Perez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J.

    2009-01-01

    Cadmium tolerance and removal in the marine microalga Dunaliella salina were studied in cultures exposed to different metal concentrations (5-120 mg Cd l -1 ) for 96 h. This microalga can be included in the group of microalgal species most tolerant to cadmium due to the high value of EC50 that it possesses (48.9 mg Cd l -1 at 96 h of culture). The greater percentage of cadmium removed was obtained in cultures exposed to 5 mg Cd l -1 at 96 h, but removing only 11.3% of the added cadmium. In all cultures, the quantity of cadmium removed intracellularly was much lower than the bioadsorbed quantity and it was proportional to the sulfhydryl group levels. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of cadmium by living cells of D. salina.

  10. Optimizing the Critical Factors for Lipid Productivity during Stress Phase of Heterotrophic Microalgae Cultivation

    Directory of Open Access Journals (Sweden)

    P Chiranjeevi

    2016-08-01

    Full Text Available Microalgae-derived biodiesel/biofuel is one of the promising and sustainable processes. In order to study the influence of different factors viz., pH, temperature, salinity and carbon concentration that influences the microalgae lipids and carbohydrate productivity Taguchi orthogonal array (OA experimental design (DOE was used with variation at four levels (21×44. Experiments were performed with allegorical batch experimental matrix [16 experimental trails]. Salinity, temperature, carbon concentration and pH showed marked influence on lipid production whereas temperature and carbon concentration showed major influence on carbohydrate production. Higher lipid productivity (55% was observed with experimental condition six (pH: 6; Salinity: 1 g/l; Temperature: 20 OC; Carbon concentration: 30 g/l. FAME analysis revealed the highest number of Saturated fatty acids (SFAs (C12:0 to C24:0 was detected with experimental set up six and eight more favoring the biodiesel properties.

  11. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    Science.gov (United States)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  12. Microalgae as feedstock for biodiesel production under ultrasound treatment - A review.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2018-02-01

    The application of ultrasound in biodiesel production has recently emerged as a novel technology. Ultrasound treatment enhances the mass transfer characteristics leading to the increased reaction rate with short reaction time and potentially reduces the production cost. In this review, application of ultrasound-assisted biodiesel production using acid, base and enzyme catalysts is presented. A critical assessment of the current status of ultrasound in biodiesel production was discussed with the emphasis on using ultrasound for efficient microalgae biodiesel production. The ultrasound in the biodiesel production enhances the emulsification of immiscible liquid reactant by microturbulence generated by cavitation bubbles. The major benefit of the ultrasound-assisted biodiesel production is a reduction in reaction time. Several different methods have been discussed to improve the biodiesel production. Overall, this review focuses on the current understanding of the application of ultrasound in biodiesel production from microalgae and to provide insights into future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    Science.gov (United States)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  14. Cultivo da microalga Pseudokirchneriella subcapitata em escala de bancada utilizando meio contaminado com metais pesados

    Directory of Open Access Journals (Sweden)

    Mônica Ansilago

    Full Text Available RESUMO Neste trabalho foi avaliado o crescimento da microalga Pseudokirchneriella subcapitata em meio de cultivo alternativo NPK (20:05:20 contaminado com metais pesados. O primeiro tratamento consiste do controle sem a adição de contaminante, enquanto os demais foram contaminados com AlCl3, FeSO4 e ZnSO4 e os três metais. Nos resultados obtidos, o controle foi o único que apresentou crescimento positivo contínuo, enquanto o tratamento contendo todos os metais obteve maior densidade e maior taxa de crescimento exponencial. O tratamento contaminado com ZnSO4 obteve o menor potencial de produção. Apesar dos valores apresentados, todos os tratamentos apresentaram crescimento positivo no final do ensaio, sendo possível atribuir à microalga um elevado potencial de produção em água contaminado por metais.

  15. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s......The research in the field of microalgae-based biofuels and chemicals is in early phase of the development, and therefore a wide range of uncertainties exist due to inconsistencies among and shortage of technical information. In order to handle and address these uncertainties to ensure robust......MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...

  16. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  17. Interacción bacteria-microalga en el ambiente marino y uso potencial en acuicultura Microalgae and bacteria interaction in the aquatic environment and their potential use in aquaculture

    Directory of Open Access Journals (Sweden)

    CARLOS E. RIQUELME

    2003-12-01

    Full Text Available El presente estudio tiene como objetivo revisar el conocimiento generado sobre el rol que juegan las interacciones bacteria-microalga en ambientes marinos y dulceacuícolas, definiendo las posibles aplicaciones que puede tener el conocimiento de estas interacciones en el manejo de las aguas costeras y sistemas acuícolas. Los antecedentes proporcionados en este análisis permiten sugerir que bacterias y/o microalgas, constituyen una alternativa para el control de proliferaciones de bacterias y fitoplancton causantes de efectos dañinos en ambientes naturales y sistemas cerrados de cultivo. Además, las interacciones específicas entre bacteria-microalga permitiría la optimización de sistemas productivos en la industria acuícola. Sin embargo, los mecanismos de estas interacciones son pobremente entendidos. Futuras investigaciones debieran ser dirigidas a comprender el modo de acción de las interacciones bacteria-microalga a nivel molecularThe objective of this survey is to review the knowledge generated with respect to the role of bacteria-microalgae interaction play in marine and fresh environments, and to define the possible application of these microorganisms on the management of costal water and aquaculture systems. This review proposes that bacteria and/or microalgae are an alternative to control the proliferation of bacteria and phytoplankton that cause damages in natural environments or in closed culture systems. Also, the knowledge of specific interactions between bacteria and microalgae will allow the optimization of productive systems in aquaculture. However, until date the mechanisms involved in these interactions are poorly understood. Therefore, future investigations should be directed towards understanding the mode of action of such interactions at a molecular level

  18. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal

    International Nuclear Information System (INIS)

    Yang, Il-Seung; Salama, El-Sayed; Kim, Jong-Oh; Govindwar, Sanjay P.; Kurade, Mayur B.; Lee, Minsun; Roh, Hyun-Seog; Jeon, Byong-Hun

    2016-01-01

    Highlights: • Wastewater treatment with algal biomass production was evaluated in a bench-scale. • C. vulgaris and S. obliquus showed μ_o_p_t values of 1.39 and 1.41 day"−"1, respectively. • Complete removal (>99%) of TN and TP by both algal strains was observed. • Harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. - Abstract: Microalgae, Chlorella vulgaris and Scenedesmus obliquus were cultivated in a small scale vertical flat-plate photobioreactor (PBR) supplemented with municipal wastewater in order to achieve simultaneous wastewater treatment and biomass production for biofuel generation. Microalgal growth and nutrient removal including total nitrogen (TN), total phosphorus (TP), total inorganic carbon (TIC) and trace elements (Ca"2"+, Na"+, Mg"2"+ and Zn"2"+) were monitored during microalgae cultivation. C. vulgaris and S. obliquus showed optimal specific growth rates (μ_o_p_t) of 1.39 and 1.41 day"−"1, respectively, and the TN and TP were completely removed (>99%) from the wastewater within 8 days. Microalgal biomass in the PBR was harvested using a natural flocculant produced from Moringa oleifera seeds. The harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. The amounts of saturated, mono-unsaturated, and poly-unsaturated fatty acids in the harvested biomass accounted for 18.66%, 71.61% and 9.75% for C. vulgaris and 28.67%, 57.14% and 11.15% for S. obliquus, respectively. The accumulated fatty acids were suitable to produce high quality biodiesel with characteristics equivalent to crop seeds oil-derived biodiesel. This study demonstrates the potential of microalgae-based biodiesel production through the coupling of advanced wastewater treatment with microalgae cultivation for low-cost biomass production in a PBR.

  19. Optical trapping of microalgae at 735-1064 nm: Photodamage assessment

    Czech Academy of Sciences Publication Activity Database

    Pilát, Zdeněk; Ježek, Jan; Šerý, Mojmír; Trtílek, Martin; Nedbal, Ladislav; Zemánek, Pavel

    2013-01-01

    Roč. 121, 5 April (2013), s. 27-31 ISSN 1011-1344 R&D Projects: GA MŠk ED0017/01/01; GA MPO FR-TI1/433; GA MŠk ED1.1.00/02.0073 Institutional support: RVO:68081731 ; RVO:67179843 Keywords : optical trapping * photodamage * microalgae * PAM fluorescence microspectroscopy Subject RIV: BH - Optics, Masers, Lasers; BO - Biophysics (UEK-B) Impact factor: 2.803, year: 2013

  20. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae

    OpenAIRE

    Perozeni, Federico; Stella, Giulio Rocco; Ballottari, Matteo

    2018-01-01

    Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical que...