WorldWideScience

Sample records for microalga chlorella kessleri

  1. Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer culture units

    Czech Academy of Sciences Publication Activity Database

    Lívanský, Karel; Doucha, Jiří

    2005-01-01

    Roč. 116, - (2005), s. 201-212 ISSN 0342-1120 R&D Projects: GA ČR GV104/97/S055 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlorella kessleri * carbon dioxide * microalga Subject RIV: EE - Microbiology, Virology

  2. Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis.

    Science.gov (United States)

    Spoljaric, Dubravka; Cipak, Ana; Horvatic, Janja; Andrisic, Luka; Waeg, Georg; Zarkovic, Neven; Jaganjac, Morana

    2011-10-01

    Oxidative stress, i.e. excessive production of reactive oxygen species (ROS), leads to lipid peroxidation and to formation of reactive aldehydes (e.g. 4-hydroxy-2-nonenal; HNE), which act as second messengers of free radicals. It was previously shown that herbicides can induce ROS production in algal cells. In the current paper, the unicellular green microalga Chlorella kessleri was used to study the effect of two herbicides (S-metolachlor and terbuthylazine) and hydrogen peroxide (H(2)O(2)) on oxidative stress induction, HNE formation, chlorophyll content and the cell growth. Production of HNE was detected in this study for the first time in the cells of unicellular green algae using the antibody specific for the HNE-histidine adducts revealing the HNE-histidine adducts even in untreated, control C. kessleri. Exposure of algal cells to herbicides and H(2)O(2) increased the ROS production, modifying production of HNE. Namely, 4h upon treatment the levels of HNE-histidine conjugates were below controls. However, their amount increased afterwards. The increase of HNE levels in algae was followed by their increased growth rate, as was previously described for human carcinoma cells. Hence, changes in the cellular HNE content upon herbicide treatment inducing lipid oxidative stress and alterations in cellular growth rate of C. kessleri resemble adaptation of malignant cells to the HNE treatment. Therefore, as an addition to the standard toxicity tests, the evaluation of HNE-protein adducts in C. kessleri might indicate environmental pollution with lipid peroxidation-inducing herbicides. Finally, C. kessleri might be a convenient experimental model to further study cellular hormetic adaptation to oxidative stress-derived aldehydes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jarmila Vavra Ambrozova

    2014-02-01

    Full Text Available Total lipid contents of green (Chlorella pyrenoidosa, C, red (Porphyra tenera, N; Palmaria palmata, D, and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H commercial edible algal and cyanobacterial (Spirulina platensis, S products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK and the cyanobacterium Spirulina platensis (SP were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I and n-hexane (solvent II. Total lipid contents ranged from 0.64% (II to 18.02% (I by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs. Generally, the predominant fatty acids (all results for extractions with solvent mixture I were saturated palmitic acid (C16:0; 24.64%–65.49%, monounsaturated oleic acid (C18:1(n-9; 2.79%–26.45%, polyunsaturated linoleic acid (C18:2(n-6; 0.71%–36.38%, α-linolenic acid (C18:3(n-3; 0.00%–21.29%, γ-linolenic acid (C18:3(n-6; 1.94%–17.36%, and arachidonic acid (C20:4(n-6; 0.00%–15.37%. The highest content of ω-3 fatty acids (21.29% was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42% was observed in Chlorella kessleri using the same solvent.

  4. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    2010-01-01

    Roč. 25, č. 6 (2010), s. 554-562 ISSN 1520-4081 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioassay * variable chlorophyll fluorescence * Chlorella kessleri Subject RIV: EF - Botanics Impact factor: 1.932, year: 2010

  5. Structural Analysis of a Polysaccharide from Chlorella kessleri by Means of Gas Chromatography-Mass Spectrometry of Its Saccharide Alditols

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sigler, Karel

    2007-01-01

    Roč. 52, č. 3 (2007), s. 246-252 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : gas chromatographic * chlorella kessleri * oligosaccharide Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  6. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    International Nuclear Information System (INIS)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → We studied the growth and CO 2 fixation by Spirulina LEB18 and Chlorella kessleri. → The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO 2 . → The microalgae presented growth during the 20 d of culture with up to 18% of CO 2 . → The use of CO 2 from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO 2 ) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO 2 . The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 o C and 39 μE m -2 s -1 and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO 2 injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L -1 ) and maximum daily fixation (0.21 g g -1 d -1 ) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO 2 . C. kessleri had maximum (p -1 ) when grown with 18% (v/v) of CO 2 in non-controlled conditions of cultivation.

  7. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil)

    2011-08-15

    Highlights: {yields} We studied the growth and CO{sub 2} fixation by Spirulina LEB18 and Chlorella kessleri. {yields} The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO{sub 2}. {yields} The microalgae presented growth during the 20 d of culture with up to 18% of CO{sub 2}. {yields} The use of CO{sub 2} from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO{sub 2}) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO{sub 2}. The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 {sup o}C and 39 {mu}E m{sup -2} s{sup -1} and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO{sub 2} injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L{sup -1}) and maximum daily fixation (0.21 g g{sup -1} d{sup -1}) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO{sub 2}. C. kessleri had maximum (p < 0.0008) specific growth rate (0.84 d{sup -1}) when grown with 18% (v/v) of CO{sub 2} in non-controlled conditions of cultivation.

  8. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Halas, L.; Orinak, A.; Adamova, M.; Ladomersky, J.

    2004-01-01

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  9. Discoloration of wastewater from a paint industry by the microalgae Chlorella sp

    Directory of Open Access Journals (Sweden)

    Edgardo Angulo M

    2017-09-01

    Full Text Available Objective. Decoloring wastewater from a paint factory making use of Chlorella sp., microalgae as a biological way of treatment. Materials and methods. Samples of this microalgae previously cultivated with nourishing fertilizer under photoperiods of light and darkness were taken to test the microalgae Chlorella sp., initial concentration effect in the bioremoval process. For this purpose, it was cultivated in 0.10, 0.20 and 0.30 units of absorbance in bioreactors with 200 mL wastewater with and without nutrients. The biotest with the best rate of colour removal was chosen and the DBO5 and DQO were marked out. The immobilized Chlorella sp., in kappa carrageenan was also tested. Results. In the tests colour decrease percentage were 81.7, 69.7 and 58.3% without nutrients in the initial concentrations of 0.10, 0.20 and 0.30 units of absorbance respectively and 72.6, 69.0 and 86.8% for 0.10, 0.20 and 0.30 units of absorbance with nutrients respectively in the day of maximum growth. The immobilized microalgae score were 72.60% and 78.36% of color removal for 0.4 and 1.6 units of absorbance respectively. The higher colour removal test score was that with nutrients at 0.30 units of absorbance with several changes in DBO5 and DQO values. Conclusion. The biological wastewater treatment making use of Chlorella sp., microalgae can be considered as an effective choice in decolorating wastewater.

  10. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    International Nuclear Information System (INIS)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira

    2007-01-01

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO 2 ), with thermoelectric power plants being responsible for about 7% of global CO 2 emissions. Microalgae can reduce CO 2 emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO 2 . When cultivated with 6% and 12% CO 2 , C. kessleri showed a high maximum specific growth rate (μ max ) of 0.267/day, with a maximum biomass productivity (P max ) of 0.087 g/L/day at 6% CO 2 . For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO 2 . We also found that these two microalgae also grew well when the culture medium contained up to 18% CO 2 , indicating that they have potential for biofixation of CO 2 in thermoelectric power plants

  11. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling

    NARCIS (Netherlands)

    Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.

    2015-01-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25–145 gDW kg-1) over a range of agitator

  12. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior

    International Nuclear Information System (INIS)

    Rizzo, Andrea Maria; Prussi, Matteo; Bettucci, Lorenzo; Libelli, Ilaria Marsili; Chiaramonti, David

    2013-01-01

    Highlights: ► Proximate and ultimate analysis of two microalgae (Nannochloropsis and Chlorella spp.). ► TGA of Chlorella spp. and Nannochloropsis investigated at 15 °C/min up to 800 °C. ► 1.2 kg of Chlorella pyrolyzed in a novel batch, intermediate pyrolysis pilot reactor at 450 °C. ► Bio-oil from Chlorella oil analysed and compared to pine chips fast pyrolysis oil. ► Bio-oil from Chlorella exhibited superior properties compared to lignocellulosic pyrolysis oil as intermediate energy carrier. -- Abstract: Microalgae are photosynthetic microorganisms living in marine or freshwater environment. In this study, samples of Chlorella spp. and Nannochloropsis from two different origins were analysed to settle a preliminary characterization of these microorganisms as intermediate energy carriers and their properties compared to a conventional lignocellulosic feedstock (pine chips). Both microalgae samples were characterized in terms of elemental composition (CHONS and P) and thermogravimetric behavior. This was investigated through non-isothermal thermogravimetric analysis in nitrogen atmosphere at heating rate of 15 °C min −1 and temperature up to 800 °C. Solid residues produced at 300 °C and 800 °C from TGA were also analysed to determine the ultimate composition of chars. Activation energy, reaction order and pre-exponential factor were calculated for the single step conversion mechanism of 1 g of Chlorella spp. and compared to literature data on Chlorella protothecoides and Spirulina platensis. Calculated kinetic parameters, given as intervals of several determinations, resulted to be: pre-exponential factor (A) 1.47–1.62E6 min −1 , activation energy (E) 7.13–7.92E4 J mol −1 , reaction order (n) 1.69–2.41. 1.2 kg of Chlorella spp. was then processed in a newly designed batch pyrolysis pilot reactor, capable of converting up to 1.5 kg h −1 of material, and pyrolysis liquid collected, analysed and compared with a sample of fast pyrolysis

  13. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    Science.gov (United States)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  14. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    de Morais, M.G.; Costa, J.A.V. [Federal University of Rio Grande, Rio Grande (Brazil)

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({lambda}{sub max}) of 0.267/day, with a maximum biomass productivity (P-max) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  15. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil); Costa, Jorge Alberto Vieira [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil)]. E-mail: dqmjorge@furg.br

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({mu} {sub max}) of 0.267/day, with a maximum biomass productivity (P {sub max}) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  16. Phycoremediation of municipal wastewater by microalgae to produce biofuel.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi

    2017-09-02

    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.

  17. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch

    DEFF Research Database (Denmark)

    Letelier Gordo, Carlos Octavio; Holdt, Susan Løvstad; De Francisci, Davide

    2014-01-01

    In the present work, the flocculation efficiency of cationic starch (Greenfloc 120) was tested on the fresh water microalga Chlorella protothecoides under different conditions (pH and flocculant concentrations). Different concentrations of Greenfloc 120 (0, 2.5, 5, 10, 20, 40mgL-1) were screened...... to use, efficient and cost-effective flocculant for harvesting of microalgae....

  19. Effect of electromagnetic fields on duckweed (lemna minor) and alga (chlorella kessleri)

    International Nuclear Information System (INIS)

    Tkalec, M.; Malaric, K.; Malaric, R.; Vidakovic-Cifrek, Z.; Pevalek-Kozlina, B.

    2005-01-01

    Electricity produces extremely low frequency fields (50-60 Hz) while various kinds of radiofrequency fields (10 MHz-300 GHz) are used to transmit information (TV, radio, mobile phones and satellite communications). Duckweed (Lemna minor) and green algae (Chlorella kessleri) were exposed to the magnetic field of 50 Hz in a Helmholtz coil, to an electric field of 50 Hz between two parallel circle electrodes, and to electromagnetic fields of 400 and 900 MHz in a Gigahertz Transversal Electromagnetic Mode cell. The relative growth of Lemna minor exposed to extremely low frequency alternating magnetic field of 50 Hz (1 mT) for 24 hours was slightly reduced at the beginning of the experiment while a 50 Hz electric field (25 kV/m) slightly reduced its growth during the second week of the experiment. Radio frequencies of 400 and 900 MHz (23 V/m) applied for two hours decreased the duckweed growth after the third day, but only 900 MHz affected it significantly. The rate of photosynthesis in green algae increased after exposure to the magnetic field of 50 Hz, but decreased after exposure to the electric field of 50 Hz. Radio frequencies of 400 and 900 MHz generally increased its rate of photosynthesis.(author)

  20. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating

    International Nuclear Information System (INIS)

    Bach, Quang-Vu; Chen, Wei-Hsin; Lin, Shih-Cheng; Sheen, Herng-Kuang; Chang, Jo-Shu

    2017-01-01

    Highlights: • A microwave-assisted heating system is used for wet torrefaction (WT) of microalga. • Microalga Chlorella vulgaris ESP-31 is adopted as the feedstock. • The ash content in the microalga is reduced after WT. • The calorific value of the microalga can be intensified up to 21% after WT. • At least 61.5% of energy in the biomass is retained after WT. - Abstract: Microalgae are a prime source of third generation biofuels. Many thermochemical processes can be applied to convert them into fuels and other valuable products. However, some types of microalgae are characterized by very high moisture and ash contents, thereby causing several problems in further conversion processes. This study presents wet torrefaction (WT) as a promising pretreatment method to overcome the aforementioned drawbacks coupled with microalgal biomass. For this purpose, a microwave-assisted heating system was used for WT of microalga Chlorella vulgaris ESP-31 at different reaction temperatures (160, 170, and 180 °C) and durations (5, 10, and 30 min). The results show several improvements in the fuel properties of the microalga after WT such as increased calorific value and hydrophobicity as well as reduced ash content. A correlation in terms of elemental analysis can be adopted to predict the higher heating value of the torrefied microalga. The structure analysis by Fourier transform infrared (FT-IR) spectroscopy reveals that the carbohydrate content in the torrefied microalgae is lowered, whereas their protein and lipid contents are increased if the WT extent is not severe. However, the protein and lipid contents are reduced significantly at more severe WT conditions. The thermogravimetric analysis shows that the torrefied microalgae have lower ignition temperatures but higher burnout temperatures than the raw microalga, revealing significant impact of WT on the combustion reactivity of the microalga. Overall, the calorific value of the microalga can be intensified up to

  1. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.

    Science.gov (United States)

    Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo

    2015-12-01

    The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Subcritical Water Technology for Extraction of Phenolic Compounds from Chlorella sp. Microalgae and Assessment on Its Antioxidant Activity.

    Science.gov (United States)

    Zakaria, Siti Maisurah; Kamal, Siti Mazlina Mustapa; Harun, Mohd Razif; Omar, Rozita; Siajam, Shamsul Izhar

    2017-07-03

    Chlorella sp . microalgae is a potential source of antioxidants and natural bioactive compounds used in the food and pharmaceutical industries. In this study, a subcritical water (SW) technology was applied to determine the phenolic content and antioxidant activity of Chlorella sp . This study focused on maximizing the recovery of Chlorella sp. phenolic content and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay as a function of extraction temperature (100-250 °C), time (5-20 min) and microalgae concentration (5-20 wt. %) using response surface methodology. The optimal operating conditions for the extraction process were found to be 5 min at 163 °C with 20 wt. % microalgae concentration, which resulted in products with 58.73 mg gallic acid equivalent (GAE)/g phenolic content and 68.5% inhibition of the DPPH radical. Under optimized conditions, the experimental values were in close agreement with values predicted by the model. The phenolic content was highly correlated (R² = 0.935) with the antioxidant capacity. Results indicated that extraction by SW technology was effective and that Chlorella sp . could be a useful source of natural antioxidants.

  3. Setting the conditions for phycoremediation of radionuclide microalgae Dunaliella salina and Chlorella vulgaris

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Kuruc, J.

    2016-01-01

    This presentation deals with bioremediation using microalgae - by phycoremediation. Microalgae are economically low profile compared to the plants, their cultivation can be carried out in laboratory conditions. They can survive in extreme conditions, they occur in all habitats and have faster growth. Halophilous green D. salina can accumulate heavy metals such as Zn, Cu and Cd. It occurs in hypersaline environment with tolerance (0.2 to 35) % NaCl. It contains high amounts of carotenoids, which protect it against formation of free radicals from UV radiation. Chlorella vulgaris is a representative of eukaryotic green microalgae with the highest chlorophyll content with the appearance in fresh water. Its phycoremediant ability are found in N and P elements, which are used as its nutritional components as well as for Cu, Cr, Cd, Pb, Au. The experiments were carried out using a peristaltic pump ISMATEC Model: ISM851 (flow rate 2 cm"3 min"-"1) followed by monitoring of time dependence of decrease of activity of the microalgae solutions. For evaluation of the samples was used HPGe gamma spectrometer (measurement time of the samples: 600 sec) from ORTEC Company and measured spectra were evaluated with software GammaVision from ORTEC. The measured results showed that the most effective phycoremediation of microalgae Dunaliella salina toke place in an environment of pH 3, and even more at pH 8. The fact that the D. salina is able of phycoremediation at so acidic pH can contribute to its applications in extreme conditions or in the coastal areas in view of that it is halophilic. At freshwater microalgae Chlorella vulgaris was found the best phytoremediation potential in its natural environment at pH of 6. Because this microalgae is freshwater, it may find application in inland or in liquid radioactive waste from nuclear facilities.(authors)

  4. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  5. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor.

    Science.gov (United States)

    Sadeghizadeh, Aziz; Farhad Dad, Farid; Moghaddasi, Leila; Rahimi, Rahbar

    2017-11-01

    In this work, hydrodynamics and CO 2 biofixation study was conducted in an airlift bioreactor at the temperature of 30±2°C. The main objective of this work was to investigate the effect of high gas superficial velocity on CO 2 biofixation using Chlorella vulgaris microalgae and its growth. The study showed that Chlorella vulgaris in high input gas superficial velocity also had the ability to grow and remove the CO 2 by less than 80% efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with Chlorella sp. Microalgae Production.

    Science.gov (United States)

    Zieliński, Marcin; Dębowski, Marcin; Szwaja, Stanisław; Kisielewska, Marta

    2018-02-01

      Nutrient removal effectiveness from anaerobic digestion effluents (ADEs) by Chlorella sp. cultivation and microalgae biomass productivity were evaluated in this study. The results showed that the highest Chlorella sp. biomass productivities of 386.5 ± 24.1 mg dry weight/L•d and 338.3 ± 11.0 mg dry weight/L•d were respectively obtained with the anaerobically digested effluent of municipal wastewater sludge and effluent from a fermentation tank treating dairy wastewater. Lower (p effluents of maize silage and swine slurry and cattle manure. The increase of the initial ammonia nitrogen concentration in ADEs to the level of 160 mg/L did not encourage Chlorella sp. productivity because of phosphorus limitation. The removal efficiencies of ammonia nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand (COD) reached 99.7%, 98.6%, 88.2%, and 58.7%, respectively, depending on the source of ADE, but not on the initial ammonia nitrogen concentrations.

  7. Teor de clorofila e perfil de sais minerais de Chlorella vulgaris cultivada em solução hidropônica residual Chlorophyll content and minerals profile in the microalgae Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Fabiano Cleber Bertoldi

    2008-02-01

    Full Text Available O cultivo de microalgas representa uma potencial fonte de biomassa rica em clorofila e sais minerais como: fósforo, ferro, manganês, cobre, zinco, magnésio e cálcio. Este experimento teve como objetivo avaliar a composição de minerais, bem como determinar o teor de clorofila a e b da microalga Chlorella vulgaris cultivada em solução hidropônica residual em três diferentes concentrações comparadas com um cultivo controle. Os resultados mostraram que os teores de clorofila a e b da microalga não apresentaram diferença significativa entre os cultivos. Com relação à composição dos sais minerais, a Chlorella cultivada na solução residual mais concentrada apresentou valores superiores quando comparada com a cultivada nos demais cultivos. Dessa forma, a biomassa da Chlorella vulgaris demonstrou ser uma potencial fonte de clorofila e de sais minerais, quando cultivada em solução hidropônica residual, possibilitando a utilização desse resíduo de forma sustentável.The microalgaes cultive represents a potential source of biomass rich in chlorophyll and minerals as: P, Fe, Mn, Cu, Zn, Mg and Ca. This research was aimed at evaluating the composition of minerals, as well as, determining the content of chlorophyll a and b from the microalgae Chlorella vulgaris cultivated in hydroponic wastewater in three different concentrations compared with the control cultive. The results showed that the contents of chlorophyll a and b of the microalgae did not show significant difference between the cultives. In relation to the composition of the minerals, the Chlorella cultivated in the most concentrated wastewater, showed higher values when compared with the one cultivated in the others cultures. In this manner, the Chlorella vulgaris biomass demonstrated to be a potential source of chlorophyll and minerals, when cultivated in hydroponic wastewater, allowing the use of this residue in a sustainable way.

  8. Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation.

    Science.gov (United States)

    Li, Ruirui; Duan, Na; Zhang, Yuanhui; Liu, Zhidan; Li, Baoming; Zhang, Dongming; Dong, Taili

    2017-10-01

    Anaerobic digestion (AD) is a promising alternative for livestock manure management. This paper presents the experimental results obtained through a batch experiment by using chicken manure (CM) and microalgae Chlorella sp. as co-substrates. The effect of co-digestion was evaluated by varying CM to Chlorella sp. ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10: 0 based on the volatile solids (VS)). The major objective of this study is to evaluate the feasibility and synergistic impact of co-digestion of CM and Chlorella sp. Enhanced 14.20% and 76.86% methane production than CM and Chlorella sp. mono-digestion respectively was achieved in co-digestion at the ratio 8:2. In addition, the co-digestion at the ratio 8:2 showed significantly higher methane yield than the weighted average of the individual substrates' specific methane yield (WSMY), indicating strong synergy effect. The Illumina Miseq sequencing analysis showed that the AD process suppressed the acetoclastic methanogenesis Methanosaeta content; but partly enhanced hydrogenotrophic methanogenesis Methanosarcina, Methanospirillum and Methanobacterium, which was responsible for the methane production. The pre-treated microalgae was then introduced at the optimal ratio 8:2 to estimate the effect of pre-treatment of microalgae on AD process. However, the pre-treatment exhibited no positive effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans

    NARCIS (Netherlands)

    Lam, 't Gerard; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G.

    2017-01-01

    Pulsed Electric Field (PEF) is currently discussed as promising technology for mild and scalable cell disintegration of microalgae. In this study Chlorella vulgaris and Neochloris oleoabundans have been subjected to batch and continuous PEF treatments under a wide range of operating conditions

  10. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  11. Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel

    International Nuclear Information System (INIS)

    Ishak, Nur Izzati; Muniandy, S V; Periasamy, Vengadesh; Ng, Fong-Lee; Phang, Siew-Moi

    2017-01-01

    In this work, we study the regional dependence of transport behavior of microalgae Chlorella vulgaris inside microfluidic channel on applied fluid flow rate. The microalgae are treated as spherical naturally buoyant particles. Deviation from the normal diffusion or Brownian transport is characterized based on the scaling behavior of the mean square displacement (MSD) of the particle trajectories by resolving the displacements in the streamwise (flow) and perpendicular directions. The channel is divided into three different flow regions, namely center region of the channel and two near-wall boundaries and the particle motions are analyzed at different flow rates. We use the scaled Brownian motion to model the transitional characteristics in the scaling behavior of the MSDs. We find that there exist anisotropic anomalous transports in all the three flow regions with mixed sub-diffusive, normal and super-diffusive behavior in both longitudinal and transverse directions. (paper)

  12. Efecto de la radiación ultravioleta B en la producción de polifenoles en la microalga marina Chlorella sp. Effect of ultraviolet B radiation on the production of polyphenols in the marine microalga Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Jaime Copia

    2012-03-01

    Full Text Available Las algas marinas son una fuente importante de compuestos antioxidantes (fenoles y polifenoles, generados como mecanismos de defensa frente a factores de estrés (radiación UV, temperatura, herbívora. El objetivo de este trabajo es evaluar la estrategia de adaptación al efecto de la radiación ultravioleta B (RUV-B, 280-315 nm en la microalga marina Chlorella sp. mediante la producción de polifenoles y capacidad antioxidante total. Se expusieron cultivos de Chlorella sp. fueron expuestos a radiación UV-B (470 μW cm-2 por periodo de tiempos ascendentes. Se evaluó la capacidad antioxidante total DPPH, polifenoles totales, clorofila-a y b así como la densidad celular en cultivos expuestos y no expuestos. Los resultados indicaron que la RUV-B genera una disminución de la densidad celular en los cultivos irradiados por primera vez (1ª etapa, existiendo un aumento significativo (P Marine algae are an important source of antioxidant compounds (phenols and polyphenols, generated as defense mechanisms against stress factors (UV radiation, temperature, herbivory. The aim of this study was to evaluate the strategy of adaptation to the effect of ultraviolet B radiation (UV-B, 280-315 nm in the marine microalga Chlorella sp. through, the production of polyphenols and total antioxidant capacity. Chlorella sp. cultures were exposed to UV-B radiation (470 μW cm-2 over increasing time periods. We evaluated the total antioxidant capacity DPPH, total polyphenols, chlorophyll-a and b, and cell densities in exposed and unexposed cultures. The results indicated that UV-B caused a decrease in cell density in cultures irradiated for the first time (1st stage, with a significant increment (P < 0.05, lower than the control in the 2nd and 3rd stages only through the 4th stage (day 7, corresponding to a dose of 16,920 J m-2. The production of total phenols increased significantly (P < 0.05 for the IVth extract with respect to the control, confirming that the

  13. Outdoor Growth Characterization of an Unknown Microalga Screened from Contaminated Chlorella Culture

    Directory of Open Access Journals (Sweden)

    Shuhao Huo

    2017-01-01

    Full Text Available Outdoor microalgae cultivation process is threatened by many issues, such as pest pollution and complex, changeable weather. Therefore, it is difficult to have identical growth rate for the microalgae cells and to keep their continuous growth. Outdoor cultivation requires the algae strains not only to have a strong ability to accumulate oil, but also to adapt to the complicated external environment. Using 18S rRNA technology, one wild strain Scenedesmus sp. FS was isolated and identified from the culture of Chlorella zofingiensis. Upon contamination by Scenedesmus sp., the species could quickly replace Chlorella zofingiensis G1 and occupy ecological niche in the outdoor column photobioreactors. The results indicated that Scenedesmus sp. FS showed high alkali resistance. It also showed that even under the condition of a low inoculum rate (OD680, 0.08, Scenedesmus sp. FS could still grow in the outdoor raceway pond under a high alkaline environment. Even under unoptimized conditions, the oil content of Scenedesmus sp. FS could reach more than 22% and C16–C18 content could reach up to 79.68%, showing that this species has the potential for the biodiesel production in the near future.

  14. PERFIL DE ÁCIDOS GRAXOS DAS MICROALGAS Chlorella vulgaris E Chlorella minutissima CULTIVADAS EM DIFERENTES CONDIÇÕES

    Directory of Open Access Journals (Sweden)

    J. A. V. COSTA

    2009-01-01

    Full Text Available

    Estudos recentes têm explorado o uso de microalgas para obtenção de lipídios, principalmente os de maior valor comercial como o ácido -linolênico. A microalga Chlorella possui ácidos graxos poliinsaturados, vitaminas e alto conteúdo protéico, e, além disso, possui o certificado GRAS (Generally Recognized As Safe. O objetivo deste trabalho foi estudar o cultivo das microalgas Chlorella vulgaris e Chlorella minutissima, a fim de verificar o perfil de ácidos graxos frente à variação de diferentes fatores físicoquímicos e nutricionais. Foi utilizado um Planejamento Fatorial Fracionário 24-1 IV para cada cepa estudada, onde foram variados os fatores temperatura, iluminância, fonte de carbono e concentração de nitrato no meio de cultivo. C. vulgaris cultivada a 35ºC, 2500 Lux, 16,8 g.L-1 de NaHCO3 e 1,0 g.L-1 de NO3 - apresentou biomassa máxima de 5,06 g.L-1 em 22 dias de cultivo. Para C. minutissima foi obtida biomassa máxima de 1,5g.L-1 em 22 dias quando cultivada a 35ºC, 1250 Lux, 16,8 g.L-1 de NaHCO3 e 0,5 g.L-1 de NO3 -. Os maiores teores de lipídios obtidos para C. vulgaris e C. minutissima foram 6,96% e 7,98%, respectivamente. A 35ºC e 2500 Lux foi obtido 7,66% de ácido linolênico.

  15. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus

    Science.gov (United States)

    Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.

    2017-01-01

    Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473

  16. Fatty acid composition of Spirulina sp., Chlorella sp. and Chaetoceros sp. microalgae and introduction as potential new sources to extinct omega 3 and omega 6

    Directory of Open Access Journals (Sweden)

    Homan Gorjzdadeh

    2016-05-01

    Full Text Available Background: This study was carried out to determine the oil fatty acids from two special species of microalgae; Spirulina sp.,Chlorella sp. and also Chaetoceros sp. collected from Bahmanshir River. Materials and Methods: Sampling of microalgae Chaetoceros sp. from Bahmanshir River was under taken using bottle samplers during spring season of 2013. Microalgae Spirulina sp. and Chlorella sp. were supplied from Shrimp Research Institute of Iran in Bushehr Province. Samples then were cultured under controlled laboratory conditions and mass culture for 100 liters was undertaken. Isolation of microalgae species from water of cultured media was carried out using filtration and centrifugation methods. The fatty acid compositions were determined by Gas – FID chromatography. Results: Results showed that regarding Saturated Fatty Acids (SFA obtained from purified culture of Chaetoceros sp., Spirulina sp. and Chlorella sp. the maximum amount of total fatty acids were belonged to palmitic acids (C16:0 with 15.21%, 30.1% and 25.17% of total fatty acids  respectively. Analysis of Mono Unsaturated Fatty Acids (MUFA showed that in the Oleic acid was maximum amount of 34% in Spirulina sp. In addition the amount of MUFA in Chlorella sp. was 16.37% of total fatty acids. On the other hand the amount of palmeotic acid in purified culture of Chaetoceros sp. was 30.33% from total content of fatty acids. Analysis of Poly Unsaturated Fatty Acids (PUFA, Linoleic acid (C18:2 (Omega 6, revealed maximum percentage in Spirulina sp. with 18.8%. Results of Alpha linoleic acid (C18:3 (Omega3 analysis showed maximum amount of 9.66% in Chlorella sp. compared to other microalgae with lower omega 3 contents. Spirulina sp. contained maximum amount of Linoleic acid (C18:2 with 18.8% of total fatty acids. Therefore, Spirulina sp. can be considered as a rich source of omega 6 for the purpose of fatty acid extractions. The presence of PUFA in Chlorella sp. and Spirulina sp. was

  17. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species

    Czech Academy of Sciences Publication Activity Database

    Mizuno, Y.; Sato, A.; Watanabe, K.; Hirata, A.; Takeshita, T.; Shuhei, O.; Sato, N.; Zachleder, Vilém; Tsuzuki, M.; Kawano, S.

    2013-01-01

    Roč. 129, FEB 2013 (2013), s. 150-155 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Sulfur deficiency * Chlorella spp * Parachlorella kessleri Subject RIV: EE - Microbiology, Virology Impact factor: 5.039, year: 2013

  18. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.

    Science.gov (United States)

    Postma, P R; Miron, T L; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M

    2015-05-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Moringa oleifera Seed Derivatives as Potential Bio-Coagulant for Microalgae Chlorella sp. Harvesting

    International Nuclear Information System (INIS)

    Azizah Endut; Azizah Endut; Siti Hajar Abdul Hamid; Fathurrahman Lananan; Helena Khatoon

    2016-01-01

    Microalgae is an economical and potential raw material of biomass energy, which offer a wide range of commercial potential to produce valuable substances for applications in aquaculture feed, pharmaceutical purposes and bio fuels production. However, lack of an economical, efficient and convenient method to harvest microalgae is a bottleneck to boost their full-scale application. Hence, this study was performed to investigate the potentialities of Moringa oleifera seed derivatives as an environmentally bio-coagulant to harvest microalgae Chlorella sp. biomass from the water column, which acts as a binder to coagulate particulate impurities to form larger aggregates. Results shown M. oleifera to have better biomass recovery of 122.51 % as compared to 37.08 % of alum at similar dosages of 10 mgL"-"1. In addition, it was found that the zeta potential values of mixed microalgae-coagulant suspension shows positive correlation on the flocculation parameters. For biomass recovery, the correlation for M. oleifera protein powder showed the R"2-value of 0.9565 whereas the control chemical flocculant, alum with the R"2-value of 0.7920. It was evidence that M. oleifera has a great potential in efficient and economical for environmentally microalgae harvesting and the adaptation of biological harvesting technology especially for the purpose of aquaculture feed in Malaysia. (author)

  20. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  1. Coagulant effect of ferric chloride for separation of biomass from the microalgae Chlorella sp. of the water; Efeito coagulante do cloreto ferrico para separacao da biomassa da microalga Chlorella sp. da agua

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Tamara Daiane de; Mendes, Mucio Andre dos Santos Alves [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola e Ambiental], E-mail: tamara_daiane@yahoo.com.br; Matos, Antonio Teixeira de [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Lo Monaco, Paola Alfonsa Vieira [Instituto Federal do Espirito Santo (IFES), Santa Teresa, ES (Brazil); Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2010-07-01

    Currently, much interest has been focused on the biotechnological potential of microalgae, mainly in the production of biofuels. For this to become viable the biomass of algae should be separated from the water and the process of coagulation/flocculation/sedimentation may be an alternative. This study aimed to evaluate the effect of ferric chloride as coagulant agent of the microalgae Chlorella vulgaris. Were tested five concentrations of ferric chloride in the suspension containing the microalgae: 20,0; 30,0; 40,0; 50,0 e 100,0 g L{sup -1}. The tests were performed using the Jar-test apparatus and the turbidity was measured in suspensions after 2 hours of sedimentation. Mathematical equations were adjusted by regression, relating the concentration used in the tests according to the turbidity of the suspension. There was a linear decrease in turbidity with the addition of ferric chloride, and for concentration of 100.0 g L{sup -1} was achieved a removal efficiency of turbidity of 58%. However, it is necessary to conduct further research, evaluating the economic feasibility of the technique in the separation of microalgae from the water. (author)

  2. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  3. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-12-01

    Full Text Available Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2 extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2. Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73% compared to SCCO2 extraction alone (1.81%. Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM. SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  4. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment

    NARCIS (Netherlands)

    Postma, P.R.; Pataro, G.; Capitoli, M.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.; Olivieri, G.; Ferrari, G.

    2016-01-01

    The synergistic effect of temperature (25-65°C) and total specific energy input (0.55-1.11kWhkgDW -1) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from

  5. Inmovilización de las microalgas Scenedesmus ovalternus (Scenedesmaceae y Chlorella vulgaris (Chlorellaceae en esferas de alginato de calcio.

    Directory of Open Access Journals (Sweden)

    Mario Andres Forero-Cujiño

    2016-05-01

    Full Text Available En este trabajo se describe la técnica de inmovilización de microalgas en esferas de alginato de calcio. Se emplearon las especies Scenedesmus ovalternus y Chlorella vulgaris, se determinó la estabilidad de las esferas, la cinética de crecimiento y la concentración de las microalgas en el interior de las esferas. Chlorella vulgaris alcanzó mayores densidades poblacionales y tasas de crecimiento más altas cuando se inmovilizó en concentraciones del 10 % v/v con el alginato (1,31*106 cél/ml. Para Scenedesmus ovalternus se observó una mayor densidad poblacional y una mayor tasa de crecimiento cuando se inmovilizó en concentraciones del 20 % v/v (7,06*105 cél/ml. Estos resultados son útiles para aplicaciones prácticas de las algas encapsuladas, tales como el biomonitoreo o la biorremediación.

  6. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients.

    Science.gov (United States)

    Liao, Qiang; Chang, Hai-Xing; Fu, Qian; Huang, Yun; Xia, Ao; Zhu, Xun; Zhong, Nianbing

    2018-02-01

    To comprehensively understand kinetic characteristics of microalgae growth and lipid synthesis in different phases, a phase-feeding strategy was proposed to simultaneously regulate light, carbon and nutrients in adaption, growth and stationary phases of microalgae cultivation. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis under synergistic effects of light, carbon and nutrients were investigated, and supply-demand relationships of electrons and energy between light and dark reactions of photosynthesis process were discussed. Finally, the optimized cultivation strategy for microalgae in various phases were obtained, under which the lipid productivity was significantly improved from 130.11 mg/L/d to 163.42 mg/L/d. The study provided some important guidance for the large-scale production of biofuels from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Uptake of uranium from sea water by microalgae

    International Nuclear Information System (INIS)

    Sakaguchi, Takashi; Horikoshi, Takao; Nakajima, Akira

    1978-01-01

    The uptake of uranium from aqueous systems especially from sea water by various microalgae was investigated. The freshwater microalgae, Chlorella regularis, Scenedesmus bijuga, Scenedesmus chloreloides, Scenedesmus obliquus, Chlamydomonas angulosa, Chlamydomonas reinhardtii, accumulated relatively large amounts of uranium from the solution containing uranium only. The concentration factors of the above mentioned algae were: Chlorella regularis 3930, Chlamydomonas 2330 - 3400, Scenedesmus 803 - 1920. The uptake of uranium from sea water by Chlorella regularis was inhibited markedly by the co-existence of carbonate ions. Chlorella cells could take up a great quantity of uranium from decarbonated sea water. The uptake of uranium was affected by the pH of sea water, and the amount of uranium absorbed was maximum at pH 5. The experiment was carried out to screen marine microalgae which have the ability to accumulate a large amount of uranium from sea water. The uptake of uranium from sea water by marine microalgae of different species turned out to be in the following decreasing order: Synechococcus > Chlamydomonas >> Chlorella > Dunaliella > Platymonas > Calothrix > Porphyridium. The amount of uranium absorbed differed markedly with different species of marine microalgae. (author)

  9. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  10. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  11. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  12. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification.

    Science.gov (United States)

    Li, Hua-Bin; Jiang, Yue; Chen, Feng

    2002-02-27

    A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.

  13. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae and Nannochloropsis sp. (Eustigmatophyceae.

    Directory of Open Access Journals (Sweden)

    Gregory J O Martin

    Full Text Available Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs, the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.

  14. Potential of Microalgae Cultivation in Dairy Wastewater as a Step in Low-Cost Biofuel Production

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2018-04-01

    Full Text Available The present study addresses adopting the organic and nutritious materials in dairy wastewater as media for cultivation of microalgae, which represent an important source of renewable energy. This study was carried out through cultivation of three types of microalgae; Chlorella sp., Synechococcus, and Anabaena. The results shows the success the cultivation of the Synechococcus and Chlorella Sp, while the Anabaena microalgae were in low-growth level. The highest growth was in the Synechococcus farm, followed by Chlorella and Anabaena. However, the growth of Synechococcus required 10 days to achieve this increase that represents a negative indicator of the adoption of this type of microalgae in this media to meet the desired aims. While Chlorella needs less than two days to start growing. Moreover, the data obtained from the experiment show that removal of chemical oxygen demand in Chlorella cultures was (72% more than that obtained from cultivation of other microalgae. Thus this microalgae is more efficient in wastewater treatment than other types.

  15. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    Science.gov (United States)

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Science.gov (United States)

    Beltrán-Rocha, Julio Cesar

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources. PMID:29441241

  17. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.

    Science.gov (United States)

    Sharma, Amit Kumar; Sahoo, Pradeepta Kumar; Singhal, Shailey; Joshi, Girdhar

    2016-09-01

    The present study explores the integrated approach for the sustainable production of biodiesel from Chlorella vulgaris microalgae. The microalgae were cultivated in 10m(2) open raceway pond at semi-continuous mode with optimum volumetric and areal production of 28.105kg/L/y and 71.51t/h/y, respectively. Alum was used as flocculent for harvesting the microalgae and optimized at different pH. Lipid was extracted using chloroform: methanol (2:1) and having 12.39% of FFA. Effect of various reaction conditions such as effect of catalyst, methanol:lipid ratio, reaction temperature and time on biodiesel yields were studied under microwave irradiation; and 84.01% of biodiesel yield was obtained under optimized reaction conditions. A comparison was also made between the biodiesel productions under conventional heating and microwave irradiation. The synthesized biodiesel was characterized by (1)H NMR, (13)C NMR, FTIR and GC; however, fuel properties of biodiesel were also studied using specified test methods as per ASTM and EN standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    Science.gov (United States)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  19. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques

    NARCIS (Netherlands)

    Patino, R.; Janssen, M.G.J.; Stockar, von U.

    2007-01-01

    Calorimetry and other on-line techniques are used for the first time as complement to the traditional off-line methods in order to follow the growth of the green Chlorella vulgaris microalgae. A 2-L photo-bio-reactor was adapted from a commercial calorimeter used previously to study heterotrophic

  20. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels

    International Nuclear Information System (INIS)

    Singh, Devendra; Singal, S.K.; Garg, M.O.; Maiti, Pratyush; Mishra, Sandhya; Ghosh, Pushpito K.

    2015-01-01

    Highlights: • B100 biodiesels from Jatropha (BJ) and marine microalga (BA) compared. • 17% lower NOx and 6% lower specific fuel consumption of BA over BJ. • Brake specific fuel consumption (BSFC) highest in urban mode in all cases. • NOx, HC and CO highest in rural-, motorway-and urban modes, respectively. • Microalga Chlorella variabilis is a promising feedstock for renewable fuels. - Abstract: Biodiesel is a renewable alternative to petro-diesel used in compression ignition (CI) engine. Two B100 biodiesel samples were prepared by patented routes from the lipids extracted from marine microalga Chlorella variabilis (BA) cultivated in salt pans and wasteland-compatible Jatropha curcas (BJ). The fuels complied with ASTM D-6751 and European Standard EN-14214 specifications. Standard Petro-diesel served as a control. Transient performance and emission characteristics of a heavy duty diesel engine fuelled with these B100 fuels (BJ and BA) were studied over European Transient Cycle. Test results showed that both B100 biodiesels outperformed petro-diesel in terms of particulate matter (PM), carbon monoxide (CO) and hydrocarbon (HC) emissions, with slight penalty on NOx emissions. Among the two biodiesels, merits of BA were established over BJ in terms of nitrogen oxides (NOx) emissions and specific fuel consumption. Mode-wise transient emission analysis revealed that NOx was highest in rural mode, CO was highest in urban and HC was highest in motorway mode for all fuels. BA may be considered as a promising alternative fuel for diesel engine which can be produced sustainably through cultivation of the marine microalga in coastal locations using seawater as culture medium, obviating thereby concerns around land use competition for food and fuel.

  1. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    Science.gov (United States)

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  2. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  3. Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel

    Science.gov (United States)

    Politaeva, N.; Smyatskaya, Y.; Slugin, V.; Toumi, A.; Bouabdelli, M.

    2018-01-01

    This article studies the influence of laser radiation on the growth of micro-algal biomass of Chlorella sorokiniana. The composition of nutrient medium and the effect the laser beam (2 and 5 cm diameter, 1, 5, 10, 15 and 20 minutes exposure time) for accelerated cultivation of microalgal biomass were studied. The source of laser radiation (LR) was a helium-neon laser with a nominal output power of 1.6 mW and a wavelength of 0.63 μm. The greatest increase in biomass was observed when LR was applied to a suspension of microalga Chlorella sorokiniana with a beam of 5 cm diameter for a time of 10, 15 and 20 minutes. The results of the microscopic study of the microalga cells show a significant increase in the number of cells after an exposure to LR with a beam diameter of 5 cm in diameter. These cells were characterized by a large vacuole, a thickened lipid shell and a large accumulation of metabolites prone to agglutination. This study proposed to obtain valuable components (lipids, carotenoids, and pectin) from the obtained biomass by extraction method and to use the residual biomass formed wastes, after the extraction of valuable components, as a co-substrate for anaerobic digestion to produce biogas. The composition of biogas consists mainly of methane and carbon dioxide. Methane is recommended to be used for economic needs in supplying the whole process with heat and electricity. The carbon dioxide formed during fermentation and after combustion of methane for energy production, is planned to be used as a carbon source in the cultivation of Chlorella sorokiniana for photoautotrophic biomass production.

  4. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México.

    Science.gov (United States)

    Reyna-Martinez, Raul; Gomez-Flores, Ricardo; López-Chuken, Ulrico; Quintanilla-Licea, Ramiro; Caballero-Hernandez, Diana; Rodríguez-Padilla, Cristina; Beltrán-Rocha, Julio Cesar; Tamez-Guerra, Patricia

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant ( p  < 0.05) 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  5. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Directory of Open Access Journals (Sweden)

    Raul Reyna-Martinez

    2018-02-01

    Full Text Available Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae and Scenedesmus sp. (Chlorococcales: Scenedesmaceae. Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p < 0.05 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  6. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    Science.gov (United States)

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.

  7. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.

    Science.gov (United States)

    Chen, Chun-Yen; Lee, Po-Jen; Tan, Chung Hong; Lo, Yung-Chung; Huang, Chieh-Chen; Show, Pau Loke; Lin, Chih-Hung; Chang, Jo-Shu

    2015-06-01

    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.

  9. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    Science.gov (United States)

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  10. LIPID ACCUMULATION OF CHLORELLA VULGARIS UNDER DIFFERENT PHOSPHATE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Magdalena Karolina Rokicka

    2017-04-01

    Full Text Available The cultivation and utilization of microalgae is now a intensively developing area of research. Some species of microalgae, under appropriate conditions, accumulate large amounts of lipids in the cells. This lipids have a suitable profile of fatty acids for biodiesel production. The culture of microalgae for lipids accumulation should be performed in certain physicochemical conditions. The aim of the study was to determine the effect of variable ortophophates concentrations in the culture medium for lipids accumulation of microalgae Chlorella vulgaris and to determine of parameters of the phosphoric shock in the medium. The study confirmed the possibility of the use of the phosphoric shock in the medium to maximize lipids accumulation by the microalgae Chlorella vulgaris. In the study, 45.23% of the oil was obtained from the biomass from the culture with phosphoric shock in the medium and 18% less of the oil was obtained from the biomass from the standard culture.

  11. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  12. Biotechnological applications of microalgae

    OpenAIRE

    Wan-Loy Chu

    2012-01-01

    Microalgae are important biologicalresources that have a wide range of biotechnologicalapplications. Due to their high nutritional value,microalgae such as Spirulina and Chlorella are beingmass cultured for health food. A variety of high-valueproducts including polyunsaturated fatty acids (PUFA),pigments such as carotenoids and phycobiliproteins, andbioactive compounds are useful as nutraceuticals andpharmaceuticals, as well as for industrial applications. Interms of environmental biotechnolo...

  13. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta.

    Directory of Open Access Journals (Sweden)

    Shanmei Zou

    Full Text Available Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

  14. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water).

    Science.gov (United States)

    Abinandan, S; Bhattacharya, Ribhu; Shanthakumar, S

    2015-01-01

    Microalgae are product of sustainable development owing to its ability to treat variety of wastewater effluents and thus produced biomass can serve as value added product for various commercial applications. This paper deals with the cultivation of microalgae species namely Chlorella pyrenoidosa and Scenedesmus abundans in rice mill effluent (i.e., paddy soaked water) for nutrient removal. In order to investigate the nutrient removal capability, microalgae are subjected to cultivation in both raw and autoclaved samples. The maximum phosphate removal by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 98.3% and 97.6%, respectively, whereas, the removal of ammoniacal nitrogen by Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 92% and 90.3%, respectively. The growth (measured in terms of chlorophyll content) of Scenedesmus abundans and Chlorella pyrenoidosa in raw sample was 3.88 mg/l and 5.55 mg/l, respectively. The results indicate the suitability of microalgae cultivation in rice mill effluent treatment for nutrient removal.

  15. Magnetically modified microalgae and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Procházková, G.; Pospíšková, K.; Brányik, T.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 931-941 ISSN 0738-8551 R&D Projects: GA ČR GA13-13709S; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : oleaginous chlorella sp * fresh-water microalgae * magnetophoretic separation * high-gradient * harvesting microalgae * alexandrium-fundyense * polymer binder * algal blooms * cells * removal * Harvesting algal cells * magnetic labeling * magnetic modification * magnetic separation * microalgae Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.542, year: 2016

  16. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  17. Mechanical cell disruption of Parachlorella kessleri microalgae: Impact on lipid fraction composition.

    Science.gov (United States)

    Clavijo Rivera, E; Montalescot, V; Viau, M; Drouin, D; Bourseau, P; Frappart, M; Monteux, C; Couallier, E

    2018-05-01

    Samples of nitrogen-starved Parachlorella kessleri containing intact cells (IC), cells ground by bead milling (BM), and cells subjected to high-pressure cell disruption (HPD), together with their supernatants after centrifugation, were compared for granulometry and lipid profiles. The effects of disruption on the lipid profile and organisation were evaluated. The quantity of lipids available for extraction increased with disruption, and up to 81% could be recovered in supernatants after centrifugation, but a marked reorganization occurred. The proportion of amphiphilic free fatty acids and lysophosphatidylcholine increased during disruption due to their release or owing to lipid degradation by enzymes or physical conditions. This effect was more marked in HPD than in BM. Lipids contained in the aqueous phase, after disruption and centrifugation, were enriched in unsaturated fatty acids, BM leading to larger droplets than HPD. The larger liquid lipid droplet would be easier to recover in the following downstream processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-07-01

    Full Text Available Renewable energy is essential and vital aspect for development in Indonesia especially less oil reserve for coming 15 years. Biodiesel has received much attention as renewable energy in recent years. One of potential biodiesel is produced from microalgae. Due to high content of nutrients in Palm Oil Mill Effluent (POME, this waste is a potential for nutrient growth for microalgae. Chlorella is one of high potential for biodiesel since it has high lipid content (20-30%. The objective of the research is to determine growth rate and biomass productivity in Chlorella Sp cultured in POME. Chlorella Sp was cultured in 20%, 50%, 70% POME using urea concentration 0.1gr/L (low nitrogen source and 1gr/l (high nitrogen source at flask disk, pH 6.8-7.2; aerated using aquarium pump and fluorescence lamp 3000-6000 lux as light. Medium was measured using spectrophotometer Optima Sp-300 OD at 680 wave length in 15 days to calculate specific growth rate. At end of cultivation, Chlorella sp was filtered and measured as dry weight. Result indicated that Chlorella sp at 50% POME 1gr/L urea showed higher specific growth rate (0.066/day. Factor affecting growth rate of microalgae is CNP ratio, POME concentration, and urea concentration.

  20. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)

    Science.gov (United States)

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella–like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential “specific barcode” for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes. PMID:27092945

  1. Health Food Supplements (Health Food Highly Nutritious From Chlorella And Oil Catfish (Pangasius hypopthalmus

    Directory of Open Access Journals (Sweden)

    Syahrul Syahrul

    2017-02-01

    Full Text Available AbstractThe utilization of microalgae as a food ingredient considered effective, because in addition to alternative food sources also contains nutrients chlorella microalgae in particular is very good for health. This microalgae rich in protein (60.5%, fat (11%, carbohydrates (20.1%, water, dietary fiber, vitamins and minerals Besides these microalgae contain pigments (chlorophyll, tocopherol and the active component (antimicrobial and antioxidants. This is what underlies microalgae is very useful to be used as a source of raw materials of health food supplements. Currently the health food supplements have become a necessity for people to maintain their health in order to remain vibrant. This study aims to produce high nutritious health food supplements from raw material chlorella enriched with fish protein concentrate and oil catfish. The method used in the manufacture of high nutritious health food supplement is a method of microencapsulation with different formulations. The results showed that the best formulations based on the profile of amino acids, fatty acids and standards AAE per day especially essential fatty acids oleic and linoleic is formulation B (chlorella 2%, 1% fish oil and fish protein concentrate 1%.

  2. Cultivation of the microalga, Chlorella pyrenoidosa , in biogas ...

    African Journals Online (AJOL)

    Therefore, the microalga was introduced to be cultivated in the biogas wastewater, which could not only bioremediate the wastewater, but also produce plenty of the microalga biomass that could be used for the exploitation of fertilizers, feed additives and biofuels. This study showed that the microalga, C. pyrenoidosa could ...

  3. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    Science.gov (United States)

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (pdifferentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231).

    Science.gov (United States)

    Xia, Ling; Huang, Rong; Li, Yinta; Song, Shaoxian

    2017-01-01

    The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.

  5. Monitoring Growth and Lipid Production of Some Egyptian Microalgae

    International Nuclear Information System (INIS)

    El-Baghdady, K.Z.; Zakaria, A.E.; Mousa, L.A.; Sadek, H.N.; Abd El Fatah, H.M.

    2016-01-01

    Microalgae bio diesel is a green and renewable energy resource. This study aims to examine growth and lipid production by various isolates of icroalgae using different growth media and lipid extraction techniques. Ten microalgae isolates were isolated from different samples collected from Egypt. The purified isolates were identified microscopically as: Lyngbya confervoides, Phormidium bohneri, Oscillatoria pseudogeminata, Amorphonostoc sp., Nostoc paludosum, Anabaena sphaerica related to cyanobacteria (blue green algae) and Chlorella vulgaris, Chlorella ellipsoidea, Scened esmusacutus acutus, Chlamydomonas globose related to green algae. These organisms were cultivated on two media: Bold's Basal Medium(BBM medium) and Blue Green Medium (BG-11 medium) to examine the favorite medium which supports the growth of each isolate In order to examine lipid production potentials by cyanobacterial isolates and green microalgae, two solvent systems were applied for lipid extraction, the first was (Chloroform - methanol 1:1 ) and the second was (Hexane-ethanol 1:1). Chlorella vulgaris and Anabaena sphaerica were selected as models of green microalgae and cyanobacteria espectively. Hexane-ethanol solvent system revealed higher lipid extraction capacity as compared to Chloroform- methanol system. A comparison between ten organisms for lipid production was carried out by the selected solvent mixture. The percentages of lipid to dry weight produced by Oscillatoria pseudogeminata and Chlamydomonas globose were 19.8% and14 .6% respectively recording the highest lipid to dry weight percentage. They can be considered as a promising lipid producing microalgae

  6. Health Food Supplements (“Health Food” Highly Nutritious From Chlorella And Oil Catfish (Pangasius hypopthalmus

    Directory of Open Access Journals (Sweden)

    Syahrul Syahrul

    2016-12-01

    Full Text Available The utilization of microalgae as a food ingredient considered effective, because in addition to alternativefood sources also contains nutrients chlorella microalgae in particular is very good for health. This microalgaerich in protein (60.5%, fat (11%, carbohydrates (20.1%, water, dietary fiber, vitamins and minerals Besidesthese microalgae contain pigments (chlorophyll, tocopherol and the active component (antimicrobial andantioxidants. This is what underlies microalgae is very useful to be used as a source of raw materials ofhealth food supplements. Currently the health food supplements have become a necessity for people tomaintain their health in order to remain vibrant. This study aims to produce high nutritious health foodsupplements from raw material chlorella enriched with fish protein concentrate and oil catfish. The methodused in the manufacture of high nutritious health food supplement is a method of microencapsulation withdifferent formulations. The results showed that the best formulations based on the profile of amino acids,fatty acids and standards AAE per day especially essential fatty acids oleic and linoleic is formulation B(chlorella 2%, 1% fish oil and fish protein concentrate 1%.

  7. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  8. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.

    Science.gov (United States)

    Kuo, Chiu-Mei; Lin, Tsung-Hsien; Yang, Yi-Chun; Zhang, Wen-Xin; Lai, Jinn-Tsyy; Wu, Hsi-Tien; Chang, Jo-Shu; Lin, Chih-Sheng

    2017-11-01

    An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO 2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO 2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO 2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL -1 d -1 , respectively. When Chlorella sp. AT1 was aerated with 10% CO 2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL -1 and 0.726gL -1 d -1 , respectively. Our results show that CO 2 utilization efficiency can be markedly increased by intermittent CO 2 aeration and alkaline media as a CO 2 -capturing strategy for alkali-tolerant microalga cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties.

    Science.gov (United States)

    Panahi, Yunes; Darvishi, Behrad; Jowzi, Narges; Beiraghdar, Fatemeh; Sahebkar, Amirhossein

    2016-01-01

    Chlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteinsChlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteins, omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects., omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects.

  10. Microalgae growth-promoting bacteria: A novel approach in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Luz E. de-Bashan

    2003-07-01

    Full Text Available Plant growth-promoting bacteria (PGPB from the genus Azospirillum are known to enhance the growth of numerous agricultural crops. The use of these bacteria is proposed as "micro-algae-growth promoting bacteria" (MGPB for enhancing freshwater micro-algae Chlorella vulgaris and C. sorokiniana capadty to clean polluted water. The deliberate inoculation of Chlorella sp. with a terrestrial PGPB has not been reported prior to these studies, perhaps because of the different origin of the two micro-organisms. Chlorella spp. is not known to harbour any plant growth-promoting bacteria and Azospirillum sp. is rarely used for inoculation in aquatic environments. Co-immobilisation of C. vulgaris and A. brasilense Cd in small alginate beads resulted in significant increases in numerous micro-algae growth parameters. Dry and fresh weight, total number of cells, micro-algal cluster (colonies size within the bead, number of micro-algal cells per cluster and micro-algal pigments levels significantly increased. Lipids and the variety of fatty adds also significantly increased, as did the combination of micro-algae. MGPB had superior capacity for removing ammonium and phosphorus from polluted synthetic and municipal wastewaters than the micro-algae by itself. Other PGPB (i.e. Flavobacterium sp. Azospirillum sp. and Azotobacter sp. are currently being tested in aquaculture; carp farming using enhanced phytoplankton growth and stabilising mass marine micro-algae culture for use as feed for marine organisms are both retuming promising results. This aspect of PGPB effect on water micro-organisms is currently in its infancy. We pro pose that co-immobilising micro-algae and plant growth-promoting bacteria represent an effective means of increasing micro-algal populations and also their capacity for cleaning polluted water. Key words: PGPB; micro-algae; wastewater treatment; co-immobilised

  11. Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2014-03-01

    Full Text Available This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV. The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20 and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.

  12. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.

    Science.gov (United States)

    Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam

    2015-08-01

    A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.

    Science.gov (United States)

    Duarte, Jessica Hartwig; de Morais, Etiele Greque; Radmann, Elisângela Martha; Costa, Jorge Alberto Vieira

    2017-06-01

    CO 2 biofixation by microalgae and cyanobacteria is an environmentally sustainable way to mitigate coal burn gas emissions. In this work the microalga Chlorella fusca LEB 111 and the cyanobacteria Spirulina sp. LEB 18 were cultivated using CO 2 from coal flue gas as a carbon source. The intermittent flue gas injection in the cultures enable the cells growth and CO 2 biofixation by these microorganisms. The Chlorella fusca isolated from a coal power plant could fix 2.6 times more CO 2 than Spirulina sp. The maximum daily CO 2 from coal flue gas biofixation was obtained with Chlorella fusca (360.12±0.27mgL -1 d -1 ), showing a specific growth rate of 0.17±<0.01d -1 . The results demonstrated the Chlorella fusca LEB 111 and Spirulina sp. LEB 18 potential to fix CO 2 from coal flue gas, and sequential biomass production with different biotechnological destinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions. Copyright © 2012. Published by Elsevier Inc.

  15. Bioremediation of the textile waste effluent by Chlorella vulgaris

    OpenAIRE

    El-Kassas, Hala Yassin; Mohamed, Laila Abdelfattah

    2014-01-01

    The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE) was investigated using 22 Central Composite Design (CCD). This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE) and the study of the best dilution of the WE for maximum biomass production...

  16. Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques.

    Science.gov (United States)

    Zhang, Ruilin; Chen, Jian; Zhang, Xuewu

    2018-01-01

    Due to the rigid cell wall of Chlorella species, it is still challenging to effectively extract significant amounts of protein. Mass methods were used for the extraction of intracellular protein from microalgae with biological, mechanical and chemical approaches. In this study, based on comparison of different extraction methods, a new protocol was established to maximize extract amounts of protein, which was involved in ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Under the optimized conditions, 72.4% of protein was extracted from the microalgae Chlorella pyrenoidosa, which should contribute to the research and development of Chlorella protein in functional food and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  18. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    Science.gov (United States)

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.

  19. Bionota: Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales Microalgae growth-promoting bacteria: A novel approach in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Bashan Yoav

    2003-12-01

    Full Text Available Las bacterias promotoras de crecimiento en plantas (PGPB del género Azospirillum son conocidas porque mejo­ran el crecimiento de numerosas cosechas agrícolas; sin embargo, el presente trabajo pretende extender el uso de estas bacterias a "bacterias promotoras de crecimiento de microalgas" (MPGB para aumentar la capacidad de las microalgas de eliminar nutrientes de aguas residuales. La inoculación deliberada de las microalgas Chlorella spp. con PGPB de origen terrestre no ha sido reportada con anterioridad, tal vez debido al origen diferente de estos dos microorganismos. Al inmovilizar de manera conjunta Chlorella vulgaris y Azospirillum brasilense Cd en esferas de alginato, se obtuvo como resultado un aumento significativo en varios parámetros de crecimiento de la microalga, como el peso fresco y seco, el número total de células, el tamaño de las colonias de microalgas dentro de la esfera, el número de organismos por colonia y la concentración de pigmentos. Además, aumenta­ron los lípidos y la variedad de ácidos grasos. La microalga combinada con la MGPB tiene una mayor capacidad de eliminar amonio y fósforo tanto en agua residual sintética como en agua residual doméstica. Actualmente se ha estado experimentando con otras PGPB (Flavobacterium sp. Azospirillum sp. y Azotobacter sp. para propósitos acuícolas; por ejemplo aumentar el crecimiento de fitoplancton utilizado en el cultivo de carpas y estabilizar cultivos masivos de microalgas marinas utilizadas como alimento para organismos marinos, todo esto con resul­tados promisorios. Si bien el efecto de las PGPB en microorganismos acuáticos aún no ha sido suficientemente explorado, proponemos que la co-inmovilización de microalgas y bacterias promotoras de crecimiento es un medio efectivo para aumentar la población microalgal y también su capacidad de limpiar aguas residuales. Palabras clave: PGPB; microalgas; biotratamiento de aguas residuales; co

  20. Performance of Chlorella sorokiniana under simulated extreme winter conditions

    NARCIS (Netherlands)

    Cuaresma, M.; Buffing, M.F.; Janssen, M.G.J.; Lobato, C.V.; Wijffels, R.H.

    2012-01-01

    High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed

  1. Microalgae Nutraceuticals

    Directory of Open Access Journals (Sweden)

    Marcello Nicoletti

    2016-08-01

    Full Text Available Among the new entries in the food supplements sector, an important place must be assigned to nutraceuticals containing microalgae, nowadays accounting for a large and rapidly expanding market. The marketed products are mainly based on three production strains, i.e., Spirulina and Chlorella, followed at a distance by Klamath. It is a composite situation, since two of them are cyanobacteria and the second one is eukaryotic. The reality is that each presents similarities in shape and appearance concerning the marketed form and several utilizations, and peculiarities that need special attention and adequate studies. First, general information is reported about the current scientific knowledge on each microalga, in particular the nutritional value and properties in prevention and wellbeing. Second, original studies are presented concerning the quality control of marketed products. Quality control is a key argument in nutraceuticals validation. Microalgae are particular organisms that need specific approaches to confirm identity and validate properties. The proposed control of quality is based on microscopic analysis of the morphologic characteristics. The final parts of this paper are dedicated to the need for specificity in uses and claims and to considerations about the future of microalgae in food supplements.

  2. Cultivation Of Microalgae (Chlorella vulgaris For Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Blinová Lenka

    2015-06-01

    Full Text Available Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  3. Green energy from microalgae: Usage of algae biomass for anaerobic digestion

    International Nuclear Information System (INIS)

    Skorupskaite, Virginija; Makarevicie, Violeta

    2014-01-01

    The microalgae biomass can be used for various types of biofuels, including biodiesel and biogas. The aim of this study is to investigate the possibilities of microalgae Scenedesmus sp. and Chlorella sp. (widespread in freshwater Lithuanian lakes) usage for biogas production. Microalgae were cultivated under mixotrophic conditions (growth medium BG11 containing technical glycerol). In order to determine biogas yield and quality dependence on feedstock preparation, the analyses of biogas production have been performed with algae biomass prepared i n different ways: wet centrifuged; wet centrifuged, frozen and defrost; dry not de-oiled and dry de-oiled. The highest biogas yield in both cases (Scenedesmus sp. – 646 ml/gDM and Chlorella sp. – 652 ml/gDM) was obtained from centrifuged, frozen and defrost biomass. Biogas yield was app. 1.46 times higher comparing to yield of biogas produced from wastewater sludge. Our results showed that different types of biomass preparation have no significant influence on quality of biogas. Key words: microalgae, biomass, biogas production, biogas quality

  4. Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures.

    Science.gov (United States)

    Ben Amor-Ben Ayed, Hela; Taidi, Behnam; Ayadi, Habib; Pareau, Dominique; Stambouli, Moncef

    2016-03-01

    The accumulation (internal and superficial distribution) of magnesium ions (Mg(2+)) by the green freshwater microalga Chlorella vulgaris (C. vulgaris) was investigated under autotrophic culture in a stirred photobioreactor. The concentrations of the three forms of Mg(2+) (dissolved, extracellular, and intracellular) were determined with atomic absorption spectroscopy during the course of C. vulgaris growth. The proportions of adsorbed (extracellular) and absorbed (intracellular) Mg(2+) were quantified. The concentration of the most important pigment in algal cells, chlorophyll a, increased over time in proportion to the increase in the biomass concentration, indicating a constant chlorophyll/biomass ratio during the linear growth phase. The mean-average rate of Mg(2+) uptake by C. vulgaris grown in a culture medium starting with 16 mg/l of Mg(2+) concentration was measured. A clear relationship between the biomass concentration and the proportion of the Mg(2+) removal from the medium was observed. Of the total Mg(2+) present in the culture medium, 18% was adsorbed on the cell wall and 51% was absorbed by the biomass by the end of the experiment (765 h). Overall, 69% of the initial Mg(2+) were found to be removed from the medium. This study supported the kinetic model based on a reversible first-order reaction for Mg(2+) bioaccumulation in C. vulgaris, which was consistent with the experimental data.

  5. Novel protocol for lutein extraction from microalga Chlorella vulgaris

    DEFF Research Database (Denmark)

    D'Este, Martina; De Francisci, Davide; Angelidaki, Irini

    2017-01-01

    Lutein is a pigment generally extracted from marigold flowers. However, lutein is also found in considerable amounts in microalgae. In this study a novel method was developed to improve the extraction efficiency of lutein from microalga C. vulgaris. Differently from conventional methods, ethanol...

  6. Improving oxidative stability of virgin olive oil by addition of microalga Chlorella vulgaris biomass.

    Science.gov (United States)

    Alavi, Nasireh; Golmakani, Mohammad-Taghi

    2017-07-01

    Antioxidant activity of Chlorella ( Chlorella vulgaris ) was evaluated in virgin olive oil (VOO) at different concentrations of 0.5, 1.0, and 1.5% (w/w) under accelerated storage conditions. Antioxidant activity of Chlorella was compared with those of BHT and β-carotene. Chlorella samples significantly retarded the formation of primary, secondary, and total oxidation products in comparison with those of the control. The stability increased as concentrations of Chlorella increased. Samples containing 0.5, 1.0, and 1.5% Chlorella significantly improved VOO stability by 19.99, 28.83, and 33.14%, respectively. Observed effects can be related to the release in the assortment of bioactive compounds from Chlorella algae to the VOO. Among the different antioxidants evaluatedy, BHT exhibited the highest antioxidant activity. On the contrary, β-carotene had no preventive effect against the oxidation of VOO. It also proved incapable of limiting the progress of VOO oxidation and played role as pro-oxidant. In conclusion, Chlorella enhanced VOO oxidative stability. Thus it can be considered as a promising source of natural antioxidants.

  7. Chlorella sp : Extraction of fatty acid by using avocado oil as solvent and its application as an anti-aging cream

    Science.gov (United States)

    Putri, T. W.; Raya, I.; Natsir, H.; Mayasari, E.

    2018-03-01

    The study aimed to analyze the fatty acid content of Chlorella sp crude extract by using avocado oil solvent and determining the effectiveness of fatty acids Chlorella sp as the anti-aging cream The extraction of fatty acids from Chlorella sp using avocado oil as a solvent with three ratios were 1:10, 1:20 and 1:25 w/V. The highest lipid content was obtained at 1:20 w/V (gram microalgae: mL avocado oil) yielding 52.73%. Crude extracted were analysis by GC-MS and FTIR, and skin condition was determined by skin analyzer. The effectiveness test of Chlorella sp cream was applicated on the face of the panelists aged 20-60 years. From 10 panelists, the applied of Chlorella sp cream was 90% increased on the facial skin yielded moisture and oil content, 70% repair the skin structure. The composition of fatty acids Chlorella sp extract was palmitic acid, linoleic, oleic and stearate. Fatty acids crude extract of Chlorella sp can improve the effectiveness of anti-aging cream. The cream from Chlorella sp was more effective than the cream without containing microalgae. This is very promising because it is alternative to organic solvents i.e. green chemistry.

  8. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    Science.gov (United States)

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Phycoremediation of 137Cs and 60Co with selected species of aquatic microalgae

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Strisovska, J.

    2016-01-01

    The presentation is focused on finding a suitable pH for phycoremediation of 137 Cs and 60 Co w ith microalgae Dunaliella salina and Chlorella vulgaris. To ensure a dynamic course of remediation the peristaltic pump was used, through which the solution was washed with radionuclides. During individual measurements the decrease in solution activity over time was monitored . Decline in activity in the samples was determined using a semiconductor HPGe gamma detector. The measured results showed that the best environment for phycoremediation for microalgae Dunaliella salina was at pH = 8 and less, for Chlorella vulgaris the best value was pH = 6. (authors)

  10. Cost effective and economic method for cultivation of Chlorella pyrenoidosa for the simultaneous treatment of biogas digester wastewater and biogas production

    OpenAIRE

    Rohit Sharma; Avanish K Tiwari; G. Sanjay Kumar; Bhawna Y. Lamba

    2015-01-01

    Microalgae have recently received a lot of attention as a new biomass source for the production of bio fuels and for the treatment of waste water. In this work, Chlorella pyrenoidosa was cultivated in biogas digester wastewater. The growth kinetics of the algae as well as the bio-remediation effect on the waste water was studied. The Chlorella pyrenoidosa can utilize the nitrogen content present in biogas digester wastewater as a substrate for its growth. The growth of microalgae was found to...

  11. Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4 Hybrid Composites for Harvesting of Mixed Microalgae

    Directory of Open Access Journals (Sweden)

    Bohwa Kim

    2018-05-01

    Full Text Available In this paper, we describe the synthesis of magnesium aminoclay-iron oxide (MgAC-Fe3O4 hybrid composites for microalgae-harvesting application. MgAC-templated Fe3O4 nanoparticles (NPs were synthesized in different ratios of MgAC and Fe3O4 NPs. The uniform distribution of Fe3O4 NPs in the MgAC matrix was confirmed by transmission electron microscopy (TEM. According to obtained X-ray diffraction (XRD patterns, increased MgAC loading leads to decreased intensity of the composites’ (311 plane of Fe3O4 NPs. For harvesting of Chlorella sp. KR-1, Scenedesmus obliquus and mixed microalgae (Chlorella sp. KR-1/ Scenedesmus obliquus, the optimal pH was 4.0. At higher pHs, the microalgae-harvesting efficiencies fell. Sample #1, which had the highest MgAC concentration, showed the most stability: the harvesting efficiencies for Chlorella sp. KR-1, Scenedesmus obliquus, and mixed microalgae were reduced only to ~50% at pH = 10.0. The electrostatic interaction between MgAC and the Fe3O4 NPs in the hybrid samples by microalgae, as confirmed by zeta potential measurements, were attributed to the harvesting mechanisms. Moreover, the zeta potentials of the MgAC-Fe3O4 hybrid composites were reduced as pH was increased, thus diminishing the microalgae-harvesting efficiencies.

  12. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    Science.gov (United States)

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment.

    Science.gov (United States)

    Postma, P R; Pataro, G; Capitoli, M; Barbosa, M J; Wijffels, R H; Eppink, M H M; Olivieri, G; Ferrari, G

    2016-03-01

    The synergistic effect of temperature (25-65 °C) and total specific energy input (0.55-1.11 kWh kgDW(-1)) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from 25 to 55 °C resulted in a conductivity increase of 75% as a result of cell membrane permeabilization. In this range of temperatures, 25-39% carbohydrates and 3-5% proteins release occurred and only for carbohydrate release a synergistic effect was observed at 55 °C. Above 55 °C spontaneous cell lysis occurred without PEF. Combined PEF-temperature treatment does not sufficiently disintegrate the algal cells to release both carbohydrates and proteins at yields comparable to the benchmark bead milling (40-45% protein, 48-58% carbohydrates). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Barcelos Oliveira, Jorge Luiz

    2006-09-01

    Full Text Available Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.Medios de cultivo alternativos vienen siendo evaluados para el cultivo de microalgas, entre ellos, están los afluentes industriales y agrícolas, que posibilitan la reciclaje del residuo, bioconvirtiéndose en una biomasa enriquecida bajo el punto de vista nutricional, que puede ser utilizada como complemento alimenticio, para la acuacultura y en varias otras áreas de actuación. El presente trabajo tuvo como objetivo determinar los contenidos de lípidos, composición de ácidos grasos y carotenoides producidos por la microalga Chlorella vulgaris cultivada en solución hidropónica residual, con diferentes diluciones. Los resultados de los contenidos de lípidos totales no presentaron diferencia significativa. Los ácidos grasos predominantes fueron los 16:0, 18:0, 18:1 e 18:3n-6. Para los carotenoides totales, la dilución de la solución hidropónica residual no estimuló la producción de estos pigmentos por la microalga. La utilización de la solución hidrop

  15. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    Science.gov (United States)

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    Science.gov (United States)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  17. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  18. Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass: Effects of Nannochloropsis and Chlorella.

    Science.gov (United States)

    Wu, Zhiqiang; Yang, Wangcai; Yang, Bolun

    2018-02-01

    In this work, the influence of Nannochloropsis and Chlorella on the thermal behavior and surface morphology of char during the co-pyrolysis process were explored. Thermogravimetric and iso-conversional methods were applied to analyzing the pyrolytic and kinetic characteristics for different mass ratios of microalgae and low-rank coal (0, 3:1, 1:1, 1:3 and 1). Fractal theory was used to quantitatively determine the effect of microalgae on the morphological texture of co-pyrolysis char. The result indicated that both the Nannochloropsis and Chlorella promoted the release of volatile from low-rank coal. Different synergistic effects on the thermal parameters and yield of volatile were observed, which could be attributed to the different compositions in the Nannochloropsis and Chlorella and operating condition. The distribution of activation energies shows nonadditive characteristics. Fractal dimensions of the co-pyrolysis char were higher than the individual char, indicating the promotion of disordered degree due to the addition of microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Uldall Nørregaard, Patrick; Ljubic, Anita

    2016-01-01

    Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional...... pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW) while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively). Cultivation of Chlorella species in industrial process water...... composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella...

  20. Use of Solid Waste from Thermoelectric Plants for the Cultivation of Microalgae

    Directory of Open Access Journals (Sweden)

    Bruna da Silva Vaz

    2016-01-01

    Full Text Available ABSTRACT The aim of this study was to analyze the influence of solid waste on the cultivation of the microalgae Spirulina sp. LEB 18 and Chlorella fusca LEB 111 with 0, 40, 80 and 120 ppm of mineral coal ash. The addition of the ash did not inhibit the cultivation of microalgae at the tested concentrations, showing that it could be used for the cultivation of these microalgae due to the minerals present in the ash, which might substitute the nutrients needed for their growth.

  1. Light transfer in agar immobilized microalgae cell cultures

    Science.gov (United States)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  2. Assessing biodiesel quality parameters for wastewater grown Chlorella sp.

    Science.gov (United States)

    Bagul, Samadhan Yuvraj; K Bharti, Randhir; Dhar, Dolly Wattal

    2017-07-01

    Microalgae are reported as the efficient source of renewable biodiesel which should be able to meet the global demand of transport fuels. Present study is focused on assessment of wastewater grown indigenous microalga Chlorella sp. for fuel quality parameters. This was successfully grown in secondary treated waste water diluted with tap water (25% dilution) in glass house. The microalga showed a dry weight of 0.849 g L -1 with lipid content of 27.1% on dry weight basis on 21st day of incubation. After transesterification, the yield of fatty acid methyl ester was 80.64% with major fatty acids as palmitic, linoleic, oleic and linolenic. The physical parameters predicted from empirical equations in the biodiesel showed cetane number as 56.5, iodine value of 75.5 g I 2 100 g -1 , high heating value 40.1 MJ kg -1 , flash point 135 °C, kinematic viscosity 4.05 mm 2 s -1 with density of 0.86 g cm 3 and cold filter plugging point as 0.7 °C. Fourier transform infra-red (FTIR), 1 H, 13 C NMR spectrum confirmed the chemical nature of biodiesel. The results indicated that the quality of biodiesel was almost as per the criterion of ASTM standards; hence, wastewater grown Chlorella sp. can be used as a promising strain for biodiesel production.

  3. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens.

    Science.gov (United States)

    Lemahieu, Charlotte; Bruneel, Charlotte; Termote-Verhalle, Romina; Muylaert, Koenraad; Buyse, Johan; Foubert, Imogen

    2013-12-15

    Four different omega-3 rich autotrophic microalgae, Phaeodactylum tricornutum, Nannochloropsis oculata, Isochrysis galbana and Chlorella fusca, were supplemented to the diet of laying hens in order to increase the level of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in egg yolk. The microalgae were supplemented in two doses: 125 mg and 250 mg extra n-3 PUFA per 100g feed. Supplementing these microalgae resulted in increased but different n-3 LC-PUFA levels in egg yolk, mainly docosahexaenoic acid enrichment. Only supplementation of Chlorella gave rise to mainly α-linolenic acid enrichment. The highest efficiency of n-3 LC-PUFA enrichment was obtained by supplementation of Phaeodactylum and Isochrysis. Furthermore, yolk colour shifted from yellow to a more intense red colour with supplementation of Phaeodactylum, Nannochloropsis and Isochrysis, due to transfer of carotenoids from microalgae to eggs. This study shows that besides Nannochloropsis other microalgae offer an alternative to current sources for enrichment of hen eggs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.

    Science.gov (United States)

    Santos, C A; Nobre, B; Lopes da Silva, T; Pinheiro, H M; Reis, A

    2014-08-20

    Chlorella protothecoides, a lipid-producing microalga, was grown heterotrophically and autotrophically in separate reactors, the off-gases exiting the former being used to aerate the latter. Autotrophic biomass productivity with the two-reactor association, 0.0249gL(-1)h(-1), was 2.2-fold the value obtained in a control autotrophic culture, aerated with ambient air. Fatty acid productivity was 1.7-fold the control value. C. protothecoides heterotrophic biomass productivity was 0.229gL(-1)h(-1). This biomass' fatty acid content was 34.5% (w/w) with a profile suitable for biodiesel production, according to European Standards. The carbon dioxide fixed by the autotrophic biomass was 45mgCO2L(-1)h(-1) in the symbiotic arrangement, 2.1 times the control reactor value. The avoided CO2 atmospheric emission represented 30% of the CO2 produced in the heterotrophic stage, while the released O2 represented 49% of the oxygen demand in that stage. Thus, an increased efficiency in the glucose carbon source use and a higher environmental sustainability were achieved in microalgal biodiesel production using the proposed assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

    Science.gov (United States)

    Luangpipat, Tiyaporn; Chisti, Yusuf

    2017-09-10

    Five nominally freshwater microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Pseudococcomyxa simplex, Scenedesmus sp.) with a known ability to produce high-levels of lipids for possible use as fuel oils were evaluated for their ability to thrive and produce lipids in seawater and brackish water. Only C. vulgaris was found to thrive and produce lipids in full strength seawater. Seawater tolerant strains of C. vulgaris are unusual. Lipid productivity in nutrient sufficient seawater exceeded 37mgL -1 d -1 and was nearly 2-fold greater than in freshwater. Although other microalgae such as C. minor had higher lipid productivities (e.g. 45mgL -1 d -1 ), they did not thrive in seawater. The lipid content of the C. vulgaris biomass was nearly 16% by dry weight. The calorific value of the seawater-grown C. vulgaris biomass exceeded 25kJg -1 . Compared to continuously illuminated cultures, a 12/12h light-dark cycle reduced lipid productivity of C. vulgaris by ∼30%, but did not affect the lipid content of the biomass. Biomass yield on phosphate was nearly 27% higher in seawater compared to in freshwater. While C. vulgaris has been extensively studied in freshwater, it has not been examined to any detail in full strength seawater. Studies in seawater are essential for any future large scale production of algal oils for biofuels: seawater is available cheaply and in large amounts whereas there is a global shortage of freshwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    Science.gov (United States)

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  7. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    Science.gov (United States)

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods

    Science.gov (United States)

    Pancasakti Kusumaningrum, Hermin; Zainuri, Muhammad; Marhaendrajaya, Indras; Subagio, Agus

    2018-05-01

    Microbial contamination has caused public health problems in the world population. This problem has spurred the development of methods to overcome and prevent microbial invasion. The extensive use of antibiotics has facilitated the continued emergence and spread of resistant organisms. Synthesized of silver nanoparticle (AgNPs) on microalgae Chlorella pyrenoidosa offer environmentally safe antimicrobial agent. The present study is focused on the biosynthesis of AgNPs using microalgae C. pyrenoidosa. The research methods was conducted by insertion of nanosilver particle into microalgae cells with and without agitation to speed up the process of formation nanosilver microalgae. The formation of microalgae SNP was analyzes by UV-Vis spectrophotometer, Scanning Electron Micrograph (SEM) and Energy-dispersive X-ray spectroscopy (EDX) methods. The research result showed that nanosilver microalgae biosynthesis using the agitation treatment was exhibited better performance in particle insertion and cell stability, comparing with no agitation treatment. However, synthesis of nanosilver microalgae tend to reduce the cell size.

  9. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants

    International Nuclear Information System (INIS)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → Microalgae can help reduce global warming. → Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. → Microalgae were compared with Spirulina and Scenedesmus obliquus for CO 2 fixation. → Microalgae were exposed to CO 2 , SO 2 and NO, simulating a gas from coal combustion. → C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO 2 emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO 2 biofixation. The microalgae were exposed to 12% CO 2 , 60 ppm of SO 2 and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO 2 biofixation of the coal combustion gas, which would help reduce global warming.

  10. Mixotrophic Chlorella sp. UJ-3 cultivation in the typical anaerobic fermentation effluents.

    Science.gov (United States)

    Huo, Shuhao; Kong, Miao; Zhu, Feifei; Zou, Bin; Wang, Feng; Xu, Ling; Zhang, Cunsheng; Huang, Daming

    2018-02-01

    The growth of mixotrophic Chlorella sp. UJ-3 cultivated in the three typical anaerobic fermentation effluents was investigated in this paper. The results showed that the microalgae grew best under intermediate light intensity for all the types of fermentation effluents. The butyrate type fermentation effluents induced the fastest growth rate for Chlorella sp. UJ-3, with a maximal cell concentration of 3.8×10 7  cells/mL. Under intermediate light intensity, the volatile fatty acids (VFAs) were almost depleted on the fifth day of the cultivation for all the three types of fermentation systems. The ratios of chlorophyll a/b were all increased for the three systems, indicating enhanced energy-capturing capability of the microalgae for photosynthesis after the VFAs were depleted. The highest lipid content was 25.4%dwt achieved in the butyrate type fermentation, and the fatty acid compositions were found to be considerably different for these three types of fermentation systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pertumbuhan Chlorella sp. pada beberapa konsentrasi limbah batubara (The growth rate of the Chlorella sp. at different concentrations of coal waste water

    Directory of Open Access Journals (Sweden)

    Zerli Selvika

    2016-12-01

    Full Text Available Chlorella sp. is a single-celled microalga that mostly grows in marine waters. Chlorella sp. can grow in heavy polluted waters and therefore it has potency as a bioremediation agent. This study aimed was to analyze the effect of coal on the growth of Chlorella sp. in plant isolation media and the quality of water in plant isolation media for Chlorella sp. The complete randomized design with 4 treatments of coal concentration was used in this study. Four concentration concentrations were tested namely, 0 ppt, 1 ppt, 3 ppt and 5 ppt. The results revealed that coal with different concentrations gave no significant effect on the growth of Chlorella sp. (p> 0.05. The density among the concentrations of 0 ppt, 1 ppt, 3 ppt and 5 ppt were not significantly different. In addition, the coal concentration gave no significant effect on temperature, salinity and potential hydrogen (pH (p>0.05. The Chlorella sp. can grow in the polluted water by coal, and therefore this alga can be used as potential organisms for bioremediation of coal waste. Chlorella sp. merupakan mikroalga bersel satu yang banyak tumbuh di perairan laut. Chlorella sp. dapat tumbuh di perairan yang tercemar berat sehingga berpotensi sebagai bioremediator. Penelitian ini bertujuan untuk menganalisis pengaruh konsentrasi batubara terhadap pertumbuhan Chlorella sp. dan kualitas air pada media kultur Chlorella sp. Metode yang digunakan dalam penelitian ini adalah metode eksperimen skala laboratorium. Rancangan percobaan yang digunakan adalah rancangan acak lengkap dengan 4 perlakuan konsentrasi batubara 0 ppt, 1 ppt, 3 ppt dan 5 ppt. Hasil penelitian menunjukkan bahwa batubara dengan konsentrasi yang berbeda tidak berpengaruh nyata terhadap laju pertumbuhan Chlorella sp (P>0,05. Kepadatan antara konsentrasi 0 ppt, 1 ppt, 3 ppt dan 5 ppt tidak terlalu jauh berbeda. Konsentrasi batubara juga tidak berpengaruh nyata terhadap parameter suhu, salinitas dan derajat keasaman (pH (p>0,05. Chlorella sp

  12. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    Science.gov (United States)

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae.

    Science.gov (United States)

    Lananan, Fathurrahman; Jusoh, Ahmad; Ali, Nora'aini; Lam, Su Shiung; Endut, Azizah

    2013-08-01

    A study was performed to determine the effect of Conway and f/2 media on the growth of microalgae genera. Genera of Chlorella sp., Dunaliella sp., Isochrysis sp., Chaetoceros sp., Pavlova sp. and Tetraselmis sp. were isolated from the South China Sea. During the cultivation period, the density of cells were determined using Syringe Liquid Sampler Particle Measuring System (SLS-PMS) that also generated the population distribution curve based on the size of the cells. The population of the microalgae genera is thought to consist of mother and daughter generations since these microalgae genera reproduce by releasing small non-motile reproductive cells (autospores). It was found that the reproduction of Tetraselmis sp., Dunaliella sp. and Pavlova sp. could be sustained longer in f/2 Medium. Higher cell density was achieved by genus Dunaliella, Chlorella and Isochrysis in Conway Medium. Different genera of microalgae had a preference for different types of cultivation media. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Lipid accumulation from pinewood pyrolysates by rhodosporidium diobovatum and chlorella vulgaris for biodiesel production

    NARCIS (Netherlands)

    Luque, L.; Orr, V.C.A.; Chen, S.; Westerhof, Roel Johannes Maria; Oudenhoven, Stijn; van Rossum, G.; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2016-01-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich

  15. Hydrothermal Disintegration and Extraction of Different Microalgae Species

    Directory of Open Access Journals (Sweden)

    Michael Kröger

    2018-02-01

    Full Text Available For the disintegration and extraction of microalgae to produce lipids and biofuels, a novel processing technology was investigated. The utilization of a hydrothermal treatment was tested on four different microalgae species (Scenedesmus rubescens, Chlorella vulgaris, Nannochloropsis oculata and Arthorspira platensis (Spirulina to determine whether it has an advantage in comparison to other disintegration methods for lipid extraction. It was shown, that hydrothermal treatment is a reasonable opportunity to utilize microalgae without drying and increase the lipid yield of an algae extraction process. For three of the four microalgae species, the extraction yield with a prior hydrothermal treatment elevated the lipid yield up to six times in comparison to direct extraction. Only Scenedesmus rubescens showed a different behaviour. Reason can be found in the different cell wall of the species. The investigation of the differences in cell wall composition of the used species indicate that the existence of algaenan as a cell wall compound plays a major role in stability.

  16. Fatty acids composition of microalgae Chlorella vulgaris can be ...

    African Journals Online (AJOL)

    Varying culture methods of Chlorella vulgaris (CV) has been associated with different nutrient composition. The aim of this study was to investigate the fatty acid contents and other nutrients of CV subjected to various culturing conditions. We found that CV cultured under 24 h light and 10% CO2 showed the best growth rates ...

  17. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.

    Science.gov (United States)

    Zhou, Dan; Qiao, Baoquan; Li, Gen; Xue, Song; Yin, Jianzhong

    2017-08-01

    Raw material for biodiesel has been expanded from edible oil to non-edible oil. In this study, biodiesel continuous production for two kinds of microalgae Chrysophyta and Chlorella sp. was conducted. Coupling with the supercritical carbon dioxide extraction, the oil of microalgae was extracted firstly, and then sent to the downstream production of biodiesel. The residue after decompression can be reused as the material for pharmaceuticals and nutraceuticals. Results showed that the particle size of microalgae, temperature, pressure, molar ration of methanol to oil, flow of CO 2 and n-hexane all have effects on the yield of biodiesel. With the optimal operation conditions: 40mesh algae, extraction temperature 60°C, flow of n-hexane 0.4ml/min, reaction temperature: 340°C, pressure: 18-20MPa, CO 2 flow of 0.5L/min, molar ration of methanol to oil 84:1, a yield of 56.31% was obtained for Chrysophyta, and 63.78% for Chlorella sp. due to the higher lipid content. Copyright © 2017. Published by Elsevier Ltd.

  18. Evaluation of agricultural fertilizers on the productivity of microalgae Chlorella sorokiniana.

    Directory of Open Access Journals (Sweden)

    Ana Margarita Silva-Benavides

    2016-06-01

    Full Text Available The aim of this study was to evaluate the productivity of microalgae Chlorella sorokiniana UTEX 1230 with two different foliar fertilizers used in agriculture and the comparison with the nutrient medium Kolwitz (K3.Variables assessed were cell growth, productivity, chlorophyll concentration, fluorescence (Fv/Fm, proteins, and carbohydrates. Two commercial fertilizers with NPK 20-20-20 and NPK 22-10-7 formula were used as nutrient media. The study was conducted at the Institute of Ecosystem Studies, Florence, Italy, in 2014. Each experiment was repeated five times using three replicates in each experiment under a light intensity of 150 μmol photons m2/s, temperature 28 °C and CO2/air (2:98v/v. The culture media were prepared by using the following fertilizers: 1 NPK 20-20-20 (1.00 g/l + 0.27 g/l MgSO4.7H2O, 2 NPK 22-10-7 (+2 MgO (1.00 g/l + 0.27 g/l MgSO4.7H2O, 3 NPK 22-10-7 (+2 MgO (1.00 g/l, 4 NPK 20-20-20 (1.00 g/l. The nutrient medium Kolwitz (K3 was used as a control. Higher cell concentrations, productivity, chlorophyll, fluorescence, proteins, and carbohydrates were obtained in cultures grown in the media prepared with magnesium sulfate (NPK 20-20-20 (1.00 g/l + 0.27 g/l MgSO4.7H2O, and NPK 22-10-7 (+2 MgO (1.00 g/l + 0.27 g/l MgSO4.7H2O. Lower biomass growth was obtained in cultures lacking magnesium sulfate. Sulfide and magnesium, as well as the amounts of urea and ammonia in the chemical composition of each fertilizer, had a positive effect on the culture growth and productivity. 

  19. Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp

    Energy Technology Data Exchange (ETDEWEB)

    Iswarya, V.; Bhuvaneshwari, M.; Alex, Sruthi Ann; Iyer, Siddharth; Chaudhuri, Gouri [Centre for Nanobiotechnology, VIT University, Vellore (India); Chandrasekaran, Prathna Thanjavur [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Bhalerao, Gopalkrishna M.; Chakravarty, Sujoy [UGC-DAE CSR, Kalpakkam Node, Kokilamedu (India); Raichur, Ashok M. [Department of Materials Engineering, Indian Institute of Science, Bangalore (India); Chandrasekaran, N. [Centre for Nanobiotechnology, VIT University, Vellore (India); Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com [Centre for Nanobiotechnology, VIT University, Vellore (India)

    2015-04-15

    Highlights: • Toxicity of two crystalline phases of titania NPs on freshwater microalgae studied. • (Anatase, Rutile) mixture showed additive and antagonistic effect on microalgae. • Rutile had more colloidal stability than anatase and binary mixtures. • ROS generation varied with the crystallinity of the NPs. • Ultrastructural damages observed in TEM images. - Abstract: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 ± 35.01 nm, 555.74 ± 19.93 nm, and 1620.24 ± 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary

  20. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    DEFF Research Database (Denmark)

    Safafar, Hamed; van Wagenen, Jonathan Myerson; Møller, Per

    2015-01-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella...... antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source....

  1. Fatty Acid Content of Indonesian Aquatic Microalgae

    Directory of Open Access Journals (Sweden)

    TRI PRARTONO

    2010-12-01

    Full Text Available High utilization of fossil fuel increases the level of carbon dioxide in the atmosphere and results in global warming phenomenon. These things establish the world's thought to look for the other alternative energy that can reduce the use of fossil fuel even to be replaced by the substitute. Recently, Indonesia has been doing the research of microalgae as a feedstock of an alternative biofuel. Fatty acid content that microalgae have is also high to produce biofuel. The steps used in this research is a 7 days cultivation, harvesting, extraction using hexane, and fatty acid identification using Gas Chromatography of microalgae species. Fatty acid component in some species such as Chlorella sp., Scenedesmus sp., Nannochloropsis sp., and Isochrysis sp. is between 0.21-29.5%; 0.11-25.16%; 0.30-42.32%; 2.06-37.63%, respectively, based on dry weight calculation. The high content of fatty acid in some species of microalgae showed the potential to be the feedstock of producing biofuel in overcoming the limited utilization from petroleum (fossil fuel presently.

  2. Benefits of Preventive Administration of Chlorella sp. on Visceral Pain and Cystitis Induced by a Single Administration of Cyclophosphamide in Female Wistar Rat

    OpenAIRE

    Hidalgo-Lucas, Sophie; Rozan, Pascale; Guérin-Deremaux, Laetitia; Baert, Blandine; Violle, Nicolas; Saniez-Degrave, Marie-Hélène; Bisson, Jean-François

    2016-01-01

    Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1–16 (250 and 500 mg/kg body weight). Six...

  3. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  4. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris.

    Science.gov (United States)

    Cha, Kwang Hyun; Kang, Suk Woo; Kim, Chul Young; Um, Byung Hun; Na, Ye Rim; Pan, Cheol-Ho

    2010-04-28

    Chlorella vulgaris is a green microalga that contains various antioxidants, such as carotenoids and chlorophylls. In this study, antioxidants from C. vulgaris were extracted using pressurized liquid extraction (PLE), which has been recently used for bioactive compound extraction. The antioxidant capacity of individual compounds in chlorella was determined by online HPLC ABTS(*+) analysis. According to the antioxidant analysis of total extracts, the extraction yield, radical scavenging activity, and phenolic compounds using PLE were relatively high compared to those obtained using maceration or ultrasound-assisted extraction. On the basis of online HPLC ABTS(*+) analysis, the 15 major antioxidants from chlorella extracts were identified as hydrophilic compounds, lutein and its isomers, chlorophylls, and chlorophyll derivatives. Using PLE at high temperature (85-160 degrees C) significantly increased antioxidant extraction from chlorella, improving the formation of hydrophilic compounds and yielding more antioxidative chlorophyll derivatives. Online HPLC ABTS(*+) analysis was a useful tool for the separation of main antioxidants from PLE extracts and allowed the simultaneous measurement of their antioxidant capacity, which clearly showed that PLE is an excellent method for extracting antioxidants from C. vulgaris.

  5. Dynamic model of a thin layer photobioreactor, used for the cultivation of the microalga Chlorella sp. and bacteria in wastewater of high organic load

    Directory of Open Access Journals (Sweden)

    Orlando Gines Alfaro-Vives

    2017-01-01

    Full Text Available A dynamic mathematical model is presented to describe the symbiotic growth of the microalgae Chlorella sp. and bacteria in a photobioreactor thin film used in the wastewater treatment of high organic load. A good correlation is shown by the experimental results, since the variations of the process parameters (pH, dissolved oxygen concentration, concentration of dissolved carbon dioxide and substrate concentration in the culture medium were compared with the experimental results and in 95 % of cases coincide with an error of + -3%. Furthermore, the influence of the operating parameters on the performance of algae obtained is evaluated, using the model, the total net productivity per unit area was obtained with a maximum error of + -2, 5 % with respect to the experimental values.

  6. Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans

    Directory of Open Access Journals (Sweden)

    B. Lekshmi

    2015-12-01

    Full Text Available The aim of this study was to identify the potential for cultivation of Chlorella pyrenoidosa and Scenedesmus abundans in raw and autoclaved domestic wastewater (sewage for nutrient removal, in a batch process. The growth was observed by measuring chlorophyll content. The inoculum size of 10% and 20% was used and the growth of microalgae and nutrient removal was monitored on daily basis. The maximum removal of ammonium nitrogen, phosphate and nitrates by Chlorella pyrenoidosa in raw samples was observed as 99%, 96% and 80%, respectively, whereas the maximum removal of ammonium nitrogen, phosphate and nitrates by Scenedesmus abundans in raw samples was observed as 98%, 95% and 83%, respectively. The maximum chlorophyll content was observed as 11.33 mg/l and 7.23 mg/l for C. pyrenoidosa and S. abundans, respectively, in raw samples. The experimental results reveal that both the microalgae are capable to grow and remove the nutrients from domestic wastewater.

  7. Increased lipids production of Nannochloropsis oculata and Chlorella vulgaris for biodiesel synthesis through the optimization of growth medium composition arrangement by using bicarbonate addition

    Directory of Open Access Journals (Sweden)

    Dianursanti

    2018-01-01

    Full Text Available Chlorella vulgaris and Nannochloropsis oculata are a highly potential microalgae to be used in pilot-scale of biodiesel synthesis. The essential content from these microalgae is the fatty acid of lipid which is the main target for the feed and biodiesel industries. One of the key factor in improving lipid microalgae are the arrangemment of nutrients in the growth medium. Research on the regulation of nutrients using bicarbonate (HCO3- as an additional inorganic carbon source has been done by many studies, but the yield of lipids obtained has not been much. The aim of the study was to improve the lipid yield of Chlorella vulgaris and Nannochloropsis oculata. Variation of [HCO3-] which added to Walne medium were 25 ppm and 75 ppm, while the Walne medium without the addition of bicarbonate acts as control. The results showed that [HCO3-] 75 ppm could increase Chlorella vulgaris biomass by 0.9162 g/l with 17.0% wt, while Nannochloropsis oculata produced the greatest lipid content in [HCO3-] 25 ppm of 20.3% wt and the largest biomass on [HCO3-] 75 ppm of 1.7233 g/l.

  8. Potential Of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead On Culture Media

    Directory of Open Access Journals (Sweden)

    Rita Sulistya Dewi Endah

    2018-01-01

    Full Text Available The purpose of this study to determine the ability of Chlorella vulgaris in absorbing Pb (lead and the effect of the variation of Pb metal concentration on the growth of Chlorella vulgaris.This study using an experimental study with complete random design with 4 treatments, namely control (without the addition of metal, Pb1 (addition of metal 1 mg / l, Pb3 (3 mg / l and Pb5 (5 mg / l, respectively 3 replications. Exposure Pb ion in Chlorella vulgaris for 7 days. Analysis of the metal content of Pb concentration performed on culture media after exposure it at 3 hours after dispersion Chlorella vulgaris and on day 7 of culture using the AAS method. Do also counting the growth of cells each day. The results of the analysis of the average metal content of Pb in the culture medium at the end of the study was the control (0.1980, Pb1 (0.1453, Pb3 (0.4144 and Pb5 (0.5305. While the average growth of Chlorella vulgaris at the end of the study were control (630.1116 x 104, Pb1 (829.0012 x 104, Pb3 (1069.9446 x 104 and Pb 5 (808.94450 x 104. The results of the analysis of the content of Pb in the F test shown that the difference in concentration of water Pb given real influence on the ability of Chlorella vulgaris in absorbing Pb and growth. The conclusion of this study was Chlorella vulgaris has the ability to absorb metals in the waters, and the provision of various concentrations of Pb can affect the growth of Chlorella vulgaris.

  9. Potential Of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead) On Culture Media

    Science.gov (United States)

    Dewi, Endah Rita Sulistya; Nuravivah, Riza

    2018-02-01

    The purpose of this study to determine the ability of Chlorella vulgaris in absorbing Pb (lead) and the effect of the variation of Pb metal concentration on the growth of Chlorella vulgaris.This study using an experimental study with complete random design with 4 treatments, namely control (without the addition of metal), Pb1 (addition of metal 1 mg / l), Pb3 (3 mg / l) and Pb5 (5 mg / l), respectively 3 replications. Exposure Pb ion in Chlorella vulgaris for 7 days. Analysis of the metal content of Pb concentration performed on culture media after exposure it at 3 hours after dispersion Chlorella vulgaris and on day 7 of culture using the AAS method. Do also counting the growth of cells each day. The results of the analysis of the average metal content of Pb in the culture medium at the end of the study was the control (0.1980), Pb1 (0.1453), Pb3 (0.4144) and Pb5 (0.5305). While the average growth of Chlorella vulgaris at the end of the study were control (630.1116 x 104), Pb1 (829.0012 x 104), Pb3 (1069.9446 x 104) and Pb 5 (808.94450 x 104). The results of the analysis of the content of Pb in the F test shown that the difference in concentration of water Pb given real influence on the ability of Chlorella vulgaris in absorbing Pb and growth. The conclusion of this study was Chlorella vulgaris has the ability to absorb metals in the waters, and the provision of various concentrations of Pb can affect the growth of Chlorella vulgaris.

  10. Cultivation of Chlorella Vulgaris Using Airlift Photobioreactor Sparged with 5%CO 2 -Air as a Biofixing Process

    Directory of Open Access Journals (Sweden)

    Mahmood Khazzal Hummadi AL-Mashhadani

    2017-04-01

    Full Text Available The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the bioreactors become more thermodynamically favorable and provide impetus for a higher level of production. biofixing process

  11. Development of harvesting and up concentration technologies for microalgae as an ingredient in fish feed

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Per

    2014-01-01

    andfish oil. In applications of algae in fish feed, it is essential to produce a product comparable to fish proteinand fish oil both in terms of quality and costs.Downstream processing of microalgae includes harvest, dewatering, cell rupture, fractionation and drying.The dewatering and drying which...... ingredients forfish feed. Further we evaluate the chemical composition of six different microalgae species including;Nanochloropsis limnethica, Chlorella sorokiniana, Phaeodactylum tinctorium, Dunaliella salina,Nannochloropsis salina and Nannochloropsis occulata ....

  12. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and Micro-Algae (Chlorella vulgaris and Spirulina platensis Assisted by Ultrasound

    Directory of Open Access Journals (Sweden)

    Rubén Agregán

    2018-04-01

    Full Text Available Background: Natural antioxidants, which can replace synthetic ones due to their potential implications for health problems in children, have gained significant popularity. Therefore, the antioxidant potential of extracts obtained from three brown macroalgae (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and two microalgae (Chlorella vulgaris and Spirulina platensis using ultrasound-extraction as an innovative and green approach was evaluated. Methods: Algal extracts were obtained by ultrasound-assisted extraction using water/ethanol (50:50, v:v as the extraction solvent. The different extracts were compared based on their antioxidant potential, measuring the extraction yield, the total phenolic content (TPC and the antioxidant activity. Results: Extracts from Ascophyllum nodosum (AN and Bifurcaria bifurcata (BB showed the highest antioxidant potential compared to the rest of the samples. In particular, BB extract presented the highest extraction (35.85 g extract/100 g dry weight (DW and total phenolic compounds (TPC (5.74 g phloroglucinol equivalents (PGE/100 g DW yields. Regarding the antioxidant activity, macroalgae showed again higher values than microalgae. BB extract had the highest antioxidant activity in the ORAC, DPPH and FRAP assays, with 556.20, 144.65 and 66.50 µmol Trolox equivalents (TE/g DW, respectively. In addition, a correlation among the antioxidant activity and the TPC was noted. Conclusions: Within the obtained extracts, macroalgae, and in particular BB, are more suitable to be used as sources of phenolic antioxidants to be included in products for human consumption. The relatively low antioxidant potential, in terms of polyphenols, of the microalgae extracts studied in the present work makes them useless for possible industrial applications compared to macroalgae, although further in vivo studies evaluating the real impact of antioxidants from both macro- and micro-algae at the cellular level should be

  13. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.

    Science.gov (United States)

    Hu, Mian; Chen, Zhihua; Guo, Dabin; Liu, Cuixia; Xiao, Bo; Hu, Zhiquan; Liu, Shiming

    2015-02-01

    The pyrolysis process of two microalgae, Chlorella pyrenoidosa (CP) and bloom-forming cyanobacteria (CB) was examined by thermo-gravimetry to investigate their thermal decomposition behavior under non-isothermal conditions. It has found that the pyrolysis of both microalgae consists of three stages and stage II is the major mass reduction stage with mass loss of 70.69% for CP and 64.43% for CB, respectively. The pyrolysis kinetics of both microalgae was further studied using single-step global model (SSGM) and distributed activation energy model (DAEM). The mean apparent activation energy of CP and CB in SSGM was calculated as 143.71 and 173.46 kJ/mol, respectively. However, SSGM was not suitable for modeling pyrolysis kinetic of both microalgae due to the mechanism change during conversion. The DAEM with 200 first-order reactions showed an excellent fit between simulated data and experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Next Generation Feedstock of Biofuel: Jatropha or Chlorella as Assessed by Their Life-Cycle Inventories

    Directory of Open Access Journals (Sweden)

    Pu Peng

    2014-07-01

    Full Text Available Promising energy crops such as Jatropha curcas Linnaeus (JCL, which are planted on marginal lands, or microalgae such as Chlorella, which are cultivated in ponds located on mudflats or deserts, have been regarded with high hopes to solve the shortage of food crops and increase the amount of biodiesel (Fatty Acid Methyl Ester, FAME production. However, the annual yields of biomass and transport fuels (t/ha of both are still unclear and often exaggerated in the literature. Large portions of JCL biomass, including tree trunks and leaves, can also be used to generate electricity along with FAME, which is produced from seed lipids. Meanwhile, lipid extracted algae (LEA are composed of proteins, polysaccharides, and lipids other than glycerides which are unable to be esterified to form FAME and much more abundant in the microalgae than oil cake in the oil crops. Therefore, it has been strongly suggested that not only transesterification or esterification but also Fischer-Tropsch (FT process and bio-electricity generation should be considered as routes to produce biofuels. Otherwise, the yield of biofuel would be extremely low using either JCL or Chlorella as feedstock. The Life-Cycle Inventories (LCI of the biofuel processes with whole biomass of JCL and Chlorella were compared based on their net energy ratio (NER and CO2 emission saving (CES. It was shown that the technological improvement of irrigation, cultivation, and processing for either economic-crops or microalgae were all necessary to meet the requirements of commercial biofuel production.

  15. Biodiesel Production from Dry Microalga Biomass by Microwave-Assisted In-Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Qadariyah Lailatul

    2018-01-01

    Full Text Available Microalga is one of the potential feedstocks in the manufacture of biodiesel because it contains high oil content. In this study, Chlorella sp. was selected because its high oil content about 28-32% of oil (based on its dry weight and its presence is abundant among other green algae. In situ transesterification was carried out in round neck flask under microwave irradiation. Microwave irradiation can facilitate the in situ transesterification by extracted the lipid of microalga and simultaneous convert to FAME. The purposes of this study are to investigate the effect of acid catalyst concentration, microwave power, reaction time and the addition of co-solvent (n-hexane on the yield of biodiesel, to get optimum operating conditions and to know the fatty acid compounds of biodiesel from Chlorella sp. The results of oil extraction and biodiesel were analyzed by GC-MS analysis. Based on the experiment, the yield of microalga oil was 11.37%. The optimum yield of biodiesel by in-situ transesterification was 75.68%. It was obtained at the microwave power of 450 watts, the reaction time of 60 minutes, an acid catalyst concentration of 0,2M of H2SO4, and the co-solvent addition of 10 ml.

  16. WATER CONDITION IN CELLS OF CHLORELLA

    Directory of Open Access Journals (Sweden)

    I. V. Kuznetsova

    2015-01-01

    Full Text Available The water condition in cages of the paste of chlorella was investigated by the method of thermogravimetric analysis. With increasing heating rate endothermic effect corresponding to the dehydration process is shifted towards higher temperatures. Temperature intervals of chlorella dehydration are defined at rate of heating 2 К/min - 308-368 K, 5 К/min - 323-403 K, and 10 К/min - 348-403 K. Quantitative characteristics of kinetic unequal water in chlorella have been received for each step (∆, ∆Т, a mass fraction (w, energy of activation (Еа. This process is similar to the process of the dehydration in ion exchange membranes. The derived kinetic characteristics give the possibility to define an optimum temperature interval and rate of drying microalgae for the purpose of increase of periods of storage in the form of paste or a solid substance for the further use as the bioadditive. In addition the presence of three types of water chlorella in a cell set according to NMR with pulsed magnetic field gradient. Since free water is involved in biochemical, chemical and microbiological processes, it is desirable to remove during drying of the preparation. The resulting temperature range of 323-343 K (step 2 at a heating rate of 2 K / min corresponds to a temperature range of drying the chlorella in a production environment. It should be noted that the highest number of algae in a tightly-water (the last stage. Apparently, this is determined by a unique cell structure. Temperature ranges dehydration process are not clear and vary depending on the heating rate, which is fully in line with previous studies of thermal analysis for grains, vegetables and bakery products.

  17. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.

    Science.gov (United States)

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2016-10-01

    Cultivation modes of autotrophic microalgae for biodiesel production utilizing open raceway pond were analyzed in this study. Five before screened good microalgae were tested their lipid productivity and biodiesel quality again in outdoor 1000L ORP. Then, Chlorella sp. L1 and Monoraphidium dybowskii Y2 were selected due to their stronger environmental adaptability, higher lipid productivity and better biodiesel properties. Further scale up cultivation for two species with batch and semi-continuous culture was conducted. In 40,000L ORP, higher lipid productivity (5.15 versus 4.06gm(-2)d(-1) for Chlorella sp. L1, 5.35 versus 3.00gm(-2)d(-1) for M. dybowskii Y2) was achieved in semi-continuous mode. Moreover, the financial costs of 14.18$gal(-1) and 13.31$gal(-1) for crude biodiesel in two microalgae with semi-continuous mode were more economically feasible for commercial production on large scale outdoors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Isolation and application of SO{sub X} and NO{sub X} resistant microalgae in biofixation of CO{sub 2} from thermoelectricity plants

    Energy Technology Data Exchange (ETDEWEB)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil)

    2011-09-15

    Highlights: {yields} Microalgae can help reduce global warming. {yields} Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. {yields} Microalgae were compared with Spirulina and Scenedesmus obliquus for CO{sub 2} fixation. {yields} Microalgae were exposed to CO{sub 2}, SO{sub 2} and NO, simulating a gas from coal combustion. {yields} C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO{sub 2} emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO{sub 2} biofixation. The microalgae were exposed to 12% CO{sub 2}, 60 ppm of SO{sub 2} and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO{sub 2} biofixation of the coal combustion gas, which would help reduce global warming.

  19. Bioremediation of the textile waste effluent by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2014-01-01

    Full Text Available The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE was investigated using 22 Central Composite Design (CCD. This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE and the study of the best dilution of the WE for maximum biomass production and for the removal of colour and Chemical Oxygen Demand (COD by this microalga. The cultivation of C. vulgaris, presented maximum cellular concentrations Cmax and maximum specific growth rates μmax in the wastewater concentration of 5.0% and 17.5%, respectively. The highest colour and COD removals occurred with 17.5% of textile waste effluent. The results of C. vulgaris culture in the textile waste effluent demonstrated the possibility of using this microalga for the colour and COD removal and for biomass production. There was a significant negative relationship between textile waste effluent concentration and Cmax at 0.05 level of significance. However, sodium bicarbonate concentration did not significantly influence the responses of Cmax and the removal of colour and COD.

  20. Development of a Biosensor for Environmental Monitoring Based on Microalgae Immobilized in Silica Hydrogels

    Directory of Open Access Journals (Sweden)

    Claude Durrieu

    2012-12-01

    Full Text Available A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.

  1. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

    Science.gov (United States)

    Low, Y. J.; Lau, S. W.

    2017-06-01

    Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

  2. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds

    Directory of Open Access Journals (Sweden)

    Rafael Simões Coelho Barone

    Full Text Available ABSTRACT: Several microalgae contain in excess of 50 % crude protein with amino acid profile comparable to that of fish meal. In addition, high polyunsaturated fatty acid contents encourage their use in animal feeding and nutrition, particularly in the formulation and processing of aquafeeds. This study aims at estimating the feasibility of Chlorella meal as feed ingredient for the feeding and nutrition of farmed tilapia based upon digestibility data. Juvenile tilapia were stocked in conical-bottomed tanks (200 L with superficial, continuous water flow, and fed to apparent satiation in three daily meals with a reference diet and a test diet containing 30 % lyophilized Chlorella sorokiniana added of an inert marker. Feces were collected overnight by sedimentation in refrigerated, plastic containers coupled to the tanks and analyzed for determination of chemical composition and inert marker contents to estimate apparent digestibility coefficients (ADCs of protein and energy of Chlorella meal; registered ADCs of Chlorella meal were 90.5 and 84.22, respectively. A pricing model considering the quantity of digestible nutrient was proposed based on ADCs of Chlorella and compared with the price of fishmeal (FM and soybean meal (SBM. The indicative prices to elicit the use of Chlorella as a protein source rather than FM or SBM for the feed and nutrition of tilapia were 2.65 USD kg−1 and 0.66 USD kg−1, respectively.

  3. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-12-01

    Full Text Available Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively. Cultivation of Chlorella species in industrial process water is an environmentally friendly, sustainable bioremediation method with added value biomass production and resource valorization, since the resulting biomass also presented a good source of proteins, amino acids, and carotenoids for potential use in aquaculture feed industry.

  4. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  5. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades

    Czech Academy of Sciences Publication Activity Database

    Masojídek, Jiří; Kopecký, Jiří; Giannelli, L.; Torzillo, G.

    2011-01-01

    Roč. 38, č. 2 (2011), s. 307-317 ISSN 1367-5435 R&D Projects: GA ČR GA521/09/0656 Institutional research plan: CEZ:AV0Z50200510 Keywords : Freshwater microalga Chlorella * Chlorophyll-fluorescence quenching * Photochemical activity Subject RIV: EE - Microbiology, Virology Impact factor: 2.735, year: 2011

  7. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Mavrommatis, A; Chatzikonstantinou, M; Skliros, D; Sotirakoglou, K; Flemetakis, E; Labrou, N E; Zervas, G

    2018-02-01

    The impact of dietary supplementation with microalgae on goat's milk chemical composition, fatty acids (FA) profile and enzymes activities related to antioxidant mechanism has not been well documented. Thus, this study aimed to investigate the effects of dietary inclusion of Chlorella vulgaris on the following: (i) milk yield, chemical composition and FA profile, (ii) the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GSH-Px) in blood plasma and (iii) the activities of SOD, GR and lactoperoxidase (LPO) in milk of goats. Furthermore, the oxidative stress indicators for measuring total antioxidant and free radical scavenging activity [ferric reducing ability of plasma (FRAP) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays] and oxidative stress biomarkers [malondialdehyde (MDA) and protein carbonyls (PC)] were also determined in blood plasma and milk of the animals. For this purpose, 16 cross-bred goats were divided into two homogenous groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group (Control) had no microalgae, while those of the Chlorella group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrates (Chlorella). Thus, the average intake was 5.15 g Chlorella vulgaris/kg DM. The results showed that the dietary inclusion of Chlorella vulgaris had not noticeable impact on goat's milk yield, chemical composition and FA profile. Significantly higher SOD (by 10.31%) and CAT (by 18.66%) activities in the blood plasma of goats fed with Chlorella vulgaris compared with the control were found. Moreover, the dietary supplementation with Chlorella vulgaris caused a significant increase in SOD (by 68.84%) activity and a reduction in PC (by 24.07%) content in goat's milk. In conclusion, the Chlorella vulgaris inclusion in goat's diets improved the

  8. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana

    Science.gov (United States)

    Barnes, Austin; Noel, Eric A.; Betenbaugh, Michael J.; Oyler, George A.

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  9. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    Directory of Open Access Journals (Sweden)

    Julian N Rosenberg

    Full Text Available While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM and heterotrophy in BBM supplemented with glucose (10 g L-1. Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1 d(-1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  10. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    Science.gov (United States)

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  11. Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga

    Science.gov (United States)

    2015-01-01

    Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold’s basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy. PMID:25020149

  12. Insights into Microalga and Bacteria Interactions of Selected Phycosphere Biofilms Using Metagenomic, Transcriptomic, and Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Ines Krohn-Molt

    2017-10-01

    Full Text Available Microalga are of high relevance for the global carbon cycling and it is well-known that they are associated with a microbiota. However, it remains unclear, if the associated microbiota, often found in phycosphere biofilms, is specific for the microalga strains and which role individual bacterial taxa play. Here we provide experimental evidence that Chlorella saccharophila, Scenedesmus quadricauda, and Micrasterias crux-melitensis, maintained in strain collections, are associated with unique and specific microbial populations. Deep metagenome sequencing, binning approaches, secretome analyses in combination with RNA-Seq data implied fundamental differences in the gene expression profiles of the microbiota associated with the different microalga. Our metatranscriptome analyses indicates that the transcriptionally most active bacteria with respect to key genes commonly involved in plant–microbe interactions in the Chlorella (Trebouxiophyceae and Scenedesmus (Chlorophyceae strains belong to the phylum of the α-Proteobacteria. In contrast, in the Micrasterias (Zygnematophyceae phycosphere biofilm bacteria affiliated with the phylum of the Bacteroidetes showed the highest gene expression rates. We furthermore show that effector molecules known from plant–microbe interactions as inducers for the innate immunity are already of relevance at this evolutionary early plant-microbiome level.

  13. Conteúdo lipídico e composição de ácidos graxos de microalgas expostas aos gases CO2, SO2 e NO Lipid content and fatty acids composition variation of microalgae exposed to CO2, SO2 and NO

    Directory of Open Access Journals (Sweden)

    Elisangela Martha Radmann

    2008-01-01

    Full Text Available The objective of the present work was to verify the lipid content and the fatty acid composition of the microalgae Spirulina sp., Scenedesmus obliquus, Synechococcus nidulans and Chlorella vulgaris cultivated in a medium containing CO2, SO2 and NO. The microalga Scenedesmus obliquus presented the highest lipid content (6.18%. For the other microalgae the lipid content ranged from 4.56 to 5.97%. The major monounsaturated fatty acids content was 66.01% for S. obliquus. The PUFA were obtained in major amount by the microalgae Spirulina sp. (29.37% and S. nidulans (29.54%. The palmitoleic acid was in larger amount, with 41.02% concentration (Spirulina sp..

  14. Caracterización y perfil lipídico de aceites de microalgas

    Directory of Open Access Journals (Sweden)

    Lesly Tejeda-Benítez

    2015-05-01

    Full Text Available El uso creciente del biodiésel ha impulsado la búsqueda de nuevas materias primas, dentro de las que se destacan las microalgas. En esta investigación se estudió el cultivo de las microalgas Chlorella sp. y Dunaliella salina bajo diferentes condiciones de pH y concentración de nitrógeno (mgL-1, y la caracterización de los aceites obtenidos, con el fin de evaluar su potencial uso como materia prima en la producción de biodiésel. La D. salina alcanzó una máxima concentración celular de 1.15x106 células mL-1 en 6 días de cultivo en unas condiciones de 8.5 pH y 0.1 mg L-1 concentración de nitrógeno, mientras que Chlorella sp. presentó una máxima concentración celular de 2.6x107 células mL-1 en 14 días de cultivo en unas condiciones de 7.5 pH y 0.1 mg L-1 concentración de nitrógeno. La extracción de aceite intracelular de las microalgas cultivadas bajo las mejores condiciones de crecimiento celular se realizó empleando el método modificado de Bligh & Dyer. Al determinar el perfil de ácidos grasos de los aceites extraídos de ambas microalgas, se  encontraron en mayor proporción dos ácidos grasos insaturados: ácido linolénico y ácido oleico. En el aceite de D. salina se encontró una concentración de 51% p/p de ácido linolénico, mientras que para el aceite de Chlorella sp. fue de 39% p/p. Con relación al ácido oleico, el aceite de Chrorella sp. presentó una concentración de 35% p/p, superior al aceite de D. salina, con 25% p/p.

  15. Non-Invasive Rapid Harvest Time Determination of Oil-Producing Microalgae Cultivations for Biodiesel Production by Using Chlorophyll Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yaqin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2015-10-05

    For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, and C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  16. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation.

    Science.gov (United States)

    Fradique, Mónica; Batista, Ana Paula; Nunes, M Cristiana; Gouveia, Luísa; Bandarra, Narcisa M; Raymundo, Anabela

    2010-08-15

    Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5-2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright (c) 2010 Society of Chemical Industry.

  17. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2013-11-01

    Full Text Available Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  18. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Science.gov (United States)

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  19. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    Science.gov (United States)

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  20. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    Directory of Open Access Journals (Sweden)

    Chiew-Yen Wong

    Full Text Available Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR, have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237, temperate (Chlorella vulgaris UMACC 248 and tropical (Chlorella vulgaris UMACC 001 environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm, PAR plus ultraviolet-A (320-400 nm radiation (PAR + UV-A and PAR plus UV-A and ultraviolet-B (280-320 nm radiation (PAR + UV-A + UV-B for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek and light harvesting efficiency (α were determined from rapid light curves. The damage (k and repair (r rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  1. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for bio-diesel production by using Chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Yaqin eQiao

    2015-10-01

    Full Text Available For the large-scale cultivation of microalgae for biodiesel production, one of the key problems is the determination of the optimum time for algal harvest when algae cells are saturated with neutral lipids. In this study, a method to determine the optimum harvest time in oil-producing microalgal cultivations by measuring the maximum photochemical efficiency of photosystem II (PSII, also called Fv/Fm, was established. When oil-producing Chlorella strains were cultivated and then treated with nitrogen starvation, it not only stimulated neutral lipid accumulation, but also affected the photosynthesis system, with the neutral lipid contents in all four algae strains – Chlorella sorokiniana C1, Chlorella sp. C2, C. sorokiniana C3, C. sorokiniana C7 – correlating negatively with the Fv/Fm values. Thus, for the given oil-producing algae, in which a significant relationship between the neutral lipid content and Fv/Fm value under nutrient stress can be established, the optimum harvest time can be determined by measuring the value of Fv/Fm. It is hoped that this method can provide an efficient way to determine the harvest time rapidly and expediently in large-scale oil-producing microalgae cultivations for biodiesel production.

  3. Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant

    Science.gov (United States)

    Rinanti, A.; Purwadi, R.

    2018-01-01

    This study is particularly expected to provide information on the diversity of microalgae as the flocculant agent that gives the highest biomass yield. Bioflocculation was done by using one of the flocculating microalgae i.e. Scenedesmus obliquus to concentrate on non-flocculating microalgae Chlorella vulgaris. The freshwater microalgae S. obliquus tested it ability to harvest other non-flocculating microalgae, increased sedimentation rate in the flocculation process and increased biomass yield. The flocculation of biomass microalgae with chemical flocculant as comparison was done by adding alum (K2SO4·Al2 (SO4)3·24H2O). The addition of alum (K2SO4·Al2 (SO4)3·24H2O) as flocculant at pH 11 and S. obliquus sp. as bioflocculant caused significant alteration of nutrition of microalgae. Overall, the essential content produced by flocculation method with addition of alum or with bioflocculation (%, mg/100 mg dry weight) are lipid 31,64; 38,69, protein 30,79; 38.50%, and chlorophyll 0.6253; 0.8420). Harvesting with bioflocculation methods conducted at the end of the cultivation period increase the amount of biomass significantly and can accelerate the settling time of biomass. Harvesting microalgae cells by bioflocculation method becomes an economically competitive harvesting method compared to alum as a chemical flocculant because of the cheaper cost of flocculant, not toxic so it does not require further water treatment after harvesting due to the use of alum as chemical flocculants.

  4. Enhancement of Chlorella vulgaris growth and bioremediation ability of aquarium wastewater using diazotrophs.

    Science.gov (United States)

    Ali, Sayeda Mohammed; Nasr, Hoda Shafeek; Abbas, Wafaa Tawfik

    2012-08-15

    Treatment of aquarium wastewater represents an important process to clean and recycle wastewater to be safely returned to the environment, used for cultivation or to minimize the multiple renewal of water. Chlorella vulgaris was an important freshwater microalgae which used in wastewater treatment, and increasing its potential of treatment can be achieved with existence of N2-fixing bacteria. Co-culturing of Chlorella vulgaris with the diazotrophs, Azospirillum brasilense or Azotobacter chroococcum in three different media; aquarium wastewater (AWW), sterile enriched natural aquarium wastewater (GPM) and synthetic wastewater media (SWW) were studied. Biomass yield of the microalgae was estimated by determination of chlorophylls (a and b), total carotenoid and the dry weight of C. vulgaris. Also determination of ammonia, nitrite, phosphate and nitrate in the culture were done. The presence of diazotrophs significantly increased the biomass of C. vulgaris by increasing its microalgae pigments (chlorophylls a and b, and total carotenoids). The highest pigments percentage was reported due to addition of A. brasilense to C. vulgaris (18.3-133.5%) compared to A. chroococcum (23.9-56.9%). As well as increased dry weight from 12 to 50%. There was also improved removal of nitrate, nitrite, ammonia and phosphate; where, the highest removal percentage was reported due to addition of A. chroococcum to C. vulgaris (0.0-52%) compared to A. brasilense (0.6-16.4%). A. brasilense and A. chroococcum can support C. vulgaris biomass production and bioremediation activity in the aquarium to minimize the periodical water renewal.

  5. Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions

    Directory of Open Access Journals (Sweden)

    María de Lourdes Franco Martínez

    2017-02-01

    Full Text Available Microalgae have the potential of consuming high amounts of nitrogen and phosphorus from wastewater; thus, avoiding the risk of eutrophication of the water bodies. Nevertheless, ammonium can usually inhibit the growth of microalgae. Tolerance to ammonium is specific of each strain; so, the development of tertiary wastewater treatment proposals, employing microalgae, has as a first step the study of its tolerance to N-NH3. In this work, the tolerance of Chlorella vulgaris to N-NH3, using mineral medium, was studied. Afterward, C. vulgaris was used to remove nitrogen and phosphorus from a real wastewater. The maximal biomass concentration was reached at 66 ppm N-NH3 (0.49 gL-1 with the complete depletion of the ammonium and a phosphorus consumption of 2 mgPi L-1d-1 in all the experiments. When C. vulgaris was grown in real wastewater, the final biomass concentration was 0.267 g L-1 and the nutrients (N and P were totally consumed after 3 days. According with these results, this strain of Chlorella has the potential for the removal of nitrogen and phosphorus from tertiary wastewater and the biomass produced in the process can be used for the production of high value products, such as pigments, proteins, carbohydrate or used for animal feed.

  6. OPTIMIZATION OF CELL DISRUPTION IN RAPHIDOCELIS SUBCAPITATA AND CHLORELLA VULGARIS FOR BIOMARKER EVALUATION

    Directory of Open Access Journals (Sweden)

    Adeolu Aderemi

    2015-06-01

    Full Text Available Raphidocelis subcapitata and Chlorella vulgaris are bioassay microalgae with rigid cellulosic cell wall which can hinder the release of intracellular proteins often studied as toxicity biomarkers. Since cell disruption is necessary for recovering intracellular biomolecules in these organisms, this study investigated the efficiency of ultrasonication bath; ultrasonication probe; vortexer; and bead mill in disintegrating the microalgae for anti-oxidative enzyme extraction. The extent of cell disruption was evaluated and quantified using bright field microscopy. Disrupted algae appeared as ghosts. The greatest disintegration of the microalgae (83-99.6 % was achieved using bead mill with 0.42-0.6 mm glass beads while the other methods induced little or no disruption. The degree of cell disruption using bead mill increased with exposure time, beads-solution ratio and agitation speed while larger beads caused less disruption. Findings revealed that bead milling, with specific parameters optimized, is one of the most effective methods of disintegrating the robust algal cells.

  7. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jing [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Yang Lihua [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Chan, Sidney M.N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Luan Tiangang, E-mail: cesltg@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Li Yan [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Tam, Nora F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong)

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency.

  8. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    Science.gov (United States)

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water

    International Nuclear Information System (INIS)

    Jin Jing; Yang Lihua; Chan, Sidney M.N.; Luan Tiangang; Li Yan; Tam, Nora F.Y.

    2011-01-01

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency.

  10. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella fusca (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Jerez, C.G.; Malapascua, José R.; Sergejevová, Magda; Figueroa, Felix L.; Masojídek, Jiří

    2016-01-01

    Roč. 18, č. 1 (2016), s. 24-36 ISSN 1436-2228 R&D Projects: GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059; GA MŠk(CZ) EE2.3.20.0203 Institutional support: RVO:61388971 Keywords : Microalgae * Chlorella * Lipid Subject RIV: EE - Microbiology, Virology Impact factor: 2.748, year: 2016

  11. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    International Nuclear Information System (INIS)

    Selmani, Nabila; Mirghani, Mohamed E S; Alam, Md Zahangir

    2013-01-01

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett–Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  12. Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis.

    Science.gov (United States)

    Gai, Chao; Liu, Zhengang; Han, Guanghua; Peng, Nana; Fan, Aonan

    2015-04-01

    Thermogravimetric analysis and differential thermal analysis were employed to investigate combustion characteristics of two low-lipid microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP) and iso-conversional Starink approach was used to calculate the kinetic parameters in the present study. The results showed that three stages of mass loss, including dehydration, devolatilization and char oxidation, were observed during combustion of both of two low-lipid microalgae. The whole weight loss of combustion of two microalgae was both shifted to higher temperature zones with increased heating rates from 10 to 40 K/min. In the 0.1-0.9 conversion range, the apparent activation energy of CP increased first from 51.96 to 79.53 kJ/mol, then decreased to 55.59 kJ/mol. Finally, it slightly increased to 67.27 kJ/mol. In the case of SP, the apparent activation energy gradually increased from 68.51 to 91.06 kJ/mol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Removal of Nitrate and Phosphate from Municipal Wastewater Sludge by Chlorella vulgaris, Spirulina platensis and Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Jalal K.C.A

    2011-12-01

    Full Text Available Nitrate and phosphorus in wastewater contribute to health and environmental threats as they are linked to illnesses as well as ecosystem disruption via algal blooms in contaminated water bodies. Based on above perspectives a comparative study was conducted on three local freshwater microalgae:Chlorella vulgaris, Spirulina platensis and Scenedesmus quadricauda to evaluate their effects on nitrate and phosphorus removal from municipal wastewater sludge (MWS. Algae performance in removing nitrate and phosphorus was evaluated by measuring nitrate and phosphorus content of MWS incubated with the strains for 7 days. Instantaneous readings were taken every 48 hours to determine periodic levels of the nutrients phosphate and nitrate. BOD5 was also evaluated to identify the strain with the most robust growth that would demand for oxygen the most in the dark. Spirulina platensis was shown as the most efficient microalgae to reduce nitrate in MWS and the best-growing among the three strains, while Chlorella vulgaris removed phosphorus the most effectively. Thus Spirulina and Chlorella could be potential candidates by showing their intrinsic merit for the reduction of phosphate and nitrate in wastewater treatment.ABSTRAK: Nitrat dan fosforus dalam air sisa menggugat kesihatan dan mengancam alam sekitar memandangkan ia berkait dengan penyakit-penyakit serta gangguan terhadap ekosistem melalui pembiakan alga dalam air yang tercemar. Berdasarkan perspektif di atas, satu kajian perbandingan telah dijalankan terhadap tiga mikro alga air tawar tempatan : Chlorella vulgaris, Spirulina platensis dan Scenedesmus quadricauda untuk dinilai kesannya terhadap penyingkiran nitrat dan fosforus dari enap cemar air sisa bandaran (municipal wastewater sludge (MWS. Kebolehan alga dalam penyingkiran nitrat dan fosforus dikaji dengan menyukat kandungan nitrat dan fosforus dalam MWS yang dieramkan dengan strain ini selama 7 hari. Bacaan serta-merta diambil setiap 48 jam untuk

  14. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PRODUCTIVITY OF MICROALGAE CHLORELLA VULGARIS IN LABORATORY CONDITION

    Directory of Open Access Journals (Sweden)

    Agnieszka Patyna

    2017-06-01

    Full Text Available Algae biomass is increasingly regarded as a potential resource that could be used to produce biofuels, electricity and heat. Algae contain a lot of nutrients, so they can be used as food for humans and livestock. Because of their valuable composition (many nutrients they are used as supplements of balanced diet, in turn taking into account their biosorption abbility they are used to detoxification of human body. Algae cultivation does not demand large areas of land to expose cells to sunlight, so their production rate is higher than vascular plants. Moreover algae cultivation lets to achieve high biomass concentration. Important cultivation factors are: illumination (light intensity is an important factor because it drives photosynthesis, CO2 supply, culture medium and mixing. The experimental research was conducted using Chlorella vulgaris BA 002 strain. The aim of this study was to determine the effectiveness of biomass growth in laboratory condition.

  17. Ingestion of Brachionus plicatilis under different microalgae conditions

    Science.gov (United States)

    Zhou, Wenli; Tang, Xuexi; Qiao, Xiuting; Wang, You; Wang, Renjun; Feng, Lei

    2009-09-01

    The effects of four microalgae, Chlorella vulgaris, Platymonas helgolandicavar, Isochrysis galbana, and Nitzschia closterium on the grazing and filtering rates of the marine rotifer, Brachionus plicatilis, were evaluated under laboratory conditions. The grazing rates in separate cultures of the four microalga were as follows: C. vulgaris > P. helgolandicavar > I. galbana > N. closterium. However, the filtering rates occurred in the following order: P. helgolandicavar > N. closterium > C. vulgaris > I. galbana. A mixed diets experiment revealed that P. helgolandicavar was the preferred diet of B. plicatilis. In addition, the grazing rate of B. plicatilis increased gradually as the density of the microalgae increased, until concentrations of 2.5×106 cells mL-1 for C. vulgaris and 1.5×106 cells mL-1 for I. galbana were obtained. Furthermore, the filtering rate increased slightly when the density of the microalgae was low, after which it declined as the microalgal density increased. The grazing rates of B. plicatilis were as follows during the different growth phases: stationary phase > exponential phase > lag phase > decline phase. Additionally, the filtering rates during the growth phases were: exponential phase > lag phase > stationary phase > decline phase. The results of this study provide foundational information that can be used to explore the optimal culture conditions for rotifers and to promote the development of aquaculture.

  18. Cultivo de Chlorella vulgaris sobre residual de soja con la aplicación de un campo magnético

    Directory of Open Access Journals (Sweden)

    Liliana Gómez Luna

    2011-07-01

    Chlorella ha ocupado la atención de los biotecnólogos al ser una importante fuente de biomasa para la producción de metabolitos de interés químico farmacéutico e industrial; sin embargo, el manejo de cultivos a gran escala sigue siendo un proceso que necesita economizarse, a partir de alternativas viables. Este trabajo presenta un estudio exploratorio en el que se evaluó la viabilidad del uso del residual de la línea de ablandamiento del grano de soya, como medio de cultivo para la microalga Chlorella vulgaris, obteniéndose excelentes valores de densidad celular máxima (Kmáx: 360 x 106 cél.mL-1. Posteriormente se evalúan los efectos de la aplicación de un campo magnético (CM de 0.03T, obteniéndose densidades celulares máximas en un menor tiempo de cultivo, lo que puede constituir un fundamento esencial para una nueva metodología de cultivo. La calidad de la biomasa de C. vulgaris se evalúa desde el punto de vista bioquímico, lo que permite determinar la concentración de proteínas, carbohidratos y lípidos en la fase exponencial, cuya acumulación se ve favorecida dependiendo del protocolo de aplicación del CM, mientras que la concentración de lípidos es máxima si el CM es aplicado en la fase estacionaria, variando desde 1.70 ±0.02 hasta 3.48 ±0.03 pg cél; lo que constituiría una ventaja para el manejo de cultivos comerciales de esta microalga que depende de su destino. Palabras clave: imán de neodimio, pigmentos, nitrógeno, biomasa, microalga.  ABSTRACT Chlorella has occupied the attention of biotechnologists to be an important source of biomass for the production of metabolites with a pharmaceutical, industrial and chemical interest; however, managing large-scale cultures, remains a process that needs to find alternatives become cheaper and viable. This paper presents an exploratory study that evaluated the feasibility of using the residual of soybeans softening, as a culture medium for the microalgae Chlorella vulgaris, yielding

  19. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  20. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Marianela Cobos

    2017-02-01

    Full Text Available Biodiesel production from microalgae triacylglycerols is growing, because this feedstock is a more sustainable and advantageous alternative. In this study, we isolated and identified fourteen strains of native microalgae from the Peruvian Amazon. These strains showed great heterogeneity in biomass productivity, lipid productivity and lipid content, and thus, three of them (Acutodesmus obliquus, Ankistrodesmus sp. and Chlorella lewinii were selected for further evaluation under culture of nitrogen-sufficient (+N and nitrogen-deficient (−N Chu medium No. 10. These microalgae species showed modifications in biomolecule content (protein, lipid and carbohydrate with a pronounced increase of lipids and carbohydrate and a decrease of protein content under stress culture. Furthermore, the fatty acid profile was peculiar for each species, and these patterns showed evident changes, particularly in the proportion of saturated and monounsaturated fatty acids. The results of this research suggest that the isolated native microalgae, from the Peruvian Amazon, could be suitable candidates for biodiesel production

  2. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.

    Directory of Open Access Journals (Sweden)

    Lili Yao

    Full Text Available Biomass, nutrient removal capacity, lipid productivity and morphological changes of Chlorella sorokiniana and Desmodesmus communis were investigated in mixed wastewaters with different CO2 concentrations. Under optimal condition, which was 1:3 ratio of swine wastewater to second treated municipal wastewater with 5% CO2, the maximum biomass concentrations were 1.22 g L-1 and 0.84 g L-1 for C. sorokiniana and D. communis, respectively. Almost all of the ammonia and phosphorus were removed, the removal rates of total nitrogen were 88.05% for C. sorokiniana and 83.18% for D. communis. Lipid content reached 17.04% for C. sorokiniana and 20.37% for D. communis after 10 days culture. CO2 aeration increased intracellular particle numbers of both microalgae and made D. communis tend to be solitary. The research suggested the aeration of CO2 improve the tolerance of microalgae to high concentration of NH4-N, and nutrient excess stress could induce lipid accumulation of microalgae.

  3. Nitrous Oxide (N2O production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    Directory of Open Access Journals (Sweden)

    B. Guieysse

    2013-10-01

    Full Text Available Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO, the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38–10.1 kg N2O-N ha−1 yr−1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions. These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  4. Microalgae as a raw material for biofuels production.

    Science.gov (United States)

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  5. Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters.

    Directory of Open Access Journals (Sweden)

    David K Y Lim

    Full Text Available Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species.

  6. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.

    Science.gov (United States)

    Wang, Yue; Guo, Wanqian; Yen, Hong-Wei; Ho, Shih-Hsin; Lo, Yung-Chung; Cheng, Chieh-Lun; Ren, Nanqi; Chang, Jo-Shu

    2015-12-01

    Swine wastewater, containing a high concentration of COD and ammonia nitrogen, is suitable for the growth of microalgae, leading to simultaneous COD/nutrients removal from the wastewater. In this study, an isolated carbohydrate-rich microalga Chlorella vulgaris JSC-6 was adopted to perform swine wastewater treatment. Nearly 60-70% COD removal and 40-90% NH3-N removal was achieved in the mixotrophic and heterotrophic culture, depending on the dilution ratio of the wastewater, while the highest removal percentage was obtained with 20-fold diluted wastewater. Mixotrophic cultivation by using fivefold diluted wastewater resulted in the highest biomass concentration of 3.96 g/L. The carbohydrate content of the microalga grown on the wastewater can reach up to 58% (per dry weight). The results indicated that the microalgae-based wastewater treatment can efficiently reduce the nutrients and COD level, and the resulting microalgal biomass had high carbohydrate content, thereby having potential applications for the fermentative production of biofuels or chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hubungan Kemelimpahan Chlorella sp Dengan Kualitas Lingkungan Perairan Pada Skala Semi Masal di BBBPBAP Jepara

    Directory of Open Access Journals (Sweden)

    Siska Aprilliyanti

    2016-10-01

      ABSTRACT Chlorella sp is one of the microalgae are often cultivated for various purposes such as pharmaceuticals, cosmetics, or for alternative biodiesel Chlorella sp an agent of bioremediation good, but can live in a polluted environment can also wear a heavy metal as the metal essential for metabolism. The many benefits that will be taken if it can develop Chlorella sp on a mass scale. With the emergence of Chlorella sp author conducted research using Chlorella sp as its object. The purpose of this study was to determine the relationship between the abundance of Chlorella sp with the quality of the water environment in the district of Jepara.Chlorella sp is cultivated outdoors with a light source coming from direct sunlight, aeration for mixing media using a blower that flowed through the hose and faucet aeration to mix media. Aeration used in this study with the aim of Chlorella sp cells can obtain nutrients evenly in cultivation media for their water circulation in the culture vessel (Amini, 2006. From the analysis of data obtained by the coefficient of determination (R2 = 0.995. This illustrates that there is a very strong relationship between the independent variables namely the five parameters of water quality (nitrates, phosphates, temperature, pH and salinity with the dependent variable abundance of Chlorella sp. Furthermore, multiple linear regression equation as follows: Y = -5323.54 -16.80 -60.78 nitrate phosphate + 111.09 + temperature; 997.26 -191.92 pH salinity. From the regression equation shows that the water quality parameters that have a unidirectional relationship (proportional is temperature and pH. While water quality parameters which have an inverse relationship, namely; nitrate, phosphate and salinity. Chlorella sp abundance relationships with water environmental quality semi massive scale strong, the results of the regression analysis obtained Adjusted R2 value of 0.995, meaning that the percentage contribution of variables influence

  8. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    Czech Academy of Sciences Publication Activity Database

    Ota, S.; Yoshihara, M.; Yamazaki, T.; Takeshita, T.; Hirata, A.; Konomi, M.; Oshima, K.; Hattori, M.; Bišová, Kateřina; Zachleder, Vilém; Kawano, S.

    2016-01-01

    Roč. 6, MAY 16 (2016), s. 25731 ISSN 2045-2322 Institutional support: RVO:61388971 Keywords : electron-dense body * lipid accumulation * Parachlorella kessleri Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016

  9. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  10. Influence of crude glycerol on the biomass and lipid content of microalgae

    International Nuclear Information System (INIS)

    Choi, Hee-Jeong; Yu, Sung-Whan

    2015-01-01

    The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production. Keywords: biomass; glycerol; microalgae; mixotrophic; oil content

  11. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SINTESIS BIODIESEL DARI MINYAK MIKROALGA Chlorella vulgaris DENGAN REAKSI TRANSESTERIFIKASI MENGGUNAKAN KATALIS KOH

    Directory of Open Access Journals (Sweden)

    Catur Rini Widyastuti

    2014-10-01

    Full Text Available Biodiesel merupakan salah satu energi alternatif yang dianggap mampu menjawab permasalahan kelangkaan bahan bakar minyak. Biodiesel dapat disintesis dari minyak nabati melalui reaksi transesterifikasi. Sumber minyak nabati yang potensial adalah mikroalga yang memiliki produktifitas minyak yang lebih tinggi per satuan luas lahan yang digunakan jika dibandingkan dengan tanaman darat. Mikroalga jenis Chlorella sp diketahui mengandung komponen lipid cukup tinggi yaitu sebesar 14-22%. Langkah-langkah penelitian yang dilakukan meliputi ekstraksi minyak mikroalga dengan n-heksana, reaksi transesterifikasi minyak mikroalga dan metanol dengan katalis KOH, dilanjutkan dengan filtrasi untuk memisahkan produk biodiesel dengan gliserol yang terbentuk. Untuk mengetahui kandungan kimia dalam bahan baku dan produk, minyak hasil ekstraksi mikroalga dan biodiesel yang dihasilkan dianalisis dengan GC-MS. Dari hasil uji GC-MS diketahui dua kandungan asam lemak terbesar dalam minyak mikroalga, yaitu Dodecanoic acid sebesar 59.52% dan n-Decanoic acid sebesar 12.64%. Dari proses transesterifikasi, yield biodiesel yang diperoleh sebesar 59.85% dengan densitas 0.88 g/cm3. Kandungan kimia biodiesel diketahui terdiri dari senyawa Fatty Acid Methyl Ester (FAME sebesar 15.4% dan Fatty Acid Ethyl Ester (FAEE sebesar 21.14%.Biodiesel is one of the alternative energy which expected to provide a solution towards our dependence of fossil fuel. Biodiesel could be synthesized from vegetable oil through transesterification process. One of the most potential sources of vegetable oil is microalgae which is more productive than a land-based plant. One of the species of microalgae which is Chlorella sp is known for containing high lipid content from 14 to 22%. The steps of the research including extraction of microalgae oil using n-hexane, transesterification reaction between microalgae and methanol using KOH as a catalyst, and continued by filtration to separate the biodiesel product

  13. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater

    Science.gov (United States)

    Safafar, Hamed; van Wagenen, Jonathan; Møller, Per; Jacobsen, Charlotte

    2015-01-01

    This study aimed at investigating the potential of microalgae species grown on industrial waste water as a new source of natural antioxidants. Six microalgae from different classes, including Phaeodactylum sp. (Bacillariophyceae), Nannochloropsis sp. (Eustigmatophyceae), Chlorella sp., Dunaniella sp., and Desmodesmus sp. (Chlorophyta), were screened for their antioxidant properties using different in vitro assays. Natural antioxidants, including pigments, phenolics, and tocopherols, were measured in methanolic extracts of microalgae biomass. Highest and lowest concentrations of pigments, phenolic compounds, and tocopherols were found in Desmodesmus sp. and Phaeodactylum tricornuotom microalgae species, respectively. The results of each assay were correlated to the content of natural antioxidants in microalgae biomass. Phenolic compounds were found as major contributors to the antioxidant activity in all antioxidant tests while carotenoids were found to contribute to the 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging activity, ferrous reduction power (FRAP), and ABTS-radical scavenging capacity activity. Desmodesmus sp. biomass represented a potentially rich source of natural antioxidants, such as carotenoids (lutein), tocopherols, and phenolic compounds when cultivated on industrial waste water as the main nutrient source. PMID:26690454

  14. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  15. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    Science.gov (United States)

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  16. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    Science.gov (United States)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  17. Study on Suitable Light Conditions and Efficient Lipid Extraction Technologies for Biodiesel Production Based on Microalgae

    Science.gov (United States)

    Wang, Yao; Zhang, Qingtao; Sun, Yuan; Yang, Chengjia

    2018-01-01

    As a new generation biodiesel feedstock, microalgae have most potential to replace fossil fuel. However, the limited scale and high cost are two bottleneck problems. Efficient microwave-assisted lipid extraction technologies and suitable light conditions for Chlorella Sorokiniana need further study for lowering the cost. In this study, three photoperiod groups(24L:0D, 12L:12D, 0L:24D), three illumination intensity groups (1800 lux, 3600 lux, 5400 lux)and four light spectrum groups (Red, green, blue, and white) were used to culture Chlorella Sorokiniana to investigate those effects on algae growth rate and biomass accumulation. The suitable microwave treatment was also studied to achieve an optimizing quantum fracturing technology. 400 w, 750 w and 1000 w microwave power were set and 60 °C, 75 °C, 90 °C microwave conditions were investigated. The results showed that Chlorella Sorokiniana under 24L:0D photoperiod with 5400 lux white light can achieve better growth rate. The 90 °C / 1000w microwave treatment was identified as the most simple, easy, and effective way for lipid extraction from Chlorella Sorokiniana. As the raw material of biodiesel production, C18:1, C18:2 and C18:3 have accounted for important components of fatty acid in Chlorella Sorokiniana. Therefore, Chlorella Sorokiniana is a good raw material for the production of good quality biodiesel under suitable and efficient technologies.

  18. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    Science.gov (United States)

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  19. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Worms, Isabelle A.M.; Traber, Jacqueline; Kistler, David; Sigg, Laura; Slaveykova, Vera I.

    2010-01-01

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 μm). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  20. Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents

    Energy Technology Data Exchange (ETDEWEB)

    Worms, Isabelle A.M. [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Traber, Jacqueline; Kistler, David; Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, CH-8600 Duebendorf (Switzerland); Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-02-15

    The present study addresses the key issue of linking the chemical speciation to the uptake of priority pollutants Cd(II) and Pb(II) in the wastewater treatment plant effluents, with emphasis on the role of the colloidal organic matter (EfOM). Binding of Cd(II) and Pb(II) by EfOM was examined by an ion exchange technique and flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry in parallel to bioassays with green microalga Chlorella kesslerii in ultrafiltrate (<1 kDa) and colloidal isolates (1 kDa to 0.45 mum). The uptake of Cd by C. kesslerii was consistent with the speciation analysis and measured free metal ion concentrations, while Pb uptake was much greater than that expected from the speciation measurement. Better understanding of the differences in the effects of the EfOM on Cd(II) and Pb(II) uptake required to take into account the size dependence of metal binding by EfOM. - Colloids isolated from WWTP effluents decrease Cd uptake, but increase Pb uptake by microalga Chlorella kesslerii.

  1. Study of Selecting on Light Source Used for Micro-algae Cultivation in Space

    Science.gov (United States)

    Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng

    To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation

  2. Techno-economical evaluation of protein extraction for microalgae biorefinery

    Science.gov (United States)

    Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.

    2016-01-01

    Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.

  3. Potential Health Effects of Enzymatic Protein Hydrolysates from Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Mahsa Sedighi

    2016-06-01

    Full Text Available Background and Objective: Chlorella vulgaris is a multi-cellular edible algal species with abundant proteins. Extraction of high value protein fractions for pharmaceutical and nutritional applications can significantly increase the commercial value of microalga biomasses. There is no known report on the anticancer peptides derived from the Chlorella vulgaris abundant protein.Materials and Methods: This study examined the antimicrobial and anticancer effects of peptides from a hydrolyzed Chlorella vulgaris protein with 62 kDa molecular weight. Protein hydrolysis was done by pepsin as a gastrointestinal protease, and was monitored through protein content measurement, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and high performance liquidchromatography measurements. Inhibitory effect of the produced peptides on Escherichia coli cells and breast cancer cell lines was assayed.Results and Conclusion: Hydrolyzed peptides induced a decrease of about 34.1% in the growth of Escherichia coli, and the peptides of 3 to 5 kDa molecular weight had strong impact on the viability of breast cancer cells with IC50 value of 50 μg μl-1. The peptide fractions demonstrating antimicrobial and anti-cancer activities have the potential for use as functional food ingredients for health benefits. These results demonstrate that inexpensive algae proteinscould be a new alternative to produce anticancer peptides.Conflict of interest: The authors declare that there is no conflict of interest.

  4. GROWTH KINETIC STUDY OF CHLORELLA VULGARIS USING LAB-SCALE AND PILOT-SCALE PHOTOBIOREACTOR: EFFECT OF CO2 CONCENTRATION

    Directory of Open Access Journals (Sweden)

    MAN KEE LAM

    2016-07-01

    Full Text Available In the present study, growth kinetic of Chlorella vulgaris was performed when the microalgae was cultivated with different concentrations of CO2 . The experiments were carried out using lab-scale and pilot-scale photobioreactors, and the growth results were analyzed using POLYMATH 6.0 with different growth kinetic models. The growth of the microalgae was found fitted well to the Richards growth model with attainable high R2 values as demonstrated in all studied cases, in concert with low values of root mean squares deviation (RMSD and variance. In addition, the output from the plots of experimental values versus predicted values and residual plots further confirmed the good fit of Richards model. The predicted specific growth rate from Richards model was similar to the experimental specific growth rate with deviation lesser than 5%. The attained results paved a preliminary prediction of microalgae growth characteristic when the cultivation is scaled-up to commercial scale.

  5. Tackling Carbon Emission with Nature: Effectiveness of Indigenous Microalgae Mixed Culture

    Directory of Open Access Journals (Sweden)

    Chik M. Nazry

    2016-01-01

    Full Text Available Marine microalgae species was isolated and identified from its native condition of sea water discharge canals at the TNB Janamanjung Sdn Bhd’s coal-fired power station. The species was expected to be a robust one based on the prevalent harsh upstream conditions and processes the survived ones endured. The isolation involves streaking-plating method as well as serial dilution and liquid media culture propagation. Morphological and molecular identification were both carried out before satisfactory identification of Chlorella sp. be made. This species was later mixed with marine Isochrysis sp. with varying volumetric proportions and cultured in five separate air-lift bubbling column photobioreactors, as part of the experiment to determine which optimum volumetric culture ratio is best to fix CO2 from the power plant. Results indicate that a more dominant ratio of Chlorella sp. 75% and Isochrysis sp. 25% by volume provide gives a better growth profile and indicates a better CO2 fixation rates.

  6. Estudio de las propiedades fisicoquímicas y sensoriales de esferas de microalgas.

    OpenAIRE

    CEBRIÁN LLORET, VERA

    2017-01-01

    [ES] En el presente trabajo se estudia el proceso de elaboración de un nuevo producto alimentario utilizando como base dos tipos diferentes de microalgas -Chlorella vulgaris y Arthrospira platensis-, elegidas debido a los beneficios que proporcionan sus propiedades a la salud humana. Además, estos beneficios se ven incrementados mediante la incorporación de batidos naturales a la formulación final del producto. Estos batidos están compuestos por una combinación de frutas y verd...

  7. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    Science.gov (United States)

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments.

    Science.gov (United States)

    Zeng, Fanxue; Huang, Jianke; Meng, Chen; Zhu, Fachao; Chen, Jianpei; Li, Yuanguang

    2016-01-01

    The open raceway ponds are nowadays the most used large-scale reactors for microalgae culture. To avoid the stacking of microalgae, the paddle wheels are the most widely used to circulate and mix the culture medium. In this paper, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of open raceway ponds with different types of paddle wheels (the traditional paddle wheels and the novel paddle wheels with specially inclined angle of the blades). The particle image velocimetry (PIV) was used to validate the reliability of the CFD model. The CFD simulation results showed that the novel raceway pond with 15° inclined angle of the blades had the best mixing efficiency under the same power consumption. Lastly, the results of microalgae culture experiments showed that the growth rates of Chlorella pyrenoidosa in the novel raceway pond with 15° inclined angle of the blades were higher than those in the traditional reactor. The results of the culture experiments and CFD simulations were identical with each other. Therefore, a novel paddle wheel with 15° inclined angle of the blades was obtained for better microalgae cultivation.

  9. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    Science.gov (United States)

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga.

    Directory of Open Access Journals (Sweden)

    Michael T Guarnieri

    Full Text Available Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga.

  11. Potensi Air Dadih (Whey) Tahu Sebagai Nutrien Dalam Kultivasi Chlorella SP. Untuk Bahan Baku Pembuatan Biodisel

    OpenAIRE

    Arinto, Dhika Joko; Paramastri, Hayu Pradipta; Soetrisnanto, Danny

    2013-01-01

    An increase of population growth and energy demand has lead to a foster fuel consumption, therefore an alternative fuel is necessarily needed for a solution to solve the problem. Currently, one of the most popular solution offered is biodiesel. The development of biodiesel as renewable energy is done by using microalgae such as Chlorella sp. with 28-32% lipid content as its raw material. The objective of this research is to find out the effect of various concentration, biomass based on growth...

  12. Discovery of Bioactive Metabolites in Biofuel Microalgae That Offer Protection against Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Christopher eBagwell

    2016-04-01

    Full Text Available Microalgae could become an important resource for addressing increasing global demand for food, energy, and commodities while helping to reduce atmospheric greenhouse gases. Even though Chlorophytes are generally regarded safe for human consumption, there is still much we do not understand about the metabolic and biochemical potential of microscopic algae. The aim of this study was to evaluate biofuel candidate strains of Chlorella and Scenedesmus for the potential to produce bioactive metabolites when grown under nutrient depletion regimes intended to stimulate production of triacylglycerides (TAG. Strain specific combinations of macro- and micro-nutrient restricted growth media did stimulate neutral lipid accumulation by microalgal cultures. However, cultures that were restricted for iron consistently and reliably tested positive for cytotoxicity by in vivo bioassays. The addition of iron back to these cultures resulted in the disappearance of the bioactive components by LC/MS fingerprinting and loss of cytotoxicity by in vivo bioassay. Incomplete NMR characterization of the most abundant cytotoxic fractions suggested that small molecular weight peptides and glycosides could be responsible for Chlorella cytotoxicity. Experiments were conducted to determine if the bioactive metabolites induced by Fe-limitation in Chlorella sp. cultures would elicit protection against Vampirovibrio chlorellavorus, an obligate predator of Chlorella. Introduction of V. chlorellavorus resulted in a 72% decrease in algal biomass in the experimental controls after 7 days. Conversely, only slight losses of algal biomass were measured for the iron limited Chlorella cultures (0 - 9 %. This study demonstrates a causal linkage between iron bioavailability and bioactive metabolite production in strains of Chlorella and Scenedesmus. Further study of this phenomenon could contribute to the development of new strategies to extend algal production cycles in open, outdoor

  13. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  14. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  15. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2017-08-01

    The biochemical contents and biodiesel production ability of three microalgal strains grown under different sodium nitrate, sodium carbonate, and ferric ammonium citrate (iron) levels were investigated. The highest biomass and lipid contents were found in Scenedesmus sp., Chlorella sp., and Chlamydomonas sp. when grown in normal BG-11 containing sodium carbonate concentration at 0.03 g · L -1 , and in normal BG-11 containing iron concentration (IC) at 0.009 or 0.012 g · L -1 . Increasing the sodium nitrate level increased the biomass content, but decreased the lipid content in all three microalgae. Among the three microalgae, Scenedesmus sp. showed the highest total lipid yield of 0.69 g · L -1 under the IC of 0.012 g · L -1 . Palmitic and oleic acids were the major fatty acids of Scenedesmus sp. and Chlamydomonas sp. lipids. On the other hand, Chlorella sp. lipids were rich in palmitic, oleic, and linolenic acids, and henceforth contributing to poor biodiesel properties below the standard limits. The three isolated strains had a potential for biodiesel production. Nevertheless, Scenedesmus sp. from stone quarry pond water was the most suitable source for biodiesel production with tolerance toward the high concentration of sodium carbonate without the loss of its biodiesel properties. © 2017 Phycological Society of America.

  16. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    Science.gov (United States)

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Green Biorefinery of Giant Miscanthus for Growing Microalgae and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Shuangning Xiu

    2017-12-01

    Full Text Available In this study, an innovative green biorefinery system was successfully developed to process the green biomass into multiple biofuels and bioproducts. In particular, fresh giant miscanthus was separated into a solid stream (press cake and a liquid stream (press juice using a screw press. The juice was used to cultivate microalga Chlorella vulgaris, which was further thermochemically converted via thermogravimetry analysis (TGA and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS analysis, resulting in an approximately 80% conversion. In addition, the solid cake of miscanthus was pretreated with dilute sulfuric acid and used as the feedstock for bioethanol production. The results showed that the miscanthus juice could be a highly nutritious source for microalgae that are a promising feedstock for biofuels. The highest cell density was observed in the 15% juice medium. Sugars released from the miscanthus cake were efficiently fermented to ethanol using Saccharomyces cerevisiae through a simultaneous saccharification and fermentation (SSF process, with 88.4% of the theoretical yield.

  18. Growth of microalgae in autotrophic stationary systems

    Directory of Open Access Journals (Sweden)

    Paulo Cunha

    2008-06-01

    Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.

  19. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal.

    Science.gov (United States)

    Ramos Tercero, E A; Sforza, E; Morandini, M; Bertucco, A

    2014-02-01

    The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day(-1)), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO₂-air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH₄ and P-PO₄ removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.

  20. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    OpenAIRE

    Hong Yang; Yun-Tao Cao; Hao Song; Shao-Feng Hua; Chun-Gu Xia; Wei-Bao Kong

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  1. Učinak glicerola i glukoze na povećanje biomase, udjela lipida i topljivih ugljikohidrata u miksotrofnoj kulturi alge Chlorella vulgaris

    OpenAIRE

    Kong, Wei-Bao; Yang, Hong; Cao, Yun-Tao; Song, Hao; Hua, Shao-Feng; Xia, Chun-Gu

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  2. Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Valdez

    2018-01-01

    Full Text Available Cadmium (Cd is a metal that can negatively interfere with the metabolic systems of living beings. The objective of this work was to evaluate the capacity for cadmium removal in aqueous solutions by immobilized Chlorella sp. in calcium alginate beads. Beads without Chlorella sp. were used as a control. All the treatments were established in triplicate for 80 min, at four concentrations of cadmium (0, 20, 100 and 200 ppm, taking samples of aqueous solution every 10 min, to be read using atomic absorption equipment. The study determined that the treatment of alginate beads with immobilized Chlorella sp. removed 59.67% of cadmium at an initial concentration of 20 ppm, this being the best removal result.

  3. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    OpenAIRE

    Leenawaty Limantara3); Budhi Prasetyo1); AB. Susanto2); Helly de Fretes1)*

    2012-01-01

    Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarez...

  4. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    Science.gov (United States)

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Redistribution of metabolic fluxes in Chlorella protothecoides by variation of media nitrogen concentration

    Directory of Open Access Journals (Sweden)

    Saratram Gopalakrishnan

    2015-12-01

    Full Text Available In this study, the Elementary Metabolite Unit (EMU algorithm was employed to calculate intracellular fluxes for Chlorella protothecoides using previously generated growth and mass spec data. While the flux through glycolysis remained relatively constant, the pentose phosphate pathway (PPP flux increased from 3% to 20% of the glucose uptake during nitrogen-limited growth. The TCA cycle flux decreased from 94% to 38% during nitrogen-limited growth while the flux of acetyl-CoA into lipids increased from 58% to 109% of the glucose uptake, increasing total lipid accumulation. Phosphoenolpyruvate carboxylase (PEPCase activity was higher during nitrogen-sufficient growth. The glyoxylate shunt was found to be partially active in both cases, indicating the nutrient nature has an impact on flux distribution. It was found that the total NADPH supply within the cell remained almost constant under both conditions. In summary, algal cells substantially reorganize their metabolism during the switch from carbon-limited (nitrogen-sufficient to nitrogen-limited (carbon-sufficient growth. Keywords: Microalgae, Biofuels, Chlorella, MFA, EMU algorithm

  6. Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure

    Czech Academy of Sciences Publication Activity Database

    Ota, S.; Oshima, K.; Yamazaki, T.; Kim, S.; Yu, Z.; Yoshihara, M.; Takeda, K.; Takeshita, T.; Hirata, A.; Bišová, Kateřina; Zachleder, Vilém; Hattori, M.; Kawano, S.

    2016-01-01

    Roč. 9, č. 13 (2016), s. 13 ISSN 1754-6834 Institutional support: RVO:61388971 Keywords : 3D-TEM * Green alga * Parachlorella kessleri * RNA-seq Subject RIV: EE - Microbiology, Virology Impact factor: 5.203, year: 2016

  7. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C 18:1 , trans-11 C 18:1 and monounsaturated fatty acids (MUFA), while the proportions of C 18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C 18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  8. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    Directory of Open Access Journals (Sweden)

    Luca Zuliani

    2016-10-01

    Full Text Available Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  9. Taxonomic identification and lipid production of two Chilean Chlorella-like strains isolated from a marine and an estuarine coastal environment

    Science.gov (United States)

    González, Mariela A.; Pröschold, Thomas; Palacios, Yussi; Aguayo, Paula; Inostroza, Ingrid; Gómez, Patricia I.

    2013-01-01

    The genus Chlorella was the first microalga to be massively cultured as food, feed and as a source of nutraceuticals. More recently, some species have been suggested as candidates for biodiesel production. One of the most difficult tasks in studying the systematics of green coccoids is the identification of species assigned to the genus Chlorella. In the context of several projects carried out by our research group we isolated two Chlorella-like strains from a marine and an estuarine coastal environment in Chile (Coliumo strain and Baker strain, respectively). The main objectives of this research were to identify these Chilean strains—at the species level—and determine and compare their lipid production when cultured under identical conditions. Cell size and shape, autospore number and sizes, and chloroplast and pyrenoid ultrastructure were considered as taxonomic descriptors, and 18S rDNA sequences and internal transcribed spacer ITS-1 + ITS-2 sequences and secondary structure were adopted as phylogenetic tools. The combined use of these morphological, ultrastructural and molecular attributes revealed that only the Baker strain belongs to the genus Chlorella (C. vulgaris), while the Coliumo strain corresponds to the recently amended genus Chloroidium (C. saccharophilum). Lipid characterization of the biomass obtained from these strains showed that Chlorella vulgaris (Baker strain) appears to be suitable as a raw material for biodiesel production, while Chloroidium saccharophilum (Coliumo strain) would be more appropriate for animal nutrition.

  10. KAROTENOID DARI MAKROALGAE DAN MIKROALGAE: POTENSI KESEHATAN APLIKASI DAN BIOTEKNOLOGI [Carotenoids from Macroalgae and Microalgae: Health Potential, Application and Biotechnology

    Directory of Open Access Journals (Sweden)

    Leenawaty Limantara3

    2012-12-01

    Full Text Available Algae, both micro and macroalgae, is one of the largest producers of carotenoids. The major composition of carotenoid on algae are β-carotene, astaxanthin, luthein, zeaxanthin, cryptoxanthin, and fucoxanthin which have important roles for human health. Carotenoids were produced by several microalgae species such as Dunaliella sallina, Haemotococcus pluvialis, Chlorella pyrenoidosa, Spirulina platensis, Nannnochloropsis oculata, and also from some macroalgae species such as Kappaphycus alvarezii, Sargassum sp, and Caulerpa sp. Carotenoids from algae has been proven as a powerful antioxidant and may prevent some degenerative diseases, cardiovascular, and cancer. Carotenoid also has been applied as a natural dye and dietary supplements. Biotechnology has been developed to increase the production of carotenoids from micro- and macroalgae. The large-scale cultivation of microalgae, either in open or closed system are shown to increase carotenoid production. During cultivation, some stress conditions can be specifically manipulated to optimize carotenoid production from microalgae.

  11. Growth optimisation of microalga mutant at high CO₂ concentration to purify undiluted anaerobic digestion effluent of swine manure.

    Science.gov (United States)

    Cheng, Jun; Xu, Jiao; Huang, Yun; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-02-01

    Growth rate of the microalga Chlorella PY-ZU1 mutated by nuclear irradiation was optimised for use in the purification of undiluted anaerobic digestion effluent of swine manure (UADESM) with 3745 mg L(-1) chemical oxygen demand (COD) and 1135 mg L(-1) total nitrogen content. The problem of accessible carbon in UADESM was solved by continuous introduction of 15% (v/v) CO2. Adding phosphorus to UADESM and aeration of UADESM before inoculation both markedly reduced the lag phase of microalgal growth. In addition, the biomass yield and average growth rate of Chlorella PY-ZU1 increased significantly to 4.81 g L(-1) and 601.2 mg L(-1) d(-1), respectively, while the removal efficiencies of total phosphorus, COD and ammonia nitrogen increased to 95%, 79% and 73%, respectively. Thus, the findings indicate that Chlorella PY-ZU1 can be used for effective purification of UADESM, while the biomass can be safely used as animal feed supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Resistance of common carp (Cyprinus carpio L.) to oxidative stress after chloramine-T treatment is increased by microalgae carotenoid-rich diet.

    Science.gov (United States)

    Stara, Alzbeta; Sergejevova, Magda; Kozak, Pavel; Masojidek, Jiri; Velisek, Josef; Kouba, Antonin

    2014-01-01

    In fish aquaculture, disinfectants are used against bacterial and protozoal infections. These compounds cause oxidative stress that may stimulate the generation of reactive oxygen species, and subsequently the alteration in antioxidant systems of exposed organisms. Antioxidants like carotenoids present in microalgae increase carp resistance to oxidative stress after chemical treatment. The aim of these experiments was to prove increased resistance of common carp (Cyprinus carpio L.) juveniles fed on experimental diets with microalgae biomass supplement (Algadiets) to oxidative stress caused by a disinfectant chloramine-T. In indoor experiments fish were fed on laboratory-prepared extruded diets containing supplement of Chlorella spp. (cf. C. vulgaris Beijerinck) biomass which contains antioxidants (carotenoids) like lutein. The young-of-the-year-old fish were acclimatized and fed on basal diet (control group) and the on diets containing 1, 2, 5 and 10% (w/w) of spray-dried Chlorella biomass (Algadiet 1, 2, 5 and 10) for 14 days followed by 6 weeks. Consequently, fish were treated daily with chloramine-T (Chl-T) at concentration of 10 mg x l(-1) for 1 h in three consecutive days. After this treatment, the indices of oxidative stress and antioxidant enzyme activity were assayed in fish gill, muscle and hepatopancreas. The fish fed on different Algadiets had increased antioxidant enzyme activities of glutathione peroxidase, glutathione reductase and catalase in flesh after the exposure to Chl-T. Higher activities of superoxide dismutase, glutathione peroxidase and glutathione reductase were also observed in the hepatopancreas in all tested concentrations compared to the control group fed on the basal diet. The increased production and activity of antioxidant enzymes confirmed improved protection ability of fish tissues against oxidative damage when microalgae biomass was supplemented to the fish diet which was more pronounced by higher microalgae supplement in

  13. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (pchlorella-induced changes in global hypermethylation and urinary 1-OHP (pchlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analytical evaluation of different carbon sources and growth stimulators on the biomass and lipid production of Chlorella vulgaris – Implications for biofuels

    International Nuclear Information System (INIS)

    Josephine, A.; Niveditha, C.; Radhika, A.; Shali, A. Brindha; Kumar, T.S.; Dharani, G.; Kirubagaran, R.

    2015-01-01

    The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m −3 ) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m −3 and 1.025 kg m −3 . Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production. - Highlights: • Optimization studies revealed 7th day to be the ideal period for harvesting Chlorella vulgaris. • Chlorella growth factor extract acted as a chief growth promoting factor of C. vulgaris. • Chlorella growth factor with carbon sources or phytohormones was not effective than chlorella growth factor extract alone. • Cytokinin treatment increased saturated fatty acids level, although the biomass production was not significant

  15. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  16. In vitro populations of rotifer Brachionus plicatilis Müller demonstrate inhibition when fed with copper-preaccumulating microalgae.

    Science.gov (United States)

    Moreno-Garrido, I; Lubián, L M; Soares, A M

    1999-10-01

    Four marine microalgal species (Chlorella autotrophyca, Nannochloropsis gaditana, Tetraiselmis chuii, and Isochrysis aff. galbana) were exposed for 24 h to 1 mg L(-1) dissolved copper and then transferred to fresh medium. After that, a group of 10 neonate rotifers were fed with these four microalgal species. The levels of accumulated copper in cellular concentrations of the microalgae were checked, with the result of around 40% of original concentration, with the exception of I. aff. galbana (25% of original concentration). In all cases, cells with preaccumulated metal caused a delay of 1 or 2 days in populational development of rotifers (increase in "lag phase"). The microalgae that were not fed to rotifers (disposed in parallel series) did not significantly transfer metal to the medium after the first day.

  17. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  19. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immuno nutrition

    International Nuclear Information System (INIS)

    Morris, Humberto J; Carrillo, Olimpia; Almarales, Angel; Bermudez, Rosa C; Alonso, Maria E; Borges, Leonardo; Quintana, Maria M; Fontaine, Roberto; Llaurado, Gabriel; Hernandez, Martha

    2009-01-01

    Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with improved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0-10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate. (author)

  20. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei

    2016-10-01

    Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    Science.gov (United States)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  2. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  3. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  4. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    Science.gov (United States)

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.

    Science.gov (United States)

    Li, ZhaoSheng; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2011-10-01

    High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L⁻¹ d⁻¹ respectively, a maximum biomass productivity of 1.78 g L⁻¹ d⁻¹ was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L⁻¹ d⁻¹, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L⁻¹ d⁻¹ after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effects of pressure on morphology and structure of bio-char from pressurized entrained-flow pyrolysis of microalgae

    Directory of Open Access Journals (Sweden)

    Kristina Maliutina

    2018-06-01

    Full Text Available The present dataset describes the entrained-flow pyrolysis of Microalgae Chlorella vulgaris and the results obtained during bio-char characterization. The dataset includes a brief explanation of the experimental procedure, experimental conditions and the influence of pyrolysis conditions on bio-chars morphology and carbon structure. The data show an increase in sphericity and surface smoothness of bio-chars at higher pressures and temperatures. Data confirmed that the swelling ratio of bio-chars increased with pressure up to 2.0 MPa. Consequently, changes in carbon structure of bio-chars were investigated using Raman spectroscopy. The data showed the increase in carbon order of chars at elevated pressures. Changes in the chemical structure of bio-char as a function of pyrolysis conditions were investigated using FTIR analysis. Keywords: Microalgae, Bio-char, Particle swelling, Pressurized pyrolysis

  7. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won; Lim, JitKang

    2014-01-01

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO 2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO 2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO 2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO 2 (5 g/L TiO 2 ) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO 2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO 2 /UV-A inducing oxidative stress (0.1 g/L TiO 2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO 2 /UV-A

  8. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella zofingiensis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin; Mao, Xuemei; Zhou, Wenguang; Guarnieri, Michael T.

    2016-08-01

    The production of lipids and astaxanthin, a high-value carotenoid, by Chlorella zofingiensis was investigated under different culture conditions. Comparative analysis revealed a good correlation between triacylglycerol (TAG) and astaxanthin accumulation in C. zofingiensis. Stress conditions promoted cell size and weight and induced the accumulation of neutral lipids, especially TAG and astaxanthin, with a concomitant decrease in membrane lipids. The highest contents of TAG and astaxanthin achieved were 387 and 4.89 mg g-1 dry weight, respectively. A semi-continuous culture strategy was developed to optimize the TAG and astaxanthin productivities, which reached 297 and 3.3 mg L-1 day-1, respectively. Additionally, astaxanthin accumulation was enhanced by inhibiting de novo fatty acid biosynthesis. In summary, our study represents a pioneering work of utilizing Chlorella for the integrated production of lipids and high-value products and C. zofingiensis has great potential to be a promising production strain and serve as an emerging oleaginous model alga.

  9. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    Science.gov (United States)

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.

    Science.gov (United States)

    Tran, Dang-Thuan; Yeh, Kuei-Ling; Chen, Ching-Lung; Chang, Jo-Shu

    2012-03-01

    An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp. C20. The conversion of the microalgae oil to biodiesel was conducted by transesterification of the extracted microalgal oil (M-I) and by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol to oil molar ratio (>67.93) when using the M-II approach, and can be repeatedly used for six cycles (or 288 h) without significant loss of its original activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study.

    Science.gov (United States)

    Matamoros, Víctor; Uggetti, Enrica; García, Joan; Bayona, Josep M

    2016-01-15

    Aerated batch reactors (2.5L) fed either with urban or synthetic wastewater were inoculated with microalgae (dominated by Chlorella sp. and Scenedesmus sp.) to remove caffeine, ibuprofen, galaxolide, tributyl phosphate, 4-octylphenol, tris(2-chloroethyl) phosphate and carbamazepine for 10 incubation days. Non-aerated and darkness reactors were used as controls. Microalgae grew at a rate of 0.25 d(-1) with the complete removal of N-NH4 during the course of the experiment. After 10 incubation days, up to 99% of the microcontaminants with a Henry's law constant higher than 3 10(-1) Pa m(3) mol(-1) (i.e., 4-octylphenol, galaxolide, and tributyl phosphate) were removed by volatilization due to the effect of air stripping. Whereas biodegradation was effective for removing ibuprofen and caffeine, carbamazepine and tris(2-chloroethyl) phosphate behaved as recalcitrant compounds. The use of microalgae was proved to be relevant for increasing the biodegradation removal efficiency of ibuprofen by 40% and reducing the lag phase of caffeine by 3 days. Moreover, the enantioselective biodegradation of S-ibuprofen suggested a biotic prevalent removal process, which was supported by the identification of carboxy-ibuprofen and hydroxy-ibuprofen. The results from microalgae reactors fed with synthetic wastewater showed no clear evidences of microalgae uptake of any of the studied microcontaminants. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides.

    Science.gov (United States)

    Szabo, Nancy J; Matulka, Ray A; Chan, Teresa

    2013-09-01

    Microalgae such as Chlorella spp., were once consumed as traditional human foods; now they are being developed as ingredients for modern diets. Whole Algalin Protein (WAP) from dried milled Chlorella protothecoides was evaluated for dietary safety in a 13-week feeding trial in rodents with genotoxic potential evaluated using in vitro and in vivo assays and the likelihood of food allergy potential evaluated via human repeat-insult patch test (HRIPT). In the subchronic study, rats consumed feed containing 0, 25,000, 50,000 or 100,000 ppm WAP for 92-93 days. No treatment-related mortalities or effects in general condition, body weight, food consumption, ophthalmology, urinalysis, hematology, clinical chemistry, gross pathology, organ weights, and histopathology occurred. Several endpoints exhibited statistically significant effects, but none was dose-related. The no-observed-adverse-effect level (NOAEL) was based on the highest WAP concentration consumed by the rats and was equivalent to 4805 mg/kg/day in males and 5518 mg/kg/day in females. No mutagenicity occurred in Salmonella typhimurium or Escherichia coli tester strains (≤5000 μg/plate WAP) with or without mutagenic activation. No clastogenic response occurred in bone marrow from mice administered a single oral dose (2000 mg/kg WAP). Skin sensitization was not induced by WAP via HRIPT, indicating little potential for food allergy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae

    International Nuclear Information System (INIS)

    Yue Lihong; Chen Weigong

    2005-01-01

    Fresh water microalgae, which has high CO 2 tolerance, were isolated and its cultural characteristics were investigated. The ZY-1 strain was identified as genus Chlorella. It showed maximum growth at 10% (v/v) CO 2 enriched air flowing condition, and a good growth rate in a broad range of physically controllable conditions, including CO 2 concentration up to 70% (v/v), CO 2 enriched air flow rate, temperature and pH value. The results indicated the feasibility of the ZY-1 strain for fixing CO 2 from stack gases

  14. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.

    Science.gov (United States)

    Adenan, Nurul Salma; Yusoff, Fatimah Md; Medipally, Srikanth Reddy; Shariff, M

    2016-07-01

    Microalgae are important food sources for aquaculture animals. Among the different factors which influence the biochemical composition of microalgae, nitrogen and phosphorus are two of the most important nutrient sources for growth and development. The present study aimed to assess the effects of nitrogen and phosphorus deficiency on lipid production of Chlorella sp. and Chaetoceros calcitrans. Early stationary phase culture of these species were exposed to different stress levels of nitrogen and phosphorus (25%, 50% and 75% of the full NO(3)-N and PO(4)-P concentration in the Conway media), and solvent extraction and gas-liquid chromatography methods were performed for analysis of lipid and fatty acid composition. The results revealed that lipid production in these two species significantly increased (Pnitrogen and phosphorus decreased. The fatty acid proportion remained unaffected under nitrogen deficiency, while phosphorus limitation resulted in a decrease of saturated fatty acids and promoted a higher content of omega-3 fatty acids in these species. The protein and carbohydrate levels were also altered under limited nutrients. Therefore, these conditions could be used for enhanced lipid production in microalgae for aquaculture and other industrial applications.

  15. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging

    KAUST Repository

    Kottuparambil, Sreejith

    2017-02-06

    Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50=5.55–14.70μgL−1) than diuron (EC50=12.90–>40μgL−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.

  16. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging

    KAUST Repository

    Kottuparambil, Sreejith; Brown, Murray T.; Park, Jihae; Choi, Soyeon; Lee, Hojun; Choi, Han-Gu; Depuydt, Stephen; Han, Taejun

    2017-01-01

    Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50=5.55–14.70μgL−1) than diuron (EC50=12.90–>40μgL−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.

  17. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties

    Science.gov (United States)

    Annamalai, Jayshree; Nallamuthu, Thangaraju

    2015-06-01

    In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.

  18. Retraction: Hazani A, Ibrahim M, Shehata A, El-Gaaly G, Daoud M, Fouad D, Rizwana H, Moubayed N. Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Arch Biol Sci. 2013;65(4:1447-1457. DOI: 10.2298/ABS1304447H

    Directory of Open Access Journals (Sweden)

    Editorial

    2016-01-01

    Full Text Available This is a notice of retraction of the article: Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta, published in the Archives of Biological Sciences in 2013, Vol. 65, Issue 4. The Editor-in-Chief has been informed that this paper is a duplicate of an earlier paper: Hazani A, Ibrahim M, Arif I, Shehata A, EL-Gaaly G, Daoud M, Fouad D, Rizwana H, Moubayed N. Ecotoxicity of Ag-Nanoparticles to Microalgae. J Pure Appl Microbiol. 2013;7(Spl. Ed.: 233-241. This claim is correct and the entire paper is a verbatim copy of the earlier one. After confirmation of this fact, the Editor-in-Chief of the Archives of Biological Sciences has decided to retract the paper immediately. We apologize to the readers of the journal that it took so many years to notice this error and to retract the paper. We request readers of the journal to directly get in touch with the editorial office and the editors of the journal for similar cases in the future, so that they can be handled promptly. Link to the retracted article 10.2298/ABS1304447H

  19. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Differential effects of P25 TiO{sub 2} nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2016-07-15

    Highlights: • Differential effects of P25 TiO{sub 2} NPs on Chlorella and Scenedesmus. • Concentration dependent effects in morphology and viability. • Increased ROS, catalase activity & LPO release with loss in SOD & GSH activity. • Dose dependent differential TiO{sub 2} NPs uptake affected by colonization of algae. - Abstract: P25 TiO{sub 2} nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO{sub 2} NPs (0.01, 0.1 & 1 μg/mL, i.e., 0.12, 1.25 and 12.52 μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (p < 0.001) in hydrodynamic diameter of nanoparticles with respect to both, time (0, 24, 48 and 72 h) as well as concentration under all the exposure conditions. Although, significant dose-dependent morphological (surface area & biovolume) interspecies variations were not observed, it was evident at the highest concentration of exposure within individuals. At 1 μg/mL exposure concentration, a significant difference in toxicity was noted between Chlorella and Scenedesmus under only visible light (p < 0.001) and UVA (p < 0.01) irradiation conditions. The viability data were well supported by the results obtained for oxidative stress induced by NPs on the cells. At the highest exposure concentration, superoxide dismutase and reduced glutathione activities were assessed for both the algae under all the irradiation conditions. Increased catalase activity and LPO release complemented the cytotoxic

  1. Assessing the Effect of Pretreatments on the Structure and Functionality of Microbial Communities for the Bioconversion of Microalgae to Biogas

    Directory of Open Access Journals (Sweden)

    Olivia Córdova

    2018-06-01

    Full Text Available Microalgae biomethanization is driven by anaerobic sludge associated microorganisms and is generally limited by the incomplete hydrolysis of the microalgae cell wall, which results in a low availability of microalgal biomass for the methanogenic community. The application of enzymatic pretreatments, e.g., with hydrolytic enzymes, is among the strategies used to work around the incomplete hydrolysis of the microalgae cell wall. Despite the proven efficacy of these pretreatments in increasing biomethanization, the changes that a given pretreatment may cause to the anaerobic sludge associated microorganisms during biomethanization are still unknown. This study evaluated the changes in the expression of the metatranscriptome of anaerobic sludge associated microorganisms during Chlorella sorokiniana biomethanization without pretreatment (WP (control and pretreated with commercial cellulase in order to increase the solubilization of the microalgal organic matter. Pretreated microalgal biomass experienced significant increases in biogas the production. The metatranscriptomic analysis of control samples showed functionally active microalgae cells, a bacterial community dominated by γ- and δ-proteobacteria, and a methanogenic community dominated by Methanospirillum hungatei. In contrast, pretreated samples were characterized by the absence of active microalgae cells and a bacteria population dominated by species of the Clostridia class. These differences are also related to the differential activation of metabolic pathways e.g., those associated with the degradation of organic matter during its biomethanization.

  2. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won [Daejeon, Daejeon (Korea, Republic of); Lim, JitKang [Universiti Sains Malaysia, Penang (Malaysia)

    2014-05-15

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO{sub 2} nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO{sub 2} ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO{sub 2} concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO{sub 2} (5 g/L TiO{sub 2}) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO{sub 2} (0.1 g/L) and a short induction time (two days). The controlled condition of TiO{sub 2}/UV-A inducing oxidative stress (0.1 g/L TiO{sub 2} and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO{sub 2}/UV-A.

  3. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    Science.gov (United States)

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Highly efficient extraction and lipase-catalyzed transesterification of triglycerides from Chlorella sp. KR-1 for production of biodiesel.

    Science.gov (United States)

    Lee, Ok Kyung; Kim, Young Hyun; Na, Jeong-Geol; Oh, You-Kwan; Lee, Eun Yeol

    2013-11-01

    We developed a method for the highly efficient lipid extraction and lipase-catalyzed transesterification of triglyceride from Chlorella sp. KR-1 using dimethyl carbonate (DMC). Almost all of the total lipids, approximately 38.9% (w/w) of microalgae dry weight, were extracted from the dried microalgae biomass using a DMC and methanol mixture (7:3 (v/v)). The extracted triglycerides were transesterified into fatty acid methyl esters (FAMEs) using Novozyme 435 as the biocatalyst in DMC. Herein, DMC was used as the reaction medium and acyl acceptor. The reaction conditions were optimized and the FAMEs yield was 293.82 mg FAMEs/g biomass in 6 h of reaction time at 60 °C in the presence of 0.2% (v/v) water. Novozyme 435 was reused more than ten times while maintaining relative FAMEs conversion that was greater than 90% of the initial FAMEs conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. EVALUACIÓN DEL EFECTO DEL HIDROCARBURO FENANTRENO SOBRE EL CRECIMIENTO DE Chlorella vulgaris (CHLORELLACEAE

    Directory of Open Access Journals (Sweden)

    Angélica María Otero-Paternina

    2013-01-01

    Full Text Available Se evaluó el efecto del hidrocarburo policíclico aromático fenantreno sobre el crecimiento de la microalga Chlorella vulgaris  bajo condiciones de laboratorio. Las microalgas fueron expuestas a diferentes concentraciones de fenantreno (0, 1, 10, 100, 1000 y 10000 μg/l. El tiempo de exposición fue de 72 h, determinándose diariamente la densidad algal mediante recuento en cámara de Neubauer. Se determinó la tasa promedio de crecimiento, la biomasa total y el porcentaje de inhibición de la biomasa. También se evaluó el contenido de clorofila a, al inicio y final del experimento. Los ensayos fueron realizados en recipientes de vidrio de 0,4 l, utilizando como medio de cultivo fertilizante inorgánico del complejo NPK (REMITAL® m – 17-6-18 a razón de 1 g/l. Los resultados mostraron que el fenantreno inhibió progresivamente el crecimiento de la microalga, observándose el menor crecimiento celular en el medio con la mayor concentración de fenantreno, el cual alcanzó un porcentaje de inhibición del crecimiento del 59 %. Las tasas de crecimiento diario se mantuvieron relativamente constantes en los demás tratamientos. La concentración de clorofila a, medida mediante espectrofotometría, no se afectó por las diferentes concentraciones del hidrocarburo. En conclusión, el crecimiento de la microalga C. vulgaris  puede afectarse negativamente por la exposición a concentraciones nominales superiores a 1 μg/l de fenantreno.

  6. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    Directory of Open Access Journals (Sweden)

    Kevin Stemmler

    2016-03-01

    Full Text Available Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.

  7. Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation

    Directory of Open Access Journals (Sweden)

    Esther Lorente

    2018-03-01

    Full Text Available The aim of this study is to explore an innovative downstream route for microalgae processing to reduce cost production. Experiments have been carried out on cell disruption and fractionation stages to recover lipids, sugars, and proteins. Steam explosion and dynamic membrane filtration were used as unit operations. The species tested were Nannochloropsis gaditana, Chlorella sorokiniana, and Dunaliella tertiolecta with different cell wall characteristics. Acid-catalysed steam explosion permitted cell disruption, as well as the hydrolysis of carbohydrates and partial hydrolysis of proteins. This permitted a better access to non-polar solvents for lipid extraction. Dynamic filtration was used to moderate the impact of fouling. Filtration enabled two streams: A permeate containing water and monosaccharides and a low-volume retentate containing the lipids and proteins. The necessary volume of solvent to extract the lipids is thus much lower. An estimation of operational costs of both steam explosion and membrane filtration was performed. The results show that the steam explosion operation cost varies between 0.005 $/kg and 0.014 $/kg of microalgae dry sample, depending on the cost of fuel. Membrane filtration cost in fractionation was estimated at 0.12 $/kg of microalgae dry sample.

  8. Evaluation of the potential for some isolated microalgae to produce biodiesel

    Directory of Open Access Journals (Sweden)

    Eman A. Mahmoud

    2015-03-01

    Full Text Available The energy and the world food crises have ignited interest in algal culture for making biodiesel, bioethanol, biobutanol and other biofuels using the land that is not suitable for agriculture. Algal fuel is an alternative to fossil fuel that uses algae as its source of natural deposits. Microalgal lipids are the oils of the future for sustainable biodiesel production. One of the most important roles in obtaining oil from microalgae is the choice of species. A total of fifteen microalgal isolates, obtained from brackish and fresh waters, were assayed at the laboratory for their ability to high biomass productivity and lipid content. Only three microalgae were selected as the most potent isolates for biomass and lipid production. They have been identified as Chlorella vulgaris, Scenedesmus quadri and Trachelomonas oblonga. All of them were cultivated on BG11 media and harvested by centrifugation. The dry weight of the three isolates was recorded as 1.23, 1.09 and 0.9 g/l while the lipid contents were 37%, 34% and 29%, respectively which can be considered a promising biomass production and lipid content.

  9. Identification of characteristic fatty acids to quantify triacylglycerols in microalgae

    Directory of Open Access Journals (Sweden)

    Peili eShen

    2016-02-01

    Full Text Available The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG. Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3 were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content and thus the correlation coefficient presenting r2 were 0.96, 0.94 and 0.97 respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0, EPA were 0.94, 0.97 respectively and Chlorella pyrenoidosa, whose r2 value correspondingly between C18:1, C18:3 and TAG content were 0.91, 0.99 as well. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods.

  10. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria -PMB 1013, Postal Code 810001 (Nigeria); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Melão, Maria da Graça G. [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Parrish, Christopher C. [Ocean Sciences Centre, Memorial University of Newfoundland, St. John' s, Newfoundland A1C 5S7 (Canada)

    2013-03-15

    Highlights: ► We studied the effect of Cd and phosphorus (P) on lipids of Chlorella vulgaris. ► Triacylglycerol (TAG) concentration increased under P limitation and Cd stress. ► Fatty acids (FA) saturation increased with P limitation and Cd exposure. ► Lower PUFA were obtained under P limitation and Cd stress. ► Combined P limitation/Cd stress increased total lipid production of the microalga. -- Abstract: Fatty acids are the fundamental structural components of membrane lipids, and the degree of saturation of the long hydrocarbon chains in microalgae contributes to regulation of growth, biomass production and reproduction of aquatic consumers. This research aimed at evaluating the effects of cadmium (2 × 10{sup −8}; 10{sup −7} mol L{sup −1} Cd) on lipid class and fatty acid composition of the microalga Chlorella vulgaris under varying phosphate (PO{sub 4}{sup 3−}) concentrations (6.0 × 10{sup −7} to 2.3 × 10{sup −4} mol L{sup −1}). Under PO{sub 4}{sup 3−} limitation and Cd stress, the storage lipid class triacylglycerol (TAG) was the most accumulated among the lipid classes. Fatty acid composition revealed that the degree of saturation increased with increasing Cd stress and PO{sub 4}{sup 3−} limitation. Decreasing PO{sub 4}{sup 3−} and increasing Cd concentrations resulted in higher saturated fatty acid (SAFA) and monounsaturated FA (MUFA) concentrations. Total polyunsaturated FA (PUFA) and ω3 PUFA, and PUFA:SAFA ratios were higher in the control (2.3 × 10{sup −4} mol L{sup −1} PO{sub 4}{sup 3−}) cells than in either PO{sub 4}{sup 3−} limitation or Cd stress, or in the combination of both stresses. Contrasting with all the other PUFAs, 18:2n – 6 increased as PO{sub 4}{sup 3−} limitation increased. A significant positive relationship of PUFAs, acetone mobile polar lipids (AMPL) and phospholipids (PL) with phosphate concentration in the culture media was obtained, while TAG concentrations had a positive association

  11. Benefits of Preventive Administration of Chlorella sp. on Visceral Pain and Cystitis Induced by a Single Administration of Cyclophosphamide in Female Wistar Rat.

    Science.gov (United States)

    Hidalgo-Lucas, Sophie; Rozan, Pascale; Guérin-Deremaux, Laetitia; Baert, Blandine; Violle, Nicolas; Saniez-Degrave, Marie-Hélène; Bisson, Jean-François

    2016-05-01

    Chlorella sp. is a green microalgae containing nutrients, vitamins, minerals, and chlorophyll. In some communities, Chlorella sp. is a traditional medicinal plant used for the management of inflammation-related diseases. In a rat model, ROQUETTE Chlorella sp. (RCs) benefits were investigated on visceral pain and associated inflammatory parameters related to cystitis both induced by cyclophosphamide (CYP). RCs was orally administered every day from day 1-16 (250 and 500 mg/kg body weight). Six hours after an intraperitoneal injection of 200 mg/kg body weight of CYP, body temperature, general behavior, food intake, and body weight were recorded. Twenty-four hours after CYP injection, rats were tested in two behavioral tests, an open field and the aversive light stimulus avoidance conditioning test, to evaluate the influence of pain on general activity and learning ability of rats. After euthanasia, bladders were weighed, their thickness was scored, and the urinary hemoglobin was measured. RCs orally administered at the two dosages significantly reduced visceral pain and associated inflammatory parameters related to cystitis both induced by CYP injection, and improved rat behavior. To conclude, RCs demonstrated beneficial effects against visceral pain and cystitis.

  12. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Félix L Figueroa

    2013-11-01

    Full Text Available In vivo chlorophyll fluorescence associated to Photosystem II is being used to evaluate photosynthetic activity of microalgae grown in different types of photobioreactors; however, controversy on methodology is usual. Several recommendations on the use of chlorophyll fluorescence to estimate electron transport rate and productivity of microalgae grown in thin-layer cascade cultivators and methacrylate cylindrical vessels are included. Different methodologies related to the measure of photosynthetic activity in microalgae are discussed: (1 measurement of light absorption, (2 determination of electron transport rates versus irradiance and (3 use of simplified devices based on pulse amplitude modulated (PAM fluorescence as Junior PAM or Pocket PAM with optical fiber and optical head as measuring units, respectively. Data comparisons of in vivo chlorophyll fluorescence by using these devices and other PAM fluorometers as Water-PAM in the microalga Chlorella sp. (Chlorophyta are presented. Estimations of carbon production and productivity by transforming electron transport rate to gross photosynthetic rate (as oxygen evolution using reported oxygen produced per photons absorbed values and carbon photosynthetic yield based on reported oxygen/carbon ratio are also shown. The limitation of ETR as estimator of photosynthetic and biomass productivity is discussed. Low cost:quality PAMs can promote monitoring of chlorophyll fluorescence in algal biotechnology to estimate the photosynthetic activity and biomass productivity.

  13. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways.

    Science.gov (United States)

    Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong

    2017-12-01

    The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    Science.gov (United States)

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition.

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    Full Text Available Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear.In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1% from the forward library and 62 (21.8% from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense.The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and

  17. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    Directory of Open Access Journals (Sweden)

    Pouya Asrar

    2015-06-01

    Full Text Available We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC, with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized.

  18. Co-cultivation of microalgae in aquaponic systems.

    Science.gov (United States)

    Addy, Min M; Kabir, Faryal; Zhang, Renchuan; Lu, Qian; Deng, Xiangyuan; Current, Dean; Griffith, Richard; Ma, Yiwei; Zhou, Wenguang; Chen, Paul; Ruan, Roger

    2017-12-01

    Aquaponics is a sustainable system for the future farming. In aquaponic systems, the nutrient-rich wastewater generated by the fish provides nutrients needed for vegetable growth. In the present study, the role of microalgae of Chlorella sp. in the floating-raft aquaponic system was evaluated for ammonia control. The yields of algal biomass, vegetable, and removal of the key nutrients from the systems were monitored during the operation of the aquaponic systems. When the systems were in full operation, the algae production was about 4.15±0.19g/m 2 ·day (dry basis) which is considered low because the growth conditions are primarily tailored to fish and vegetable production. However, it was found that algae had a positive effect on balancing pH drop caused by nitrifying bacteria, and the ammonia could be controlled by algae since algae prefer for ammonia nitrogen over nitrate nitrogen. The algae are more efficient for overall nitrogen removal than vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A single-step method for rapid extraction of total lipids from green microalgae.

    Directory of Open Access Journals (Sweden)

    Martin Axelsson

    Full Text Available Microalgae produce a wide range of lipid compounds of potential commercial interest. Total lipid extraction performed by conventional extraction methods, relying on the chloroform-methanol solvent system are too laborious and time consuming for screening large numbers of samples. In this study, three previous extraction methods devised by Folch et al. (1957, Bligh and Dyer (1959 and Selstam and Öquist (1985 were compared and a faster single-step procedure was developed for extraction of total lipids from green microalgae. In the single-step procedure, 8 ml of a 2∶1 chloroform-methanol (v/v mixture was added to fresh or frozen microalgal paste or pulverized dry algal biomass contained in a glass centrifuge tube. The biomass was manually suspended by vigorously shaking the tube for a few seconds and 2 ml of a 0.73% NaCl water solution was added. Phase separation was facilitated by 2 min of centrifugation at 350 g and the lower phase was recovered for analysis. An uncharacterized microalgal polyculture and the green microalgae Scenedesmus dimorphus, Selenastrum minutum, and Chlorella protothecoides were subjected to the different extraction methods and various techniques of biomass homogenization. The less labour intensive single-step procedure presented here allowed simultaneous recovery of total lipid extracts from multiple samples of green microalgae with quantitative yields and fatty acid profiles comparable to those of the previous methods. While the single-step procedure is highly correlated in lipid extractability (r² = 0.985 to the previous method of Folch et al. (1957, it allowed at least five times higher sample throughput.

  20. Restauración de la inmunocompetencia en ratones malnutridos con la administración de un hidrolizado de microalgas

    OpenAIRE

    Humberto Joaquín Morris Quevedo; Leonardo Borges Quintana; Clara Esther Martínez Manrique; Olimpia Carrillo Farnés

    2003-01-01

    Se evaluó el efecto de la administración intraperitoneal de un hidrolizado proteico de la microalga Chlorella vulgaris en una dosis de 500 mg/kg de peso durante 6 días, como complemento de la dieta convencional en la recuperación de la inmunocompetencia de ratones Balb/c con malnutrición proteico-energética inducida experimentalmente por restricción dietética. La intervención con el hidrolizado implicó la restauración del conteo de leucocitos totales a valores similares a los del grupo contro...

  1. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    Science.gov (United States)

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  2. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera

    Directory of Open Access Journals (Sweden)

    E. Lucía-Pavón

    2001-12-01

    Full Text Available In order to maintain rotifer populations during periods of low algal production, it is necessary to offer alternate diets, some of which include forms of preserved algae. The present work is based on the effect of live and dead Chlorella vulgaris on the population growth of Brachionus calyciflorus and Brachionus patulus. The experimental design consisted of 3 algal levels (0.5x10(6, 1.5x10(6 and 4.5x10(6 cells ml-1 offered in 3 forms (living, frozen and heat-killed. The maximal population density values for B. calyciflorus ranged from 55±1 ind. ml-1 (at 0.5x10(6 cells ml-1 to 471±72 ind. ml-1 (at 4.5x10(6 cells ml-1 with live Chlorella, but was much lower (6±1 to 26±6 ind. ml-1 with frozen or heat-killed alga under comparable food levels. However, the maximum population density of B. patulus under live or or heat-killed Chlorella was similar at comparable algal levels but when offered frozen algae it was four times less. The highest mean peak population density was 1227±83 ind. ml-1 under 4.5x10(6 cells ml-1. The rate of population increase for B. calyciflorus varied from 0.50 to 0.79 using live Chlorella, but under comparable conditions, this range was lower (0.21 to 0.31 for B. patulus. Results have been discussed in light of possible application for aquaculturePara mantener poblaciones de rotíferos durante periodos con escasez de microalgas, es necesario ofrecer dietas alternativas, incluyendo algunas formas de microalgas preservadas. El presente trabajo analiza el efecto de Chlorella vulgaris viva y muerta sobre el crecimiento poblacional de Brachionus calyciflorus y Brachonus patulus. El diseño experimental consistió en tres niveles de algas (0.5x10(6, 1.5x10(6 y 4.5x10(6 células ml-1 ofrecidas en tres formas (viva, congelada y muerta con agua caliente. Las abundancias máximas de población de B. calyciflorus variaron desde 55±1 ind. ml-1 (en 0.5x10(6 células ml-1 a 471±72 ind. ml-1 (en 4.5x10(6 células ml-1 con Chlorella viva

  3. The effect of AgNO3 on the bioenergetic processes and the ultrastructure of Chlorella and Dunaliella cells exposed to different saline conditions

    International Nuclear Information System (INIS)

    Loseva, N.L.; Alyabyev, A.Ju.; Gordon, L.Kh.; Andreyeva, I.N.; Kolesnikov, O.P.; Ponomareva, A.A.; Kemp, R.B.

    2007-01-01

    The effect of AgNO 3 , an inhibitor of the H + pump in the plasma membrane, on the bioenergetic processes and on the ultrastructure of the microalgae Chlorella vulgaris (salt sensitive) and Dunaliella maritima (salt resistant) was examined under varying salt concentrations. Differences between them were observed in changes of the cellular energy metabolism depending on their salt sensitivity and the inhibition of the H + pump activity. A decrease was observed in the rates of heat production (about 45%), O 2 uptake (greater than 40-50% of the control) and particularly photosynthesis (more than 80%) in Chlorella cells under the simultaneous action of NaCl and AgNO 3 . Dunaliella cells showed small to moderate rate increases for heat production (less than 7%), O 2 uptake (10-15%) and O 2 evolution (40%) in higher salt concentrations and under the action of AgNO 3 . The production of active oxygen species was studied as an early unspecific response of microalgal cells to possible unfavorable conditions, including salt stress. The amount of superoxide formed by the Dunaliella cells was higher than that by the Chlorella cells. However, Ag + ions increased the generation rate of superoxide radicals considerably in both Chlorella and Dunaliella cells. The electron microscopy showed that changes of the algal ultrastructure of cells exposed to the action of Ag + ions were connected with the observed physiological changes and to a large extent with the alteration of the bioenergetic processes in them

  4. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: filtration performance, membrane fouling and cake behavior.

    Science.gov (United States)

    Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi

    2014-01-01

    The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3.

    Science.gov (United States)

    Ganeshkumar, Vimalkumar; Subashchandrabose, Suresh R; Dharmarajan, Rajarathnam; Venkateswarlu, Kadiyala; Naidu, Ravi; Megharaj, Mallavarapu

    2018-05-01

    The larger-scale generation of piggery and winery wastewaters and consequent eutrophication are quite alarming, necessitating the use of a cost-effective treatment. This study attempted to remediate wastewaters from piggery and winery mixed in the ratios of 20:80, 50:50, 80:20, 100:0 and 0:100, in terms of nutrient removal and subsequent lipid accumulation by soil microalga, Chlorella sp. MM3. The per cent removal of total nitrogen and phosphates by the alga from mixed wastewaters within 10-days ranged between 51 and 89 and 26-49, respectively. As determined by FTIR spectroscopy, the lipid accumulation in the microalgal cells grown in wastewater mixtures ranged between 29 and 51%. Our results suggest that Chlorella sp. MM3 could be a potential candidate for bioremediation of wastewaters derived from piggery farm and winery industry, and that mixing of these wastewaters in 20:80 ratio would be an efficient approach for phycoremediation of mineral-rich effluents and subsequent yield of fairly good amounts of biofuel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    Science.gov (United States)

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Park, Ji-Yeon; Lee, Jin-Suk; Lee, Young-Chul; Oh, You-Kwan

    2014-11-01

    Industrial CO2-rich flue-gases, owing to their eco-toxicity, have yet to be practically exploited for microalgal biomass and lipid production. In this study, various autotrophic and mixotrophic culture modes for an oleaginous microalga, Chlorella sp. KR-1 were compared for the use in actual coal-fired flue-gas. Among the mixotrophic conditions tested, the fed-batch feedings of glucose and the supply of air in dark cycles showed the highest biomass (561 mg/L d) and fatty-acid methyl-ester (168 mg/L d) productivities. This growth condition also resulted in the maximal population of microalgae and the minimal population and types of KR-1-associated-bacterial species as confirmed by particle-volume-distribution and denaturing-gradient-gel-electrophoresis (DGGE) analyses. Furthermore, microalgal lipid produced was assessed, based on its fatty acid profile, to meet key biodiesel standards such as saponification, iodine, and cetane numbers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate.

    Science.gov (United States)

    Franchino, Marta; Tigini, Valeria; Varese, Giovanna Cristina; Mussat Sartor, Rocco; Bona, Francesca

    2016-11-01

    Liquid digestate is considered as an important by-product of anaerobic digestion of agriculture wastes. Currently, it is very often directly spread on local agricultural land. Yet recently concerns on its environmental risk of this processing has begun to rise. On the other hand, investigations on the effectiveness of microalgae for wastewater treatment have started to consider also this complex matrix. In this study, we cultured the green alga Chlorella vulgaris in diluted digestate coming from the anaerobic digestion of pig slurry and corn, with the aim to significantly reduce its toxicity and its very high nutrient concentration. For this purpose, a battery of toxicity tests composed of four acute and two chronic bioassays was applied after the alga cultivation. Results were compared with those obtained in the initial characterization of the digestate. Results show that highly diluted piggery digestate can be a suitable medium for culturing microalgae, as we obtained a high removal efficiency (>90%) for ammonia, total nitrogen and phosphate, though after a few days phosphorus limitation occurred. Toxicity was significantly reduced for all the organisms tested. Possible solutions for optimizing this approach avoiding high dilution rates are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Growth of microalgae with increased calorific values in a tubular bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Scragg, A.H.; Illman, A.M.; Carden, A.; Shales, S.W. [University of the West of England, Dept. of Environmental Sciences, Bristol (United Kingdom)

    2002-07-01

    In order to use microalgae as a fuel the algae should be of high calorific value and must be capable of growth in large volumes. Chlorella vulgaris and C. emersonii have been shown to grow in a 230 I pumped tubular photobioreactor in Watanabe's medium and a low nitrogen medium. The low nitrogen medium induces higher lipid accumulation in both algae, which increased their calorific value. The highest calorific value was obtained with C. vulgaris (28 kJg{sup -1}) grown in low nitrogen medium. However, the biomass productivity was 24 mg dry wtl {sup -1} d{sup -1} in the low nitrogen medium which was lower than in Watanabe's medium (40 mg dry wtl{sup -1} d{sup -1}) and represents a reduced energy recovery. (Author)

  10. THE EFFECT OF BIOMASS FROM GREEN ALGAE OF CHLORELLA GENUS ON THE BIOCHEMICAL CHARACTERISTICS OF TABLE EGGS

    Directory of Open Access Journals (Sweden)

    SVETLANA GRIGOROVA

    2006-10-01

    Full Text Available An analysis was made of the fatty-acid content of the dry biomass from green algae of Chlorella genus cultivated in Bulgaria, with the aim of establishing its effect on the content of total lipids, cholesterol, phospholipids and the fattyacid content of the table eggs. The fatty-acid composition of the dry biomass from green microalgae of Chlorella genus was characterized by its high content of α linolenic acid – 36,5 %, palmitic acid – 20,4 %, linoleic acid – 15 % and oleic acid – 10,3 % of the total amount of fatty acids in the product. Omega-3/Omega-6 fatty acids ratio in the biomass was 0,4. When adding 2 % and 10 % of alga biomass to the forage for the laying hens the total cholesterol content in 100 g of yolk decreased in the experimental groups compared to the control one, however, the differences were statistically insignifi cant. The supplement of 2 % and 10 % of the studied product exerted an effect on the fatty-acid content of the egg yolk and it led to the increase of the amount of palmitic and linoleic acids and to the decrease of the docosatetraenic acid.

  11. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  12. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  14. Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production.

    Science.gov (United States)

    Ahmad, A L; Yasin, N H Mat; Derek, C J C; Lim, J K

    2014-01-01

    In this work, a mixture of chloroform and methanol (1:1, v/v) was applied to oil extraction from Chlorella sp. at 30, 40, 50 and 60 degrees C for 150 min extraction times. Kinetic studies revealed that the values of n and the rate constants were found to depend strongly on temperature. The activation energy was Ea = 38.893 kJ/mol, and the activation thermodynamic parameters at 60 degrees C were ΔS≠ = -180.190 J/mol , ΔH≠ = 36.124k J/mol and ΔG≠ = 96.128k J/mol. Both ΔH and ΔS yielded positive values, whereas ΔG was negative at 60 degrees C, indicating that this process is endothermic, irreversible and spontaneous. The acidic transesterification process was also investigated by gas chromatographic analysis of the microalgae fatty acid methyl esters (biodiesel) at different temperatures and reaction times. The fatty acid profile indicated that the main components were palmitic, linoleic and linolenic acids. The concentration of linolenic acid increased and oleic acid decreased as the temperature increased. Two-hour transesterification is the best reaction time for biodiesel production because it produces the highest percentage of unsaturated fatty acids (74%). These results indicate the potential of Chlorella sp. to produce biodiesel of good quality.

  15. IDENTIFICACIÓN DE MICROALGAS OLEAGINOSAS EN EL ÁREA DE CONCESIÓN PARA CONSERVACIÓN, CUENCA ALTA DEL RÍO ITAYA. LORETO-PERÚ

    Directory of Open Access Journals (Sweden)

    Marianela Cobos Ruiz

    2012-12-01

    Full Text Available Las microalgas oleaginosas constituyen una nueva alternativa para la producción de biodiesel, por su alta eficiencia fotobiosintética de triglicéridos y presentan productividades mayores de 10 a 100 veces que los cultivos convencionales. Además que actúan como sumideros de CO2 y pueden usar aguas servidas para producir biodiesel. Sin embargo, los estudios sobre identificación de este tipo de microalgas en la amazonía son escasos. El objetivo del presente trabajo de investigación fue identificar especies de microalgas oleaginosas con potencial aplicación para la producción de biodiesel que se encuentran en ambientes acuáticos del Área de Concesión para Conservación de la Universidad Científica del Perú (UCP. La colecta de las muestras se realizó del 27/06/12 al 03/07/12 entre las 12 y 15 h utilizando red planctónica tipo cono y como preservante formol al 3%. La identificación microscópica se realizó en el Laboratorio de Ciencias Básicas de la UCP. La densidad de las microalgas fue realizada en base a su conteo en cámaras de Neubauer  y Sedgwick-Rafter. Los resultados muestran la presencia de 20 especies de microalgas, de las cuales cinco son microalgas oleaginosas. Correspondiente a las del género Chlorella quienes presentaron la mayor densidad promedio (6x104 células/ml en las tres cochas evaluadas.

  16. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues.

    Science.gov (United States)

    Calixto, Clediana Dantas; da Silva Santana, Jordana Kaline; de Lira, Evandro Bernardo; Sassi, Patrícia Giulianna Petraglia; Rosenhaim, Raul; da Costa Sassi, Cristiane Francisca; da Conceição, Marta Maria; Sassi, Roberto

    2016-12-01

    The potential of four regional microalgae species was evaluated in relation to their cell growth and biomass production when cultured in the following alternative media: bio-composts of fruit/horticultural wastes (HB), sugarcane waste and vinasse (VB) chicken excrements (BCE), raw chicken manure (RCM), and municipal domestic sewage (MDS). The cultures were maintained under controlled conditions and their growth responses, productivities, biochemical compositions, and the ester profiles of their biomasses were compared to the results obtained in the synthetic media. The MDS and HB media demonstrated promising results for cultivation, especially of Chlorella sp., Chlamydomonas sp., and Lagerheimia longiseta, which demonstrated productivities superior to those seen when grown on the control media. The highest lipid levels were obtained with the HB medium. The data obtained demonstrated the viability of cultivating microalgae and producing biomass in alternative media prepared from MDS and HB effluents to produce biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as a sole carbon substrate, but its effect is inferior to that of the mixture of glycerol and glucose. The effect of glycerol and glucose could enhance the algal cell growth rate, biomass content and volumetric productivity, and overcome the lower biomass production on glycerol as the sole organic carbon source in mixotrophic culture medium. The utilization of complex organic carbon substrate can stimulate the biosynthesis of lipids and soluble carbohydrates as the raw materials for biodiesel and bioethanol production, and reduce the anabolism of photosynthetic pigments and proteins. This study provides a promising niche for reducing the overall cost of biodiesel and bioethanol production from microalgae as it investigates the by-products of algal biodiesel production and algal cell hydrolysis as possible raw materials (lipids and carbohydrates and organic carbon substrates (soluble carbohydrates and glycerol for mixotrophic cultivation of microalgae.

  18. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review

    International Nuclear Information System (INIS)

    Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhattacharya, Prosun

    2014-01-01

    The extensive use of fossil fuels is increasingly recognized as unsustainable as a consequence of depletion of supplies and the contribution of these fuels to climate change by GHG (greenhouse gas) emissions into the atmosphere. Microalgae indicate alternative renewable sustainable energy sources as they have a high potential for producing large amounts of biomass which in turn can be used for production of different third-generation biofuels at large scale. Microalgae transform the solar energy into the carbon storage products, leads to lipid accumulation, including TAG (triacylglycerols), which then can be transformed into biodiesel, bioethanol and biomethanol. This paper reviews the selection, production and accumulation of target bioenergy carrier's strains and their advantages as well as the technological development for oil, biodiesel, ethanol, methanol, biogas production and GHG mitigation. The feedstock of promising algal strain exhibits the suitable biofuel production. The current progress of hybrid-technologies (biomass production, wastewater treatment, GHG mitigation) for production of prime-products as biofuels offer atmospheric pollution control such as the reduction of GHG (CO 2 fixation) coupling wastewater treatment with microalgae growth. The selection of efficient strain, microbial metabolism, cultivation systems, biomass production are key parameters of viable technology for microalgae-based biodiesel-production. - Highlights: • Microalgae are promising feedstock for biofuel production within lower farming area. • Production rate (L/ha) of oil from microalgae is much higher than other feedstock. • Lipid of Chlorella emersonii, Botryococcus braunii, Dunaliella tertiolecta, are high (>60% of dw biomass). • Remove pollutant from wastewater during feedstock production by selective strains. • Ecofriendly route to mitigate GHG (greenhouse gas) and water pollution during microalgae production

  19. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa

    Science.gov (United States)

    Sun, Ming; Lin, Hong; Guo, Wen; Zhao, Fazhen; Li, Jian

    2017-12-01

    Intensive use of sulfamethazine (SM2) in aquaculture has resulted in some detrimental effects to non-targeted organisms. In order to assess its potential ecological risk, it is crucial to have a good understanding on the bioaccumulation and biodegradation of SM2 in Chlorella pyrenoidosa. The microalgae were treated with 2, 4, and 8 mg L-1 of sulfamethazine for 13 days, respectively, showing that the inhibition effects of sulfamethazine on the growth of Chlorella pyrenoidosa increased progressively as the concentrations of sulfamethazine increasing from 2 to 8 mg L-1. The peak concentrations of sulfamethazine accumulated in C. pyrenoidosa were 0.225, 0.325, and 0.596 ng per mg FW on day 13 for three treatment groups, respectively, showing a great ability to deplete sulfamethazine from the culture media. On day 13, the percentages of biotic degradation were 48.45%, 60.21% and 69.93%, respectively. The EC50 of 10.05 mg L-1 was derived which showed no significant risk for C. pyrenoidosa with a calculated risk quotient catalase increased progressively in response to sulfamethazine and showed a positive correlation to the treatment concentrations. The highest superoxide dismutase activity was achieved at the concentration of 8 mg L-1 after 2 d of exposure, which was 1.89 folds higher than that of the control. The activity of catalase has a similar pattern to that of superoxide dismutase with the maximum activity achieved at day 2, which was 3.11 folds higher compared to that of the control. In contrast to superoxide dismutase and catalase, the maximum glutathione S-transferase activity was observed at day 6, showing 2.2 folds higher than that of the control.

  20. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process

    DEFF Research Database (Denmark)

    Mahdy, Ahmed; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    ) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431 mL CH4 g VS-1), while the BMP of microalgae alone (100/0) was 415 mL CH4 g VS-1. Subsequently, anaerobic digestion of those two substrates was tested...... in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2 g NH4+-N L-1), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively) These results demonstrated that ammonia tolerant inocula...

  1. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study

    International Nuclear Information System (INIS)

    Matamoros, Víctor; Uggetti, Enrica; García, Joan; Bayona, Josep M.

    2016-01-01

    Highlights: • The effect of microalage on the removal of emerging contaminants has been evaluated. • Volatilization was relevant for compounds with a moderate Henry’s law constant. • Biodegradation was the main factor for the removal of caffeine and ibuprofen. • Ibuprofen enantioselective biodegradation was observed. • CA-ibuprofen and OH-ibuprofen followed the concentration decline of ibuprofen. - Abstract: Aerated batch reactors (2.5 L) fed either with urban or synthetic wastewater were inoculated with microalgae (dominated by Chlorella sp. and Scenedesmus sp.) to remove caffeine, ibuprofen, galaxolide, tributyl phosphate, 4-octylphenol, tris(2-chloroethyl) phosphate and carbamazepine for 10 incubation days. Non-aerated and darkness reactors were used as controls. Microalgae grew at a rate of 0.25 d −1 with the complete removal of N-NH 4 during the course of the experiment. After 10 incubation days, up to 99% of the microcontaminants with a Henry’s law constant higher than 3 10 −1 Pa m 3 mol −1 (i.e., 4-octylphenol, galaxolide, and tributyl phosphate) were removed by volatilization due to the effect of air stripping. Whereas biodegradation was effective for removing ibuprofen and caffeine, carbamazepine and tris(2-chloroethyl) phosphate behaved as recalcitrant compounds. The use of microalgae was proved to be relevant for increasing the biodegradation removal efficiency of ibuprofen by 40% and reducing the lag phase of caffeine by 3 days. Moreover, the enantioselective biodegradation of S-ibuprofen suggested a biotic prevalent removal process, which was supported by the identification of carboxy-ibuprofen and hydroxy-ibuprofen. The results from microalgae reactors fed with synthetic wastewater showed no clear evidences of microalgae uptake of any of the studied microcontaminants.

  2. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal

    International Nuclear Information System (INIS)

    Yang, Il-Seung; Salama, El-Sayed; Kim, Jong-Oh; Govindwar, Sanjay P.; Kurade, Mayur B.; Lee, Minsun; Roh, Hyun-Seog; Jeon, Byong-Hun

    2016-01-01

    Highlights: • Wastewater treatment with algal biomass production was evaluated in a bench-scale. • C. vulgaris and S. obliquus showed μ_o_p_t values of 1.39 and 1.41 day"−"1, respectively. • Complete removal (>99%) of TN and TP by both algal strains was observed. • Harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. - Abstract: Microalgae, Chlorella vulgaris and Scenedesmus obliquus were cultivated in a small scale vertical flat-plate photobioreactor (PBR) supplemented with municipal wastewater in order to achieve simultaneous wastewater treatment and biomass production for biofuel generation. Microalgal growth and nutrient removal including total nitrogen (TN), total phosphorus (TP), total inorganic carbon (TIC) and trace elements (Ca"2"+, Na"+, Mg"2"+ and Zn"2"+) were monitored during microalgae cultivation. C. vulgaris and S. obliquus showed optimal specific growth rates (μ_o_p_t) of 1.39 and 1.41 day"−"1, respectively, and the TN and TP were completely removed (>99%) from the wastewater within 8 days. Microalgal biomass in the PBR was harvested using a natural flocculant produced from Moringa oleifera seeds. The harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. The amounts of saturated, mono-unsaturated, and poly-unsaturated fatty acids in the harvested biomass accounted for 18.66%, 71.61% and 9.75% for C. vulgaris and 28.67%, 57.14% and 11.15% for S. obliquus, respectively. The accumulated fatty acids were suitable to produce high quality biodiesel with characteristics equivalent to crop seeds oil-derived biodiesel. This study demonstrates the potential of microalgae-based biodiesel production through the coupling of advanced wastewater treatment with microalgae cultivation for low-cost biomass production in a PBR.

  3. Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition.

    Science.gov (United States)

    Nguyen, Thi Dong Phuong; Frappart, Matthieu; Jaouen, Pascal; Pruvost, Jérémy; Bourseau, Patrick

    2014-01-01

    The freshwater microalga Chlorella vulgaris was harvested by autoflocculation resulting from the precipitation of magnesium or calcium compounds induced by a slow increase in pH in the absence of CO2 input. Autoflocculation was tested in two culture media with, respectively, ammonium (NH4+) and nitrate (NO3-) ions as nitrogen source. The culture pH increased because of photosynthesis and CO2 stripping. pH rose to 11 after 8 h in the NO3- medium, but did not exceed 9 in the NH4+ medium. No flocculation took place in any of the media. Autoflocculation tests were repeated in the NO(3-)-based culture medium by progressively increasing the concentrations of Ca2+ and Mg2+ until inorganic compounds precipitated and flocculated microalgae. The minimal concentrations for flocculation were found to be 120 mg Ca2 L(-1) and 1000 mg Mg2+ L(-1). These values were, respectively, 3.5 times and 20 times higher than those allowing flocculation by NaOH addition. Energy-dispersive X-ray spectroscopy, zeta potential measurement, and ionic chromatography suggest that the mechanisms involved are different. The rate of cell removal was close to 90% in both cases, but cells were more concentrated in the aggregates obtained by magnesium compound precipitation, with an estimated concentration close to 33 g (dry matter) L(-1), against 19 g L(-1) for calcium phosphates.

  4. Evaluation of the cultivation conditions of marine microalgae Chlorella sp. to be used as feedstock in ultrasound-assisted ethanolysis

    Directory of Open Access Journals (Sweden)

    Mateus S. Amaral

    2015-09-01

    Full Text Available A total of 8 assays was conducted to study the influence of different variables namely, light intensity, CO2 level, NaNO3 concentration and aeration rate, on the cultivation of the marine microalgae Chlorella sp. to enhance the biomass feedstock availability for biodiesel. The experiments were designed using a Taguchi L8 experimental array set at two levels of operation, having light intensity (0.85 and 14.5 klux, CO2 (5 and 10%, NaNO3 (0.025 and 0.075 g L-1 and aeration rate (3:33 and 1.67 vvm as independent variables and considering biomass productivity and lipid content as response variables. All the experiments were performed in six photobioreactor vessels connected in series with a total volume of 8.4 L and working volumes of 2 L and 4 L, depending on the conditions assessed. The highest biomass productivity was 210.9 mg L-1day-1, corresponding to a lipid content of 8.2%. Such results were attained when the culture conditions were set at 0.85 klux light intensity, 5% CO2 and 0.075 g L-1 NaNO3. The aeration rate showed no significant influence on the biomass productivity. On the other hand, the highest lipid content was achieved when the cultures were grown using the lowest concentration of NaNO3 (0.025 g L-1 and an aeration rate of 1.67 vvm, while the other factors had no statistical significance. Under these conditions, the lipid content obtained was 19.8%, at the expense of reducing the biomass productivity to 85.9 mg L-1day-1.The fatty acid profile of the lipid material characterized by gas chromatography identified fourteen fatty acids with carbon chain ranging from C8 to C20 in which most of the fatty acids present were saturated (58.7 % and monounsaturated (36.1% fatty acids. Those obtained at higher proportions were the oleic (22.8%, palmitic (20.7% and lauric (17.7 % acids, indicating a suitable composition for fatty acid ethyl esters (FAEE synthesis. This was confirmed by acid catalysis performed under ultrasound irradiations

  5. The effect of AgNO{sub 3} on the bioenergetic processes and the ultrastructure of Chlorella and Dunaliella cells exposed to different saline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Loseva, N.L. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation)]. E-mail: loseva@mail.knc.ru; Alyabyev, A.Ju. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Gordon, L.Kh. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Andreyeva, I.N. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Kolesnikov, O.P. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Ponomareva, A.A. [Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111 (Russian Federation); Kemp, R.B. [Institute of Biological Sciences, Edward Llwyd Building, Penglais, University of Wales, Aberystwyth SY23 3DA (United Kingdom)

    2007-06-25

    The effect of AgNO{sub 3}, an inhibitor of the H{sup +} pump in the plasma membrane, on the bioenergetic processes and on the ultrastructure of the microalgae Chlorella vulgaris (salt sensitive) and Dunaliella maritima (salt resistant) was examined under varying salt concentrations. Differences between them were observed in changes of the cellular energy metabolism depending on their salt sensitivity and the inhibition of the H{sup +} pump activity. A decrease was observed in the rates of heat production (about 45%), O{sub 2} uptake (greater than 40-50% of the control) and particularly photosynthesis (more than 80%) in Chlorella cells under the simultaneous action of NaCl and AgNO{sub 3}. Dunaliella cells showed small to moderate rate increases for heat production (less than 7%), O{sub 2} uptake (10-15%) and O{sub 2} evolution (40%) in higher salt concentrations and under the action of AgNO{sub 3}. The production of active oxygen species was studied as an early unspecific response of microalgal cells to possible unfavorable conditions, including salt stress. The amount of superoxide formed by the Dunaliella cells was higher than that by the Chlorella cells. However, Ag{sup +} ions increased the generation rate of superoxide radicals considerably in both Chlorella and Dunaliella cells. The electron microscopy showed that changes of the algal ultrastructure of cells exposed to the action of Ag{sup +} ions were connected with the observed physiological changes and to a large extent with the alteration of the bioenergetic processes in them.

  6. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    Science.gov (United States)

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Straka, F.; Lívanský, Karel

    2005-01-01

    Roč. 17, - (2005), s. 403-412 ISSN 0921-8971 R&D Projects: GA ČR GV104/97/S055; GA ČR GA104/02/0410 Institutional research plan: CEZ:AV0Z50200510 Keywords : microalgae * flue gas * carbon dioxide Subject RIV: EE - Microbiology, Virology Impact factor: 0.992, year: 2005

  8. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    Science.gov (United States)

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  9. The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifer) in Intensive Culture System.

    Science.gov (United States)

    Rahman, Abdull Razak Abd; Cob, Zaidi Che; Jamari, Zainoddin; Mohamed, Abdul Majid; Toda, Tatsuki; Ross, Othman Haji

    2018-03-01

    Brachionus plicatilis is used to feed fish and crustacean larvae in the aquaculture industry. It is well established that the type of microalgae may influence rotifer production. This experiment was conducted to determine the effect of five different locally available microalgae species at Fisheries Research Institute (FRI), Kampung Pulau Sayak, Kedah, Malaysia on the instantaneous growth rate (μ) of rotifer. Nannochloris sp., Tetraselmis sp., Isochrysis sp., Chlorella sp., and Nannochloropsis sp. were used as feed at different algae densities (0.1, 0.3, 0.7 and 1.5 × 10 6 cells/ml) and culture volumes (20, 70 and 210 ml). At algae densities ranging from 0.3 to 1.5 × 10 6 cells/ml, an average μ value of more than 0.90 per day were recorded for all algae species. However, at density of 0.1 × 10 6 cells/ml, only Tetraselmis sp. resulted in the significantly highest μ value compared with others ( p < 0.05). In terms of volume, smaller culture volume of Tetraselmis sp. (20 ml) showed significantly higher μ compared with higher volume (70 and 210 ml cultures).

  10. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: A case study with the microalga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; Martins, Alexandra; Bastos, Maria de Lourdes; Duarte, José Alberto

    2014-01-01

    Highlights: •The formulation has a reduced toxicity to C. vulgaris when compared to Gramoxone ® . •The highest protection was achieved at the proportion of 1:8 (PQ/LAS). •LAS conferred a protection of approximately 1.8 fold (% of inhibition of growth). •Salicylic acid is biotransformed by C. vulgaris after 48 h, and not detectable at 96 h. -- Abstract: Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ + LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ + LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ + LAS has a reduced toxicity to C. vulgaris when compared

  11. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: A case study with the microalga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Maria Teresa, E-mail: mteresabaltazar@gmail.com [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences-North, CESPU, CRL, Rua Central de Gandra, 1317, 4585-116 Gandra (Portugal); Dinis-Oliveira, Ricardo Jorge [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences-North, CESPU, CRL, Rua Central de Gandra, 1317, 4585-116 Gandra (Portugal); Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto (Portugal); CENCIFOR-Forensic Sciences Center, Largo da Sé Nova, 3000-213, Coimbra (Portugal); Martins, Alexandra [CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Ecotoxicology and Ecology, Rua dos Bragas, 289, 4050-123 Porto (Portugal); ICBAS-Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Studies, Laboratory of Ecotoxicology, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Bastos, Maria de Lourdes [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Duarte, José Alberto [CIAFEL, Faculty of Sports, University of Porto, Rua Dr. Plácido Costa, 91-4200-450 Porto (Portugal); and others

    2014-01-15

    Highlights: •The formulation has a reduced toxicity to C. vulgaris when compared to Gramoxone{sup ®}. •The highest protection was achieved at the proportion of 1:8 (PQ/LAS). •LAS conferred a protection of approximately 1.8 fold (% of inhibition of growth). •Salicylic acid is biotransformed by C. vulgaris after 48 h, and not detectable at 96 h. -- Abstract: Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ + LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ + LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ + LAS has a reduced toxicity to C. vulgaris when

  12. Coleção de microalgas de ambientes dulciaquícolas naturais da Bahia, Brasil, como potencial fonte para a produção de biocombustíveis: uma abordagem taxonômica Collection of microalgae from natural freshwater environments of Bahia, Brazil, as a potential source for biofuel production: a taxonomic approach

    Directory of Open Access Journals (Sweden)

    Maria Cristina de Queiroz Mendes

    2012-09-01

    Full Text Available O presente trabalho envolveu a identificação taxonômica de espécies nativas de microalgas (isoladas de ecossistemas dulciaquícolas localizados nos arredores de Salvador, Bahia integrantes da Coleção de Microalgas dulciaquícolas do LABIOMAR/IB/UFBA, visando estudos taxonômicos mais aprofundados (ultraestruturais e moleculares e experimentos que possam avaliar sua capacidade para suprir cadeias produtivas de biocombustíveis. As coletas foram realizadas nos arredores de Salvador, Bahia, Brasil. A identificação das espécies foi efetuada com base em caracteres morfológicos. Foram identificados 19 táxons, 12 em nível de espécie e nove em nível de gênero, sendo 14 Chlorophyceae (Chlamydomonas sp1, Chlamydomonas sp2, Chlamydomonas sp3, Chlamydocapsa bacillus (Teiling Fott, Chlorococcum sp1, Chlorococcum sp2, Coelastrum indicum Turn.. Coelastrum microporum Nägeli, Desmodesmus brasiliensis (Bohl. Hegew, Scenedesmum obliquus (Turpin Kütz, Ankistrodesmus falcatus (Corda Ralfs, Ankistrodesmus fusiformis Corda, Kirchneriella lunaris (Kirchner. Möbius, Pseudokirchneriella subcapitata (Korshikov F. Hindák, três Trebouxiophyceae (Botryococcus braunii Kütz., Botryococcus terribilis Komárek et Marvan e Chlorella vulgaris Beijerinck, uma Bacillariophyceae (Nitzschia sp. e uma Cyanobacteria (Synechocystis sp..This study identified native species of microalgae (maintained at LABIOMAR/IB/UFBA Collection of Freshwater Microalgae to indicate their potential to supply the biofuel production chain. Samples were collected in freshwater ecosystems around Salvador, Bahia, Brazil. Species identification was based in morphological characteristics. Nineteen species were isolated and identified, 12 at the level of species and nine at the level of genus: 14 Chlorophyceae (Chlamydomonas sp1, Chlamydomonas sp2, Chlamydomonas sp3, Chlamydocapsa bacillus (Teiling Fott, Chlorococcum sp1, Chlorococcum sp2, Coelastrum indicum Turn. Coelastrum microporum N

  13. Influence of temperature and nutrient content on lipid production in freshwater microalgae cultures

    Directory of Open Access Journals (Sweden)

    JULIANA E. BOHNENBERGER

    2014-09-01

    Full Text Available The production of biomass by microalgae is considered a clean alternative compared to other plant crops that require large areas for cultivation and that generate environmental impacts. This study evaluated the influence of temperature and nutrients on lipid contents of cultured species of freshwater microalgae, with a view toward using these lipids for biodiesel production. Two strains of Monoraphidium contortum, a culture containing Chlorella vulgaris and Desmodesmus quadricauda and another strain of Microcystis aeruginosa were maintained in the laboratory for six days, in five culture media: modified ASM-1 (control, with high concentrations of phosphate and nitrate; phosphorus-deficient; non-limiting phosphate; nitrogen-deficient; and non-limiting nitrate. The cultures were then exposed to temperatures of 13°C, 25°C (control and 37°C for eight days (n=3. Lipids were extracted by the cold-solvent (methanol and chloroform method. On average, the highest total lipid yields were observed when the strains were maintained at 13°C and in the non-limiting nitrate medium. The lipid percentage varied depending on the concentration of algal biomass. This study showed that manipulation of controlling factors can increase the lipid concentration, optimizing the total production in order to use this raw material for biodiesel.

  14. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  15. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production

    Science.gov (United States)

    Cheng, Pengfei; Wang, Yuanzhu; Liu, Tianzhong; Liu, Defu

    2017-01-01

    This study showed the new potential of using soluble contents and heavy metals in swine wastewater as nutrient supplements for the algae Chlorella pyrenoidosa with biofilm attached method. Algae with biofilm attached cultivation grew well in unpasteurized wastewater reaching a biomass productivity of 5.03 g m−2 d−1, lipid content of 35.9% and lipid productivity of 1.80 g m−2 d−1. Chlorella grew in BG11 medium delivered lower values for each of the aforementioned parameters. The FAMEs compositions in the algae paste were mainly consisted of C16:0, C18:2, and C18:3. Algae removed NH4+–N, total phosphorus (TP), and COD by 75.9, 68.4, and 74.8%, respectively. Notably, Zn2+, Cu+, and Fe2+ were removed from wastewater with a ratio of 65.71, 53.64, and 58.89%, respectively. Biofilm attached cultivation of C. pyrenoidosa in swine wastewater containing heavy metals could accumulate considerable biomass and lipid, and the removal ratio of NH4+–N, TP, COD, and as well as heavy metal were high. Treatment of wastewater with biofilm attached cultivation showed an increasingly popular for the concentration of microalgae and environmental sustainability. PMID:28983302

  16. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production

    Directory of Open Access Journals (Sweden)

    Pengfei Cheng

    2017-09-01

    Full Text Available This study showed the new potential of using soluble contents and heavy metals in swine wastewater as nutrient supplements for the algae Chlorella pyrenoidosa with biofilm attached method. Algae with biofilm attached cultivation grew well in unpasteurized wastewater reaching a biomass productivity of 5.03 g m−2 d−1, lipid content of 35.9% and lipid productivity of 1.80 g m−2 d−1. Chlorella grew in BG11 medium delivered lower values for each of the aforementioned parameters. The FAMEs compositions in the algae paste were mainly consisted of C16:0, C18:2, and C18:3. Algae removed NH4+–N, total phosphorus (TP, and COD by 75.9, 68.4, and 74.8%, respectively. Notably, Zn2+, Cu+, and Fe2+ were removed from wastewater with a ratio of 65.71, 53.64, and 58.89%, respectively. Biofilm attached cultivation of C. pyrenoidosa in swine wastewater containing heavy metals could accumulate considerable biomass and lipid, and the removal ratio of NH4+–N, TP, COD, and as well as heavy metal were high. Treatment of wastewater with biofilm attached cultivation showed an increasingly popular for the concentration of microalgae and environmental sustainability.

  17. MICRO ALGAE CULTURE FROM RAWA GAMBUT: INTRODUCTION STUDY OF MICRO ALGAE POTENTIAL AS BIO DIESEL RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Dewi Jumiarni

    2018-01-01

    Full Text Available Sustainable production of renewable energy is being a crucial problem, since fuel demand in Indonesia rises annually while the production decreases. Microalgae have been suggested as a potential feedstock for biofuel production. This research was a preliminary study to identified microalgal culture from water of peat swamp, and probe its potential as biodiesel feedstock.  Microalgal identification was conducted by morphological observation using microscope, while potential as biodiesel was probed by detection using Nile Red staining and supported by literature study. This research has identified 19 species of microalgae from culture, which were consisting of 16 species were Chlorophyceae and 3 species were Bacillariophyceae. Microalgae that  potentially to be developed biodiesel feedstock were Cyclotella atomus, Cyclotella sp, Nitzschia sp, Chlorella sp, Desmodesmus sp, Chlorella ellipsoida and Chlorella vulgaris.

  18. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Occurrence of high molecular weight lipids (C{sub 80+}) in the trilaminar outer cell walls of some freshwater microalgae. A reappraisal of algaenan structure

    Energy Technology Data Exchange (ETDEWEB)

    Allard, B.; Templier, J. [UMR CNRS, Paris (France). Laboratoire de Chimie Bioorganique et Organique Physique; Rager, M.-N. [UMR CNRS, Paris (France). Service RMN

    2002-07-01

    The purified cell walls of mother cells (CWM) were isolated from three strains of trilaminar sheath (TLS)- and algaenan-containing freshwater microalgae Chlorella emersonii, Tetraedron minimum and Scenedesmus communis. The chemical structures of CWM and algaenans were investigated by means of tetramethylammonium hydroxide (TMAH) hydrolysis and tetramethylammonium hydroxide thermochemolysis. The compounds released were characterised by {sup 1}H and {sup 13}C-NMR, gel permeation chromatography and desorption chemical ionisation mass spectrometry. The results show that the outer cell walls of the microalgae are constituted, at least in part, of linear (poly)esters containing extremely long chain alcohol and acid moieties (up to C{sub 80}) and that algaenans are mainly composed of extremely long chain (di)carboxylic acids up to C{sub 120}. The present results which are in direct contrast to the previous three-dimensional architecture proposed for algaenans, led us to re-interpret the algaenan structure. (Author)

  20. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    Science.gov (United States)

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  1. Physiological and biochemical responses of Chlorella vulgaris to Congo red.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Perales-Vela, Hugo Virgilio; Flores-Ortíz, César Mateo; Cañizares-Villanueva, Rosa Olivia

    2014-10-01

    Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study

    Energy Technology Data Exchange (ETDEWEB)

    Matamoros, Víctor, E-mail: victor.matamoros@idaea.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona (Spain); Uggetti, Enrica; García, Joan [GEMMA—Group of Environmental Engineering and Microbiology, Department of Hydraulic, Maritime and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech, c/Jordi Girona, 1-3, Building D1, E-08034 Barcelona (Spain); Bayona, Josep M. [Department of Environmental Chemistry, IDAEA–CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona (Spain)

    2016-01-15

    Highlights: • The effect of microalage on the removal of emerging contaminants has been evaluated. • Volatilization was relevant for compounds with a moderate Henry’s law constant. • Biodegradation was the main factor for the removal of caffeine and ibuprofen. • Ibuprofen enantioselective biodegradation was observed. • CA-ibuprofen and OH-ibuprofen followed the concentration decline of ibuprofen. - Abstract: Aerated batch reactors (2.5 L) fed either with urban or synthetic wastewater were inoculated with microalgae (dominated by Chlorella sp. and Scenedesmus sp.) to remove caffeine, ibuprofen, galaxolide, tributyl phosphate, 4-octylphenol, tris(2-chloroethyl) phosphate and carbamazepine for 10 incubation days. Non-aerated and darkness reactors were used as controls. Microalgae grew at a rate of 0.25 d{sup −1} with the complete removal of N-NH{sub 4} during the course of the experiment. After 10 incubation days, up to 99% of the microcontaminants with a Henry’s law constant higher than 3 10{sup −1} Pa m{sup 3} mol{sup −1} (i.e., 4-octylphenol, galaxolide, and tributyl phosphate) were removed by volatilization due to the effect of air stripping. Whereas biodegradation was effective for removing ibuprofen and caffeine, carbamazepine and tris(2-chloroethyl) phosphate behaved as recalcitrant compounds. The use of microalgae was proved to be relevant for increasing the biodegradation removal efficiency of ibuprofen by 40% and reducing the lag phase of caffeine by 3 days. Moreover, the enantioselective biodegradation of S-ibuprofen suggested a biotic prevalent removal process, which was supported by the identification of carboxy-ibuprofen and hydroxy-ibuprofen. The results from microalgae reactors fed with synthetic wastewater showed no clear evidences of microalgae uptake of any of the studied microcontaminants.

  3. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    Science.gov (United States)

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  5. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Science.gov (United States)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  6. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    Science.gov (United States)

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production.

    Science.gov (United States)

    Praveenkumar, Ramasamy; Kim, Bohwa; Choi, Eunji; Lee, Kyubock; Cho, Sunja; Hyun, Ju-Soo; Park, Ji-Yeon; Lee, Young-Chul; Lee, Hyun Uk; Lee, Jin-Suk; Oh, You-Kwan

    2014-10-01

    Flue gases mainly consist of CO2 that can be utilized to facilitate microalgal culture for bioenergy production. In the present study, to evaluate the feasibility of the utilization of flue gas from a coal-burning power plant, an indigenous and high-CO2-tolerant oleaginous microalga, Chlorella sp. KR-1, was cultivated under mixotrophic conditions, and the results were evaluated. When the culture was mediated by flue gas, highest biomass (0.8 g cells/L·d) and FAME (fatty acid methyl esters) productivity (121 mg/L·d) were achieved in the mixotrophic mode with 5 g/L glucose, 5 mM nitrate, and a flow rate of 0.2 vvm. By contrast, the photoautotrophic cultivation resulted in a lower biomass (0.45 g cells/L·d) and a lower FAME productivity (60.2 mg/L·d). In general, the fatty acid profiles of Chlorella sp. KR-1 revealed meaningful contents (>40 % of saturated and mono-unsaturated fatty acids) under the mixotrophic condition, which enables the obtainment of a better quality of biodiesel than is possible under the autotrophic condition. Conclusively then, it was established that a microalgal culture mediated by flue gas can be improved by adoption of mixotrophic cultivation systems.

  8. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  9. Estimation and robust control of microalgae culture for optimization of biological fixation of CO2

    International Nuclear Information System (INIS)

    Filali, R.

    2012-01-01

    This thesis deals with the optimization of carbon dioxide consumption by microalgae. Indeed, following several current environmental issues primarily related to large emissions of CO 2 , it is shown that microalgae represent a very promising solution for CO 2 mitigation. From this perspective, we are interested in the optimization strategy of CO 2 consumption through the development of a robust control law. The main aim is to ensure optimal operating conditions for a Chlorella vulgaris culture in an instrumented photo-bioreactor. The thesis is based on three major axes. The first one concerns growth modeling of the selected species based on a mathematical model reflecting the influence of light and total inorganic carbon concentration. For the control context, the second axis is related to biomass estimation from the real-time measurement of dissolved carbon dioxide. This step is necessary for the control part due to the lack of affordable real-time sensors for this kind of measurement. Three observers structures have been studied and compared: an extended Kalman filter, an asymptotic observer and an interval observer. The last axis deals with the implementation of a non-linear predictive control law coupled to the estimation strategy for the regulation of the cellular concentration around a value which maximizes the CO 2 consumption. Performance and robustness of this control law have been validated in simulation and experimentally on a laboratory-scale instrumented photo-bioreactor. This thesis represents a preliminary study for the optimization of CO 2 mitigation strategy by microalgae. (author)

  10. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    Science.gov (United States)

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Kinetics of Chlorella protothecoides microalgal oil using base catalyst

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2016-09-01

    Full Text Available Due to continuous diminishing of fossil fuel resources and emission of greenhouse gases, the search for alternative fuels such as biodiesel and bioethanol has become inevitable. Biodiesel, also known as fatty acid methyl or ethyl ester, has emerged as a substitute for diesel because of similar fuel properties. Presently, biodiesel is produced from edible, non-edible and microalgal oil. Chlorella protothecoides (lipid content 14.6–57.8% is being investigated as the potential microalgae species owing to high oil content, less land area required for cultivation and faster growth rate. The present investigation shows the results of the kinetics of transesterification of C. protothecoides microalgal oil carried out at optimum conditions of catalyst concentration, reaction temperature, molar ratio and reaction time. The percentage of methyl ester yield is the only parameter chosen to carry out the optimum parameter and the kinetics of transesterification. The reaction rate constant was to be 0.0618 min−1. Furthermore, microalgal biodiesel is characterized for physico-chemical properties that are found to meet American (ASTM D6751 and Indian (IS 15607 standards, especially in cold flow properties and stability of conventional biodiesel.

  12. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  13. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inducción de la producción de lípidos totales en microalgas sometidas a estrés nutritivo

    Directory of Open Access Journals (Sweden)

    Marianela Cobos Ruiz

    2016-01-01

    Full Text Available Se evaluó la producción de lípidos totales en cinco especies de microalgas inducidas por la ausencia de nitrógeno. Las microalgas empleadas fueron Ankistrodesmus sp., Ankistrodesmus nannoselene, Chlorella sp., Scenedesmus sp. y Scenedesmus quadricauda. Estas especies fueron cultivadas en medio CHU10 con y sin nitrógeno. El tiempo de evaluación fue de seis días, determinándose diariamente la densidad microalgal mediante recuento en cámara de Neubahuer. Se determinó la tasa de crecimiento, la biomasa microalgal y el porcentaje de lípidos totales. Los lípidos totales fueron extraídos con solución Cloroformo:metanol (2:1. Los resultados indicaron que las especies con mayor producción de lípidos totales fueron Ankistrodesmus sp. (263,6 mg/g biomasa seca, A. nannoselene (316 mg/g biomasa seca y Scenedesmus sp. (243,3 mg/g biomasa seca al ser cultivadas en medios sin nitrógeno. Scenedesmus quadricauda y Chlorella sp., fueron las especies que mostraron mayor producción de biomasa seca (159,1 mg/g biomasa seca y 221,1 mg/g biomasa seca respectivamente en medios con nitrógeno. La tasa de crecimiento fue variable entre las especies cultivadas en ambas condiciones. En conclusión, Ankistrodesmus sp., mostró la mayor tasa de crecimiento (0,77 dia-1 en medio sin nitrógeno. Bajo las mismas condiciones de cultivo, Scenedesmus sp. obtuvo la mayor producción de biomasa en peso seco (174,7 mg/l y Ankistrodesmus nannoselene acumuló el mayor porcentaje de lípidos totales.

  15. Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum

    Directory of Open Access Journals (Sweden)

    Sirajunnisa Abdul Razack

    2015-09-01

    Full Text Available The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 100 mg L−1 bioflocculant concentration, 35 °C temperature, 150 rpm agitation speed and 30 min incubation time and resulted in a maximum efficiency of 99.68%. Through cell viability test, using Trypan blue stain, it was found that cells were completely intact when treated with bioflocculant, but destroyed when exposed to chemical flocculant, alum. The overall study represented that S. potatorum could potentially be a bioflocculant of microalgal cells and a promising substitute for expensive and hazardous chemical flocculants. Moreover, this bioflocculant demonstrated their utility to harvest microalgal cells by economically, effectively and in an ecofriendly way.

  16. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR).

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2017-10-01

    Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m -2  s -1 , and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day -1 ) and good lutein recovery (11.98 mg g -1  day -1 ) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.

  17. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  18. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris

    Science.gov (United States)

    2014-01-01

    Background MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris. Results Exposure to MWCNT and cotton CNF led to reductions on algal growth and cell viability. NP exposure induced reactive oxygen species (ROS) production and a decreased of intracellular ATP levels. Addition of NPs further induced ultrastructural cell damage. MWCNTs penetrate the cell membrane and individual MWCNTs are seen in the cytoplasm while no evidence of cotton CNFs was found inside the cells. Cellular uptake of MWCNT was observed in algae cells cultured in BB medium, but cells cultured in Seine river water did not internalize MWCNTs. Conclusions Under the conditions tested, such results confirmed that exposure to MWCNTs and to cotton CNFs affects cell viability and algal growth. PMID:24750641

  19. Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish.

    Directory of Open Access Journals (Sweden)

    Karina Bravo-Tello

    Full Text Available Soybean meal has been used in many commercial diets for farm fish; despite this component inducing intestinal inflammation. On the other hand, microalgae have increasingly been used as dietary supplements in fish feed. Nevertheless, the vast quantity of microalgae species means that many remain under- or unstudied, thus limiting wide scale commercial application. In this work, we evaluated the effects to zebrafish (Danio rerio of including Tetraselmis sp (Ts; Phaeodactylum tricornutum (Pt; Chlorella sp (Ch; Nannochloropsis oculata (No; or Nannochloropsis gaditana (Ng as additives in a soybean meal-based diet on intestinal inflammation and survival after Edwardsiella tarda infection. In larvae fed a soybean meal diet supplemented with Ts, Pt, Ch, or Ng, the quantity of neutrophils present in the intestine drastically decreased as compared to larvae fed only the soybean meal diet. Likewise, Ts or Ch supplements in soybean meal or fishmeal increased zebrafish survival by more than 20% after being challenged. In the case of Ts, the observed effect correlated with an increased number of neutrophils present at the infection site. These results suggest that the inclusion of Ts or Ch in fish diets could allow the use of SBM and at the same time improve performance against pathogen.

  20. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    Science.gov (United States)

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  1. Development of stable marker-free nuclear transformation strategy ...

    African Journals Online (AJOL)

    Development of stable marker-free nuclear transformation strategy in the green microalga Chlorella vulgaris. ... into Chlorella by electroporation has very low stability and it is hard to screen the transformants without antibiotic marker genes.

  2. Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris

    Science.gov (United States)

    2013-01-01

    Background Failure of colony PCRs in green microalga Chlorella vulgaris is typically attributed to the difficulty in disrupting its notoriously rigid cell walls for releasing the genetic materials and therefore the development of an effective colony PCR procedure in C. vulgaris presents a challenge. Results Here we identified that colony PCR results were significantly affected by the accumulated lipids rather than the rigid cell walls of C. vulgaris. The higher lipids accumulated in C. vulgaris negatively affects the effective amplification by DNA polymerase. Based on these findings, we established a simple and extremely effective colony PCR procedure in C. vulgaris. By simply pipetting/votexing the pellets of C. vulgaris in 10 ul of either TE (10 mM Tris/1 mM EDTA) or 0.2% SDS buffer at room temperature, followed by the addition of 10 ul of either hexane or Phenol:Chloroform:Isoamyl Alcohol in the same PCR tube for extraction. The resulting aqueous phase was readily PCR-amplified as genomic DNA templates as demonstrated by successful amplification of the nuclear 18S rRNA and the chloroplast rbcL gene. This colony PCR protocol is effective and robust in C. vulgaris and also demonstrates its effectiveness in other Chlorella species. Conclusions The accumulated lipids rather than the rigid cell walls of C. vulgaris significantly impede the extraction of genetic materials and subsequently the effective colony PCRs. The finding has the potential to aid the isolation of high-quality total RNAs and mRNAs for transcriptomic studies in addition to the genomic DNA isolation in Chlorella. PMID:24219401

  3. Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Cagnon, Caroline; Mirabella, Boris; Nguyen, Hoa Mai; Beyly-Adriano, Audrey; Bouvet, Séverine; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2013-12-02

    Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.

  4. Greenalgae as a substrate for biogas production - cultivation and biogas potentials

    OpenAIRE

    Liu, Yang

    2010-01-01

    Algae is regarded as a good potential substrate for biogas production, due to high cells productivity, low cellulose and zero lignin content. Two parts were included in this study: first, cultivations of micro-algae (Chlorella sorokiniana and Tetraselmis suecica) at two different nitrate concentrations, also the effect of addition of CO2 on algae grow was investigated in this first part. Second, batch fermentations of the cultivated micro-algae as well as a powder Chlorella (obtained from Raw...

  5. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  6. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.

    Science.gov (United States)

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2013-08-01

    The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2)  = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2)  = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.

  7. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.

    Science.gov (United States)

    Ji, Yan; Hu, Wenrong; Li, Xiuqing; Ma, Guixia; Song, Mingming; Pei, Haiyan

    2014-01-01

    Monosodium glutamate wastewater (MSGW) is a potential medium for microbial cultivation because of containing abundant organic nutrient. This paper seeks to evaluate the feasibility of growing Chlorella vulgaris with MSGW and assess the influence of MSGW concentration on the biomass productivity and biochemical compositions. The MSGW diluted in different concentrations was prepared for microalga cultivation. C. vulgaris growth was greatly promoted with MSGW compared with the inorganic BG11 medium. C. vulgaris obtained the maximum biomass concentration (1.02 g/L) and biomass productivity (61.47 mg/Ld) with 100-time diluted MSGW. The harvested biomass was rich in protein (36.01-50.64%) and low in lipid (13.47-25.4%) and carbohydrate (8.94-20.1%). The protein nutritional quality and unsaturated fatty acids content of algal increased significantly with diluted MSGW. These results indicated that the MSGW is a feasible alternative for mass cultivation of C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    Science.gov (United States)

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. EVALUATION OF THE FLOCCULATION EFFICIENCY OF Chlorella vulgaris MEDIATED BY Moringa oleifera SEED UNDER DIFFERENT FORMS: FLOUR, SEED CAKE AND EXTRACTS OF FLOUR AND CAKE

    Directory of Open Access Journals (Sweden)

    C. M. L. Lapa Teixeira

    Full Text Available Abstract Flocculation as a pre-separation method can help make production of biodiesel from microalgae economically feasible. In a previous study, Moringa oleifera seed flour (1 g.L-1 was shown to be a very efficient flocculant for Chlorella vulgaris, a microalga with high potential for biodiesel production. In this study, several aspects of C vulgaris flocculation mediated by Moringa were investigated in order to optimize the separation of this biomass. Flocculation efficiency was the same with seeds from different origins and lots. The stationary growth stage was best for harvesting C vulgaris cells to carry out flocculation efficiently (93%. The use of flour extracts and cake extracts generated the best cost-benefit ratio (flocculation efficiency from 78 to 97% with a saving in mass of seed of 75%. The highest efficiency was reached with extracts prepared with seawater and NaCl solutions which have high salt concentration. Reasonable stability of the extract allows its use for up to two weeks, provided it is kept at low temperature (4 ºC.

  10. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  11. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Science.gov (United States)

    Zhao, Yue; Liu, Zhiyong; Liu, Chenfeng; Hu, Zhipeng

    2017-01-01

    Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana. PMID:28194424

  12. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system.

    Science.gov (United States)

    Chi, Zhanyou; Elloy, Farah; Xie, Yuxiao; Hu, Yucai; Chen, Shulin

    2014-01-01

    Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application.

  13. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae.

    Science.gov (United States)

    Guo, Xin; Yao, Lishan; Huang, Qingshan

    2015-08-01

    Effects of superficial gas velocity and top clearance on gas holdup, liquid circulation velocity, mixing time, and mass transfer coefficient are investigated in a new airlift loop photobioreactor (PBR), and empirical models for its rational control and scale-up are proposed. In addition, the impact of top clearance on hydrodynamics, especially on the gas holdup in the internal airlift loop reactor, is clarified; a novel volume expansion technique is developed to determine the low gas holdup in the PBR. Moreover, a model strain of Chlorella vulgaris is cultivated in the PBR and the volumetric power is analyzed with a classic model, and then the aeration is optimized. It shows that the designed PBR, a cost-effective reactor, is promising for the mass cultivation of microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of nickel on growth and 14 CO2 fixation in Chlorella (Chlorella pyrenoidosa)

    International Nuclear Information System (INIS)

    Subrahmanyam, A.D.; Rathore, V.S.

    1996-01-01

    Influence of nickel on growth, 14 C fixation and allocation of carbon among different biochemical fractions was investigated in Chlorella pyrenoidosa. Nickel significantly reduced the fresh and dry weights of chlorella cells. 14 C fixation was significantly reduced by increasing nickel concentration in growth media. 14 C allocation into different biochemical fractions was also markedly altered by nickel. Reduction in 14 CO 2 assimilation and carbon allocation into pigment-lipid fraction and residue fraction resulted in decreased chlorophyll content and dry weight. (author). 15 refs., 4 figs

  15. PEMANFAATAN MIKROALGA LAUT Chlorella vulgaris SUMBER DHA DAN EPA

    OpenAIRE

    Anggraeni, Peni

    2016-01-01

    Penelitian tentang mikroalga laut jenis Chlorella vulgaris telah dilakukan. Chlorella vulgaris dipilih sebagai bahan penambah gizi untuk di fortifikasi kedalam makanan . Penelitian ini bertujuan untuk mengetahui kandungan gizi dengan menganalisis kandungan DHA dan EPA. Penelitian ini dilakukan dengan mengkultur fitoplankton Chlorella vulgaris dan dipanen setelah media kultur mencapai fase Stasioner. Kemudian, dikeringkan dengan menggunakan freeze dryer, biomassa kering dianalisis kandungan DH...

  16. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan; Wei, Chunhai; Leiknes, TorOve

    2017-01-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  17. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan

    2017-05-29

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  18. High protein- and high lipid-producing microalgae from Outback Australia as potential feedstock for animal feed and biodiesel

    Directory of Open Access Journals (Sweden)

    Van Thang eDuong

    2015-05-01

    Full Text Available Microalgal biomass can be used for biodiesel, feed and food production. Collection and identification of local microalgal strains in the Northern Territory – Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds and streams and subsequently classified by 18S rDNA sequencing. All of the strains were green microalgae and predominantly belong to Chlorella sp., Scenedesmus sp., Desmodesmus sp., Chlamydomonas sp., Pseudomuriella sp., Tetraedron caudatum, Graesiella emersonii and Mychonastes timauensis. Among the fastest growing strains, Scenedesmus sp. NT1d possessed the highest content of protein; reaching up to 33% of its dry weight. In terms of lipid production, Chlorella sp. NT8a and Scenedesmus dimorphus NT8e produced the highest triglyceride contents of 116.9 µg mL-1 culture and 99.13 µg mL-1, respectively, as measured by gas chromatography-mass spectroscopy (GC-MS of fatty acid methyl esters (FAMEs. These strains may present suitable candidates for biodiesel production after further optimization of culturing conditions, while their protein-rich biomass could be used for animal feed.

  19. Produção de biomassa e teores de carbono, hidrogênio, nitrogênio e proteína em microalgas Production of biomass and carbon, hydrogen, nitrogen and protein contents in microalgae

    Directory of Open Access Journals (Sweden)

    Silvana Ohse

    2009-09-01

    Full Text Available O aumento da emissão de CO2 e de outros gases efeito estufa tem gerado debates em nível mundial sobre alterações climáticas e estimulado o desenvolvimento de estratégias mitigadoras. Trabalhos nessa área incluem sequestro de CO2 por meio da produção de microalgas aquáticas. Por essa razão, desenvolveu-se um estudo visando determinar os teores de carbono, hidrogênio, nitrogênio e proteína e a produção de biomassa seca de nove espécies de microalgas marinhas (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii Chaetoceros muelleri, Thalassiosira fluviatilis e Isochrysis sp. e uma de água doce (Chlorella vulgaris, em cultivo autotrófico estacionário com objetivo de identificar as mais produtivas e com maior capacidade de fixação de carbono. O experimento foi desenvolvido em sala de cultivo, na Universidade Federal de Santa Catarina, com iluminação contínua e radiação em torno de 150µmol m-2 s-1, temperatura de 25±2°C, suplementação de ar constante, sendo utilizados erlenmeyers com 800mL de meio de cultura. O delineamento experimental foi de blocos casualizados no tempo com três repetições. As espécies C. vulgaris e T. suecica são menos produtivas. Quando se visa à suplementação alimentar, as espécies C. vulgaris e T. Chuii são consideradas interessantes, uma vez que apresentam altos teores de C, N, H e proteína. As espécies N. Oculata, T. pseudonana e C. vulgaris apresentam altos teores de C, demonstrando alta capacidade de fixação de carbono.The increase of CO2 emission and other gases greenhouse effect, caused global debates about climatic alterations and stimulated the development of mitigative strategies. Researches in this area includes CO2 kidnapping through the aquatic microalgae production. For this reason, a study was developed aiming to determine the production of dry biomass, carbon content, hydrogen

  20. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies.

    Science.gov (United States)

    Taştan, Burcu Ertit; Tekinay, Turgay; Çelik, Hatice Sena; Özdemir, Caner; Cakir, Dilara Nur

    2017-12-01

    Triclosan is considered as an important contaminant and is widely used in personal care products as an antimicrobial agent. This study demonstrates the biodegradation of triclosan by two freshwater microalgae and the acute toxicity of triclosan and 2,4-dichlorophenol. The effects of culture media and light on biodegradation of triclosan and the changing morphology of microalgae were systematically studied. Geitlerinema sp. and Chlorella sp. degraded 82.10% and 92.83% of 3.99 mg/L of triclosan at 10 days, respectively. The microalgal growth inhibition assay confirmed absence of toxic effects of triclosan on Chlorella sp., even at higher concentration (50 mg/L) after 72 h exposure. HPLC analysis showed that 2,4-dichlorophenol was produced as degradation product of triclosan by Geitlerinema sp. and Chlorella sp. This study proved to be beneficial to understand biodegradation and acute toxicity of triclosan by microalgae in order to provide aquatic environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Uptake of uranium from underground drinking water by chlorella (Chlorella pyrendoidosa)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, Shobha; Gurg, R.P.; Shenoy, N.S.; Ferandes, Neychelle; Gopale, Rajesh S.; Jhaveri, A.S.

    2002-01-01

    Naturally occurring uranium has found at elevated levels i.e. 300-1200 ppb in underground water, especially in the areas located around uranium mines and granite rocks sites. The U.S. Environmental Protection Agency (EPA) recently adopted drinking water standards requiring a maximum uranium concentration of 20 μgl. This limit is based on nephro-toxicity, rather than on radiological hazards. The concentration of uranium is to be monitored along with other parameters in well and other sources of drinking water in these areas. During this work a low cost kit was developed for removing uranium from under-ground water used for drinking purposes. This unit is capable of reducing uranium from 1000 ppb to 15-20 ppb. Chlorella (Chlorella pyrendoidosa), a fresh water algae, was immobilised in sodium alginate in the form of beads by using 0.2 M calcium chloride. These beads were put in container and the water is stirred occasionally. 99-100 % uranium adsorbed was recovered from the beads by using 0.1 M HNO 3 . These results suggest that the uptake of uranium by Chlorella depended upon the physico-chemical adsorption on the cell surface, but not upon the biological activity and that uranium in the algal cells was coupled with the ligands, which can be easily substituted with NO 3 -1 . (author)

  2. Use of diluted urine for cultivation of Chlorella vulgaris.

    Science.gov (United States)

    Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka

    2016-01-01

    Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.

  3. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  4. Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor

    International Nuclear Information System (INIS)

    Marwan; Suhendrayatna; Indarti, E

    2015-01-01

    The present work was aimed to study the so-called direct transesterification of microalgae lipids to biodiesel in a batch microwave reactor. As a comparison, preparation of palm oil to biodiesel by alkaline catalyzed ethanolysis was also carried out. Palm oil biodiesel was recovered close to an equilibrium conversion (94-96% yield) under microwave heating for at least 6 min, while the conventional method required more than 45 minutes reaching the same yield. A very short reaction time suggests the benefit of microwave effect over conventional heating method in making biodiesel. FTIR analysis revealed the presence of fatty acid ethyl esters with no undesired chemical groups or compounds formed due to local heat generated by microwave effect, thus the conversion only followed transesterification route. Oil containing microalgae of Chlorella sp. isolated from the local brackish water pond was used as a potential source of biodiesel. High yield of biodiesel (above 0.6 g/g of dried algae) was also attainable for the direct transesterification of microalgae in the microwave reactor. Effect of water content of the algae biomass became insignificant at 11.9%(w/w) or less, related to the algae biomass dried for longer than 6 h. Fast transesterification of the algal oil towards equilibrium conversion was obtained at reaction time of 6 min, and at longer times the biodiesel yield remains unchanged. FAME profile indicates unsaturated fatty acids as major constituents. It was shown that microwave irradiation contributes not only to enhance the transeseterification, but also to assist effective release of fatty acid containing molecules (e.g. triacylglycerol, free fatty acids and phospholipids) from algal cells. (paper)

  5. Preparation of Biodiesel from Microalgae and Palm Oil by Direct Transesterification in a Batch Microwave Reactor

    Science.gov (United States)

    Marwan; Suhendrayatna; Indarti, E.

    2015-06-01

    The present work was aimed to study the so-called direct transesterification of microalgae lipids to biodiesel in a batch microwave reactor. As a comparison, preparation of palm oil to biodiesel by alkaline catalyzed ethanolysis was also carried out. Palm oil biodiesel was recovered close to an equilibrium conversion (94-96% yield) under microwave heating for at least 6 min, while the conventional method required more than 45 minutes reaching the same yield. A very short reaction time suggests the benefit of microwave effect over conventional heating method in making biodiesel. FTIR analysis revealed the presence of fatty acid ethyl esters with no undesired chemical groups or compounds formed due to local heat generated by microwave effect, thus the conversion only followed transesterification route. Oil containing microalgae of Chlorella sp. isolated from the local brackish water pond was used as a potential source of biodiesel. High yield of biodiesel (above 0.6 g/g of dried algae) was also attainable for the direct transesterification of microalgae in the microwave reactor. Effect of water content of the algae biomass became insignificant at 11.9%(w/w) or less, related to the algae biomass dried for longer than 6 h. Fast transesterification of the algal oil towards equilibrium conversion was obtained at reaction time of 6 min, and at longer times the biodiesel yield remains unchanged. FAME profile indicates unsaturated fatty acids as major constituents. It was shown that microwave irradiation contributes not only to enhance the transeseterification, but also to assist effective release of fatty acid containing molecules (e.g. triacylglycerol, free fatty acids and phospholipids) from algal cells.

  6. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    Science.gov (United States)

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  8. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.

    Science.gov (United States)

    Bhola, Virthie; Desikan, Ramesh; Santosh, Sheena Kumari; Subburamu, Karthikeyan; Sanniyasi, Elumalai; Bux, Faizal

    2011-03-01

    Conventional fossil fuels are facing a global challenge which lead scientists to explore alternative fuel production from biological sources. The algae-based fuels are gaining rapid attention as it has potential to replace petroleum-based fuels. An indigenous high lipid producing microalgae was isolated from a freshwater pond in the KwaZulu-Natal province of South Africa. The isolate was later identified as Chlorella vulgaris, based on partial 28S large subunit ribosomal RNA gene sequence. The growth kinetics, pyrolytic characteristics and photosynthetic efficiency of Chlorella was evaluated in vitro. The optimized conditions for higher biomass yield of the selected strain were at 4% CO(2), 0.5 g l(-1) NO(3) and 0.04 g l(-1) PO(4), respectively. The pulse amplitude modulation results indicated that C. vulgaris could withstand a light intensity ranging from 150 to 350 μmol photons m(-2)s(-1). Further increase in light intensity resulted in a decline of the electron transport rate. Carbon fixation rate, lipid content and calorific value of C. vulgaris was 6.17 mg l(-1)h(-1), 21% and 17.44 kJ g(-1), respectively. The pyrolitic studies under inert atmosphere at different heating rates of 15, 30, 40 and 50°C min(-1) from ambient temperature to 800°C showed that the overall final weight loss recorded for the four different heating rates was in the range of 78.9-81%. These studies could be useful to appraise the biofuel potential of the isolated C. vulgaris strain, which can later be taken for pilot scale production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.

    Science.gov (United States)

    Praveen, Prashant; Heng, Jonathan Yun Ping; Loh, Kai-Chee

    2016-12-01

    Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dietary effects of lutein-fortified chlorella on milk components of Holstein cows.

    Science.gov (United States)

    Jeon, Jin-Young; Park, Keun-Kyu; Lee, Kyung-Woo; Jang, Seung-Wan; Moon, Byung-Hern; An, Byoung-Ki

    2016-01-01

    This study was conducted to investigate the dietary effect of conventional or lutein-fortified chlorella on milk production and lutein incorporation in milk. Fifteen Holstein cows in mid-lactation were used in a 3 × 3 Latin square design each with a 21-day period. Cows were top-dressed daily with 30 g of conventional or lutein-fortified chlorella for 3 weeks. Cows without chlorella served as the control. The feed intake and milk yield were not affected by dietary treatments. The concentrations of milk protein and solids non-fat in groups fed diets containing both conventional and lutein-fortified chlorella were significantly higher than those of the control group (P milk fat among groups. The levels of plasma glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, interferon-gamma and interleukin-2 were not influenced by the dietary treatments. Lutein content in milk was significantly increased in groups fed lutein-fortified chlorella as compared with those of conventional chlorella and control, respectively (P lutein-fortified chlorella has positive effects on milk components and the use of lutein-fortified chlorella in a dairy diet is effective in the production of milk enriched with lutein.

  11. Selective incorporation of dissolved organic matter (DOM) during sea ice formation

    DEFF Research Database (Denmark)

    Müller, Susan; Vähätalo, Anssi V.; Stedmon, Colin

    2013-01-01

    This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well as concentrat......This study investigated the incorporation of DOM from seawater into b2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well...

  12. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.; Zheng, Xing; Jaouen, Pascal; Pruvost, Jé ré my; Grizeau, Dominique; Croue, Jean-Philippe; Bourseau, Patrick

    2013-01-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  13. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.

    2013-03-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  14. Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production

    International Nuclear Information System (INIS)

    Salama, El-Sayed; Jeon, Byong-Hun; Kurade, Mayur B.; Abou-Shanab, Reda A.I.; Govindwar, Sanjay P.; Lee, Sang-hun; Yang, Il-Seung; Lee, Dae Sung

    2016-01-01

    Graphical abstract: Schematic presentation of coagulation/flocculation of microalgal biomass using AMD. - Highlights: • AMDs containing high Fe"2"+/Al"3"+ improved the settling kinetics of microalgal biomass. • The highest k_2 value was 40 × 10"−"2 L mg"−"1 min"−"1 for C. vulgaris with AMD (1). • With AMD (2), k_2 was 4.0 × 10"−"2 L mg"−"1 min"−"1 for both C. vulgaris and S. obliquus. • The highest FE (93%) and CF (29) for C. vulgaris was achieved with AMD (1). • AMD (1) removed 99.80% of Fe"3"+ and 99.99% of Al"3"+ from the supernatant. - Abstract: Development of a low-cost harvesting technology could be an effective approach for making microalgal biofuel commercially feasible. The use of acid mine drainage (AMD) to coagulate/flocculate biomass is a cost-effective strategy for addressing this challenge. Here, settling kinetics, flocculation efficiency (FE), and concentration factor (CF) of two morphologically different microalgae species, Scenedesmus obliquus and Chlorella vulgaris, were investigated with respect to AMD dosage (5% and 10%) and medium pH (7 and 9). AMD was collected from two different sites, AMD (1) and AMD (2), and increasing its dosage to 10% improved the settling rate, FE, and CF of the floc. At 10% AMD (1) dosage and pH 9, the highest rate constants (k_2) for the second order equations were 6.65 × 10"−"2 and 40 × 10"−"2 L mg"−"1⋅min"−"1 for S. obliquus and C. vulgaris, respectively; at 10% AMD (2), k_2 values were 4.22 × 10"−"2 and 4.76 × 10"−"2 L mg"−"1 min"−"1, respectively. Similarly, FE/CF values were 89%/25 for S. obliquus and 93%/29 for C. vulgaris with 10% AMD (1); and 81%/17 and 79%/17, respectively, with 10% AMD (2). AMD effectively removed 99.80% of Fe"3"+, 99.99% of Al"3"+, 94% of Ca"2"+, 84% of Mg"2"+ and all of Na"+ and K"+ ions from the supernatant. The results of kinetics, EF, and CF measurements indicate that AMDs, naturally rich in iron and aluminum ions, could provide a feasible

  15. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.

    Science.gov (United States)

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2013-05-01

    In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Airborne Microalgae: Insights, Opportunities, and Challenges

    Science.gov (United States)

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  17. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.

    Science.gov (United States)

    Aida, Taku Michael; Maruta, Ryouma; Tanabe, Yuuhiko; Oshima, Minori; Nonaka, Toshiyuki; Kujiraoka, Hiroki; Kumagai, Yasuaki; Ota, Masaki; Suzuki, Iwane; Watanabe, Makoto M; Inomata, Hiroshi; Smith, Richard L

    2017-03-01

    Defatted heterotrophic microalgae (Aurantiochytrium limacinum SR21) was treated with high temperature water (175-350°C, 10-90min) to obtain nitrogen and phosphorous nutrients as a water soluble fraction (WS). Yields of nitrogen and phosphorous recovered in WS varied from 38 to 100% and from 57 to 99%, respectively. Maximum yields of nitrogen containing compounds in WS were proteins (43%), amino acids (12%) and ammonia (60%) at treatment temperatures of 175, 250 and 350°C, respectively. Maximum yield of phosphorous in WS was 99% at a treatment temperature of 250°C. Cultivation experiments of microalgae (A. limacinum SR21) using WS obtained at 200 and 250°C showed positive growth. Water soluble fractions from hydrothermal treatment of defatted microalgae are effective nitrogen and phosphorous nutrient sources for microalgae cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Production of biofuels obtained from microalgae

    Directory of Open Access Journals (Sweden)

    Luis Carlos Fernández-Linares

    2012-09-01

    Full Text Available A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importance of the genetic manipulation to highly lipid-producing microalgae (example: Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans and Nitschia sp.. A study of the advantages and disadvantages of the different systems of cultivation of microalgae is also made. Finally, it is shown a perspective of biofuels from microalgae. Among the main challenges to overcome to produce biodiesel from microalgae are: the cost of production of biomass, which involves the optimization of media, selection and manipulation of strains and photobioreactors design. The processof separation of biomass, the extraction of oils and by-products, the optimization of the process of transesterification, purification and use of by-products must also be considered.

  19. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    Science.gov (United States)

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fluoranthene induced changes in photosynthetic pigments, biochemical compounds and enzymatic activities in two microalgal species: Chlorella vulgaris Beijerinck and Desmodesmus subspicatus Chodat

    Directory of Open Access Journals (Sweden)

    Miral Patel

    2014-02-01

    Full Text Available The photosynthetic pigments, biochemical and enzymatic activities in two freshwater microalgal species, Chlorella vulgaris and Desmodesmus subspicatus at different fluoranthene concentrations were compared with the control conditions. During 16-days of incubation period when treated with fluoranthene, both microalgal species exhibited variable amount of photosynthetic pigment, biochemical compounds and enzymatic activities. The addition of fluoranthene at concentrations ranged from 1.5 mg l-1; to 10 mg l-1; to microalgal cultures led to changes in all different metabolites but the patterns varied from species to species. Among the two species tested, pigment, biochemical and enzymatic contents were remarkably declined from 7 % to 95% in C. vulgaris. Moreover, all metabolites in D. subspicatus also diminishing significantly by 3% to 88% of fluoranthene doses (10ppm. These results suggest that fluoranthene-induced changes of pigments, biochemical and enzymatic variations in test microalgae, D. subspicatus and C. vulgaris, might reveal its resistance and ability to metabolize PAHs. At the same time, the PAH impact changes on different metabolic activities were higher at 12 and 16 days than at 4 and 8 days in treated microalgae. DOI: http://dx.doi.org/10.3126/ije.v3i1.9941 International Journal of Environment Vol.3(1 2014: 41-55

  1. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions.

    Science.gov (United States)

    Dauda, Suleiman; Chia, Mathias Ahii; Bako, Sunday Paul

    2017-06-01

    The broad application of titanium dioxide nanoparticles (n-TiO 2 ) in many consumer products has resulted in the release of substantial quantities into aquatic systems. While n-TiO 2 have been shown to induce some unexpected toxic effects on aquatic organisms such as microalgae, the influence of changing nutrient conditions on the toxicity of the metal has not been investigated. We evaluated the toxicity of n-TiO 2 to Chlorella vulgaris under varying nitrogen conditions. Limited nitrogen (2.2μM) decreased growth and biomass (dry weight and pigment content), while lipid peroxidation (malondialdehyde content), glutathione S-transferase activity (GST) and peroxidase (POD) activity were increased. Similarly, exposure to n-TiO 2 under replete nitrogen condition resulted in a general decrease in growth and biomass, while GST and POD activities were significantly increased. The combination of limited nitrogen with n-TiO 2 exposure further decreased growth and biomass, and increased GST and POD activities of the microalga. These results suggest that in addition to the individual effects of each investigated condition, nitrogen limitation makes C. vulgaris more susceptible to the effects of n-TiO 2 with regard to some physiological parameters. This implies that the exposure of C. vulgaris and possibly other green algae to this nanoparticle under limited or low nitrogen conditions may negatively affect their contribution to primary production in oligotrophic aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Adriano Arruda Henrard

    2014-01-01

    Full Text Available The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1 and generating biomass (2.89 g L−1 were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1 was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate.

  3. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.

    Science.gov (United States)

    Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve

    2017-10-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3.

    Science.gov (United States)

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2017-08-01

    Diesel is a commonly used fuel and a key pollutant on water surface through leaks and accidental spills, thus creating risk directly to planktons as well as other aquatic organisms. We assessed the toxicty of diesel and its water accommodated fraction (WAF) towards two microalgal species, Pseudokirchneriella subcapitata and Chlorella sp. MM3. The toxicity criteria included were: chlorophyll a content as a growth parameter and induction of enzyme activities linked to oxidative stress. Increase in concentrations of diesel or its WAF significantly increased toxicity towards growth, measured in terms of chlorophyll a content in both the algae. Activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in response to addition of diesel or diesel WAF to the microalgal cultures were dose-dependent. Diesel WAF was more toxic than diesel itself, suggesting that use of WAF may be more relevant for environmental risk assessment of diesel. The overall response of the antioxidant enzymes to toxicants' stress followed the order: POX≥SOD>CAT. The present study clearly demonstrated the use of SOD, POX and CAT as suitable biomarkers for assessing diesel pollution in aquatic ecosystem. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae.

    Science.gov (United States)

    Gai, Chao; Zhang, Yuanhui; Chen, Wan-Ting; Zhang, Peng; Dong, Yuping

    2013-12-01

    The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems

    Science.gov (United States)

    2012-05-01

    concentration to 5% water based on latent heat of vaporization Algae Botryococcus braunii Chlorella vulgaris Euglena gracilis Nannochlorops is...microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507, 2006 [9] Acièn Fernández F-G, Garcìa Camacho F

  7. Efficient recovery of uranium using genetically improved microalgae; Recuperacion eficaz de uranio utilizando microalgas geneticamente mejoradas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodas, V.; Gonzalez Conde, E.; Garcia-Balboa, C.

    2014-07-01

    Although bioaccumulation is an enzymatic process that requires live microalgae bio sorption is based on physicochemical interactions, and it is not necessary that microalgae are alive, whereby dried microalgae biomass achieves the same results. This alternative could represent a new safe and inexpensive way to recover U. (Author)

  8. The Effect of Chlorella vulgaris Supplementation on Liver Enzymes, Serum Glucose and Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Mehrangiz Ebrahimi-Mameghani

    2014-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide and using microalgae is a new approach on its treatment. The aim of this study was to investigate the effect of Chlorella vulgaris supplementation on liver enzymes, serum glucose and lipid profile in patients with NAFLD. Methods: This double-blind randomized placebo-controlled clinical trial was conducted on 60 NAFLD patients from specialized clinics of Tabriz University of Medical Sciences from December 2011 to July 2012. The subjects were randomly allocated into 2 groups: 1 “intervention” (n=30 received 400 mg/day vitamin E plus four 300 mg tablets of Chlorella vulgaris and, 2 “placebo” (n=30 received 400 mg/day vitamin E and four placebo tablets per day for 8 weeks. Weight, liver enzymes and metabolic factors were assessed in fasting serum and dietary data was collected at baseline and end of the study. Results: Weight, liver enzymes, fasting blood sugar (FBS and lipid profile decreased significantly in both groups (P<0.05. The differences in weight, ALP and FBS between the two groups were statistically significant (P=0.01, P=0.04 and P=0.02, respectively. Conclusion: C. vulgaris seems to improve FBS and lipid profile and therefore could be considered as an effective complementary treatment in NAFLD.

  9. Enhancement of Lutein Production in Chlorella sorokiniana (Chorophyta by Improvement of Culture Conditions and Random Mutagenesis

    Directory of Open Access Journals (Sweden)

    Maria Angeles Vargas

    2011-09-01

    Full Text Available Chlorella sorokiniana has been selected for lutein production, after a screening of thirteen species of microalgae, since it showed both a high content in this carotenoid and a high growth rate. The effects of several nutritional and environmental factors on cell growth and lutein accumulation have been studied. Maximal specific growth rate and lutein content were attained at 690 µmol photons m−2 s−1, 28 °C, 2 mM NaCl, 40 mM nitrate and under mixotrophic conditions. In general, optimal conditions for the growth of this strain also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana have been obtained by random mutagenesis, using N-methyl-N′-nitro-nitrosoguanidine (MNNG as a mutagen and selecting mutants by their resistance to the inhibitors of the carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the herbicides, those exhibiting both high content in lutein and high growth rate were chosen. Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in addition, either a similar or higher growth rate than the latter strain. The mutant MR-16 exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining values of 42.0 mg L−1 and mutants DMR-5 and DMR-8 attained a lutein cellular content of 7.0 mg g−1 dry weight. The high lutein yield exhibited by C. sorokiniana makes this microalga an excellent candidate for the production of this commercially interesting pigment.

  10. Multi-Product Microalgae Biorefineries

    NARCIS (Netherlands)

    Lam, 't G.P.; Vermuë, M.H.; Eppink, M.H.M.; Wijffels, R.H.; Berg, van den C.

    2018-01-01

    Although microalgae are a promising biobased feedstock, industrial scale production is still far off. To enhance the economic viability of large-scale microalgae processes, all biomass components need to be valorized, requiring a multi-product biorefinery. However, this concept is still too

  11. Advances in editing microalgae genomes

    OpenAIRE

    Daboussi, Fayza

    2017-01-01

    There have been significant advances in microalgal genomics over the last decade. Nevertheless, there are still insufficient tools for the manipulation of microalgae genomes and the development of microalgae as industrial biofactories. Several research groups have recently contributed to progress by demonstrating that particular nucleases can be used for targeted and stable modifications of the genomes of some microalgae species. The nucleases include Meganucleases, Zinc Finger nucleases, TAL...

  12. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    Science.gov (United States)

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  13. Comparative Salt Stress Study on Intracellular Ion Concentration in Marine and Salt-adapted Freshwater Strains of Microalgae

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad TALEBI

    2013-08-01

    Full Text Available Salinity imposes significant stresses in various living organisms including microalgae. High extracellular concentration of Na+ directly influences ionic balance inside the cell and subsequently the cellular activities. In the present study, the effect of such stress on growth and intracellular ions concentration (IIC of Dunaliella salina and Chlorella Spp. was investigated. IIC was analyzed using Ion chromatography technique. D. salina showed the highest degree of resistance to increase in salinity as little changes occurred both in IIC and in growth parameters. D. salina could maintain the balance of K+ inside the cell and eject the excess Na+ even at NaCl concentrations above 1M. Moreover, D. salina accumulated β-carotene in order to protect its photosynthetic apparatus. Among Chlorella species, C. vulgaris showed signs of adaptation to high content of salinity, though it is a fresh water species by nature. Moreover, the response shown by C. vulgaris to rise in salinity was even stronger than that of C. salina, which is presumably a salt-water resistant species. In fact, C. vulgaris could maintain intracellular K+ better than C. salina in response to increasing salinity, and as a result, it could survive at NaCl concentrations as high as 0.75 M. Marine strains such as D. salina well cope with the fluctuations in salinity through the existing adaptation mechanisms i.e. maintaining the K+/N+ balance inside the cell, K+ accumulation and Na+ ejection, accumulation of photosynthetic pigments like β-carotene.

  14. Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Sonnenschein, Eva; Pu, Yuan; Beld, Joris

    2016-01-01

    available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases...... in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism...

  15. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, Cristian; Fabbri, Daniele; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Cultivation of Desmodesmus sp. microalgae in the recycled aqueous phase (AP) recovered after Hydrothermal Liquefaction (HTL) of the same microalgae was studied to evaluate the potential of nutrients recycling. AP dilution ratio was systematically varied, using either water or water enriched with

  16. Lipid production by pure and mixed cultures of Chlorella pyrenoidosa and Rhodotorula mucilaginosa isolated in Nuevo Leon, Mexico.

    Science.gov (United States)

    Reyna-Martínez, Raúl; Gomez-Flores, Ricardo; López-Chuken, Ulrico J; González-González, Rosario; Fernández-Delgadillo, Sergio; Balderas-Rentería, Isaias

    2015-01-01

    Given the well-known environmental drawbacks of using fossil fuels, advances in the field of alternative energy have become a worldwide technological priority. Special interest has been focused on the production of biodiesel obtained from oleaginous microorganisms. In the present research, lipid production by two species, microalgae Chlorella pyrenoidosa and yeast Rhodotorula mucilaginosa was assessed, independently and in mixed culture to evaluate a possible synergy. Fatty acid analysis was performed by gas chromatography. Among pure and mixed cultures of both strains and several culturing conditions, the highest biomass and lipid productivity was obtained by C. pyrenoidosa (8.05 and 1.62 g/L, respectively). The results of this study showed that both strains used are in fact oleaginous strains as they were found to reach up to 20 % of lipids, in addition, lipids in both pure and mixed cultures were mainly of triglycerides (>90 %), composed of fatty acid chains between 16 and 18 carbons.

  17. Microalgae harvesting techniques: A review.

    Science.gov (United States)

    Singh, Gulab; Patidar, S K

    2018-07-01

    Microalgae with wide range of commercial applications have attracted a lot of attention of the researchers in the last few decades. However, microalgae utilization is not economically sustainable due to high cost of harvesting. A wide range of solid - liquid separation techniques are available for microalgae harvesting. The techniques include coagulation and flocculation, flotation, centrifugation and filtration or a combination of various techniques. Despite the importance of harvesting to the economics and energy balance, there is no universal harvesting technique for microalgae. Therefore, this review focuses on assessing technical, economical and application potential of various harvesting techniques so as to allow selection of an appropriate technology for cost effectively harvesting of microalgae from their culture medium. Various harvesting and concentrating techniques of microalgae were reviewed to suggest order of suitability of the techniques for four main microalgae applications i.e biofuel, human and animal food, high valued products, and water quality restoration. For deciding the order of suitability, a comparative analysis of various harvesting techniques based on the six common criterions (i.e biomass quality, cost, biomass quantity, processing time, species specific and toxicity) has been done. Based on the order of various techniques vis-a-vis various criteria and preferred order of criteria for various applications, order of suitability of harvesting techniques for various applications has been decided. Among various harvesting techniques, coagulation and flocculation, centrifugation and filtration were found to be most suitable for considered applications. These techniques may be used alone or in combination for increasing the harvesting efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Laboratory culture for 14C-labeling of Chlorella and Oedogonium

    International Nuclear Information System (INIS)

    Krzywicka, A.M.; Wagner, G.H.

    1975-01-01

    Algae were cultured in experiments that attained efficient CO 2 utilization permitting 14 C=labeling of cells and that compared growth characteristics of unicellular Chlorella sp. and filamentous Oedogonium sp. Culture vessels were 500ml glass tubes through which air enriched to 5% CO 2 was slowly metered. The tubes, used in a vertical position for growing Chlorella, were filled with culture medium and the cells kept in suspension using a mganetic stirrer. Tubes placed horizontally and half filled with medium were used for Oedogonium permitting the 3g/l. in 5 days for Chlorella and 1 g/0.5 1. in 10 days for 3g/l. in 2 days for Chlorella and 1 g/0.5 l. in 10 days for Oedogonium. Efficiency and rate of CO 2 fixation, cell size and cell weight for the two algae are evaluated. (author)

  19. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.

    Science.gov (United States)

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2016-07-01

    P25 TiO2 nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO2 NPs (0.01, 0.1 & 1μg/mL, i.e., 0.12, 1.25 and 12.52μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (pScenedesmus under only visible light (pScenedesmus species, which could easily be correlated with the uptake of the NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  1. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, Irena; Doucha, Jiri; Zachleder, Vilem [Laboratory of Cell Cycles of Algae, Department of Autotrophic Microorganisms, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Novohradska 237, 379 81 Trebon - Opatovicky mlyn (Czech Republic); Kastanek, Frantisek; Maleterova, Ywette [Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic, Rozvojova 135, 16502 Prague 6 - Suchdol (Czech Republic); Kastanek, Petr [Biocen, Ltd., Ondrickova 1246/13, 13000 Praha - Zizkov (Czech Republic)

    2010-03-15

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D{sup -0.8} (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of

  2. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products

    International Nuclear Information System (INIS)

    Douskova, Irena; Kastanek, Frantisek; Maleterova, Ywette; Kastanek, Petr; Doucha, Jiri; Zachleder, Vilem

    2010-01-01

    The aim of the study was the experimental verification of a proposed novel technology of energy and materials production, consisting of the following process steps: production of biogas from agricultural waste (distillery stillage), presumed utilization of biogas for electricity and heat production (cogeneration) in association with its use as a source of carbon dioxide for microalgae cultivation. The microalgal biomass can be hereafter processed to valuable products such as food and feed supplements. A part of the process wastewater can be utilized as a nitrogen source (ammonium ions) for microalgae cultivation, so the whole process is technologically closed. The tests were performed in a pilot-scale device. Optimization of biogas production from distillery stillage is described. The growth kinetics of microalgae Chlorella sp. consuming biogas or mixture of air and carbon dioxide in the concentration range of 2-20% (v/v) (simulating a flue gas from biogas incineration) in laboratory-scale photo-bioreactors are presented. It was proven that the raw biogas (even without the removal of hydrogen sulphide) could be used as a source of carbon dioxide for growth of microalgae. The growth rate of microalgae consuming biogas was the same as the growth rate of the culture grown on a mixture of air and food-grade carbon dioxide. Using biogas as a source of carbon dioxide has two main advantages: the biomass production costs are reduced and the produced biomass does not contain harmful compounds, which can occur in flue gases. The microalgal growth in bubbled cylinders was typically linear with time. The growth rate dependence on the diameter of the photobioreactor can be correlated using an empirical formula M = 2.2 D -0.8 (valid for the linear bubbling velocities in the range of w = 0.1-0.3 cm/s), where M is the growth rate in g/L/h, and D is the photobioreactor diameter in mm. Processing of the fermenter wastewater was also quantified. Particularly the removal of ammonia

  3. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

  4. Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods.

    Science.gov (United States)

    Cao, Weixing; Wang, Xue; Sun, Shiqing; Hu, Changwei; Zhao, Yongjun

    2017-10-01

    In order to purify biogas slurry and biogas simultaneously, three different fungi, Pleurotus geesteranus (P. geesteranus), Ganoderma lucidum (G. lucidum), and Pleurotus ostreatus (P. ostreatus) were pelletized with Chlorella vulgaris (C. vulgaris). The results showed that the optimal light wavelength ratio for red:blue was 5:5 for these three different fungi-assisted C. vulgaris, resulting in higher specific growth rate as well as nutrient and CO 2 removal efficiency compared with other ratios. G. lucidum/C. vulgaris was screened as the best fungi-mialgae for biogas slurry purification and biogas upgrading with light/dark ratio of 14h:10h, which was also confirmed by the economic efficiency analysis of the energy consumptions. These results will provide a theoretical foundation for large-scale biogas slurry purifying and biogas upgrading using microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris.

    Science.gov (United States)

    Abu-Serie, Marwa M; Habashy, Noha H; Attia, Wafaa E

    2018-05-10

    Since oxidative stress and inflammation are two linked factors in the pathogenesis of several human diseases. Thus identification of effective treatment is of great importance. Edible mushroom and microalgae are rich in the effective antioxidant phytochemicals. Hence, their beneficial effects on oxidative stress-associated inflammation are extremely required to be investigated. This study evaluated the functional constituents, antioxidant and anti-inflammatory activities of Malaysian Ganoderma lucidum aqueous extract (GLE) and Egyptian Chlorella vulgaris ethanolic extract (CVE). Also, the synergistic, addictive or antagonistic activities of the combination between the two extracts (GLE-CVE) were studied. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B, as well as levels of nitric oxide, tumor necrosis factor (TNF)-α, lipid peroxidation, reduced glutathione and antioxidant enzymes were determined using in vitro model of lipopolysaccharide-stimulated white blood cells.

  6. Optimization of biodiesel production from Chlorella protothecoides oil via ultrasound assisted transesterification

    Directory of Open Access Journals (Sweden)

    Özçimen Didem

    2017-01-01

    Full Text Available There is a growing interest in biodiesel as an alternative fuel for diesel engines because of the high oil prices and environmental issues related to massive greenhouse gas emissions. Nowadays, microalgal biomass has become a promising biodiesel feedstock. However, traditional biodiesel production from microalgae consumes a lot of energy and solvents. It is necessary to use an alternative method that can reduce the energy and alcohol consumption and save time. In this study, biodiesel production from Chlorella protothecoides oil by ultrasound assisted transesterification was conducted and effects of reaction parameters such as methanol:oil ratio, catalyst/oil ratio and reaction time on fatty acid methyl ester yields were investigated. The transesterification reactions were carried out by using methanol as alcohol and potassium hydroxide as the catalyst. The highest methyl ester production was obtained under the conditions of 9:1 methanol/oil mole ratio, 1.5% potassium hydroxide catalyst in oil, and for reaction time of 40 min. It was also found that catalyst/oil molar ratio was the most effective parameter on methyl ester yield according to statistical data. The results showed that ultrasound-assisted transesterification may be an alternative and cost effective way to produce biodiesel efficiently.

  7. Harvesting microalgae by bio-flocculation and autoflocculation

    NARCIS (Netherlands)

    Salim, S.

    2013-01-01

    Harvesting in commercial microalgae production plants is generally done by centrifugation, but this requires upto about 50% of the total energy gained from the microalgae. The energy needed for harvesting can be reduced considerably by pre-concentration of the microalgae prior to further dewatering.

  8. Comparison between direct transesterification of microalgae and hydrochar

    Directory of Open Access Journals (Sweden)

    Vo Thanh Phuoc

    2017-07-01

    Full Text Available Hydrothermal carbonization (HTC of microalgae is one of processes that can effectively remove moisture from microalgae. In addition, the hydrochar retains most of fatty acids from microalgae feedstock, and the content of fatty acids in hydrochar is doubled. This research concentrates on the comparison between direct transesterification of microalgae and hydrochar. The result shows that the biodiesel yields of hydrochar were higher than those of microalgae at the same reaction conditions due to the higher extraction rate of fatty acids from hydrochar. Finally, the amount of methanol and catalyst which is required for a given amount of microalgae can be reduced to a half through the direct transesterification of hydrochar.

  9. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies.

    Science.gov (United States)

    Yashchenko, Varvara V; Gavrilova, Olga V; Rautian, Maria S; Jakobsen, Kjetill S

    2012-05-01

    Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Restauración de la inmunocompetencia en ratones malnutridos con la administración de un hidrolizado de microalgas

    Directory of Open Access Journals (Sweden)

    Humberto Joaquín Morris Quevedo

    2003-12-01

    Full Text Available Se evaluó el efecto de la administración intraperitoneal de un hidrolizado proteico de la microalga Chlorella vulgaris en una dosis de 500 mg/kg de peso durante 6 días, como complemento de la dieta convencional en la recuperación de la inmunocompetencia de ratones Balb/c con malnutrición proteico-energética inducida experimentalmente por restricción dietética. La intervención con el hidrolizado implicó la restauración del conteo de leucocitos totales a valores similares a los del grupo control; a un incremento en los niveles de linfocitos en sangre periférica; estimuló la proliferación de las células del sistema fagocítico mononuclear y el metabolismo de los macrófagos, expresado por una mayor actividad de la enzima fosfatasa ácida lisosomal y al aumento del peso relativo y actividad hematopoyética del bazo. Estas acciones moduladoras permiten considerar al producto como un preparado inmunológicamente activo capaz de inducir un estado incrementado de resistencia no específica en el organismo.The effect of the intraperitoneal administration of a protein hydrolysate of Chlorella vulgaris microalga at a dose of 500 mg/kg of weight during 6 days, as a supplement of the conventional diet in the recovery of the immunocompetence of Balb/c mice with protein-energy malnutrition experimentally induced by diet restriction, was evaluated. The intervention with the hydrolysate led to the restoration of the count of total leukocytes at values similar to those of the control group and to an increase in the levels of lymphocytes in peripheral blood. It also stimulated the proliferation of the cells from the mononuclear phagocytic system and the metabolism of the macrophages, expressed by a higher activity of the lysosomal acid phsosphatase and the rise of the relative weight and the hematopoietic activity of the spleen. These modullating actions allow to consider the product as an immunological active compound capable of inducing an

  11. Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater.

    Science.gov (United States)

    Jiang, Liqun; Ji, Yan; Hu, Wenrong; Pei, Haiyan; Nie, Changliang; Ma, Guixia; Song, Mingming

    2016-09-01

    Light is one of the most important factors affecting microalgae growth and biochemical composition. The influence of illumination on Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater (MSGW) was investigated. Six progressive illumination intensities (0, 30, 90, 150, 200 and 300μmol·m(-2)s(-1)), were used for C. vulgaris cultivation at 25°C. Under 150μmol·m(-2)s(-1), the corresponding specific light intensity of 750×10(-6)μmol·m(-2)s(-1) per cell, algae obtained the maximum biomass concentration (1.46g·L(-1)) on the 7th day, which was 3.5 times of that under 0μmol·m(-2)s(-1), and the greatest average specific growth rate (0.79 d(-1)) in the first 7days. The results showed the importance role of light in mixotrophic growth of C. vulgaris. High light intensities of 200 and 300μmol·m(-2)s(-1) would inhibit microalgae growth to a certain degree. The algal lipid content was the greatest (30.5%) at 150μmol·m(-2)s(-1) light intensity, which was 2.42 times as high as that cultured in dark. The protein content of C. vulgaris decreased at high light intensities of 200 and 300μmol·m(-2)s(-1). The effect of irradiance on carbohydrate content was inversely correlated with that on protein. The available light at an appropriate intensity, not higher than 200μmol·m(-2)s(-1), was feasible for economical cultivation of C. vulgaris in MSGW. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of maternal Chlorella supplementation on carotenoid concentration in breast milk at early lactation.

    Science.gov (United States)

    Nagayama, Junya; Noda, Kiyoshi; Uchikawa, Takuya; Maruyama, Isao; Shimomura, Hiroshi; Miyahara, Michiyoshi

    2014-08-01

    Breast milk carotenoids provide neonates with a source of vitamin A and potentially, oxidative stress protection and other health benefits. Chlorella, which has high levels of carotenoids such as lutein, zeaxanthin and β-carotene, is an effective dietary source of carotenoids for humans. In this study, the effect of maternal supplementation with Chlorella on carotenoid levels in breast milk at early lactation was investigated. Ten healthy, pregnant women received 6 g of Chlorella daily from gestational week 16-20 until the day of delivery (Chlorella group); ten others did not (control group). Among the carotenoids detected in breast milk, lutein, zeaxanthin and β-carotene concentrations in the Chlorella group were 2.6-fold (p = 0.001), 2.7-fold (p = 0.001) and 1.7-fold (p = 0.049) higher, respectively, than those in the control group. Our study shows that Chlorella intake during pregnancy is effective in improving the carotenoid status of breast milk at early lactation.

  13. Highly valuable microalgae: biochemical and topological aspects.

    Science.gov (United States)

    Pignolet, Olivier; Jubeau, Sébastien; Vaca-Garcia, Carlos; Michaud, Philippe

    2013-08-01

    The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.

  14. Phototrophic pigment production with microalgae

    NARCIS (Netherlands)

    Mulders, K.J.M.

    2014-01-01

    Abstract

    Microalgal pigments are regarded as natural alternatives for food colorants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary

  15. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2018-02-01

    The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects Of Heavy Metals On Growing Cultures Of Chlorella emersonii ...

    African Journals Online (AJOL)

    This work evaluates the effect of some metals on a green alga Chlorella emersonii, under continuous and batch culture conditions with added metal and another, batch culture with no added metal but where organism had been exposed to metal for 18 hours prior to growth. It was found that Chlorella growth under ...

  17. Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa.

    Science.gov (United States)

    Zhang, Wei; Sun, Wenfang; An, Shuai; Xiong, Bang; Lin, Kuangfei; Cui, Xinhong; Guo, Meijin

    2013-08-01

    The acute and chronic toxicological effects of Chloramphenicol (CAP) on Scenedesmus obliquus and Chlorella pyrenoidosa are not well understood. The indoor experiments were carried to observe and analyze the CAP induced changes. Results of the observations have showed that CAP exposure could significantly inhibit the growth of Scenedesmus obliquus in almost all the treated groups, while Chlorella pyrenoidosa exhibited less sensitivity. Chlorophyll-a syntheses of Scenedesmus obliquus were all inhibited by CAP exposure, while Chlorella pyrenoidosa displayed obvious stimulation effect. Catalase (CAT) and Superoxide dismutase (SOD) activities of both algae were promoted in all the treatments. The experimental results indicated that the growth and Chlorophyll-a syntheses of Scenedesmus obliquus were more sensitive in response to CAP exposure than that of Chlorella pyrenoidosa. While for CAT and SOD activities, Chlorella pyrenoidosa showed more susceptible. This research provides a basic understanding of CAP toxicity to aquatic organisms.

  18. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, M.; Williams, P.; Edmundson, S.; Chen, P.; Kruk, R.; Cullinan, V.; Crowe, B.; Lundquist, T.

    2017-09-01

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperature conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and Stichococcus minor

  19. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts.

    Science.gov (United States)

    Choi, Cheol Soon; Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2014-01-01

    This study investigated the cultivation of the marine microalga Chlorella sp. without supplying an inorganic carbon source, but instead with enriching the media with extracts of oyster shells pretreated by a high-pressure homogenization process. The pretreated oyster shells were extracted by a weak acid, acetic acid, that typically has harmful effects on cell growth and also poses environmental issues. The concentration of the residual dissolved carbon dioxide in the medium was sufficient to maintain cell growth at 32 ppm and pH 6.5 by only adding 5% (v/v) of oyster shell extracts. Under this condition, the maximum cell density observed was 2.74 g dry wt./L after 27 days of cultivation. The total lipid content was also measured as 18.1 (%, w/w), and this value was lower than the 23.6 (%, w/w) observed under nitrogen deficient conditions or autotrophic conditions. The fatty acid compositions of the lipids were also measured as 10.9% of C16:1 and 16.4% of C18:1 for the major fatty acids, which indicates that the biodiesel from this culture process should be a suitable biofuel. These results suggest that oyster shells, environmental waste from the food industry, can be used as a nutrient and carbon source with seawater, and this reused material should be important for easily scaling up the process for an outdoor culture system.

  20. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dietary effects of lutein-fortified chlorella on milk components of Holstein cows

    OpenAIRE

    Jeon, Jin-Young; Park, Keun-Kyu; Lee, Kyung-Woo; Jang, Seung-Wan; Moon, Byung-Hern; An, Byoung-Ki

    2016-01-01

    This study was conducted to investigate the dietary effect of conventional or lutein-fortified chlorella on milk production and lutein incorporation in milk. Fifteen Holstein cows in mid-lactation were used in a 3???3 Latin square design each with a 21-day period. Cows were top-dressed daily with 30?g of conventional or lutein-fortified chlorella for 3?weeks. Cows without chlorella served as the control. The feed intake and milk yield were not affected by dietary treatments. The concentration...

  2. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    Science.gov (United States)

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Research on characteristic of interrelationship between toxic organic compound BPA and Chlorella vulgaris].

    Science.gov (United States)

    Chen, Shan-Jia; Chen, Xiu-Rong; Yan, Long; Zhao, Jian-Guo; Zhang, Fei; Jiang, Zi-Jian

    2014-04-01

    The effects of different concentrations of bisphenol A (BPA) on Chlorella vulgaris and removal capacity of BPA by Chlorella vulgaris were investigated. Results showed that a low concentration (0-20 mg x L(-1)) of BPA promoted the growth of Chlorella vulgaris, whereas a relative high concentration (20-50 mg x L(-1)) of BPA inhibited the growth of Chlorella vulgaris, and the inhibition effect was positively correlated with the concentration of BPA. Likewise, a high dose of initial BPA (> 20 mg x L(-1)) led to a decline in the content of chlorephyll a. Chlorella vulgaris had BPA removal capacity when initial BPA concentration ranged from 2 mg x L(-1) to 50 mg x L(-1). There was positive correlation between the removal rate of BPA per cell and initial BPA concentration. The removal rate of BPA was the highest when initial BPA was 50 mg x L(-1), which appeared between lag phase and logarithmic phase.

  4. A Comprehensive Study on Chlorella pyrenoidosa for Phenol Degradation and its Potential Applicability as Biodiesel Feedstock and Animal Feed.

    Science.gov (United States)

    Das, Bhaskar; Mandal, Tapas K; Patra, Sanjukta

    2015-07-01

    The present work evaluates the phenol degradative performance of microalgae Chlorella pyrenoidosa. High-performance liquid chromatography (HPLC) analysis showed that C. pyrenoidosa degrades phenol completely up to 200 mg/l. It could also metabolize phenol in refinery wastewater. Biokinetic parameters obtained are the following: growth kinetics, μ max (media) > μ max (refinery wastewater), K s(media) refinery wastewater), K I(media) > K I(refinery wastewater); degradation kinetics, q max (media) > q max (refinery wastewater), K s(media) refinery wastewater), K I(media) > K I(refinery wastewater). The microalgae could cometabolize the alkane components present in refinery wastewater. Fourier transform infrared (FTIR) fingerprinting of biomass indicates intercellular phenol uptake and breakdown into its intermediates. Phenol was metabolized as an organic carbon source leading to higher specific growth rate of biomass. Phenol degradation pathway was elucidated using HPLC, liquid chromatography-mass spectrometry (LC-MS) and ultraviolet-visible (UV-visible) spectrophotometry. It involved both ortho- and meta-pathway with prominence of ortho-pathway. SEM analysis shows that cell membrane gets wrinkled on phenol exposure. Phenol degradation was growth and photodependent. Infrared analysis shows increased intracellular accumulation of neutral lipids opening possibility for utilization of spent biomass as biodiesel feedstock. The biomass after lipid extraction could be used as protein supplement in animal feed owing to enhanced protein content. The phenol remediation ability coupled with potential applicability of the spent biomass as biofuel feedstock and animal feed makes it a potential candidate for an environmentally sustainable process.

  5. The comparative study of the effect of some radionuclides on chlorella populations

    International Nuclear Information System (INIS)

    Shvobene, R.Ya.; Marchyulenene, D.P.; Shuliene, R.I.

    1984-01-01

    In this report the data are presented of the comparative study of physiological and genetic effects on chlorella populations (Chlorella vUlgaris Beijer, strain LARG-1) of 90 Sr, 137 Cs and 144 Ce (equal concentrations) distinguished by the radiation dose produced, the physico-chemical properties, and the levels of accumulation and deposition thereof in plant cells. The effects of the radionuclides on chlorella populations were estimated with a reference to the rate of photosynthesis, cell density, and the number of mutant and lethally affected cells

  6. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  7. Physicochemical analysis of cellulose from microalgae ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Nannochloropsis gaditana is a microalgae belonging to the class of Eustigmatophyceae. This particular microalga is the most studied species. For its richness in lipids, it is used for the biodiesel production.

  8. Effect of Chlorella Ingestion on Oxidative Stress and Fatigue Symptoms in Healthy Men.

    Science.gov (United States)

    Okada, Hirotaka; Yoshida, Noriko; Kakuma, Tatsuyuki; Toyomasu, Kouji

    2018-05-21

    We examined the effects of dietary chlorella ingestion on oxidative stress and fatigue symptoms in healthy men under resting and fatigue conditions. We conducted a double-blind, parallel-arm controlled study. Twenty-seven healthy male volunteers (mean age, 35.4±10.4 years) were randomly divided into the chlorella and placebo groups, and received chlorella (6 g/day) and lactose as placebo (7.2 g/day), respectively, for 4 weeks. To simulate mild fatigue, subjects underwent exercise (40% of the heart rate reserve) for 30 minutes. Fatigue was measured using the visual analog scale of fatigue (F-VAS) pre- and post-exercise. Serum antioxidant capacity (AC), malondialdehyde levels, and other indices of oxidative stress were measured pre- and post-exercise. All measurements were repeated after the intervention period and the results were compared with baseline measurements. Under resting conditions, AC significantly increased after the intervention period in the chlorella group, but not in the placebo group. Malondialdehyde levels after the intervention period were significantly lower in the chlorella group than in the placebo group. There were no significant differences in any of the oxidative-stress indices measured pre- and post-exercise, either before or after intervention, in either group. F-VAS significantly increased after exercise at all measurement time-points in both groups, except after the intervention period in the chlorella group. Under fatigue conditions, there were no significant differences in oxidative stress indices between the groups. Our results suggest that chlorella ingestion has the potential to relieve oxidative stress and enhance tolerance for fatigue under resting conditions.

  9. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  10. Toxicity assessment of Chlorella vulgaris and Chlorella protothecoides following exposure to Pb(II).

    Science.gov (United States)

    Zhang, Wei; Xiong, Bang; Chen, Lin; Lin, Kuangfei; Cui, Xinhong; Bi, Huasong; Guo, Meijin; Wang, Weiliang

    2013-07-01

    The short- and long-term toxic effects of Pb(II) exposure on Chlorella vulgaris (C. vulgaris) and Chlorella protothecoides (C. protothecoides) were not well understood. The lab study was performed to observe the Pb(II) exposure induced changes. Results of the observations show: (1) higher level of Pb(II) (50 or 80mgL(-1)) could significantly inhibit the growth and chlorophyll a synthesis of both algae in almost all the treatments and dose-response relationships could be clearly observed, (2) the range of EC50 values (24-120h, 67.73-172.45mgL(-1)) indicated that Pb(II) had a relatively limited short-term toxicity to the two algae, while long-term tests (7-28d, 50.41-63.91mgL(-1)) displayed higher toxicity and (3) SOD and CAT activities of both algae after exposed to medium level of Pb(II) were significantly promoted, and their response might be more susceptible in short-term exposure. This research provides a basic understanding of Pb(II) toxicity to aquatic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The effect of light:dark cycles of medium frequency on photosynthesis by Chlorella vulgaris and the implications for waste stabilisation pond design and performance.

    Science.gov (United States)

    Ratchford, I A J; Fallowfield, H J

    2003-01-01

    The effect of light/dark (L:D) cycle times on the recovery from photoinhibition of green micro-alga Chlorella vulgaris (CCAP211/11c) and the cyanobacterium Synechococcus (CCAP1479/5) was investigated using an irradiated, temperature controlled oxygen electrode. The onset of photoinhibition in both organisms occurred at irradiances > 300 micromol m(-2)s(-1) at temperatures >15 degrees C. Light/dark cycle times were controlled independently using a relay timer and shutter placed between the quartz iodide light source and the oxygen electrode chamber. Oxygen evolution decreased rapidly when cells were continuously irradiated at 300, 500 and 750 micromol m(-2)s(-1). However, Chlorella cells irradiated at 300, 500 and 750 micromol m(-2)s(-1)on a L:D cycle of 60s:20s, 30s:60s and 60s: 120s respectively, maintained a constant rate of oxygen evolution over a 24 h incubation period. Exposure time to a given incident irradiance rather than the total light dose received appeared to determine the effect of light/dark cycle times on photosynthesis. A relationship was established between L:D ratio required to maintain constant oxygen production and incident photon flux density. The results suggest that the adverse effects of high irradiances on algae near the surface of a stratified waste stabilisation pond might be ameliorated by controlled mixing of algal cells through the depth of the pond.

  12. The microalga Parachlorella kessleri--A novel highly efficient lipid producer

    Czech Academy of Sciences Publication Activity Database

    Li, Xiuling; Přibyl, Pavel; Bišová, Kateřina; Kawano, S.; Cepák, Vladislav; Zachleder, Vilém; Čížková, Mária; Brányiková, Irena; Vítová, Milada

    2013-01-01

    Roč. 110, č. 1 (2013), s. 97-107 ISSN 0006-3592 R&D Projects: GA MŠk OE09025; GA MŠk LH12145; GA ČR(CZ) GAP503/10/1270; GA ČR GPP501/10/P258; GA TA ČR TE01020080 Institutional support: RVO:61388971 ; RVO:67985939 Keywords : carbon dioxide * light intensity * limitation by elements Subject RIV: EE - Microbiology, Virology; EF - Botanics (BU-J) Impact factor: 4.164, year: 2013

  13. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production.

    Science.gov (United States)

    Church, Jared; Hwang, Jae-Hoon; Kim, Keug-Tae; McLean, Rebecca; Oh, You-Kwan; Nam, Bora; Joo, Jin Chul; Lee, Woo Hyoung

    2017-11-01

    Microalgae can offer several benefits for wastewater treatment with their ability to produce large amounts of lipids for biofuel production and the high economic value of harvested biomass for biogas and fertilizer. This study found that salt concentration (∼45gL -1 ) had more of an effect than salt type on metabolisms of Chlorella vulgaris for wastewater treatment and biofuel production. Salinity stress decreased the algal growth rate in wastewater by 0.003day -1 permScm -1 and slightly reduced nutrient removal rates. However, salinity stress was shown to increase total lipid content from 11.5% to 16.1% while also increasing the saturated portions of fatty acids in C. vulgaris. In addition, salinity increased the algal settling rate from 0.06 to 0.11mday -1 which could potentially reduce the cost of harvesting for algal biofuel production. Overall, C. vulgaris makes a suitable candidate for high salinity wastewater cultivation and biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  15. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.

    Science.gov (United States)

    Wong, Y K; Ho, Y H; Ho, K C; Leung, H M; Yung, K K L

    2017-04-01

    Chlorella vulgaris was cultivated under limitation and starvation and under controlled conditions using different concentrations of nitrate (NaNO 3 ) and phosphate (K 2 HPO 4 and KH 2 PO 4 ) chemicals in modified Bold basal medium (BBM). The biomass and lipid production responses to different media were examined in terms of optical density, cell density, dry biomass, and lipid productivity. In the 12-day batch culture period, the highest biomass productivity obtained was 72.083 mg L -1  day -1 under BBM - N control P limited condition. The highest lipid content, lipid concentration, and lipid productivity obtained were 53.202 %, 287.291 mg/L, and 23.449 mg L -1  day -1 under BBM - N Control P Deprivation condition, respectively. Nitrogen had a major effect in the biomass concentration of C. vulgaris, while no significant effect was found for phosphorus. Nitrogen and phosphorus starvation was found to be the strategy affecting the lipid accumulation and affected the lipid composition of C. vulgaris cultures.

  16. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage.

    Science.gov (United States)

    Wen, Yangmin; He, Yongjin; Ji, Xiaowei; Li, Shaofeng; Chen, Ling; Zhou, Youcai; Wang, Mingzi; Chen, Bilian

    2017-11-01

    Bio-treatment of wastewater mediated by microalgae is considered as a promising solution. This work aimed to isolate an indigenous microalgal strain (named MBFJNU-1) from swine wastewater effluent and identify as Chlorella vulgaris. After 12days, the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) in undiluted swine slurry were 90.51% and 91.54%, respectively. Stress tolerance in response to wastewater was verified by cultivating in artificial wastewater containing different levels of chemical oxygen demand (COD), TN and TP. MBFJNU-1 could grow well in undiluted swine slurry and artificial wastewater containing 30,000mg/L COD or 2000mg/L TN. Furthermore, global nuclear DNA methylation (5-mC) of MBFJNU-1 was employed to explore the possible mechanism in response to wastewater stress. The results showed that the level of 5-mC was inversely proportional to the growth of MBFJNU-1 in different diluted swine slurry, helping to understand 5-mC variation in response to stress environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fuels from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Many species of aquatic plants can provide a source of renewable energy. Some species of microalgae, in particular, produce lipids -- oils that can be extracted and converted to a diesel fuel substitute or to gasoline. Since 1979 the Aquatic Species Program element of the Biofuels Program, has supported fundamental and applied research to develop the technology for using this renewable energy resource. This document, produced by the Solar Technical Information Program, provides an overview of the DOE/SERI Aquatic Species Program element. Chapter 1 is an introduction to the program and to the microalgae. Chapter 2 is an overview of the general principles involved in making fuels from microalgae. It also outlines the technical challenges to producing economic, high-energy transportation fuels. Chapter 3 provides an overview of the Algal Production and Economic Model (APEM). This model was developed by researchers within the program to identify aspects of the process critical to performance with the greatest potential to reduce costs. The analysis using this model has helped direct research sponsored by the program. Finally, Chapter 4 provides an overview of the Aquatic Species Program and describes current research. 28 refs., 17 figs.

  18. Learning sustainability by developing a solar dryer for microalgae retrieval

    Directory of Open Access Journals (Sweden)

    Benedita Malheiro

    2016-01-01

    Full Text Available Excessive fossil fuel consumption is driving the search for alternative energy production solutions and, in particular, for sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. After producing the microalgae, they must be harvested and dried. Existing drying solutions consume too much energy and are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the team’s sustainable development awareness, active learning and motivation.

  19. Harvesting and cell disruption of microalgae

    NARCIS (Netherlands)

    Lam, 't Gerard Pieter

    2017-01-01

    Microalgae are a potential feedstock for various products. At the moment, they are already used as feedstock for high-valuable products (e.g. aquaculture and pigments).

    Microalgae pre-dominantly consist out of proteins, lipids and carbohydrates. This makes algae an interesting feedstock

  20. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    Science.gov (United States)

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast

  1. Chlorella intake attenuates reduced salivary SIgA secretion in kendo training camp participants

    Directory of Open Access Journals (Sweden)

    Otsuki Takeshi

    2012-12-01

    Full Text Available Abstract Background The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a kendo training camp. Methods Ten female kendo athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA. Results All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min, whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min. Conclusion Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport.

  2. Microalgae production in a biofilm photobioreactor

    NARCIS (Netherlands)

    Blanken, Ward

    2016-01-01

    Microalgae can be used to produce high-value compounds, such as pigments or high value fatty acids, or as a feedstock for lower value products such as food and feed compounds, biochemicals, and biofuels. In order to produce these bulk products competitively, it is required to lower microalgae

  3. Microalgae as embedded environmental monitors

    International Nuclear Information System (INIS)

    Ogburn, Zachary L.; Vogt, Frank

    2017-01-01

    In marine ecosystems, microalgae are an important component as they transform large quantities of inorganic compounds into biomass and thereby impact environmental chemistry. Of particular relevance is phytoplankton's sequestration of atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algae blooms. On the other hand, microalgae sensitively respond to changes in their chemical environment, which initiates an adaptation of their chemical composition. Analytical methodologies were developed in this study that utilize microalgae's adaptation as a novel approach for in-situ environmental monitoring. Longterm applications of these novel methods are investigations of environmental impacts on phytoplankton's sequestration performance and their nutritional value to higher organisms feeding on them. In order to analyze the chemical composition of live microalgae cells (Nannochloropsis oculata), FTIR-ATR spectroscopy has been employed. From time series of IR spectra, the formation of bio-sediment can be monitored and it has been shown that the nutrient availability has a small but observable impact. Since this bio-sediment formation is governed by several biological parameters of the cells such as growth rate, size, buoyancy, number of cells, etc., this enables studies of chemical environment's impact on biomass formation and the cells' physical parameters. Moreover, the spectroscopic signature of these microalgae has been determined from cultures grown under 25 different CO 2 and NO 3 − mixtures (200 ppm-600 ppm CO 2 , 0.35 mM-0.75 mM NO 3 − ). A novel, nonlinear modeling methodology coined ‘Predictor Surfaces’ is being presented by means of which the nonlinear responses of the cells to their chemical environment could reliably be described. This approach has been utilized to measure the CO 2 concentration in the atmosphere over the phytoplankton culture as well as the nitrate concentration dissolved in their growing

  4. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    Science.gov (United States)

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-01-01

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control. PMID:25690037

  5. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    Directory of Open Access Journals (Sweden)

    Giorgos Markou

    2015-02-01

    Full Text Available In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control. Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control.

  6. Improved lipid and biomass productivities in Chlorella vulgaris by differing the inoculation medium from the production medium

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Hamedi

    2016-06-01

    Full Text Available Improvement of biomass and lipid productivities is now one of the main concerns in commercialization of microalgae cultivation as a feedstock for algal biofuel production. Conventional photoautotrophic processes using well-studied and rich in oil strain of Chlorella vulgaris are not able to meet such demands. A new strategy of inoculating algae production medium with cells grown in a different medium from the production medium was proposed herein. More specifically, when SH4 was used as production medium and N8 was used as inoculation medium, biomass and lipid productivities increased by 2.33 folds and 1.44 fold, respectively, compared with when the production and inoculation media were the same, such as SH4. The findings of the present investigation showed that this cultivation scheme resulted in 52% increase in cell number and 54% increase in dry weight leading to improved productivities. Although by even considering this improvement, photoautotrophic cultivation of algae can hardly compete with the heterotrophic cultivation, the high cost of hydrocarbon supply required in large-scale heterotrophic processes marks the technique proposed in the present study as a promising approach for commercialization of algal biofuel production.

  7. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production

    Directory of Open Access Journals (Sweden)

    Chunyan Xu

    2015-11-01

    Full Text Available Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS, on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office’s (BETO projected cost of $5/gge (gallon gasoline equivalent. This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes.

  8. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  9. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  10. An Overview of Biocement Production from Microalgae

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2011-12-01

    Full Text Available The invention of microorganism’s involvement in carbonate precipitation, has lead the exploration of this process in the field of construction engineering. Biocement is a product innovation from developing bioprocess technology called biocementation. Biocement refers to CaCO3 deposit that formed due to microorganism activity in the system rich of calcium ion. The primary role of microorganism in carbonate precipitation is mainly due to their ability to create an alkaline environment (high pH and DIC increase through their various physiological activities. Three main groups of microorganism that can induce the carbonate precipitation: (i photosynthetic microorganism such as cyanobacteria and microalgae; (ii sulphate reducing bacteria; and (iii some species of microorganism involved in nitrogen cycle. Microalgae are photosynthetic microorganism and utilize urea using urease or urea amidolyase enzyme, based on that it is possible to use microalgae as media to produce biocement through biocementation. This paper overviews biocement in general, biocementation, type of microorganism and their pathways in inducing carbonate precipitation and the prospect of microalgae to be used in biocement production.  Keywords— Biocement, Biocementation, Microalgae, CaCO3 precipitation

  11. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  12. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    Science.gov (United States)

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2007-01-01

    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.

  13. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi

    2016-01-01

    Full Text Available This study investigated the use of a high-pressure homogenization process for the production of high shear stress on Chlorella sp. cells in order to effectively degrade their cell walls. The high-pressure homogenization process was conducted by using various pressure conditions in the range of 68.94–275.78 MPa with different numbers of repeated cycles. The optimal high-pressure homogenization pretreatment conditions were found to be two cycles at a pressure of 206.84 MPa, which provided an extraction yield of 20.35% (w/w total cellular lipids. In addition, based on the confocal microscopic images of Chlorella sp. cells stained by using nile red, the walls of Chlorella sp. cells were disrupted more effectively using this process when compared with the disruption achieved by conventional lipid-extraction processes. By using the by-product of Chlorella sp., 47.3% ethanol was obtained from Saccharomyces cerevisiae cultures. These results showed that the high-pressure homogenization process efficiently hydrolysed this marine resource for subsequent bioethanol production by using only water.

  14. Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae

    Science.gov (United States)

    Fernandes, Tânia V.; Suárez-Muñoz, María; Trebuch, Lukas M.; Verbraak, Paul J.; Van de Waal, Dedmer B.

    2017-01-01

    Global stores of important resources such as phosphorus (P) are being rapidly depleted, while the excessive use of nutrients has led to the enrichment of surface waters worldwide. Ideally, nutrients would be recovered from wastewater, which will not only prevent eutrophication but also provide access to alternative nutrient stores. Current state-of-the-art wastewater treatment technologies are effective in removing these nutrients from wastewater, yet they can only recover P and often in an insufficient way. Microalgae, however, can effectively assimilate P and nitrogen (N), as well as other macro- and micronutrients, allowing these nutrients to be recovered into valuable products that can be used to close nutrient cycles (e.g., fertilizer, bioplastics, color dyes, and bulk chemicals). Here, we show that the green alga Chlorella sorokiniana is able to remove all inorganic N and P present in concentrated toilet wastewater (i.e., black water) with N:P ratios ranging between 15 and 26. However, the N and P uptake by the algae is imbalanced relative to the wastewater N:P stoichiometry, resulting in a rapid removal of P but relatively slower removal of N. Here, we discuss how ecological principles such as ecological stoichiometry and resource-ratio theory may help optimize N:P removal and allow for more effective recovery of N and P from black water. PMID:28955317

  15. Toward an Ecologically Optimized N:P Recovery from Wastewater by Microalgae

    Directory of Open Access Journals (Sweden)

    Tânia V. Fernandes

    2017-09-01

    Full Text Available Global stores of important resources such as phosphorus (P are being rapidly depleted, while the excessive use of nutrients has led to the enrichment of surface waters worldwide. Ideally, nutrients would be recovered from wastewater, which will not only prevent eutrophication but also provide access to alternative nutrient stores. Current state-of-the-art wastewater treatment technologies are effective in removing these nutrients from wastewater, yet they can only recover P and often in an insufficient way. Microalgae, however, can effectively assimilate P and nitrogen (N, as well as other macro- and micronutrients, allowing these nutrients to be recovered into valuable products that can be used to close nutrient cycles (e.g., fertilizer, bioplastics, color dyes, and bulk chemicals. Here, we show that the green alga Chlorella sorokiniana is able to remove all inorganic N and P present in concentrated toilet wastewater (i.e., black water with N:P ratios ranging between 15 and 26. However, the N and P uptake by the algae is imbalanced relative to the wastewater N:P stoichiometry, resulting in a rapid removal of P but relatively slower removal of N. Here, we discuss how ecological principles such as ecological stoichiometry and resource-ratio theory may help optimize N:P removal and allow for more effective recovery of N and P from black water.

  16. Microalgae as embedded environmental monitors

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, Zachary L.; Vogt, Frank, E-mail: fvogt@utk.edu

    2017-02-15

    In marine ecosystems, microalgae are an important component as they transform large quantities of inorganic compounds into biomass and thereby impact environmental chemistry. Of particular relevance is phytoplankton's sequestration of atmospheric CO{sub 2}, a greenhouse gas, and nitrate, one cause of harmful algae blooms. On the other hand, microalgae sensitively respond to changes in their chemical environment, which initiates an adaptation of their chemical composition. Analytical methodologies were developed in this study that utilize microalgae's adaptation as a novel approach for in-situ environmental monitoring. Longterm applications of these novel methods are investigations of environmental impacts on phytoplankton's sequestration performance and their nutritional value to higher organisms feeding on them. In order to analyze the chemical composition of live microalgae cells (Nannochloropsis oculata), FTIR-ATR spectroscopy has been employed. From time series of IR spectra, the formation of bio-sediment can be monitored and it has been shown that the nutrient availability has a small but observable impact. Since this bio-sediment formation is governed by several biological parameters of the cells such as growth rate, size, buoyancy, number of cells, etc., this enables studies of chemical environment's impact on biomass formation and the cells' physical parameters. Moreover, the spectroscopic signature of these microalgae has been determined from cultures grown under 25 different CO{sub 2} and NO{sub 3}{sup −} mixtures (200 ppm-600 ppm CO{sub 2}, 0.35 mM-0.75 mM NO{sub 3}{sup −}). A novel, nonlinear modeling methodology coined ‘Predictor Surfaces’ is being presented by means of which the nonlinear responses of the cells to their chemical environment could reliably be described. This approach has been utilized to measure the CO{sub 2} concentration in the atmosphere over the phytoplankton culture as well as the nitrate

  17. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Science.gov (United States)

    Sibi, G

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  18. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    Directory of Open Access Journals (Sweden)

    G Sibi

    2015-01-01

    Full Text Available Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS production, cytokine production using P. acnes (Microbial Type Culture Collection 1951. Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5′- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31% and Chlorella protothecoides (58.9%. Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml. FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused

  19. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2018-03-01

    Full Text Available Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.

  20. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    Science.gov (United States)

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-01-01

    Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784

  1. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol.

    Science.gov (United States)

    Feng, Xiaoyu; Walker, Terry H; Bridges, William C; Thornton, Charles; Gopalakrishnan, Karthik

    2014-08-01

    Biomass and lipid accumulation of heterotrophic microalgae Chlorella protothecoides by supplying mixed waste substrate of brewer fermentation and crude glycerol were investigated. The biomass concentrations of the old and the new C. protothecoides strains on day 6 reached 14.07 and 12.73 g/L, respectively, which were comparable to those in basal medium with supplement of glucose and yeast extract (BM-GY) (14.47 g/L for old strains and 11.43 g/L for new strains) (P>0.05). Approximately 81.5% of total organic carbon and 65.1% of total nitrogen in the mixed waste were effectively removed. The accumulated lipid productivities of the old and the new C. protothecoides strains in BM-GY were 2.07 and 1.61 g/L/day, respectively, whereas in the mixed waste, lipid productivities could reach 2.12 and 1.81 g/L/day, respectively. Our result highlights a new approach of mixing carbon-rich and nitrogen-rich wastes as economical and practical alternative substrates for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    Science.gov (United States)

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  3. Flashing light in microalgae biotechnology.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2016-03-01

    Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Degree of Fat Unsaturation in the Tissue and Potential Immune Response of Broiler Fed Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Sugiharto

    2010-05-01

    Full Text Available This study was carried out to investigate the effect of Chlorella sp. administered in the diet of broilers on the degree of fat unsaturation, ratio of EPA to AA in the tissue and potential immune response of broiler. A total of 90 heads of one-day-old Ross chicks were assigned in completely randomized design by 3 dietary treatments with 6 repetitions and 5 chicks in each pen. The diets were T1: control (basal diet without enrichment with Chlorella sp.; T2: basal diet enriched with 5-g of Chlorella sp./kg feed; T3: basal diet enriched with 10-g of Chlorella sp./kg feed. Skinless breast meat was sampled for FA determination at d-36. Chickens were vaccinated at d-6 and d-17 with live vaccine against ND to activate antibodies production, and then 2 ml of blood was collected at d-24 for IgG and IgM quantification. Administration of Chlorella sp. in broiler’s diet had no significant effect on the degree of fat unsaturation, the ratio between EPA and AA contained in the breast muscle and the concentration of IgG and IgM of broiler. In conclusion administration of Chlorella sp. from tropical marine origin in the diet of broiler has no significant effect on the degree of fat unsaturation, ratio of EPA to AA in the tissue, and potential immune response of broiler. The culture temperature in which the Chlorella sp. was cultivated may affect the FA composition of Chlorella sp. (Animal Production 12(2: 96-99 (2010Abbreviations: AA: arachidonic acid, ALA: α-linolenic acid, EPA: eicosapentaenoic acid, FA: fatty acids, LA: linoleic acid, PGE2: Prostaglandin E2, PUFA: polyunsaturated fatty acids, SFA: saturated fatty acidKey Words: antibody, broiler, Chlorella sp., fatty acid, PUFA

  5. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert

    2012-01-01

    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  6. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    Science.gov (United States)

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  7. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  8. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  9. Ecotoxicity and Preliminary Risk Assessment of Nonivamide as a Promising Marine Antifoulant

    Directory of Open Access Journals (Sweden)

    Sujing Liu

    2016-01-01

    Full Text Available The unclear environmental performance of nonivamide limits its application as a marine antifoulant. In this study, the natural degradation of nonivamide was studied in seawater and tap water. The half-life was 5.8 d, 8.8 d, 12.2 d, and 14.7 d in seawater and tap water in photolysis and biolysis, respectively. Furthermore, the ecotoxicity of nonivamide was assessed using marine microalgae, Chlorella vulgaris and Platymonas sp.; EC50,  6 d values on the growth of Chlorella vulgaris and Platymonas sp. were 16.9 mg L−1 and 19.21 mg L−1, respectively. The toxicity and environmental risk of nonivamide on microalgae were significantly decreased due to the natural degradation in seawater.

  10. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Determination of arsenenic compounds in environmental and biological samples with LAMMA and HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Goessler, W.

    1997-07-01

    Different arsonium salts and alkyl- or aryl arsine sulfides were analyzed with a Laser-Microprobe-Mass-Analyzer (LAMMA-500). The positive-ion spectra of the arsonium salts showed clear signals for the (CH 3 ) 3 AsR + fragment. In the positive-ion spectra of alkyl- or arylarsine sulfides these arsenic compounds the molecular ions R 3 AsS + were never observed, but in most of the spectra the protonated parent compounds R 3 AsSH2 + were present. The negative-ion spectra showed mainly fragments S-n (n = 1, 2, 3, 4) and AsS n (n = 1, 2, 3). Chlorella vulgaris Beijerinck var. vulgaris with a concentration of 13,000 mg As/kg dry mass were analyzed with the LAMMA-500 to identify arsenic compounds. Surprisingly, arsenic could not be detected by the LAMMA technique at these high arsenic concentrations. Electron microscopy of Chlorella cells reveals, that particles adhered at the surface of the cells. Scanning transmission electron microscopy showed a high correlation between the arsenic concentration and the iron concentration in these particles. Algae may protect themselves from high arsenic concentrations, by precipitating FeAsO 4 at the cell surface. Different Chlorella sp. were grown to investigate the arsenic tolerance of Chlorella strains. Chlorella Boehm and Chlorella Kessleri grew better in arsenic-containing than in arsenic-free media. The growth of Chlorella 108 was depressed in high-arsenic media. After harvesting, the algal biomass was extracted and arsenic compounds determined in the extracts with HPLC-ICP-MS. Approximately 98 % of the total arsenic were present as arsenic acid. A method for the simultaneous identification and quantification of arsenocholine, arsenous acid, dimethylarsinic acid, arsenobetaine, methylarsonic acid, and arsenic acid at concentrations below 1 μg/L was developed. The developed HPLC-MPN-ICP-MS system allows the determination of arsenic compounds in urine sample at concentrations of 0.5 μg As/L with a relative standard deviation of

  12. Microalgae bulk growth model with application to industrial scale systems

    NARCIS (Netherlands)

    Quinn, J.; Winter, de L.; Bradley, T.

    2011-01-01

    The scalability of microalgae growth systems is a primary research topic in anticipation of the commercialization of microalgae-based biofuels. To date, there is little published data on the productivity of microalgae in growth systems that are scalable to commercially viable footprints. To inform

  13. Microalgae biorefineries: The Brazilian scenario in perspective.

    Science.gov (United States)

    Brasil, B S A F; Silva, F C P; Siqueira, F G

    2017-10-25

    Biorefineries have the potential to meet a significant part of the growing demand for energy, fuels, chemicals and materials worldwide. Indeed, the bio-based industry is expected to play a major role in energy security and climate change mitigation during the 21th century. Despite this, there are challenges related to resource consumption, processing optimization and waste minimization that still need to be overcome. In this context, microalgae appear as a promising non-edible feedstock with advantages over traditional land crops, such as high productivity, continuous harvesting throughout the year and minimal problems regarding land use. Importantly, both cultivation and microalgae processing can take place at the same site, which increases the possibilities for process integration and a reduction in logistic costs at biorefinery facilities. This review describes the actual scenario for microalgae biorefineries integration to the biofuels and petrochemical industries in Brazil, while highlighting the major challenges and recent advances in microalgae large-scale production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  15. Effect of plant growth regulators on production of alpha-linolenic ...

    Indian Academy of Sciences (India)

    Sujana Kokkiligadda

    2017-10-05

    Oct 5, 2017 ... MS received 13 October 2016; revised 22 March 2017; accepted 30 May 2017; ... Plant growth regulators; microalgae; Chlorella pyrenoidosa; alpha-linolenic acid. 1. ... the growth period by flocculation method [9] using alum.

  16. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2017-01-01

    Full Text Available A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+ of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity, deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis, and oxidative stress (ROS production. The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae.

  17. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus.

    Science.gov (United States)

    Hamed, Seham M; Zinta, Gaurav; Klöck, Gerd; Asard, Han; Selim, Samy; AbdElgawad, Hamada

    2017-06-01

    Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.

    Science.gov (United States)

    Meng, Chen; Huang, Jianke; Ye, Chunyu; Cheng, Wenchao; Chen, Jianpei; Li, Yuanguang

    2015-07-01

    In this study, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of circular ponds with three different impellers (hydrofoil, four-pitched-blade turbine, and grid plate). The reliability of the CFD model was validated by particle image velocimetry (PIV). Hydrodynamic analyses were conducted to evaluate the average velocity magnitude along the light direction (Uz), turbulence properties, average shear stress, pressure loss and the volume percentage of dead zone inside circular ponds. The simulation results showed that Uz value of hydrofoil was 58.9, 40.3, and 28.8% higher than those of grid plate with single arm, grid plate with double arms and four-pitched blade turbines in small-scale circular ponds, respectively. In addition, hydrofoil impeller with down-flow operation had outstanding mixing characteristics. Lastly, the results of Chlorella pyrenoidosa cultivation experiments indicated that the biomass concentration of hydrofoil impeller with down-flow operation was 65.2 and 88.8% higher than those of grid plate with double arms and four-pitched-blade turbine, respectively. Therefore, the optimal circular pond mixing system for microalgae cultivation involved a hydrofoil impeller with down-flow operation.

  19. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  20. Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany

    Czech Academy of Sciences Publication Activity Database

    Schreiber, Ch.; Behrendt, D.; Huber, G.; Pfaff, Ch.; Widzgowski, J.; Ackermann, B.; Müller, A.; Zachleder, Vilém; Moudříková, Š.; Mojzeš, P.; Schurr, U.; Grobbelaar, J.; Nedbal, A.

    2017-01-01

    Roč. 234, June 2017 (2017), s. 140-149 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Microalgae * Batch cultivation * Chlorella vulgaris Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.651, year: 2016