Energy Technology Data Exchange (ETDEWEB)
Tinnes, J.Ph
2006-11-15
We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl{sub 9}Ni{sub 3}Fe{sub 2} copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl{sub 2} solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)
Micro-Mechanical Temperature Sensors
DEFF Research Database (Denmark)
Larsen, Tom
Temperature is the most frequently measured physical quantity in the world. The field of thermometry is therefore constantly evolving towards better temperature sensors and better temperature measurements. The aim of this Ph.D. project was to improve an existing type of micro-mechanical temperature...... sensor or to develop a new one. Two types of micro-mechanical temperature sensors have been studied: Bilayer cantilevers and string-like beam resonators. Both sensor types utilize thermally generated stress. Bilayer cantilevers are frequently used as temperature sensors at the micro-scale, and the goal....... The reduced sensitivity was due to initial bending of the cantilevers and poor adhesion between the two cantilever materials. No further attempts were made to improve the sensitivity of bilayer cantilevers. The concept of using string-like resonators as temperature sensors has, for the first time, been...
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-02-21
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Directory of Open Access Journals (Sweden)
Yue Hou
2017-02-01
Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Directory of Open Access Journals (Sweden)
Frappier Renaud
2013-11-01
Full Text Available Cette étude présente les investigations menées sur la fragilisation par le zinc liquide d'un acier électro-zingué. La caractérisation mécanique par essais de traction à haute température montre un important puits de ductilité entre environ 700 ∘C et environ 950 ∘C. L'observation au MEB des éprouvettes de traction indique que, dans la gamme de température observée pour laquelle il y a fragilisation, on a mouillage intergranulaire des joints de grains de l'acier à l'interface acier/revêtement par des films de Zn. La corrélation entre mouillage intergranulaire thermiquement activé d'une part, et propagation de fissure lors du chargement d'autre part, est discutée. This study deals with liquid zinc embrittlement for electro-galvanized steel. Mechanical characterization by high temperature tensile tests shows a drastic loss of ductility between 700 ∘C and 950 ∘C. SEM investigations show that steel grain boundaries under the steel/coating interface are penetrated by a liquid Zn channel, only in the temperature range of embrittlement. A correlation can be drawn between i thermal activated-grain boundary wetting and ii crack propagation in presence of external stress.
Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory
Lanir, Yoram
2017-10-01
Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.
The Micro-mechanics of Asteroid Dust
Sanchez Lana, Diego Paul; Scheeres, Daniel J.
2016-10-01
Current understanding is that small asteroids in the Solar System are gravitational aggregates that are held together by gravitational, cohesive and adhesive forces. Though the mechanics of how gravitational forces work is very well understood, the same cannot be said about the other two.In our earlier research we used a Discrete-Element-Method simulation code to calculate the tensile strength of an assemblage of cohesive particles and found that the main geometrical factor controlling bulk strength was the average size of the particles (Sanchez and Scheeres 2014, MAPS). Specifically, the smaller the average size, the greater the tensile strength as r^-1, as though the magnitude of the van der Waals force applied decrease with the radius of the grains (r), the number of contacts per unit area increases with r^-2. This dependency has been corroborated by some observational evidence of the global strength of granular asteroids; however, our simulations were carried out with spherical particles and therefore in these simulations it is impossible to consider more than one contact per pair of particles. Other parameters such as different chemical composition and wider size distribution of the grains, changes in porosity and number of contacts per particle (coordination number) were not taken into direct account either. The study of each one of these parameters is of interest, and our research has started to explore the effect of these on the net cohesive force found in an asteroid's regolith and interior.Our initial study will simulate the effect of a wider size distribution in the granular material, comparing this with theoretical predictions. This parameter can cause a change in porosity and coordination number of the grains. This will have a measurable effect in the tensile strength of the aggregate and will provide a first look into the strength of a more realistic cohesive granular media. The results of this research will be shown at the conference.
Single Element Excitation and Detection of (Micro-)Mechanical Resonators
Tilmans, Harrie A.C.; IJntema, Dominicus .J.; Fluitman, Jan H.J
1991-01-01
The authors describe a single-element approach for the excitation and detection of the vibrational motion of (micro-)mechanical resonators. An equivalent electrical one-port network is derived for an electrostatically and a piezoelectrically driven resonator. In this way, the effect of the mechanica
Configuration space representation for micro-mechanism function
Energy Technology Data Exchange (ETDEWEB)
Sacks, E. [Purdue Univ., Lafayette, IN (United States). Computer Science Dept.; Allen, J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.
1998-11-01
This paper describes the configuration space representation of mechanical function and shows how it supports the design of micro-mechanisms. The domain characteristics of curved geometry, joint play, and custom joints render traditional design tools inappropriate, but configuration spaces can model these characteristics. They represent the quantitative and the qualitative aspects of kinematic function in a concise geometric format that helps designers visualize system function under a range of operating conditions, find and correct design flaws, study joint play, and optimize performance. The approach is demonstrated on a surface micromachined counter meshing gear discrimination device developed at Sandia National Laboratories.
Saleh, Mohamed Nasr
2016-01-08
Damage initiation and evolution of three-dimensional (3D) orthogonal woven carbon fibre composite (3DOWC) is investigated experimentally and numerically. Meso-scale homogenisation of the representative volume element (RVE) is utilised to predict the elastic properties, simulate damage initiation and evolution when loaded in tension. The effect of intra-yarns transverse cracking and shear diffused damage on the in-plane transverse modulus and shear modulus is investigated while one failure criterion is introduced to simulate the matrix damage. The proposed model is based on two major assumptions. First, the effect of the binder yarns, on the in-plane properties, is neglected, so the 3DOWC unit cell can be approximated as a (0o/90o) cross-ply laminate. Second, a micro-mechanics based damage approach is used at the meso-scale, so damage indicators can be correlated, explicitly, to the density of cracks within the material. Results from the simulated RVE are validated against experimental results along the warp (0o direction) and weft (90o direction). This approach paves the road for more predictive models as damage evolution laws are obtained from micro mechanical considerations and rely on few well-defined material parameters. This largely differs from classical damage mechanics approaches in which the evolution law is obtained by retrofitting experimental observations.
INCREMENTAL MICRO-MECHANICAL MODEL OF PLAIN WOVEN FABRIC
Institute of Scientific and Technical Information of China (English)
ZhangYitong; HaoYongjiang; LiCuiyu
2004-01-01
Warp yarns and weft yarns of plain woven fabric are the principal axes of material of fabric. They are orthogonal in their original configuration, but are obliquely crisscross in deformed configuration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based oll the micro-mechanical model of fabric.
A micro-coupling for micro mechanical systems
Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya
2016-05-01
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and
Failure Criterion for Brick Masonry: A Micro-Mechanics Approach
Directory of Open Access Journals (Sweden)
Kawa Marek
2015-02-01
Full Text Available The paper deals with the formulation of failure criterion for an in-plane loaded masonry. Using micro-mechanics approach the strength estimation for masonry microstructure with constituents obeying the Drucker-Prager criterion is determined numerically. The procedure invokes lower bound analysis: for assumed stress fields constructed within masonry periodic cell critical load is obtained as a solution of constrained optimization problem. The analysis is carried out for many different loading conditions at different orientations of bed joints. The performance of the approach is verified against solutions obtained for corresponding layered and block microstructures, which provides the upper and lower strength bounds for masonry microstructure, respectively. Subsequently, a phenomenological anisotropic strength criterion for masonry microstructure is proposed. The criterion has a form of conjunction of Jaeger critical plane condition and Tsai-Wu criterion. The model proposed is identified based on the fitting of numerical results obtained from the microstructural analysis. Identified criterion is then verified against results obtained for different loading orientations. It appears that strength of masonry microstructure can be satisfactorily described by the criterion proposed.
Micro-mechanisms of residual oil mobilization by viscoelastic fluids
Institute of Scientific and Technical Information of China (English)
Zhang Lijuan; Yue Xiang'an; Guo Fenqiao
2008-01-01
Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats,oil at pore comers and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore comers, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the comers. For residual oil adhered to pore wall,viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil,thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film.
Effect of chain conformation on micro-mechanical behaviour of MEH–PPV thin film
Indian Academy of Sciences (India)
P Wang; L L Wu; D Zhang; H Q Zhang
2013-10-01
The morphology, photoluminescent properties and micro-mechanical character of poly[2-methoxy-5-(2'-ethylhexyloxy)--phenylene vinylene] (MEH–PPV) thin films prepared from toluene (T film) and chloroform (C film) were studied by transmission electron microscopy (TEM), absorption, photoluminescence spectrophotometry and nanoindentation test. The morphological feature of worm-like entities which appeared in T film was ∼10–20 nm in length and 3–5 nm in width. The C film displayed the continuous cotton fibre-shaped morphology. In contrast with C film, the band-edge absorption and maximum emission for T film shifted to the longer wavelength. An analysis fromTEM photograph, absorption and photoluminescence spectra indicated that different chain conformation presented in these two kinds of films. The nanoindentation test showed that the elastic modulus and indentation hardness of T film under the same experimental parameter (load: 50–200 N, loading rate: 20 N/s and holding time: 20 s) decreased by 33.3 ± 0.3 and 8.9 ± 0.5%, respectively comparing with C film. In addition, critical bending radius of these two films based on the flexible base was also evaluated from the obtained experimental results.
Quality control of injection moulded micro mechanical parts
DEFF Research Database (Denmark)
Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard
2009-01-01
Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection moulded components selected from an industrial application. These parts are measured...... using an Optical Coordinate Measuring Machine (OCMM), which guarantees fast surface scans suitable for in line quality control. The uncertainty assessment of the measurements is calculated following the substitution method. To investigate the influence parameters in optical coordinate metrology two...
Finite element based micro-mechanics modeling of textile composites
Glaessgen, E. H.; Griffin, O. H., Jr.
1995-01-01
Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.
Some selected research item of the micro mechanics department at MESA
Elwenspoek, Michael Curt
1994-01-01
New developments within the micro mechanics department at MESA are presented. The developments are: (1) a description will be provided of dry etch processes-reactive ion etching, RIE-of silicon in a mixture of SF6, 02, and CHF3. (2) The design, fabrication and performance of new electrostatic
Institute of Scientific and Technical Information of China (English)
ZHANG Yitong; LI Cuiyu; XU Jiafu
2004-01-01
The typical micro-knitting structure of knitted fabric, which makes it very different from woven fabric, is described. The tensile tests of knitted fabric are reported. The deformations of the micro-knitting structures are carefully studied. The study indicates that when a knitted fabric sheet is subjected to a tension along w-direction an extra compressive stress field inside loop in c-direction is induced. The extra stress field is also determined through analysis. Finally, a micro-mechanical model of knitted fabric is proposed. This work paves the way for the simulations of buckling modes of a knitted fabric sheet as are observed in experiments.
Institute of Scientific and Technical Information of China (English)
WANG Hong-mei; LIU Cun-long; SHI Pei-jing; XU Bin-shi
2005-01-01
Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM,EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56 % of particles in the solution are dispersed in size of less than 100 nm, the content of nanoparticles co-deposi ted in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. NanoSiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81 GPa and 198 GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings.
Micro-mechanical properties of 2219 welded joints with twin wire welding
Institute of Scientific and Technical Information of China (English)
Xu Wenli; Li Qingfen; Meng Qingguo; Fang Hongyuan; Gao Na
2006-01-01
Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure.Experimental results show that in weld zone, micro-mechanical properties are seriously uneven.Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus.The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone.As far as the whole welded joint is concerned,metal in weld possesses the lowest hardness.For welded specimens without reinforcement, fracture position is the weld when tensioning.While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%.So, it is necessary to strengthen the poor positions-weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.
Relations between a micro-mechanical model and a damage model for ductile failure in shear
DEFF Research Database (Denmark)
Tvergaard, Viggo; Nielsen, Kim Lau
2010-01-01
Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, w......Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro......-cracks, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression...... for the growth of the void volume fraction, and it has been shown that this extended model can represent experimental observations. Here, numerical studies are carried out to compare predictions of the shear-extended Gurson model with the shear failures predicted by the micro-mechanical cell model. Both models...
Directory of Open Access Journals (Sweden)
Hassan Fathabadi
2013-08-01
Full Text Available In this study, several novel numerical solutions are presented to solve the turbulent filtration equation and its special case called “Non-Newtonian mechanical filtration equation”. The turbulent filtration equation in porous media is a very important equation which has many applications to solve the problems appearing especially in mechatronics, micro mechanic and fluid mechanic. Many applied mechanical problems can be solved using this equation. For example, non-Newtonian mechanical filtration equation solves many filtration problems in fluid mechanic. The novel proposed discrete numerical solutions are simulated in MATLAB/simulink environment to validate the theoretically numerical solutions and proofing that the proposed numerical solutions are realizable.
Testing the permeability and corrosion resistance of micro-mechanically interlocked joints
DEFF Research Database (Denmark)
Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune;
2011-01-01
Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...... be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level....
Relations between a micro-mechanical model and a damage model for ductile failure in shear
Tvergaard, Viggo; Nielsen, Kim Lau
2010-09-01
Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression for the growth of the void volume fraction, and it has been shown that this extended model can represent experimental observations. Here, numerical studies are carried out to compare predictions of the shear-extended Gurson model with the shear failures predicted by the micro-mechanical cell model. Both models show a strong dependence on the level of hydrostatic tension. Even though the reason for this pressure dependence is different in the two models, as the shear-extended Gurson model does not describe voids flattening out and the associated failure mechanism by micro-cracks interacting with neighbouring micro-cracks, it is shown that the trends of the predictions are in good agreement.
Research on failure criterion of composite based on unified macro-and micro-mechanical model
Institute of Scientific and Technical Information of China (English)
Sun Zhigang; Zhao Long; Chen Lei; Song Yingdong
2013-01-01
A new unified macro-and micro-mechanics failure analysis method for composite structures was developed in order to take the effects of composite micro structure into consideration.In this method,the macro stress distribution of composite structure was calculated by commercial finite element analysis software.According to the macro stress distribution,the damage point was searched and the micro-stress distribution was calculated by reformulated finite-volume direct averaging micromechanics (FVDAM),which was a multi-scale finite element method for composite.The micro structure failure modes were estimated with the failure strength of constituents.A unidirectional composite plate with a circular hole in the center under two kinds of loads was analyzed with the traditional macro-mechanical failure analysis method and the unified macro-and micro-mechanics failure analysis method.The results obtained by the two methods are consistent,which show this new method's accuracy and efficiency.
Ilie, Nicoleta; Fleming, Garry J P
2015-07-01
The study aims to characterise a low and high viscosity giomer bulk fill resin restorative with established low and high viscosity resin-based composite (RBC) restoratives at simulated clinical relevant specimen depths. The irradiance of a light curing unit (Bluephase 20i) was measured on a laboratory-grade spectrometer at distances up to 10mm from the light tip (in 1mm increments). Polymerization kinetics (real-time decrease of CC double bond and degree of cure, DC) and micro-mechanical properties (Vickers hardness/HV; Depth of cure/DOC; Indentation modulus/E) were assessed at varying specimen depths (0.1-6mm in 100μm steps for E, DOC and HV and 0.1, 2, 4 and 6mm for DC) for a 20s irradiation. One and two-way ANOVA (α=0.05) were performed. The parameter material has a significant (p4mm was identified. Variation of DC with specimen depth was low, with little variation at specimen depths of <4mm. The micro-mechanical properties of the giomer materials were higher compared with the conventional RBC materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sarayu, K; Iyer, Nagesh R; Annaselvi, M; Ramachandra Murthy, A
2016-03-01
Micro-mechanical studies connecting the influence of extrinsic factors over intrinsic factors on 30 calcareous isolates obtained from marine sediment biofilms of the Bay of Bengal (Indian Ocean) revealed that the fate of calcareous crystal precipitation is highly dependent on factors like extracellular polysaccharides (EPS), organic carbon and nutrition. Further studies exemplified that EPS and the organic carbon secreted by the isolates controlled the dissemination of the calcareous crystals precipitated. From the study, it is evident that an EPS concentration of 7-15 mg l(-1) was found to enhance the dissemination of the calcareous crystals. Atomic force micrographs explain the nucleation behaviour and morphology of the calcareous crystals precipitated. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDAX) showed that the crystals were mainly composed of calcite and partially wollastonite.
Schnakenberg, Uwe
2009-07-01
This special issue of Journal of Micromechanics and Microengineering is devoted to the 19th MicroMechanics Europe Workshop (MME 08), which took place at the RWTH Aachen University, Aachen, Germany, from 28-30 September, 2008. The workshop is a well recognized and established European event in the field of micro system technology using thin-film technologies for creating micro components, micro sensors, micro actuators, and micro systems. The first MME Workshop was held 1989 in Enschede (The Netherlands) and continued 1990 in Berlin (Germany), 1992 in Leuven (Belgium), and then was held annually in Neuchâtel (Switzerland), Pisa (Italy), Copenhagen (Denmark), Barcelona (Spain), Southampton (UK), Ulvik in Hardanger (Norway), Gif-sur-Yvette (France), Uppsala (Sweden), Cork (Ireland), Sinaia (Romania), Delft (The Netherlands), Leuven (Belgium), Göteborg (Sweden), Southampton (UK), and in Guimarães (Portugal). The two day workshop was attended by 180 delegates from 26 countries all over Europe and from Armenia, Austria, Bulgaria, Canada, China, Cuba, Iran, Japan, Korea, Malaysia, Taiwan, Turkey, and the United States of America. A total of 97 papers were accepted for presentation and there were a further five keynote presentations. I am proud to present 22 high-quality papers from MME 2008 selected for their novelty and relevance to Journal of Micromechanics and Microengineering. All the papers went through the regular reviewing procedure of IOP Publishing. I am eternally grateful to all the referees for their excellent work. I would also like to extend my thanks to the members of the Programme Committee of MME 2008, Dr Reinoud Wolffenbuttel, Professor José Higino Correia, and Dr Patrick Pons for pre-selection of the papers as well as to Professor Robert Puers for advice on the final selection of papers. My thanks also go to Dr Ian Forbes of IOP Publishing for managing the entire process and to the editorial staff of Journal of Micromechanics and Microengineering. I
Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.
2011-01-01
In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im
Micro mechanical properties of n-Al2O3/Ni composite coating by nanoindentation
Institute of Scientific and Technical Information of China (English)
WANG Hong-mei; XU Bin-shi; MA Shi-ning; DONG Shi-yun; LI Xiao-ying
2004-01-01
A new type of nano test system was introduced, the test principle and the indentation data analysis method were described. It was used to test the micro mechanical properties, such as hardness, elastic modulus and indentation creep property of n-Al2O3/Ni composite coating on steel prepared by brush plating, and the variety of mechanical properties with coating thickness was researched. The results show that the mechanical properties are basically identical within the whole coating, the hardness and modulus decrease in the defect fields, especially within the dendritic crystals, whereas the mechanical properties are not influenced greatly at the interspaces among dendritic crystals. The average hardness and elastic modulus of n-Al2O3/Ni coating are 6.34 GPa and 154 GPa respectively, and the hardness is 2.4 times higher than that of steel and the indentation creep curve of n-Al2O3/Ni coating is similar to that of the uniaxial compression creep, and the creep rate of steady-state is about 0. 104 nm/s. These results will supply useful data for process improvement, new type material development and application expansion.
Energy Technology Data Exchange (ETDEWEB)
Zhang, X.Q. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xue, Y.F., E-mail: xueyunfei@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, L.; Fan, Q.B.; Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, H.F.; Fu, H.M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
2015-09-03
The micro-mechanical behavior of porous tungsten/Zr-based metallic glass composites with different tungsten volume fraction was investigated under cyclic compression by synchrotron-based in-situ high-energy X-ray diffraction (HEXRD) and finite element modeling (FEM). During cyclic compression, the dislocation in the tungsten phase tangled near the interfaces, indicating that the elastic metallic glass phase restricted dislocation motion and obstructed the deformation of the tungsten phase because of the heterogeneity in stress. After the metallic glass phase yielded, the dislocation tended to propagate away from the interfaces, showing the decrease of the interphase stress affected the direction of motion in the dislocations. The tungsten phase exhibited increased yield strength with the increase of cyclic loading number. Yield stress of the tungsten phase decreased with increasing the tungsten volume fraction during cyclic compression, which was influenced by the elastic strain mismatch between the two phases. The stress heterogeneity and the stress distribution difference between the two phases resulted in that the yield strength of the metallic glass phase decreased with the increase of tungsten volume fraction, and accelerated the formation of shear bands in the metallic glass phase as well as cracks in the tungsten phase. The heterogeneity in stress also excessed the interface bonding strength, inducing interface fracture near interfaces.
Consequences of Location-Dependent Organ of Corti Micro-Mechanics.
Directory of Open Access Journals (Sweden)
Yanju Liu
Full Text Available The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell's somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell's somatic motility effectively interacts with the media of traveling waves-the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency location, but the amplitude ratio was reversed at the apical (low frequency location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location.
Nasr Saleh, Mohamed
2014-11-01
Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.
Taha, Habib; Nguyen, Ngoc-Son; Marot, Didier; Hijazi, Abbas; Abou-Saleh, Khalil
2017-06-01
In this paper, we present a micro-mechanical study of the effect of fine content on the behavior of gap graded granular samples by using numerical simulations performed with the Discrete Element Method. Different samples with fine content varied from 0% to 30% are simulated. The role of fine content in reinforcing the granular skeleton and in supporting the external deviatoric stress is then brought into the light.
Institute of Scientific and Technical Information of China (English)
HOU Shuguang; ZHANG Dong; HUANG Xiaoming; ZHAO Yongli
2015-01-01
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
Experimental and numerical study of the micro-mechanical failure in composites
DEFF Research Database (Denmark)
Ashouri Vajari, Danial; Martyniuk, Karolina; Sørensen, Bent F.;
2013-01-01
. This study is based on the comparison between the results of numerical modeling and those corresponding to the experimental tests by employing two parameters: The angle from the load direction to the crack tip and the crack normal opening. This comparison aims to investigate the interfacial properties......The fibre/matrix interfacial debonding is found to be the first microscale failure mechanism leading to subsequent macroscale transverse cracks in composite materials under tensile load. In this paper, the micromechanical interface failure in fiber-reinforced composites is studied experimentally...
Micro-mechanical damage accumulation in airframe materials and structural components
Tiku, Sanjay
were better correlated using modified parameters, DeltaK2 /sigma and DeltaK/C.
Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph
2008-01-01
In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element
Investigation of Micro-mechanical Causes of Density Inversion in Polar Firn
Breton, D. J.; Keegan, K. M.; Albert, M. R.
2011-12-01
The densification of polar firn is a microstructure dependent process (Alley et al., 1982) which plays an important role both in interpretation of paleoclimate records in ice cores and in the remote sensing evaluation of ice sheet volume changes over time. Density inversion results from prolonged differential compaction rates between different microstructure types: low density, coarse grained firn (CGF) tends to compact faster than the high density, fine grained firn (FGF). Eventually, the relative density of the two firn types "inverts", that is, CGF becomes more dense than FGF at some depth (Gerland et al., 1999; Freitag et al., 2010). This process continues beyond the point where CGF and FGF densities are equal, suggesting that some parameter other than bulk density determines the densification rate (Hörhold et al, 2011). Recent work in granular physics (Phillippe et al., 2002; Richard et al., 2005 ; Ribière et al., 2007), have shown that particle size distribution, shape and friction play important roles in determining the both the maximum density of random close packed ensembles, and the magnitude of density difference between the initial state (random loose packed) and final state (random close packed) particle ensembles. We explore the consequences of these granular effects on the densification of polar firn using discrete element modeling of ice particle rearrangement mediated by grain boundary sliding processes (Alley, 1987). Because sintering rate is greatly reduced for pairs of large particles and particle pairs with large size differences (Colbeck, 2001), we expect that CGF will experience enhanced grain boundary sliding compared to the well bonded and highly coordinated particles in FGF. By simulating uni-axial compression on particle ensembles with varying size, shape and frictional properties, we hope to demonstrate that CGF densifies faster than FGF via enhanced grain boundary sliding, and can achieve a higher final density than FGF at the end of
Murthy, A. Ramachandra; Iyer, Nagesh R.; Raghu Prasad, B. K.
2016-09-01
This work presents the details of characterization and micro-mechanical properties of ultra high strength concrete. Characterization was carried out for High Strength Concrete (HSC, HSC1) and Ultra High Strength Concrete (UHSC). Various mechanical properties, namely, compressive strength, split tensile strength and modulus of elasticity have been estimated for HSC, HSC1 and UHSC. It was observed from characterization studies that the split tensile strength is high in the case of UHSC compared to HSC and HSC1. X-ray diffraction analysis has been performed for cement, silica fume and quartz powder to know the chemical composition. The amount of quantified phases has been estimated. Micro indentation technique has been employed to evaluate the micromechanical properties such as modulus of elasticity and hardness. Oliver and Pharr method has been used to compute modulus of elasticity and hardness. It is observed that the value of modulus of elasticity obtained from the micro indentation test is in very good agreement with that of the value obtained from uniaxial compression test data of a cylindrical specimen. Finally micro-structure of the specimen has been obtained for various magnifications to examine the voids/pores in the UHSC matrix.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelastic relaxations is still obscure.Based on the observations of the grain boundary seg-regation or depletion of solute induced by an applied stress,the following micro-mechanism was suggested:grain-boundaries will work as sources to emit vacancies when a compressive stress is exerted on them and as sinks to absorb vacancies when a tensile stress is exerted,inducing grain-boundary depletion or segregation of solute,respectively.The equations of vacancy and solute con-centrations at grain boundaries were established under the equilibrium of grain-boundary anelastic relaxation.With these the kinetic equations were established for grain boundary segregation and depletion during the grain boundary relaxation progress.
Energy Technology Data Exchange (ETDEWEB)
Bugat, St
2000-12-15
The austenitic-ferritic steels are used in the PWR primary cooling system. At the running temperature (320 C), they are submitted to a slow aging, which leads to the embrittlement of the ferritic phase. This embrittlement leads to a decrease of the mechanical properties, in particular of the crack resistance of the austenitic-ferritic steels. The damage and rupture of the austenitic-ferritic steels have been approached at the ENSMP by the works of P. Joly (1992) and of L. Devilliers-Guerville (1998). These works have allowed to reveal a damage heterogeneity which induces a strong dispersion on the ductilities and the toughnesses as well as on the scale effects. Modeling including the damage growth kinetics measured experimentally, have allowed to verify these effects. Nevertheless, they do not consider the two-phase character of the material and do not include a physical model of the cleavage cracks growth which appear in the embrittled ferrite. In this study, is proposed a description of the material allowing to treat these aspects while authorizing the structure calculation. In a first part, the material is studied. The use of the ESBD allows to specify the complex morphology of these steels and crystal orientation relations between the two phases. Moreover, it is shown that the two phases keep the same crystal orientation in the zones, called bicrystals, whose size varies between 500 {mu}m and 1 mm. The study of the sliding lines, coupled to the ESBD, allows to specify too the deformation modes of the two phases. At last, tensile and tensile-compression tests at various deformation range are carried out to characterize the macroscopic mechanical behaviour of these materials. Then, a micro-mechanical modeling of the material behaviour is proposed. This one takes into account the three scales identified at the preceding chapter. The first scale, corresponding to the laths is described as a monocrystal whose behaviour includes both an isotropic and a kinematic
Institute of Scientific and Technical Information of China (English)
Yitong Zhang; Cuiyu Li; Jiafu Xu
2005-01-01
With the aid of the micro-mechanical model of knitted fabric proposed in Part 1 we analyze the buckling of a knitted fabric sheet when it is subjected to a tension along the wale direction. The large deformation of the fabric sheet in the critical configuration is considered and, to avoid possible deviation due to the approximation of the theory of thin plate, the three-dimensional theory of instability is used.The fabric sheet is considered as a three-dimensional body and all boundary conditions are satisfied. It is shown that the buckling of the fabric sheet is possible, two buckling modes and the corresponding buckling conditions are obtained, but only the flexural mode is physically possible as observed in experiments.
Ascertaining the micromechanical damage parameters using the small scale test specimens
Energy Technology Data Exchange (ETDEWEB)
Kumar, N.N. (HBNI, RSD, BARC, Trombay (India)), e-mail: naveenm@barc.gov.in; Durgaprasad, P.V.; Dutta, B.K. (Reactor Safety Division, Bhabha Atomic Research Centre Trombay (India)); Dey, G.K. (Material Science Division, Bhabha Atomic Research Centre Trombay (India))
2009-07-01
Objective of the study is to ascertain the damage parameters and stress strain behaviour of material under irradiated condition. To achieve this goal, following methodology is employed; a) Elastic-plastic and micro-mechanical analysis of small punch test is carried out. From the elastic plastic analysis, friction factor between the ball and specimen is found. From micro mechanical analysis, Gurson damage parameters are calibrated by comparing simulation results with experimental result of unirradiated material; b) load-displacement behaviour of small punch tests are obtained by assuming the damage parameters are unchanged due to irradiation and with approximate shift in the stress strain curve; c) Comparing the above small punch results with experimental load displacement data of irradiated sample, the stress-strain data of irradiated samples is obtained. At the next stage, the fracture properties like J-R curve can be evaluated for standard CT specimens by employing the calibrated micromechanical damage parameters and stress strain data
Energy Technology Data Exchange (ETDEWEB)
Onimus, F
2003-12-01
Zirconium alloys cladding tubes containing nuclear fuel of the Pressurized Water Reactors constitute the first safety barrier against the dissemination of radioactive elements. Thus, it is essential to predict the mechanical behavior of the material in-reactor conditions. This study aims, on the one hand, to identify and characterize the mechanisms of the plastic deformation of irradiated zirconium alloys and, on the other hand, to propose a micro-mechanical modeling based on these mechanisms. The experimental analysis shows that, for the irradiated material, the plastic deformation occurs by dislocation channeling. For transverse tensile test and internal pressure test this channeling occurs in the basal planes. However, for axial tensile test, the study revealed that the plastic deformation also occurs by channeling but in the prismatic and pyramidal planes. In addition, the study of the macroscopic mechanical behavior, compared to the deformation mechanisms observed by TEM, suggested that the internal stress is higher in the case of irradiated material than in the case of non-irradiated material, because of the very heterogeneous character of the plastic deformation. This analysis led to a coherent interpretation of the mechanical behavior of irradiated materials, in terms of deformation mechanisms. The mechanical behavior of irradiated materials was finally modeled by applying homogenization methods for heterogeneous materials. This model is able to reproduce adequately the mechanical behavior of the irradiated material, in agreement with the TEM observations. (author)
Micro mechanical study of shales
Bonnelye, Audrey; Picard, David; Gharbi, Hakim; Dimanov, Alexandre; Bornert, Michel; Conil, Nathalie
2017-04-01
In the following years, the French nuclear wastes will be buried in the underground repository in shales, that will be excavated at 490 m in depth, within the Callovo Oxfordian (Cox) argillaceous formation. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified Illite-Smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material.An experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. Three sample orientations (90°, 45° and 0°) were used in order to characterize the mechanical anisotropy and the mechanisms involved in the deformation. The observed smple surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. Digital images were acquired at different loading stages during the deformation process and Digital Image Correlation Technique (DIC) was applied in order to retrieve full strain fields at various scales from sample scale to microstructure scale. The analysis allows for identification of the active mechanisms, their relationships to the microstructure and their interactions.
Hoffmann, Martin
2013-07-01
In September 2012, the 23rd MicroMechanics Europe Workshop (MME) took place in Ilmenau, Germany. With about 120 participants from 20 countries and 76 accepted presentations, the workshop series turned out to be a successful platform for young scientists to present their work to our scientific community. Traditionally, the interaction is an important aspect of this workshop: while short presentations introduce the posters, an extended poster session allows intensive discussion which is quite useful to the participants. The discussion very often extends into the breaks and the evening events. It is also encouraging for them that the best presentations are selected and invited to submit a full paper to this journal. Thanks to the support of IOP Publishing, this next logical step to present work to the scientific world is made possible. In this issue, you can find the best papers that have been selected by a committee during the workshop taking the written workshop contribution, the poster and the presentation into account. Again, all areas of micromechanics from new technology developments up to systems integration were presented at the workshop at different levels of completion. The selected papers present those results which are almost complete. Nevertheless, it is nice to see that in some cases topics grow over the years from 'nice ideas' to realized system concepts. And although this is the 23rd workshop, it is clear that micromechanics is a topic that is not running short of new ideas. First, I would like to thank the authors of the selected papers for each of their individual excellent contributions. My gratitude also goes to my fellow members in the programme committee (Per Ohlckers, Martin Hill and Sami Franssila) for their cooperation in the selection of invited speakers and submitted papers, as well as the anonymous Journal of Micromechanics and Microengineering (JMM) reviewers for their careful selection of the final papers presented here. Last, but not
DEFF Research Database (Denmark)
2011-01-01
of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....
Ladefoged, Peter
1980-01-01
Summarizes the 16 parameters hypothesized to be necessary and sufficient for linguistic phonetic specifications. Suggests seven parameters affecting tongue shapes, three determining the positions of the lips, one controlling the position of the velum, four varying laryngeal actions, and one controlling respiratory activity. (RL)
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian;
2011-01-01
of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set...
Sharma, Sanjay
2017-01-01
This book provides a detailed overview of various parameters/factors involved in inventory analysis. It especially focuses on the assessment and modeling of basic inventory parameters, namely demand, procurement cost, cycle time, ordering cost, inventory carrying cost, inventory stock, stock out level, and stock out cost. In the context of economic lot size, it provides equations related to the optimum values. It also discusses why the optimum lot size and optimum total relevant cost are considered to be key decision variables, and uses numerous examples to explain each of these inventory parameters separately. Lastly, it provides detailed information on parameter estimation for different sectors/products. Written in a simple and lucid style, it offers a valuable resource for a broad readership, especially Master of Business Administration (MBA) students.
Parameters identification for GTN model and their verification on 42CrMo4 steel
Energy Technology Data Exchange (ETDEWEB)
Kozak, V.; Vlcek, L. [Inst. of Physics of Materials, AS of CR, Brno (Czech Republic)
2005-07-01
The base of this paper is exact measurement of deformation and fracture material characteristics in laboratory, evaluation of these parameters and their application in models of finite element analysis modelling the fracture behaviour of components with defects. The base of the work is dealing with ductile fracture of forget steel 42CrMo4. R-curve is modelled by 3D FEM using WARP3D and Abaqus. Crack extension is simulated in sense of element extinction algorithms. Determination of micro-mechanical parameters is based on combination of tensile tests and microscopic observation. Input parameters for the next computation and simulation were received on the base of image analysis, namely f{sub N} and f{sub o}. The possibility of transferring these parameters to another specimen is discussed. (orig.)
Institute of Scientific and Technical Information of China (English)
黄小红; 高燕蓉
2016-01-01
文章以强度等级C30绿色再生混凝土为目标，以高强的道路废弃混凝土为骨料来源，通过对试件施加弯曲荷载和采用快速碳化方法，确保循环骨料的代表性，将二次循环后的Ⅱ级再生骨料替代天然砂石制备高品质绿色再生混凝土。研究了弯曲荷载作用下绿色再生混凝土碳化行为，并采用电镜扫描SEM分析，通过比较内部微观形貌，探讨了绿色再生混凝土碳化后的微观机理。%Green recycled concrete in C30 strength grade was taken as the research target,and wasted high strength road concrete was used as aggregate source.To insure the representativeness of the recycled ag-gregate,bending load and rapid carbonization were applied to recycled concrete specimens.The recycled ag-gregates at level 2 were used to replace natural sand and gravel to cast high quality green recycled concrete. The carbonization behavior of green recycled concrete specimens under the action of bending load was stud-ied ,and its micro mechanism of green recycled concrete was also discussed through the scanning electron mi-croscopy ( SEM) analysis and a comparative study of internal microstructures.
Energy Technology Data Exchange (ETDEWEB)
Ribis, J
2007-12-15
The fuel rod cladding, strongly affected by microstructural changes due to irradiation such as high density of dislocation loops, is strained by the end-of-life fuel rod internal pressure and the potential release of fission gases and helium during dry storage. Within the temperature range that is expected during dry interim storage, cladding undergoes long term creep under over-pressure. So, in order to have a predictive approach of the behavior of zirconium alloys cladding in dry storage conditions it is essential to take into account: initial dislocation loops, thermal annealing of loops and creep straining due to over pressure. Specific experiments and modelling for irradiated samples have been developed to improve our knowledge in that field. A Zr-1%Nb-O alloy was studied using fine microstructural investigations and mechanical testing. The observations conducted by transmission electron microscopy show that the high density of loops disappears during a heat treatment. The loop size becomes higher and higher while their density falls. The microhardness tests reveal that the fall of loop density leads to the softening of the irradiated material. During a creep test, both temperature and applied stress are responsible of the disappearance of loops. The loops could be swept by the activation of the basal slip system while the prism slip system is inhibited. Once deprived of loops, the creep properties of the irradiated materials are closed to the non irradiated state, a result whose consequence is a sudden acceleration of the creep rate. Finally, a micro-mechanical modeling based on microscopic deformation mechanisms taking into account experimental dislocation loop analyses and creep test, was used for a predictive approach by constructing a deformation mechanism map of the creep behavior of the irradiated material. (author)
Udayashankar, Paniveni
2016-07-01
I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.
Institute of Scientific and Technical Information of China (English)
薛河; 李永强
2016-01-01
Nickel-based alloys and austenitic stainless steels are widely used in the structures of primary circuit of nuclear power plants.Environmentally assisted cracking (EAC) of these materials is one of the most significant potential safety hazards in the primary circuit of nuclear power plants.Researches show that EAC in nickel-based alloy is a process of oxide film rupture and reform at the tip of EAC in the high temperature water environment of nuclear power plants.To understand the micro-mechanical state at the tip of EAC,the stress-strain in the oxide film and the base metal at the EAC tip was simulated and discussed using a commercial finite element analysis code,which provides a foundation to improve the quantitative predication accuracy of EAC growth rate of nickel-based alloys and austenitic stainless steels in the important structures of nuclear power plants.%核电站-回路压力容器、管道及蒸汽发生器等设备和结构中广泛采用镍基合金和奥氏体不锈钢,而这些材料的环境致裂(EAC)却是核电结构的主要安全隐患之一.研究表明,核电高温高压水环境中镍基合金的EAC是裂尖氧化膜破裂和再生成的一个过程.为了深入了解镍基合金EAC裂纹扩展过程中裂尖的力学状况,从理论和数值模拟两方面分析研究了EAC裂尖氧化膜和基体金属区域的应力分布规律,为提高定量预测高温高压水环境中镍基合金EAC扩展速率精度奠定基础.
Institute of Scientific and Technical Information of China (English)
蒋明镜; 孙渝刚; 李立青
2011-01-01
The micro-mechanical properties of idealized bonded granules are experimentally studied.The bonded granules are idealized by two aluminum rods glued together.Two types of bonded granules different from the bond thickness between rods are investigated, namely thin bonded rods and thick bonded rods.The mechanical tests are performed on these two bonded rods.The experimental results show that the bond thickness and the normal force have a significant effect on the mechanical properties of the bonded granules.The tensile strength and ductility both increase with the increase of the bond thickness.The compression curve exhibits strain hardening in the thin bonded rods but strain softening in the thick bonded rods.The peak shear/rotational strength increases with the increase of the normal force in the thin bonded rods, while they increase with the normal force at first, and then decrease in the thick bonded rods.Moreover, the strength envelope in the normal-torsion-shear space is an elliptic paraboloid in the thin bonded rods and a teardrop in the thick bonded rods.%将胶结颗粒理想化为两铝棒在指定位置处形成胶结,根据铝棒间胶结物厚度的不同,分别定义为有厚度胶结颗粒和无厚度胶结颗粒,对上述两种胶结颗粒进行一系列力学试验(包括:拉伸、压缩、压剪、压扭和复杂应力试验),从面对理想胶结颗粒的微观力学特性进行试验研究.试验结果表明:胶结厚度和法向压力对胶结颗粒的力学性能影响显著,随着胶结厚度的增大,试样的抗拉强度和延性均增大,其抗压特性由塑性硬化向塑性软化转变.无厚度试样抗剪和抗扭强度始终随法向压力的增大而增大,而有厚度试样则先随法向压力的增大而增大,当法向压力超过某一数值后,其强度又随着法向压力的增大而减小.在三维应力空间中(法向压力-扭矩-剪力)无厚度胶结颗粒的强度包线呈椭圆抛物面状,而有厚度胶结颗粒强度包线呈水滴状.
Institute of Scientific and Technical Information of China (English)
周健; 李业勋; 张姣; 王连欣
2013-01-01
A model test was carried out to study the macro-micro mechanism of the debris flow prevention by using “anchor-slope protection”.The experiment result indicates that the exudation amount of rain water leads to pore water pressure increase,retrogressive toe sliding is not found during the experiment,and the experimental slope has infiltration softening and small-scale peristalsis.The micro-analysis indicates that the water-soil movement in slope has two forms,“water seepage among particles” and “fine particle float in water”,and the fine particles drop down with seepage water and float among grain skeleton with flowing water.As last,the fine particles were accumulated at the base of slope at the work of “anchor-slope protection”.Macro-micro experimental analysis indicates that particle micro-movement changes the structure of the slope as the relative stable structure of “fine particle drop to the bottom and compaction,the upper coarse particle skeleton is stable” is formed,and this stable structure reduces the incidence of debris flow.%通过滑坡型泥石流“锚杆-护坡”防治室内模型试验,分析了泥石流防治的宏细观机理.试验结果表明,雨水渗出量和降雨量差异造成孔隙水在坡体内积蓄、孔隙水压增高,但坡体未出现分层滑动现象,仅发生了入渗软化和小规模蠕动.细观机理分析表明,坡体中水土细观运动分为“水在颗粒中渗透”和“颗粒在水中浮动”2种模式,细颗粒随雨水渗流在颗粒骨架间下沉并发生平行于坡底的运动,最后因“锚杆-护坡”的滤水固土作用而逐渐沉积并保持稳定.试验宏细观分析表明:颗粒的细观运动改变了模型试验坡体的破坏机理,坡体结构由不同粒径颗粒均匀分布变为“底部细颗粒积聚密实,上部粗颗粒骨架稳定”结构,降低了滑坡型泥石流的发生概率.
Energy Technology Data Exchange (ETDEWEB)
Mathieu, J.Ph
2006-10-15
Reactor Pressure Vessel is the second containment barrier between nuclear fuel and the environment. Electricite de France's reactors are made with french 16MND5 low-alloyed steel (equ. ASTM A508 Cl.3). Various experimental techniques (scanning electron microscopy, X-ray diffraction...) are set up in order to characterize mechanical heterogeneities inside material microstructure during tensile testing at different low temperatures [-150 C;-60 C]. Heterogeneities can be seen as the effect of both 'polycrystalline' and 'composite' microstructural features. Interphase (until 150 MPa in average between ferritic and bainitic macroscopic stress state) and intra-phase (until 100 MPa in average between ferritic orientations) stress variations are highlighted. Modelling involves micro-mechanical description of plastic glide, mean fields models and realistic three-dimensional aggregates, all put together inside a multi-scale approach. Calibration is done on macroscopic stress-strain curves at different low temperatures, and modelling reproduces experimental stress heterogeneities. This modelling allows to apply a local micro-mechanical fracture criterion for crystallographic cleavage. Deterministic computations of time to fracture for different carbides random selection provide a way to express probability of fracture for the elementary volume. Results are in good agreement with hypothesis made by local approach to fracture. Hence, the main difference is that no dependence to loading nor microstructure features is supposed for probability of fracture on the representative volume: this dependence is naturally introduced by modelling. (author)
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
Institute of Scientific and Technical Information of China (English)
牛瑞兵; 郭利平; 冯建涛; 李存保
2012-01-01
目的 使用联合成像系统在亚细胞水平研究心肌细胞微区力学性质及细胞内钙离子的快速变化,并探讨两者之间的关系.方法 应用原子力显微镜(AFM)和激光扫描共聚焦显微镜(LSCM)组合成的联合成像系统对急性分离的大鼠单个心室肌细胞微区力进行检测,同时测定细胞内钙离子浓度的变化,分析细胞微区力和细胞内钙离子浓度变化两者之间的相关性.结果 观察到心肌细胞内钙离子浓度的快速变化引起了钙波的传递.通过AFM微悬臂的偏转可以计算出细胞微区力,细胞微区力的大小与细胞内钙离子浓度呈正相关(r=0.701,P=0.003).结论 联合成像系统可以同步研究心肌细胞微区力学及细胞内分子快速变化,进而在亚细胞水平研究心脏疾病的发病机制.%Objective To investigate the micro-mechanical properties of myocardial cell and rapid changes in intracellular calcium cation at the subcellular level with combination imaging system,and to explore the correlation between them above.Methods The micro-mechanics of acutely isolated single myocardial cells in rats were detected using the combination imaging system which was made up of atomic force rrucroscope (AFM) and laser scanning confocal microscope (LSCM),and the changes in intracellular calcium cation concentration were detected as well.The correlation between micro-mechanics of myocardial cell and changes in intracellular calcium cation was then analyzed.Results The rapid changes tn intracellular calcium cation concentration were found to cause the transmission of calcium waves.The strength of cell micro-region could be calculated by deflection of cantilever in AFM.And the strength of cell micro-region was positively correlated with intracellular calcium cation concentration (r=0.701,P=0.003).Conclusion The combination imaging system can simultaneously investigate the micro-mechanics of myocardial cell and rapid changes in intracellular molecule
Redefining solubility parameters: the partial solvation parameters.
Panayiotou, Costas
2012-03-21
The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors.
Ductile fracture assessment using parameters from small specimens
Energy Technology Data Exchange (ETDEWEB)
Talja, H. [VTT Manufacturing Technology, Espoo (Finland)
1998-12-31
The topic of this thesis is the computational aspects in the assessment of ductile failure in metals. The first part briefly describes the micromechanics of ductile crack growth and methods for assessing it. The `classic` approach to describe material behaviour using fracture mechanics is summarised. The limitations of the one parameter approach based on the stress intensity factor K or the J- integral are described. Attempts to extend the application field of fracture mechanics parameters by introducing triaxility or constraint parameters are also presented. Different local approach methodologies are summarised. Special attention is paid to the modified Gurson model, which is based on micro-mechanical studies of void initiation, growth and coalescence. The main part of the work consists of numerical analyses with the modified Gurson model. The parameters of the model are first determined by matching tensile test results by finite element analysis, and then applied to J-R curve prediction. This methodology is applied to several reactor pressure vessel materials: A533B, 20 MnMoNi 5 5 and austenitic VVER 440 cladding. As a result, the applicability of different specimen types for the parameter determination of the modified Gurson model has been evaluated. Because a combination of experimental and numerical work is needed, it proved to be most feasible to use specimens which can be simulated with two-dimensional or axisymmetric finite element models. Further, a practical way to treat anisotropic material behaviour using the modified Gurson model by using separate parameter sets for different orientations has been proposed and verified. The correspondence between the observed scatters in tensile and fracture mechanical test results has been examined. Best agreement was obtained fitting the scatter of tensile tests by varying the values of initial parameters. Reasons for apparently higher ductility measured from sub-sized than standard size tensile specimens were
Estimating Cosmological Parameter Covariance
Taylor, Andy
2014-01-01
We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...
Study on micro mechanism-based ductile fracture criteria for Q460 steel%Q460钢基于微观机制的延性断裂判据研究
Institute of Scientific and Technical Information of China (English)
廖芳芳; 王睿智; 李文超; 周天华
2016-01-01
基于微观机制的断裂模型可用来预测钢结构的延性断裂。为校准Q460钢的微观断裂模型参数，进行了材料试验和对应的有限元分析，以及断口的扫描电镜试验。试件由Q460钢板焊接节点抽取的母材和熔敷金属圆棒制作而成。用自编的VUMAT子程序，分别以校准的应力修正临界应变模型(SMCS)和空穴扩张模型(VGM)为断裂判据，分析了18个圆周平滑槽口单向拉伸试件的开裂全过程，得到了裂后荷载位移曲线，其与试验结果吻合较好，验证了SMCS和VGM模型用于节点裂后路径分析的可行性。%Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for Q460 steel, material tests, their corresponding finite element analyses, and scanning electron microscope tests were conducted. The test specimens were made from round bars of base metal and deposit metal extracted from welded connections of Q460 steel plates. The VUMAT subroutine edited by the author was employed. Taking the calibrated stress modified critical strain (SMCS) model and void growth model (VGM) as fracture criteria, the whole cracking processes of eighteen circumferentially smooth-notched tensile specimens were simulated, the post-fracture load displacement curves were obtained, which are close to the test results. The results verify the feasibility of using SMCS and VGM models in the post fracture path analysis of connections.
Energy Technology Data Exchange (ETDEWEB)
Vincent, P.G
2007-11-15
The aim of this work is to propose an elasto-plastic model of damage in a porous ceramics containing two populations of saturated cavities: the nuclear fuel uranium dioxide highly irradiated and at high temperature. The followed approach consists in a multi-scale approach based on the hypothesis of separation of the scales between the two populations of cavities (spherical intragranular pores and spheroidal intergranular pores) and of those of the macroscopic isotropy. The proposed elasto-plastic model of damage treats separately of the elasticity, of the surface of plasticity and of the evolution of the internal parameters of the model with load. The taking into account of different pressures in each population of cavity is carried out for elasticity-plasticity-damage. The model developed for the elastic behaviour takes into account the two populations of cavity, their morphology, their distribution and the pore pressures inside them. The proposed plasticity criteria is based on homogenization methods for non linear behaviours. At the grain scale, the first population of cavity is taken into account by a plasticity criteria of Gurson-Tvegaard-Needleman type. At the scale of grains collection, the presence of a second population of cavity inside a compressible matrix leads to the development of new superior boundaries and pertaining estimations for the effective plasticity surface. These models depend on the morphology and of the distribution of cavities. In the case of drained cavities, an analytical estimation, based on the writing of the classical variational principle with a compressible velocity field and an average on the equiprobable orientations is developed. In the case of saturated cavity, another estimation, based on the variational approach of Ponte Castaneda (1991) with a linear N phases comparison composite is proposed. These models are compared to numerical simulations by finite elements and to numerical simulations using the fast Fourier
Micro-mechanism Analysis on Cement-based Materials with Fly Ash and PVA Fiber%粉煤灰和PVA纤维复掺水泥基材料微观机理分析
Institute of Scientific and Technical Information of China (English)
何芸; 何真; 孙海燕
2014-01-01
目前关于粉煤灰对PVA纤维与基体间粘结界面，以及对直接拉伸和韧性的影响研究还较少，通过采用PVA纤维、粉煤灰两种材料复掺，研究制备出一类具有超高抗拉韧性和优异裂缝无害化分散能力的纤维增韧水泥基材料。采用扫描电镜从微观机理上对其增韧机理进行了深入剖析，研究结果表明，采用纤维与粉煤灰复掺的方式，既能控制好纤维与基体界面之间的特征参数即化学粘结强度和摩擦粘结强度，保证硬化水泥石具有良好的化学粘结强度，同时又利用粉煤灰的颗粒微珠效应使其不至过高，从而使滑移-硬化效应更好地得以发挥。%At present ,there’s only a few research of the influences of adding fly ash on the bonding interface between PVA fiber and matrix as well as the direct tensile and toughness .Accordingly ,a toughness-enhanced cement-based mate-rial was developed by mixing PVA fiber and fly ash .This material possesses excellent properties of ultra-high tensile toughness and dispersive capacity of anti-crack treatment .SEM was adopted to analyse the toughness-enhancing property of PVA fiber from the perspective of micromechanism .The results indicate that by adding PVA fiber and fly ash ,the pa-rameters of bond strength between fiber and matrix ,which are chemical bond strength and friction bond strength ,can be well controlled ,thus the hardened set cement is given excellent chemical bond strength ,which is controlled from exceed-ing a certain level by the microsphere effect of the fly ash .This will give full play in effect of sliding and strain hardening of PVA fiber .
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. The lumped-parameter model development have been reported by (Wolf 1991b; Wolf 1991a; Wolf and Paronesso 1991; Wolf and Paronesso 19...
Supersymmetry Parameter Analysis
Kalinowski, Jan
2002-01-01
Supersymmetric particles can be produced copiously at future colliders. From the high-precision data taken at e+e- linear colliders, TESLA in particular, and combined with results from LHC, and CLIC later, the low-energy parameters of the supersymmetric model can be determined. Evolving the parameters from the low-energy scale to the high-scale by means of renormalization group techniques the fundamental supersymmetry parameters at the high scale, GUT or Planck, can be reconstructed to reveal the origin of supersymmetry breaking.
DEFF Research Database (Denmark)
Sannino, Francesco
2010-01-01
We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...
Micro-Mechanical Modeling of Fiber Reinforced Concrete
DEFF Research Database (Denmark)
Stang, Henrik
1999-01-01
of Fiber Reinforced Concrete (FRC) on the micro- the meso- as well as the macro-level, i.e. modeling aspects of fiber-matrix interaction, overall constitutive modeling and structural modeling. Emphasis is placed on the micro- and meso-aspects, however, some basic results on the macro-level are also......The paper is a contribution to the course Cement-Based Composites for the Building Industry, organized by POA Foundation for Postgraduate Studies in Civil Engineering in cooperation with Priority Programme Material Research (PPM) in the Netherlands. The text deals with mechanical modeling aspects...
Micro-Mechanical Behavior of HOPG in Nano-Indentation
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The mechanical behavior of highly oriented pyrolyti c graphite (HOPG) has been investigated in this paper, by simulating a machining p rocess in a nano-indent test with the method of molecular dynamics (MD) and by doing an experiment directly using the probe tip of atomic force microscope (AFM ) as tool. The characteristics and properties of graphite crystal lattice are di scussed firstly, then, three potentials are selected for different interaction b etween graphite atoms according to the graphite prope...
Spectroscopy of mechanical dissipation in micro-mechanical membranes
Jöckel, Andreas; Korppi, Maria; Camerer, Stephan; Hunger, David; Mader, Matthias; Treutlein, Philipp
2011-01-01
We measure the frequency dependence of the mechanical quality factor (Q) of SiN membrane oscillators and observe a resonant variation of Q by more than two orders of magnitude. The frequency of the fundamental mechanical mode is tuned reversibly by up to 40% through local heating with a laser. Several distinct resonances in Q are observed that can be explained by coupling to membrane frame modes. Away from the resonances, the background Q is independent of frequency and temperature in the measured range.
Direct micro-mechanical measurements on C. elegans
Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari
2013-03-01
The millimeter-sized nematode Caenorhabditis elegans provides an excellent biophysical system for both static and dynamic biomechanical studies. The undulatory motion exhibited by this model organism as it crawls or swims through a medium is ubiquitous in nature at scales from microns to meters. A successful description of this form of locomotion requires knowledge of the material properties of the crawler, as well as its force output as it moves. Here we present an experimental technique with which the material properties and dynamics of C. elegans can be directly probed. By using the deflection of a flexible micropipette, the bending stiffness of C. elegans has been measured at all stages of its life cycle, as well as along the body of the adult worm. The mechanical properties of the worm are modelled as a viscoelastic material which provides new insights into its material properties. The forces exerted by the worm during undulatory motion are also discussed. Direct experimental characterization of this model organism provides guidance for theoretical treatments of undulatory locomotion in general.
Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers
Directory of Open Access Journals (Sweden)
David W. Washington
2004-06-01
Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.
Automated assembly of micro mechanical parts in a Microfactory setup
DEFF Research Database (Denmark)
Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta
2006-01-01
Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This pape...
Revisiting Cosmological parameter estimation
Prasad, Jayanti
2014-01-01
Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...
Parameter Estimation Through Ignorance
Du, Hailiang
2015-01-01
Dynamical modelling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A new relatively simple method of parameter estimation for nonlinear systems is presented, based on variations in the accuracy of probability forecasts. It is illustrated on the Logistic Map, the Henon Map and the 12-D Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The new method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This new approach is easier to implement in practice than alter...
Kitano, Ryuichiro; Motono, Ryuji; Nagai, Minoru
2016-12-01
It is often argued that the minimal supersymmetric standard model has O (100 ) free parameters, and the generic parameter region is already excluded by the null observation of the flavor and C P -violating processes as well as the constraints from the LHC experiments. This situation naturally leads us to consider the case where all the dangerous soft supersymmetry breaking terms, such as the scalar masses and scalar couplings, are absent, while only the unified gaugino mass term and the μ term are nonvanishing at the grand unification scale. We revisit this simple situation taking into account the observed Higgs boson mass, 125 GeV. Since the gaugino mass and the μ term are fixed in order to explain the Higgs boson and the Z boson masses, there is no free parameter left in this scenario. We find that there are three independent parameter sets that exist including ones which have not been discussed in the literature. We also find that the abundance of the dark matter can be explained by relic gravitinos which are nonthermally produced as decay products of the supersymmetry particles while satisfying constraints from big bang nucleosynthesis. We discuss the effects of the gravity mediation which generically gives a contribution to the soft terms of the order of the gravitino mass. It turns out that a newly found parameter set is preferable to explain the Higgs boson mass as well as the gravitino dark matter while satisfying the constraints from the electric dipole moments of the electron and the nucleon.
Fundamental stellar parameters
Wittkowski, M
2004-01-01
I present a discussion of fundamental stellar parameters and their observational determination in the context of interferometric measurements with current and future optical/infrared interferometric facilities. Stellar parameters and the importance of their determination for stellar physics are discussed. One of the primary uses of interferometry in the field of stellar physics is the measurement of the intensity profile across the stellar disk, both as a function of position angle and of wavelength. High-precision fundamental stellar parameters are also derived by characterizations of binary and multiple system using interferometric observations. This topic is discussed in detail elsewhere in these proceedings. Comparison of observed spectrally dispersed center-to-limb intensity variations with models of stellar atmospheres and stellar evolution may result in an improved understanding of key phenomena in stellar astrophysics such as the precise evolutionary effects on the main sequence, the evolution of meta...
Variations on tremor parameters
Boose, A.; Jentgens, Ch.; Spieker, S.; Dichgans, J.
1995-03-01
This paper describes our analysis procedure for long-term tremor EMG recordings, as well as three examples of applications. The description of the method focuses on how characteristics of the tremor (e.g. frequency, intensity, agonist-antagonist interaction) can be defined and calculated based on surface EMG data. The resulting quantitative characteristics are called ``tremor parameters.'' We discuss sinusoidally modulated, band-limited white noise as a model for pathological tremor-EMG, and show how the basic parameters can be extracted from this class of signals. The method is then applied to (1) estimate tremor severity in clinical studies, (2) quantify agonist-antagonist interaction, and (3) investigate the variations of the tremor parameters using simple methods from time-series analysis.
Optomechanical parameter estimation
Ang, Shan Zheng; Bowen, Warwick P; Tsang, Mankei
2013-01-01
We propose a statistical framework for the problem of parameter estimation from a noisy optomechanical system. The Cram\\'er-Rao lower bound on the estimation errors in the long-time limit is derived and compared with the errors of radiometer and expectation-maximization (EM) algorithms in the estimation of the force noise power. When applied to experimental data, the EM estimator is found to have the lowest error and follow the Cram\\'er-Rao bound most closely. With its ability to estimate most of the system parameters, the EM algorithm is envisioned to be useful for optomechanical sensing, atomic magnetometry, and classical or quantum system identification applications in general.
Band parameters of phosphorene
DEFF Research Database (Denmark)
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...
DEFF Research Database (Denmark)
Bentzen, J G; Forman, Julie Lyng; Pinborg, Anja;
2012-01-01
was observed between duration of hormonal-contraception use and ovarian reserve parameters. No dose-response relation was found between the dose of ethinyloestradiol and AMH or AFC. This study indicates that ovarian reserve markers are lower in women using sex steroids for contraception. Thus, AMH...
Response model parameter linking
Barrett, Michelle Derbenwick
2015-01-01
With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of equating observed scores on different test forms. This thesis argues, however, that the use of item response models does not require
Institute of Scientific and Technical Information of China (English)
黄晨; 王晓荣; 谢光善; 周桂芳
2009-01-01
Cold worked CW) 316(Ti)SS as cladding material used in fast reactor in China was developed. The normal mechanical properties of this material are comparable with the data in the literatures. However, high-temperature creep and rupture strength shows lower values. In order to get the micro-mechanism of this phenomena, the micro-structure of CW316(Ti)SS made in China and CH-68 (cladding material in fast reactor) from Russia at high temperatures were observed and compared. Moreover, the surface observation of CW316(Ti)SS after the rupture test was also conducted. Formation of σ phase on the grain boundary at high temperature was thought to be the main reason of the strength decrement.%冷加工316(Ti)不锈钢CW 316(Ti)SS是我国首选的快堆包壳材料,国产材料的常规力学性能与国外数据相当,但高温蠕变和高温持久强度数据却较低.本项研究主要是通过观察、比较国产快堆包壳材料和俄罗斯快堆包壳材料在高温下微观结构的变化情况,并结合对国产材料高温持久断裂试验样品的断口形貌观察结果,分析得出:国产材料长时高温力学性能下降的主要原因是沿晶界的σ相析出.
Distributed Parameter Modelling Applications
DEFF Research Database (Denmark)
2011-01-01
Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers and the d......Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers...... sands processing. The fertilizer granulation model considers the dynamics of MAP-DAP (mono and diammonium phosphates) production within an industrial granulator, that involves complex crystallisation, chemical reaction and particle growth, captured through population balances. A final example considers...
Physical Parameter Eclipse Mapping
Vrielmann, S
2000-01-01
The tomographic method "Physical Parameter Eclipse Mapping" is a tool to reconstruct spatial distributions of physical parameters (like temperatures and surface densities) in accretion discs of cataclysmic variables. After summarizing the method, we apply it to multi-colour eclipse light curves of various dwarf novae and nova-likes like VZ Scl, IP Peg in outburst, UU Aqr, V2051 Oph and HT Cas in order to derive the temperatures (and surface densities) in the disc, the white dwarf temperature, the disc size, the effective temperatures and the viscosities. The results allows us to establish or refine a physical model for the accretion disc. Our maps of HT Cas and V2051 Oph, for example, indicate that the (quiescent) disc must be structured into a cool, optically thick inner disc sandwiched by hot, optically thin chromospheres. In addition, the disc of HT Cas must be patchy with a covering factor of about 40% caused by magnetic activity in the disc.
1999-01-01
We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.
Military display performance parameters
Desjardins, Daniel D.; Meyer, Frederick
2012-06-01
The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.
Infrared Drying Parameter Optimization
Jackson, Matthew R.
In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a
Measuring the chargino parameters
Indian Academy of Sciences (India)
J Kalinowski
2000-07-01
After the supersymmetric particles have been discovered, the priority will be to determine independently the fundamental parameters to reveal the structure of the underlying supersymmetric theory. In my talk I discuss how the chargino sector can be reconstructed completely by measuring the cross-sections with polarized beams at e+e- collider experiments: $\\tilde{X}^{+}_{i}\\tilde{X}^{-}_{j}[i,j=1,2]$. The closure of the two-chargino system can be investigated by analysing sum rules for the production cross-sections.
Timetable Attractiveness Parameters
DEFF Research Database (Denmark)
Schittenhelm, Bernd
2008-01-01
Timetable attractiveness is influenced by a set of key parameters that are described in this article. Regarding the superior structure of the timetable, the trend in Europe goes towards periodic regular interval timetables. Regular departures and focus on optimal transfer possibilities make...... these timetables attractive. The travel time in the timetable depends on the characteristics of the infrastructure and rolling stock, the heterogeneity of the planned train traffic and the necessary number of transfers on the passenger’s journey. Planned interdependencies between trains, such as transfers...... and heterogeneous traffic, add complexity to the timetable. The risk of spreading initial delays to other trains and parts of the network increases with the level of timetable complexity....
varying elastic parameters distributions
Moussawi, Ali
2014-12-01
The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.
Energy Technology Data Exchange (ETDEWEB)
Hennion, A
1999-03-15
27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)
Energy Technology Data Exchange (ETDEWEB)
Jouinot, P.; Gantchenko, V.; Katundi, D. [Institut Superieur de Mecanique de Paris (ISMEP-Sumeca), 93 - Saint-Ouen (France)
2007-07-01
This work deals with gaseous hydrogen embrittlement of steels for pipelines having a relatively high mechanical resistance (elasticity limit: 550 MPa, Grade 80). The studied materials come from 5 tube steels batch already used for hydrocarbons transport. Plates have been obtained by continuous casting followed by a hot controlled rolling: the rolling temperature is adjusted for obtaining a strain hardening in order to increase the mechanical resistance of the steel. These materials have been tested under hydrogen pressure and the resistance to hydrogen has been measured for each of them. The results show that the hydrogen embrittlement decreases when the mechanical resistance of the plate (or its hardness) increases. The inclusion state of the different steels has been quantified by images analysis at different depths in the plates. These steels contain only globular oxides or aligned aluminates. The hydrogen embrittlement increases with the amount of the globular oxides (or with the length of the aligned aluminates). Micrographic and fractographic analyses show that even small globular inclusions ({phi}=1 {mu}m) concentrate enough hydrogen to induce a crack in the material or to lead to a crack propagation. In order to estimate the homogeneity of the ferrito-perlitic structure, the thickness of ferrite bands have been measured. The hydrogen embrittlement increases as the thickness of the ferrite bands, that is to say, as the heterogeneity of the structure. Micrographs have shown that the hydrogen cracking is initiated on perlite aggregates; the crack propagates then in ferrite and joins then others perlitic areas. This study shows that relatively resistant steels (Grade 80, elasticity limit: 550 MPa) can be used for manufacturing pipelines submitted to high hydrogen pressure. (O.M.)
[Acoustical parameters of toys].
Harazin, Barbara
2010-01-01
Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.
A study of parameter identification
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
YOGA IMPROVES CARDIOVASCULAR PARAMETERS
Directory of Open Access Journals (Sweden)
Pramod P. Kadu
2016-06-01
Full Text Available ABSTRACT Yoga in ancient technique practices by sage for a desirable and healthy life. Yogic exercise and Pranayam may modulate cardiovascular function. To assess the cardiovascular parameter in control and study group. We selected 90 healthy volunteers between age group 35 – 50 years and divided into two groups. i Study group – 45 ii Control group – 45. Control group was not doing any type of exercise or yoga during 1 yr of period whereas yoga group did yogic exercise for 1 yr under supervision of yoga expert. In both the group heart rate SBP and DBP evaluate at 0, 6 and 12 month period. In control group heart rate, SBP, and DBP showed no significant change at 0, 6, and 12 month reading, whereas study group (yoga 81.96±5.65 showed significant decreased heart rate From 81.96 ±5.65 to 75.60 ± 3.44 at 6 month and 73.75 ± 11.36 at 12 month (p<0.001 SBP decreased from 128 ± 7.66 to 120.97 ± 4.21 at 6 month and 120.48± 3.86 at 12 months (p<0.001. DBP showed significant decreased from 88.44 ± 5.25 to 80.53 ± 3.44 at 6 months and 80.53 ± 2.53 at 12months (p<0.001. Yogic exercise and Pranayam done regularly at long term improve cardiovascular efficiency.
Parameters of care for craniosynostosis
DEFF Research Database (Denmark)
McCarthy, Joseph G; Warren, Stephen M; Bernstein, Joseph
2012-01-01
A multidisciplinary meeting was held from March 4 to 6, 2010, in Atlanta, Georgia, entitled "Craniosynostosis: Developing Parameters for Diagnosis, Treatment, and Management." The goal of this meeting was to create parameters of care for individuals with craniosynostosis....
S-parameter uncertainty computations
DEFF Research Database (Denmark)
Vidkjær, Jens
1993-01-01
A method for computing uncertainties of measured s-parameters is presented. Unlike the specification software provided with network analyzers, the new method is capable of calculating the uncertainties of arbitrary s-parameter sets and instrument settings.......A method for computing uncertainties of measured s-parameters is presented. Unlike the specification software provided with network analyzers, the new method is capable of calculating the uncertainties of arbitrary s-parameter sets and instrument settings....
Subsurface Geotechnical Parameters Report
Energy Technology Data Exchange (ETDEWEB)
D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson
2003-12-17
The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce
Institute of Scientific and Technical Information of China (English)
宇鹏飞; 蔡洪能; 焦菲; 韩雪成
2016-01-01
We deal with analysis and prediction of the failure mechanism and the damage procedure of the multi-di-rectional carbon fiber reinforced plastics (CFRP)laminates under the condition of low velocity impact with small en-ergy based on the micro-mechanics of failure (MMF)theory.The impact damage behavior analysis method for the laminated structure was established based on MMF theory.During the process of impact loading,the constituent failure categories can be identified first by the MMF theory,then the comesponding material properties degradation scheme was applied to analyze the progressive failure of composites based on the constituent failure categories.De-veloped the user-defined material subroutine based on explicit analysis (VUMAT )on the ABAQUS,it is a impact damage analysis program of laminate based on MMF theory.Finally,under the condition of low velocity impact with small energy,the failure mechanism and damage appearance of the multi-directional CFRP laminates was predicted based on impact damage behavior analysis method of MMF theory.The failure mechanisms and damage appearance obtained from both predicted results and test were compared,then the accuracy of the impact damage prediction method based on MMF theory were analyzed.The results show that the error between predicted pit diameter and test pit diameter is 4.8%,the predicted failure mechanism and damage appearance are consistent with the actual analysis.%基于微观力学失效(MMF)理论对碳纤维增强复合材料(CFRP)多向层合板在低速冲击载荷下失效机制及损伤过程进行分析和预测。建立基于 MMF理论的层合板结构冲击损伤行为分析方法。首先，使用 MMF理论对冲击过程中组分的失效类别进行判别；然后，根据组分失效的类别制定出相应的材料性能退化方案来实现对复合材料在低速冲击下的逐步失效分析；在ABAQUS平台上开发了基于显示分析的用户材料子程序(VUMAT)，即基于 MMF理
PARAMETER ESTIMATION OF EXPONENTIAL DISTRIBUTION
Institute of Scientific and Technical Information of China (English)
XU Haiyan; FEI Heliang
2005-01-01
Because of the importance of grouped data, many scholars have been devoted to the study of this kind of data. But, few documents have been concerned with the threshold parameter. In this paper, we assume that the threshold parameter is smaller than the first observing point. Then, on the basis of the two-parameter exponential distribution, the maximum likelihood estimations of both parameters are given, the sufficient and necessary conditions for their existence and uniqueness are argued, and the asymptotic properties of the estimations are also presented, according to which approximate confidence intervals of the parameters are derived. At the same time, the estimation of the parameters is generalized, and some methods are introduced to get explicit expressions of these generalized estimations. Also, a special case where the first failure time of the units is observed is considered.
MODFLOW-style parameters in underdetermined parameter estimation
D'Oria, Marco D.; Fienen, Michael N.
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.
Parameter estimation in food science.
Dolan, Kirk D; Mishra, Dharmendra K
2013-01-01
Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature.
Roe, Byron
2013-01-01
The effect of correlations between model parameters and nuisance parameters is discussed, in the context of fitting model parameters to data. Modifications to the usual $\\chi^2$ method are required. Fake data studies, as used at present, will not be optimum. Problems will occur for applications of the Maltoni-Schwetz \\cite{ms} theorem. Neutrino oscillations are used as examples, but the problems discussed here are general ones, which are often not addressed.
Median statistics cosmological parameter values
Energy Technology Data Exchange (ETDEWEB)
Crandall, Sara, E-mail: sara1990@ksu.edu; Ratra, Bharat, E-mail: ratra@phys.ksu.edu
2014-05-01
We present median statistics central values and ranges for 12 cosmological parameters, using 582 measurements (published during 1990–2010) collected by [9]. On comparing to the recent Planck Collaboration [1] estimates of 11 of these parameters, we find good consistency in ten cases.
Free flight in parameter space
DEFF Research Database (Denmark)
Dahlstedt, Palle; Nilsson, Per Anders
2008-01-01
The well-known difficulty of controlling many synthesis parameters in performance, for exploration and expression, is addressed. Inspired by interactive evolution, random vectors in parameter space are assigned to an array of pressure sensitive pads. Vectors are scaled with pressure and added to ...
Methods for investigating parameter redundancy
Directory of Open Access Journals (Sweden)
Gimenez, O.
2004-06-01
Full Text Available The quantitative study of marked individuals relies mainly on the use of meaningful biological models. Classical inference is then conducted based on the model likelihood, parameterized by parameters such as survival, recovery, transition and recapture probabilities. In classical statistics, we seek parameter estimates by maximising the likelihood. However, models are often overparameterized and, as a consequence, some parameters cannot be estimated separately. Identifying how many and which (functions of parameters are estimable is thus crucial not only for proper model selection based upon likelihood ratio tests or information criteria but also for the interpretation of the estimates obtained. In this paper, we provide the reader with a description of the tools available to check for parameter redundancy. We aim to assist people in choosing the most appropriate method to solve their own specific problems.
Generating three-parameter sensor
Directory of Open Access Journals (Sweden)
Filinyuk M. A.
2014-08-01
Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.
Fluctuations in some climate parameters
Erlykin, A D; Wolfendale, A W; 10.1016/j.jastp.2011.01.021
2011-01-01
There is argument as to the extent to which there has been an increase over the past few decades in the frequency of the extremes of climatic parameters, such as temperature, storminess, precipitation, etc, an obvious point being that Global Warming might be responsible. Here we report results on those parameters of which we have had experience during the last few years: Global surface temperature, Cloud Cover and the MODIS Liquid Cloud Fraction. In no case we have found indications that fluctuations of these parameters have increased with time.
Multi-parameter Burau representations
Mohammad N. Abdulrahim; Madline Al- Tahan; Samer S. Habre
2013-01-01
We consider the multi-parameter representation of Artin's braid group introduced by D. D. Long and J. P. Tian, namely $\\alpha: B_{n}\\rightarrow GL_{m}(C)$, where $m=n!n$ . First, we show that there exists a complex specialization of the multi-parameter representation that does not arise from any Hecke algebra. Second, we find conditions under which the images of the generators of the braid group on three strings under the multi-parameter representation are unitary relative to a nonsingular he...
Telemetry System of Biological Parameters
Directory of Open Access Journals (Sweden)
Jan Spisak
2005-01-01
Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.
An Evaluation Of Rocket Parameters
Directory of Open Access Journals (Sweden)
J. N. Beri
1959-07-01
Full Text Available The dependence of conventional parameters of internal ballistics of Solid Propellant Rockets using external burning cruciform charge, on the geometry of charge aad rocket motor is discussed and results applied in a special case.
Bayesian priors and nuisance parameters
Gupta, Sourendu
2016-01-01
Bayesian techniques are widely used to obtain spectral functions from correlators. We suggest a technique to rid the results of nuisance parameters, ie, parameters which are needed for the regularization but cannot be determined from data. We give examples where the method works, including a pion mass extraction with two flavours of staggered quarks at a lattice spacing of about 0.07 fm. We also give an example where the method does not work.
Parameters of care for craniosynostosis
DEFF Research Database (Denmark)
Vargervik, Karin; Rubin, Marcie S; Grayson, Barry H
2012-01-01
A multidisciplinary conference was convened in March 2010 with the charge to develop parameters of care for patients with craniosynostosis. The 52 participants represented 16 medical specialties and 16 professional societies. Herein, we present the dental, orthodontic, and surgical care recommend......A multidisciplinary conference was convened in March 2010 with the charge to develop parameters of care for patients with craniosynostosis. The 52 participants represented 16 medical specialties and 16 professional societies. Herein, we present the dental, orthodontic, and surgical care...
Inflation and cosmological parameter estimation
Energy Technology Data Exchange (ETDEWEB)
Hamann, J.
2007-05-15
In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)
Parameter Estimation Using VLA Data
Venter, Willem C.
The main objective of this dissertation is to extract parameters from multiple wavelength images, on a pixel-to-pixel basis, when the images are corrupted with noise and a point spread function. The data used are from the field of radio astronomy. The very large array (VLA) at Socorro in New Mexico was used to observe planetary nebula NGC 7027 at three different wavelengths, 2 cm, 6 cm and 20 cm. A temperature model, describing the temperature variation in the nebula as a function of optical depth, is postulated. Mathematical expressions for the brightness distribution (flux density) of the nebula, at the three observed wavelengths, are obtained. Using these three equations and the three data values available, one from the observed flux density map at each wavelength, it is possible to solve for two temperature parameters and one optical depth parameter at each pixel location. Due to the fact that the number of unknowns equal the number of equations available, estimation theory cannot be used to smooth any noise present in the data values. It was found that a direct solution of the three highly nonlinear flux density equations is very sensitive to noise in the data. Results obtained from solving for the three unknown parameters directly, as discussed above, were not physical realizable. This was partly due to the effect of incomplete sampling at the time when the data were gathered and to noise in the system. The application of rigorous digital parameter estimation techniques result in estimated parameters that are also not physically realizable. The estimated values for the temperature parameters are for example either too high or negative, which is not physically possible. Simulation studies have shown that a "double smoothing" technique improves the results by a large margin. This technique consists of two parts: in the first part the original observed data are smoothed using a running window and in the second part a similar smoothing of the estimated parameters
Understanding bibliometric parameters and analysis.
Choudhri, Asim F; Siddiqui, Adeel; Khan, Nickalus R; Cohen, Harris L
2015-01-01
Bibliometric parameters have become an important part of modern assessment of academic productivity. These parameters exist for the purpose of evaluating authors (publication count, citation count, h-index, m-quotient, hc-index, e-index, g-index, i-10 [i-n] index) and journals (impact factor, Eigenfactor, article influence score, SCImago journal rank, source-normalized impact per paper). Although in recent years there has been a proliferation of bibliometric parameters, the true meaning and appropriate use of these parameters is generally not well understood. Effective use of existing and emerging bibliometric tools can aid in assessment of academic productivity, including readiness for promotions and other awards. However, if not properly understood, the data can be misinterpreted and may be subject to manipulation. Familiarity with bibliometric parameters will aid in their effective implementation in the review of authors-whether individuals or groups-and journals, as well as their possible use in the promotions review process, maximizing the effectiveness of bibliometric analysis.
Photovoltaic module parameters acquisition model
Cibira, Gabriel; Koščová, Marcela
2014-09-01
This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I-V and P-V characteristics for PV module based on equivalent electrical circuit. Then, limited I-V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.
Interacting galaxies and cosmological parameters
Reboul, H
2006-01-01
We propose a (physical)-geometrical method to measure the present rates of the density cosmological parameters for a Friedmann-Lemaitre universe. The distribution of linear separations between two interacting galaxies,when both of them undergo a first massive starburst, is used as a standard of length. Statistical properties of the linear separations of such pairs of ``interactivated'' galaxies are estimated from the data in the Two Degree Field Galaxy Redshift Survey. Synthetic samples of interactivated pairs are generated with random orientations and a likely distribution of redshifts. The resolution of the inverse problem provides the probability densities of the retrieved cosmological parameters. The accuracies that can be achieved by that method on matter and cosmological constant densities parameters are computed depending on the size of ongoing real samples. Observational prospects are investigated as the foreseeable surface densities on the sky and magnitudes of those objects.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Supersymmetry Parameter Analysis with Fittino
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip; /SLAC; Desch, Klaus; Wienemann, Peter; /Freiburg U.
2005-06-24
We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model to simulated data from ILC and LHC with realistic estimates of the observable uncertainties. Higher order radiative corrections are accounted for where ever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated annealing algorithm, a stable result is obtained without any a priori assumptions on the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result. The effects of theoretical uncertainties arising from unknown higher-order corrections and parametric uncertainties are examined qualitatively. They appear to be relevant and the result motivates further precision calculations.
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Load Estimation from Modal Parameters
DEFF Research Database (Denmark)
Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández;
2007-01-01
In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF...... matrix assembled from modal parameters and the experimental responses recorded using standard sensors, is presented. The method implies the inversion of the FRF which, in general, is not full rank matrix due to the truncation of the modal space. Furthermore, some ecommendations are included to improve...
Reconstruction of fundamental SUSY parameters
Energy Technology Data Exchange (ETDEWEB)
P. M. Zerwas et al.
2003-09-25
We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e{sup +}e{sup -} linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.
Kitano, Ryuichiro; Nagai, Minoru
2016-01-01
It is often argued that the minimal supersymmetric standard model has O(100) free parameters and the generic parameter region is already excluded by the null observation of the flavor and CP violating processes as well as the constraints from the LHC experiments. This situation naturally leads us to consider the case where all the dangerous soft supersymmetry breaking terms such as the scalar masses and scalar couplings are absent, while only the unified gaugino mass term and the mu term are non-vanishing at the grand unification scale. We revisit this simple situation taking into account the observed Higgs boson mass, 125 GeV. Since the gaugino mass and the mu term are fixed in order to explain the Higgs boson and the Z boson masses, there is no free parameter left in this scenario. We find that there are three independent parameter sets exist including ones which have not been discussed in the literature. We also find that the abundance of the dark matter can be explained by relic gravitinos which are non-t...
Noncommutativity Parameter and Composite Fermions
Jellal, A
2003-01-01
In this note, we would like to determine some particular values of noncommutativity parameter $\\te$ and show that the Murthy-Shankar approach is in fact a particular case of a more general one. Indeed, using fractional quantum Hall effect (FQHE) experimental data, one can give a measurement of $\\te$. This measurement can be obtained by considering some values of the filling factor $\
Noncommutativity Parameter and Composite Fermions
Jellal, Ahmed
2002-01-01
We determine some particular values of the noncommutativity parameter \\theta and show that the Murthy-Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of \\theta. This measurement can be obtained by considering some values of the filling factor \
DEFF Research Database (Denmark)
Frigaard, Peter; Helm-Petersen, J; Klopman, G.
1997-01-01
A Working Group on multidirectional waves formed by the International Association for Hydraulic Research has proposed an update of the IAHR List of Sea State Parameters from 1986 in the part concerning directional. Especially wave structure interaction with reflection of the waves have been treated....
Data Handling and Parameter Estimation
DEFF Research Database (Denmark)
Sin, Gürkan; Gernaey, Krist
2016-01-01
literature that are mostly based on the ActivatedSludge Model (ASM) framework and their appropriate extensions (Henze et al., 2000).The chapter presents an overview of the most commonly used methods in the estimation of parameters from experimental batch data, namely: (i) data handling and validation, (ii...
QUALITY PARAMETERS IN NANOTECHNOLOGIC APPLICATIONS
Directory of Open Access Journals (Sweden)
Ayşegül Akdoğan Eker
2013-06-01
Full Text Available Nanotechnology concept which has added a new dimension to our lives in recent years, is finding a place in every sector day by day. The combined effect of nanotechnology is almost equal to the industrial revolution of last 200 years and have is able to fill all developments in a few years. However this development should be taken under control. Otherwise unstoppable new structures will not ease life but will be a problem for humanity. For this purpose, the main parameters (from the start up stage of nano-technologic applications to the obtained product should be checked. These parameters are actually not different than the adaptation of the classical quality indicators for nanotechnology applications. Especially it plays an important role in obtaining a uniform distribution and regarding the features of the end product in nano-technological ceramic and etc. applications. The most important problem faced in particles of that size is the accumulation they create. Another problem is the increasing friction force as size gets smaller. The friction force of asubstance increases proportionally with the cube of its surface area. Another problem is surface tension. The increasing surface tension due to increasing surface area will cause the particles to attract and stick to each other. The structures aimed to be obtained are mostly complex and especially in upwards approach, it is thermodynamically very hard for the atoms to get into that order. Therefore in this announcement, we stated the quality parameters that will be taken into consideration in nano-technological applications and the methods for obtaining those parameters. The aim is to explain these parameters with all dimensions so that they will lead the way to the future nano-technological applications.
The parameters uncertainty inflation fallacy
Pernot, Pascal
2016-01-01
Statistical estimation of the prediction uncertainty of physical models is typically hindered by the inadequacy of these models due to various approximations they are built upon. The prediction errors due to model inadequacy can be handled either by correcting the model's results, or by adapting the model's parameters uncertainty to generate prediction uncertainty representative, in a way to be defined, of model inadequacy errors. The main advantage of the latter approach is its transferability to the prediction of other quantities of interest based on the same parameters. A critical review of state-of-the-art implementations of this approach in computational chemistry shows that it is biased, in the sense that it does not produce prediction uncertainty bands conforming with model inadequacy errors.
Mode choice model parameters estimation
Strnad, Irena
2010-01-01
The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...
Failure probability under parameter uncertainty.
Gerrard, R; Tsanakas, A
2011-05-01
In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.
Parameters estimation in quantum optics
D'Ariano, G M; Sacchi, M F; Paris, Matteo G. A.; Sacchi, Massimiliano F.
2000-01-01
We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.
High pressure rinsing parameters measurements
Energy Technology Data Exchange (ETDEWEB)
Cavaliere, E. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Fusetti, M. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Michelato, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Pagani, C. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)]. E-mail: carlo.pagani@mi.infn.it; Pierini, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Paulon, R. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Sertore, D. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)
2006-07-15
High pressure rinsing with ultra pure water jet is an essential step in the high field superconducting cavity production process. In this paper, we illustrate the experimental characterization of a HPR system, in terms of specific power and energy deposition on the cavity surfaces and on the damage threshold for niobium. These measurements are used to tentatively derive general rules for the optimization of the free process parameters (nozzle geometry, speeds and water pressure)
Research of Motorcycle Braking Parameters
Directory of Open Access Journals (Sweden)
Loreta Levulytė
2016-12-01
Full Text Available From a technical point of view, in dangerous or emergency situation is very important motorcycle driver reaction and vehicle braking time. Motor-cycle deceleration parameters depend not only on the motorcycle brake system, but also on the driving experience. A significant influence on decel-eration the motorcycle has aerodynamic parameters, pavement type and condition, as well as the technical condition of the motocycle, shock absorb-ers, tire type and their technical condition. This article provides an analysis of the motorcycle longitudinal deceleration, braking modes of the mo-torcycle on a dry asphalt road surface. Motorcycle stopping – deceleration – acceleration efficiency issue, stopping in different modes. First ana-lyzed the dynamics of a motorcycle deceleration braking only the front wheel, then braked front and rear wheels and complex – then braked the front and rear wheels at the same time. The goal of experimental study is to determine the influence of braking modes intense fir motorcycle brak-ing deceleration when braking on dry road pavement, at three different braking modes, and set the braking path of change. Motorcycle decelera-tion in the longitudinal direction is an important parameter for analysis traffic accidents, for accident reconstruction process and the examination of motorcyclists technical possibility to avoid an accident.
IMPULSIVITY PARAMETER FOR SOLAR FLARES
Energy Technology Data Exchange (ETDEWEB)
Fajardo-Mendieta, W. G.; Alvarado-Gómez, J. D.; Calvo-Mozo, B. [Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá (Colombia); Martinez-Oliveros, J. C., E-mail: wgfajardom@unal.edu.co, E-mail: bcalvom@unal.edu.co, E-mail: oliveros@ssl.berkeley.edu, E-mail: jalvarad@eso.org [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States)
2016-02-10
Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30–40 keV and 25–50 keV) and are useful for fast calculations. We propose an alternative way to classify solar flares according to their impulsivity parameter values, defining three different types of impulsivity, namely, high, medium, and low. This system of classification is independent of the manner used to calculated the impulsivity parameter. Lastly, we show the relevance of this tool as a discriminator of different HXR generation processes.
College students' understanding of parameters in algebra
Postelnicu, Valentina; Postelnicu, Florin
2015-01-01
International audience; A study was conducted with 26 college students with the purpose of gaining insight into students' conceptual understanding of parameters in algebra. Participants contributed to a whole-class discussion, solved problems with parameters, and identified the parameters in each problem. About one third of the students had difficulty identifying parameters. Even when successful at identifying parameters, students had great difficulty solving the problems with parameters. The...
Minimum QOS Parameter Set in Transport Layer
Institute of Scientific and Technical Information of China (English)
汪芸; 顾冠群
1997-01-01
QOS（Quality Of Service)parameter definitions are the basis of further QOS control.But QOS parameters defined by organizations such as ISO and ITU are incoherent and incompatible.It leads to the imefficiency of QOS controls.Based on the analysis of QOS parameters defined by ISO and ITU,this paper first promotes Minimum QOS Parameter Set in transport layer.It demonstrates that the parameters defined by ISO and ITU can be represented b parameters or a combination of parameters of the Set.The paper also expounds that the Set is open and manageable and it can be the potential unified base for QOS parameters.
Navigating the Updated Anaphylaxis Parameters
Directory of Open Access Journals (Sweden)
Kemp Stephen F
2007-06-01
Full Text Available Anaphylaxis, an acute and potentially lethal multi-system clinical syndrome resulting from the sudden, systemic degranulation of mast cells and basophils, occurs in a variety of clinical scenarios and is almost unavoidable inmedical practice. Healthcare professionalsmust be able to recognize its features, treat an episode promptly and appropriately, and be able to provide recommendations to prevent future episodes. Epinephrine, administered immediately, is the drug of choice for acute anaphylaxis. The discussion provides an overview of one set of evidence-based and consensus parameters for the diagnosis and management of anaphylaxis.
Material parameters for thermoelectric performance
Indian Academy of Sciences (India)
M N Tripathi; C M Bhandari
2005-09-01
The thermoelectric performance of a thermoelement is ideally defined in terms of the so-called figure-of-merit = 2 / , where , and refer respectively to the Seebeck coefficient, electrical conductivity and thermal conductivity of the thermoelement material. However, there are other parameters which are fairly good indicators of a material's thermoelectric `worth'. A simple yet useful performance indicator is possible with only two parameters-energy gap and lattice thermal conductivity. This indicator can outline all potentially useful thermoelectric materials. Thermal conductivity in place of lattice thermal conductivity can provide some additional information about the temperature range of operation. Yet another performance indicator may be based on the slope of vs. ln plots. plotted against ln shows a linear relationship in a simplified model, but shows a variation with temperature and carrier concentration. Assuming that such a relationship is true for a narrow range of temperature and carrier concentration, one can calculate the slope of vs. ln plots against temperature and carrier concentrations. A comparison between the variation of and slope suggests that such plots may be useful to identify potential thermoelectric materials.
Measuring neutrino oscillation parameters using $\
Energy Technology Data Exchange (ETDEWEB)
Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)
2011-01-01
MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δm_{atm}^{2} and sin^{2} 2θ_{atm}). The oscillation signal consists of an energy-dependent deficit of v_{μ} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the v_{μ}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the v_{μ}-disappearance analysis, incorporating this new estimator were: Δm^{2} = 2.32_{-0.08}^{+0.12} x 10^{-3} eV^{2}, sin ^{2} 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$_{μ} beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36_{-0.40}^{+0.46}(stat.) ± 0.06(syst.)) x 10^{-3}eV^{2}, sin^{2} 2$\\bar{θ}$ = 0.86_{-0.12}^{_0}
Single Parameter Range and Whole Parameter Range, and Assessment of Novelty
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
It is a relatively common phenomenon to limit technical features with parameter range in patent claims. It is argued in this article that the parameter range should be distinctly divided into single parameter range and whole parameter range depending on the different mode and function of limitation. Each and every parameter in a single parameter range may independently achieve a technical effect, and limit one embodiment alone; while a single parameter in the whole parameter range cannot independently ac...
Noncommutativity Parameter and Composite Fermions
Jellal, Ahmed
We determine some particular values of the noncommutativity parameter θ and show that the Murthy Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of θ. This measurement can be obtained by considering some values of the filling factor ν and other ingredients, magnetic field B and electron density ρ. Moreover, it is found that θ can be quantized either fractionally or integrally in terms of the magnetic length l0 and the quantization is exactly what Murthy and Shankar formulated recently for the FQHE. On the other hand, we show that the mapping of the FQHE in terms of the composite fermion basis has a noncommutative geometry nature and therefore there is a more general way than the Murthy Shankar method to do this mapping.
Optimization of submerged vane parameters
Indian Academy of Sciences (India)
H SHARMA; B JAIN; Z AHMAD
2016-03-01
Submerged vanes are airfoils which are in general placed at certain angle with respect to the flow direction in a channel to induce artificial circulations downstream. By virtue of these artificially generated circulations, submerged vanes were utilized to protect banks of rivers against erosion, to control shifting of rivers, to avoid blocking of lateral intake with sediment deposition, etc. Odgaard and his associates have experimentally obtained the optimum vane sizes and recommended that it can be used for vane design. Thispaper is an attempt to review and validate the findings of Odgaard and his associates by utilizing computational fluid dynamics and experiments as a tool in which the vane generated vorticity in the downstream was maximized in order to obtain optimum vane parameters for single and multiple vane arrays.
Image-based petrophysical parameters
DEFF Research Database (Denmark)
Noe-Nygaard, Jakob; Engstrøm, Finn; Sølling, Theis Ivan
2017-01-01
In the present study, the focus is on two 2- to 3-mm cuttings-scale reservoir chalk samples chosen such that the resolution of the pore space is challenging the state of the art and the permeability differs by a factor of four. We compare the petrophysical parameters that are derived from nano......-computed-tomography (nano-CT) images of trim sections and cuttings. Moreover, the trim-section results are upscaled to trim size to form the basis of an additional comparison. The results are also benchmarked against conventional core analysis (CCAL) results on trim-size samples. The comparison shows that petrophysical......, the differences are significant for the low-permeability plug. For the two-phase-flow data, the predicted relative permeability endpoints differ significantly. The root cause of this again is attributed to the more-complex structure of the pore network in the low-permeability carbonate. The experiment was also...
Association between Perioperative Parameters and
Directory of Open Access Journals (Sweden)
Saba Ghaffary
2015-10-01
Full Text Available Background: Postoperative cognitive dysfunction (POCD has been an important complication of cardiac surgery over the years. Neurocognitive dysfunction can affect quality of life and lead to social, functional, emotional, and financial problems in the patient’s life. To reduce POCD, we sought to identify the association between cognitive dysfunction and perioperative factors in patients undergoing cardiac surgery.Methods: One hundred one patients aged between 45 and 75 years undergoing elective cardiac surgery were enrolled in this study. All the surgeries were performed on-pump by the same medical team. A brief Wechsler Memory Test (WMT was administered before surgery, 3 to 5 days after the surgery, and 3 months after discharge. All related perioperative parameters were collected in order to study the effect of these parameters on the postoperative WMT scores and WMT score change.Results: The study population consisted of 101 patients, comprising 14 (13.8% females and 87 (86.2% males aged between 45 and 75 years. In univariate analysis, the baseline WMT score, serum levels of lactate dehydrogenase and T3, cross-clamp time, and preexistence of chronic obstructive pulmonary disease showed significant effects on the postoperative WMT score (p value < 0.05, whereas only the baseline WMT score and chronic obstructive pulmonary disease showed strong effects on the postoperative WMT score in the multiple regression model. In addition, the multiple regression model demonstrated a significant association between the baseline WMT score, serum creatinine level, and nitrate administration and the WMT score change.Conclusion: Our study showed that preexisting chronic obstructive pulmonary disease and preoperative high serum creatinine levels negatively affected cognitive function after surgery. In addition, there was a strong relationship between the patients’ basic cognition and POCD. Preoperative nitrate administration led to a significant improvement
Applied parameter estimation for chemical engineers
Englezos, Peter
2000-01-01
Formulation of the parameter estimation problem; computation of parameters in linear models-linear regression; Gauss-Newton method for algebraic models; other nonlinear regression methods for algebraic models; Gauss-Newton method for ordinary differential equation (ODE) models; shortcut estimation methods for ODE models; practical guidelines for algorithm implementation; constrained parameter estimation; Gauss-Newton method for partial differential equation (PDE) models; statistical inferences; design of experiments; recursive parameter estimation; parameter estimation in nonlinear thermodynam
Voltage stability, bifurcation parameters and continuation methods
Energy Technology Data Exchange (ETDEWEB)
Alvarado, F.L. [Wisconsin Univ., Madison, WI (United States)
1994-12-31
This paper considers the importance of the choice of bifurcation parameter in the determination of the voltage stability limit and the maximum power load ability of a system. When the bifurcation parameter is power demand, the two limits are equivalent. However, when other types of load models and bifurcation parameters are considered, the two concepts differ. The continuation method is considered as a method for determination of voltage stability margins. Three variants of the continuation method are described: the continuation parameter is the bifurcation parameter the continuation parameter is initially the bifurcation parameter, but is free to change, and the continuation parameter is a new `arc length` parameter. Implementations of voltage stability software using continuation methods are described. (author) 23 refs., 9 figs.
Structural Design Parameters for Germanium
Salem, Jon; Rogers, Richard; Baker, Eric
2017-01-01
The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.
Impulsivity Parameter for Solar Flares
Fajardo-Mendieta, W G; Alvarado-Gómez, J D; Calvo-Mozo, B
2016-01-01
Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30-40 keV and 25-50 keV) and are useful for fast calculations. We propose an alternative way to classify...
Evaluation of Strain Hardening Parameters
Institute of Scientific and Technical Information of China (English)
DING Zong-hai; Pavel Huml; YANG Wei
2004-01-01
The plane-strain compression test for three kinds of materials was carried out in a temperature range between room temperature and 400 ℃. The σ - ε curves and strain-hardening rate at different temperatures were simulated and a reasonable fit to the experimental data was obtained. A modified model created by data inference and computer simulation was developed to describe the strain hardening at a large deformation, and the predicted strain hardening are in a good agreement with that observed in a large range of stress. The influences of different parameters on strain hardening behaviour under large deformation were analysed. The temperature increase within the test temperatures for stainless steel 18/8 Ti results in dropping of flow stress and strain-hardening rate. For favourable γ-fibre texture to obtain high r, the cold rolling was applied at large reduction. In the experimental procedure, the X-ray diffraction test was carried out to compare the strain hardening and microstructure under large deformation for a bcc steel (low carbon steel SS-1142). The results indicate that the high strain-hardening rate possibly occurs when the primary slip plane {110} is parallel to the rolling plane and the strain-hardening rate decreases when lots of {110} plane rotate out from the orientation {110}∥RP.
On Markov parameters in system identification
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Renormalizable two-parameter piecewise isometries.
Lowenstein, J H; Vivaldi, F
2016-06-01
We exhibit two distinct renormalization scenarios for two-parameter piecewise isometries, based on 2π/5 rotations of a rhombus and parameter-dependent translations. Both scenarios rely on the recently established renormalizability of a one-parameter triangle map, which takes place if and only if the parameter belongs to the algebraic number field K=Q(5) associated with the rotation matrix. With two parameters, features emerge which have no counterpart in the single-parameter model. In the first scenario, we show that renormalizability is no longer rigid: whereas one of the two parameters is restricted to K, the second parameter can vary continuously over a real interval without destroying self-similarity. The mechanism involves neighbouring atoms which recombine after traversing distinct return paths. We show that this phenomenon also occurs in the simpler context of Rauzy-Veech renormalization of interval exchange transformations, here regarded as parametric piecewise isometries on a real interval. We explore this analogy in some detail. In the second scenario, which involves two-parameter deformations of a three-parameter rhombus map, we exhibit a weak form of rigidity. The phase space splits into several (non-convex) invariant components, on each of which the renormalization still has a free parameter. However, the foliations of the different components are transversal in parameter space; as a result, simultaneous self-similarity of the component maps requires that both of the original parameters belong to the field K.
[Dalbavancin: pharmacokinetic and pharmacodynamic parameters].
Azanza, José Ramón; Sádaba, Belén; Reis, Joana
2017-01-01
Dalbavancin is a new lipoglycopeptide antibiotic whose structure influences its pharmacokinetic profile. It is not absorbed after oral administration and is therefore administered intravenously. It is distributed through intracellular fluid, reaching adequate concentrations in the skin, bone, blister fluid and synovial fluid. Plasma protein binding is very high. Concentrations in brain tissue and cerebrospinal fluid (CSF) are inadequate. Excretion is through non-microsomal metabolism with inactive metabolites and through the kidneys by glomerular filtration. Dalbavancin is eliminated slowly, as shown by its clearance value and its terminal elimination half-life, which exceeds 300 hours. This means that adequate concentrations of the drug remain in plasma and tissues for a prolonged period and explains the dosing regimen: a first dose of 1g followed 7 days later by a 500mg dose. The pharmacokinetics are linear and show little intra- and interindividual variability. There are no pharmacokinetic interactions. Dose adjustment is not required for patients with mild or moderate renal insufficiency (creatinine clearance ≥ 30 to 79ml/min). Dosage adjustment is not required in patients regularly receiving elective haemodialysis (3 times/week) and the drug can be administered without consideration of haemodialysis times. In patients with chronic renal insufficiency, whose creatinine clearance is < 30ml/min and who are not regularly receiving elective haemodialysis, the recommended dose should be reduced to 750mg per week, followed 1 week later by 375mg. Dosage adjustment does not seem necessary in patients with liver failure or in older patients. There is no information on the most appropriate dosage in children. The pharmacokinetic/pharmacodynamics parameter that best describes the effectiveness of dalbavancin is the ratio between the area under the curve and the minimum inhibitory concentration.
Physiological Parameters Database for Older Adults
U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...
PARAMETER ESTIMATION OF ENGINEERING TURBULENCE MODEL
Institute of Scientific and Technical Information of China (English)
钱炜祺; 蔡金狮
2001-01-01
A parameter estimation algorithm is introduced and used to determine the parameters in the standard k-ε two equation turbulence model (SKE). It can be found from the estimation results that although the parameter estimation method is an effective method to determine model parameters, it is difficult to obtain a set of parameters for SKE to suit all kinds of separated flow and a modification of the turbulence model structure should be considered. So, a new nonlinear k-ε two-equation model (NNKE) is put forward in this paper and the corresponding parameter estimation technique is applied to determine the model parameters. By implementing the NNKE to solve some engineering turbulent flows, it is shown that NNKE is more accurate and versatile than SKE. Thus, the success of NNKE implies that the parameter estimation technique may have a bright prospect in engineering turbulence model research.
Thermodynamic parameters of elasticity and electrical conductivity ...
African Journals Online (AJOL)
Thermodynamic parameters of elasticity and electrical conductivity of reinforced natural rubber (nr) vulca nizates. ... Bulletin of the Chemical Society of Ethiopia ... The thermodynamic parameters (change in free energy of elasticity, DGe; ...
Ecolifter Conceptual Configuration Design and Parameter Analysis
Institute of Scientific and Technical Information of China (English)
唐胜景
2003-01-01
In the phase of conceptually designing, the Ecolifter with three-lift-surface configuration, the influences of aircraft geometric parameters and configuration such as wing geometric parameters, canard parameters, aircraft center of gravity and engine positions and so on, on flight dynamic stability are discussed with the integrated analysis method. On the basis of the analysis of flight dynamic stability, the suitable wing geometric parameters are given and the improved aircraft configuration is proposed.
Normative Spatiotemporal Gait Parameters in Older Adults
Hollman, John H; McDade, Eric M.; Petersen, Ronald C.
2011-01-01
While factor analyses have characterized pace, rhythm and variability as factors that explain variance in gait performance in older adults, comprehensive analyses incorporating many gait parameters have not been undertaken and normative data for many of those parameters are lacking. The purposes of this study were to conduct a factor analysis on nearly two dozen spatiotemporal gait parameters and to contribute to the normative database of gait parameters from healthy, able-bodied men and wome...
Application of chaotic theory to parameter estimation
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
High precision parameter estimation is very important for control system design and compensation. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and experimental results indicated that this method has extremely high sensitivity and resolving power. The most important contribution of this paper is apart from the traditional engineering viewpoint and actualizing parameter estimation just based on unstable chaotic systems.
Effect of regularization parameters on geophysical reconstruction
Institute of Scientific and Technical Information of China (English)
Zhou Hui; Wang Zhaolei; Qiu Dongling; Li Guofa; Shen Jinsong
2009-01-01
In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data.In the regularization method a potential function of model parameters and its corresponding functions are introduced.This method is stable and able to preserve boundaries, and protect resolution.The effect of regularization depends to a great extent on the suitable choice of regularization parameters.The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.
Design of control systems with uncertain parameters
Auslander, D. M.; Spear, R. C.; Young, G. E.
1981-01-01
A design method for control systems with uncertain parameters is presented. The method utilizes a generalized sensitivity approach which separates the parameter space into regions which produce a system response that satisfies given design criteria and regions which do not. Nonparametric statistics and confidence limits for the binomial distribution are used to determine degree of parameter sensitivity and to locate regions in the parameter space which maximize the probability of producing a desirable system response. In an example it is shown that a given parameter may have to be known to a lesser degree of uncertainty to be able to specify a satisfactory design.
Regions of constrained maximum likelihood parameter identifiability
Lee, C.-H.; Herget, C. J.
1975-01-01
This paper considers the parameter identification problem of general discrete-time, nonlinear, multiple-input/multiple-output dynamic systems with Gaussian-white distributed measurement errors. Knowledge of the system parameterization is assumed to be known. Regions of constrained maximum likelihood (CML) parameter identifiability are established. A computation procedure employing interval arithmetic is proposed for finding explicit regions of parameter identifiability for the case of linear systems. It is shown that if the vector of true parameters is locally CML identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the CML estimation sequence will converge to the true parameters.
Parameters Optimization of Synergetic Recognition Approach
Institute of Scientific and Technical Information of China (English)
GAOJun; DONGHuoming; SHAOJing; ZHAOJing
2005-01-01
Synergetic pattern recognition is a novel and effective pattern recognition method, and has some advantages in image recognition. Researches have shown that attention parameters λ and parameters B， C directly influence on the recognition results, but there is no general research theory to control these parameters in the recognition process. We abstractly analyze these parameters in this paper, and purpose a novel parameters optimization method based on simulated annealing algorithm. SA algorithm has good optimization performance and is used to search the global optimized solution of these parameters. Theoretic analysis and experimental results both show that the proposed parameters optimization method is effective, which can fully improve the performance of synergetic recognition approach, and the algorithm realization is simple and fast.
Cosmological parameter estimation using Particle Swarm Optimization
Prasad, J.; Souradeep, T.
2014-03-01
Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.
Robust estimation of hydrological model parameters
Directory of Open Access Journals (Sweden)
A. Bárdossy
2008-11-01
Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.
Burstiness parameter for finite event sequences
Kim, Eun-Kyeong
2016-01-01
Characterizing inhomogeneous temporal patterns in natural and social phenomena is important to understand underlying mechanisms behind such complex systems, hence even to predict and control them. Temporal inhomogeneities in event sequences have been described in terms of bursts that are rapidly occurring events in short time periods alternating with long inactive periods. The bursts can be quantified by a simple measure, called burstiness parameter, which was introduced by Goh and Barab\\'asi [EPL \\textbf{81}, 48002 (2008)]. The burstiness parameter has been widely used due to its simplicity, which however turns out to be strongly biased when the number of events in the time series is not large enough. As the finite size effects on burstiness parameter have been largely ignored, we analytically investigate the finite size effects of the burstiness parameter. Then we suggest an alternative definition of burstiness parameter that is unbiased and yet simple. Using our alternative burstiness parameter, one can di...
Multi-Objective Parameter Selection for Classifers
Directory of Open Access Journals (Sweden)
Christoph Mussel
2012-01-01
Full Text Available Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling andoptimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configuration and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.
Optimization of Parameters of Asymptotically Stable Systems
Directory of Open Access Journals (Sweden)
Anna Guerman
2011-01-01
Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Hadiyanto Hadiyanto; AJB van Boxtel
2012-01-01
Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally pro...
Estimating parametes for systems with complicated dynamics
Goodwin, J; Goodwin, Justin; Brown, Reggie
1998-01-01
Changes in parameters of a physical device can eventually give way to catastrophic failure. In this paper we present a method for estimating the parameters of a device from time series data. We also examine the robustness of this method to noise in the data. For our examples, the parameter estimates are good to about two decimal places even at 0 dB signal to noise ratio.
Curvatures for Parameter Subsets in Nonlinear Regression
1986-01-01
The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effec...
The Solubility Parameters of Ionic Liquids
Directory of Open Access Journals (Sweden)
Andrzej Marciniak
2010-04-01
Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.
Roughness parameter selection for novel manufacturing processes.
Ham, M; Powers, B M
2014-01-01
This work proposes a method of roughness parameter (RP) selection for novel manufacturing processes or processes where little knowledge exists about which RPs are important. The method selects a single parameter to represent a group of highly correlated parameters. Single point incremental forming (SPIF) is used as the case study for the manufacturing process. This methodology was successful in reducing the number of RPs investigated from 18 to 8 in the case study. © Wiley Periodicals, Inc.
New fundamental parameters for attitude representation
Patera, Russell P.
2017-08-01
A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th......We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter...
Parameter Estimation in Continuous Time Domain
Directory of Open Access Journals (Sweden)
Gabriela M. ATANASIU
2016-12-01
Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.
Useful Scaling Parameters for the Pulse Tube
Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.; Cheng, Pearl L. (Technical Monitor)
1995-01-01
A set of eight non-dimensional scaling parameters for use in evaluating the performance of Pulse Tube Refrigerators is presented. The parameters result after scaling the mass, momentum and energy conservation equations for an axisymmetric, two-dimensional system. The physical interpretation of the parameters are described, and their usefulness is outlined for the enthalpy flow tube (open tube of the pulse tube). The scaling parameters allow the experimentalist to characterize three types of transport: enthalpy flow, mass streaming and heat transfer between the gas and the tube. Also reported are the results from a flow visualization experiment in which steady mass streaming in compressible oscillating flow is observed.
Multivariate distributions of soil hydraulic parameters
Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry
2014-05-01
Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend
Baker Syed; Poskar C; Junker Björn
2011-01-01
Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. Wh...
Overall challenges in incorporating micro-mechanical models into materials design process
Bennoura, M.; Aboutajeddine, A.
2016-10-01
Using materials in engineering design has historically been handled using the paradigm of selecting appropriate materials from the finite set of available material databases. Recent trends, however, have moved toward the tailoring of materials that meet the overall system performance requirements, based on a process called material design. An important building block of this process is micromechanical models that relate microstructure to proprieties. Unfortunately, these models remain short and include a lot of uncertainties from assumptions and idealizations, which, unavoidably, impacts material design strategy. In this work, candidate methods to deal with micromechanical models uncertainties and their drawbacks in material design are investigated. Robust design methods for quantifying uncertainty and managing or mitigating its impact on design performances are reviewed first. These methods include principles for classifying uncertainty, mathematical techniques for evaluating its level degree, and design methods for performing and generating design alternatives, that are relatively insensitive to sources of uncertainty and flexible for admitting design changes or variations. The last section of this paper addresses the limits of the existing approaches from material modelling perspective and identifies the research opportunities to overcome the impediment of incorporating micromechanical models in material design process.
Laser speckle micro rheology for micro-mechanical mapping of bio-materials (Conference Presentation)
Hajjarian Kashany, Zeinab; Ahn, Shawn; Tavakoli Nia, Hadi; Tshikudi, Diane M.; Grodzinsky, Alan; Jain, Rakesh K.; Nadkarni, Seemantini K.
2016-03-01
Laser speckle Micro-rheology (LSM) is a novel optical tool for evaluating the viscoelastic properties of biomaterials. In LSM, a laser beam illuminates the specimen and scattered rays are collected through an objective by a high-speed CMOS camera. The self-interference of light rays forms a fluctuating speckle pattern captured by the CMOS sensor. Spatio-temporal correlation analysis of speckle images provides the intensity autocorrelation function, g2(t), for individual pixels. Next, the mean square displacements (MSD) of Brownian particles are deduced and substituted in the generalized Stokes-Einstein relation (GSER) to yield a 2D map of viscoelastic modulus, |G*(ω)|. To compare the accuracy, sensitivity, and dynamic range of LSM measurements with standard mechanical testing methods, homogeneous polyethylene glycol (PEG), agarose, and polyacrylamide (PA) gels, of assorted viscoelastic properties were fabricated and evaluated using LSM, shear rheology, and indentation-mode atomic force microscopy (AFM). Results showed a statistically significant, strong correlation between G* values measured by LSM and shear rheology (R=0.94, pscale stiffness patterns were tested using LSM. The reconstructed |G*| maps illustrated the high sensitivity of LSM in resolving mechanical heterogeneities below 100 microns. These findings demonstrate the competent accuracy and sensitivity of LSM measurements. Moreover, the non-contact nature of LSM provides a major advantage over mechanical tests, making it suitable for in vivo studies in future.
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
Micro-mechanism of metal magnetic memory signal variation during fatigue
Xu, Ming-xiu; Chen, Zhang-hua; Xu, Min-qiang
2014-03-01
Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. According to experimental results, in the early stage of fatigue, the magnetic signal and the dislocation density rapidly increase; while in the middle stage, the magnetic signal gradually increases, the dislocation density remains steady, and only the dislocation structure develops. On the other hand, in the later stage, the magnetic signal once again increases rapidly, the dislocation structure continues to develop, and microscopic cracks are formed. Analysis reveals that the dislocations block the movement of the domain wall, and the area of dislocation accumulation thus becomes an internal magnetic source and scatters a field outward. In addition, the magnetic memory field strengthens with increasing dislocation density and complexity of the dislocation structure. Accordingly, the dislocation pinning factor related with the dislocation density and the dislocation structure has been proposed to characterize the effect of dislocations on the magnetic memory signal. The magnetic signal strengthens with an increase in the dislocation pinning factor.
XPS and micro-mechanical characterisation of nitrogen ion implanted low alloy steel
Institute of Scientific and Technical Information of China (English)
A.O.Olofinjana; Z.Chen; J.M.Bell
2001-01-01
The surface composition of low alloy steel after N2+ implantation was studied with X-rayphoto-electron spectroscopy （XPS）. The effect of the implantation on the mechanical hardnesswas evaluated by ultra-micro hardness indentation. Chemical characterisation of the surface indi-cated that a thin layer rich in N, C and Si was formed. It is shown that Fe played little role in thechemical composition and the structure of the modified surface. The mechanical hardness of N2+implanted surface was 35-50 GPa compared with a value of 10 GPa for the untreated sample. Itis thought that the high hardness observed on the surface and in the sub-surface was as a resultof chemical modification to form a film of Si doped carbon nitride. There is strong evidence fromthe XPS and the nanoindentation studies that the bonding structure of the C-N in the near surfaceis essentially sp3 types expected in crystalline C3N4. The value of nitrogen ion implantation asprocess for improving the wear resistance of low alloy steels is emphasized.
Energy Technology Data Exchange (ETDEWEB)
Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Haseeb, A.S.M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Roberts, S.G.; Wilkinson, A.J. [Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH (United Kingdom); Bade, K. [Institut fuer Mikrostrukturtechnik (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2012-04-30
Nanocrystalline nickel-tungsten alloys have great potential in the fabrication of components for microelectromechanical systems. Here the fracture toughness of Ni-12.7 at.%W alloy micro-cantilever beams was investigated. Micro-cantilevers were fabricated by UV lithography and electrodeposition and notched by focused ion beam machining. Load was applied using a nanoindenter and fracture toughness was calculated from the fracture load. Fracture toughness of the Ni-12.7 at.%W was in the range of 1.49-5.14 MPa {radical}m. This is higher than the fracture toughness of Si (another important microelectromechanical systems material), but considerably lower than that of electrodeposited nickel and other nickel based alloys. - Highlights: Black-Right-Pointing-Pointer Micro-scale cantilevers manufactured by electro-deposition and focused ion beam machining. Black-Right-Pointing-Pointer Nanoindenter used to perform micro-scale fracture test on Ni-13at%W micro-cantilevers. Black-Right-Pointing-Pointer Calculation of fracture toughness of electrodeposited Ni-13at%W thin films. Black-Right-Pointing-Pointer Fracture toughness values lower than that of nanocrystalline nickel.
Goree, James G.; Richardson, David E.
1990-01-01
The near-crack-tip stresses in any planar coupon of arbitrary geometry subjected to mode 1 loading may be equated to those in an infinite center-cracked panel subjected to the appropriate equivalent remote biaxial stresses (ERBS). Since this process can be done for all such mode 1 coupons, attention may be focused on the behavior of the equivalent infinite cracked panel. To calculate the ERBS, the constant term in the series expansion of the crack-tip stress must be retained. It is proposed that the ERBS may be used quantitatively to explain different fracture phenomena such as crack branching.
Micro-mechanism of metal magnetic memory signal variation during fatigue
Institute of Scientific and Technical Information of China (English)
Ming-xiu Xu; Zhang-hua Chen; Min-qiang Xu
2014-01-01
Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. Accord-ing to experimental results, in the early stage of fatigue, the magnetic signal and the dislocation density rapidly increase;while in the middle stage, the magnetic signal gradually increases, the dislocation density remains steady, and only the dislocation structure develops. On the other hand, in the later stage, the magnetic signal once again increases rapidly, the dislocation structure continues to develop, and micro-scopic cracks are formed. Analysis reveals that the dislocations block the movement of the domain wall, and the area of dislocation accumu-lation thus becomes an internal magnetic source and scatters a field outward. In addition, the magnetic memory field strengthens with in-creasing dislocation density and complexity of the dislocation structure. Accordingly, the dislocation pinning factor related with the disloca-tion density and the dislocation structure has been proposed to characterize the effect of dislocations on the magnetic memory signal. The magnetic signal strengthens with an increase in the dislocation pinning factor.
Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film.
Lei, Ming; Xu, Ben; Pei, Yutao; Lu, Haibao; Fu, Yong Qing
2016-01-01
This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and μm-scales. Compared with CNFs, MWCNTs showed a better mechanical enhancement for PS nanocomposites due to their uniform distribution in the nanocomposites. In nanoindentation tests using the Berkovich tips, indentation size effects and pile-up effects appeared obviously for the nanocomposites, but not for pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs related to the secondary structures formed by nanofillers, including two aspects, i.e., filler-polymer interfacial connections and geometrical factors of nanofillers. The filler-polymer interfacial connections were strongly dependent on temperature, thus leading to the opposite changing trend of loss tangent with nanofiller concentrations, respectively, at low and high temperature. The geometrical factors of nanofillers were related to testing scales, further leading to the appearance of pile-up effects for nanocomposites in the nanoindentation tests, in which the size of indents was close to the size of the nanofiller skeleton.
Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film
Lei, M.; Xu, B.; Pei, Yutao T.; Lu, H.B.; Fu, Y.Q.
2016-01-01
This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in n
Graduate and Ph.D. Course on Design and Manufacture of Micro Mechanical Systems
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; De Grave, Arnaud
2011-01-01
it is now well known that micro/nanotechnology is not only a matter of downscaling applications and methods from the macro scale, and therefore an in-depth understanding and knowledge of product and process characteristics at this scale is necessary. Based on this challenge, a new course was developed...
Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2006-01-01
This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...
Graduate and Ph.D. Course on Design and Manufacture of Micro Mechanical Systems
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; De Grave, Arnaud
2011-01-01
at the Department of Mechanical Engineering at the Technical University of Denmark. This paper describes the framework of the course that has been applied both at graduate and Ph.D. level. The current structure of the course as well as the pedagogical approach and some examples of final projects will be presented...... it is now well known that micro/nanotechnology is not only a matter of downscaling applications and methods from the macro scale, and therefore an in-depth understanding and knowledge of product and process characteristics at this scale is necessary. Based on this challenge, a new course was developed...
Micro-mechanical analysis on the onset of erosion in granular materials
Harshani, H. M. D.; Galindo-Torres, S. A.; Scheuermann, A.; Muhlhaus, H. B.
2015-10-01
The onset of internal erosion is a particle level phenomenon, and therefore, a numerical model capable of tracking the behaviour of particles at micro-scale is needed to exemplify most of the critical variables involved in the process. In this paper, a three-dimensional fully coupled fluid-solid model was utilized to explore the initiation of erosion. Particles were modelled on a micro-scale using the discrete element method (DEM), while the fluid was modelled at a meso-scale using the lattice Boltzmann method (LBM). Fluid was passed through a solid matrix in an opposing direction to gravity with the pore water pressure controlled in stepwise stages until internal erosion or bulk movement of the particles developed and progressed. The model was validated through experimental results found in the literature. Once validated, particle fluid properties were analyzed for the onset of erosion. Determination of a critical hydraulic gradient was obtained from the modelled scenario, which gave clear evidence that the coupled DEM-LBM scheme is a very effective tool for studying internal erosion phenomena in water retaining structures.
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2016-12-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
Kono, Akiko; Matsushima, Takashi
'Hanging sleepers', which have gaps between sleepers and ballast layer are often found in the neighborhood of rail joints or rugged surface rails. This suggests that differential settlement of the ballast layer is due to impact loading generated by the contact between running wheel and rugged surface rail. Then cyclic loading tests were performed on crushed-stone layer with two loading patterns, the one is a cyclic impact loading and the other one is cyclic 'standard' loading controlled at 1/10 loading velocity of the impact loading. It was shown that the crashed-stone layer deforms with volumetric expansion during every off-loading processes under the cyclic impact loading. This phenomena prevents crushed stone layer from forming stable grain columns, then the residual settlement under the cyclic impact loading is larger than that under the cyclic 'standard' loading. A simple mass-spring model simulates that two masses move in the opposite direction with increased frequency of harmonic excitation.
Quality control and process capability assessment for injection-moulded micro mechanical parts
DEFF Research Database (Denmark)
Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard
2013-01-01
Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measure...
Non-Linear Logging Parameters Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,
Estimation of physical parameters in induction motors
DEFF Research Database (Denmark)
Børsting, H.; Knudsen, Morten; Rasmussen, Henrik
1994-01-01
Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors......Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors...
Psychometric Consequences of Subpopulation Item Parameter Drift
Huggins-Manley, Anne Corinne
2017-01-01
This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…
Planck 2013 results. XVI. Cosmological parameters
DEFF Research Database (Denmark)
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.
2013-01-01
parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find...
Comparison of load parameters for stored materials
DEFF Research Database (Denmark)
Munch-Andersen, J.; Nielsen, J.
1997-01-01
that the wall friction measured in a silo might be significantly larger than the value obtained from shear tests. The load parameters depend on the load level, perhaps in a way not reflected by the internal friction angle. It is not necessarily on the safe side to determine the parameters for a high load level....
Psychometric Consequences of Subpopulation Item Parameter Drift
Huggins-Manley, Anne Corinne
2017-01-01
This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…
Software Development for JSA Dynamic Parameter Measurement
Institute of Scientific and Technical Information of China (English)
LUO; Huang-da
2013-01-01
We have developed a series of experiment measurement system for Jordan sub-critical assembly.The dynamic parameter measurement system is used for measuring the prompt neutron decaying constant,a physics parameter of reactor character.It mainly consists of a 3He neutron detector in the reactor core,
Parameter Symmetry of the Interacting Boson Model
Shirokov, A M; Smirnov, Yu F; Shirokov, Andrey M.; Smirnov, Yu. F.
1998-01-01
We discuss the symmetry of the parameter space of the interacting boson model (IBM). It is shown that for any set of the IBM Hamiltonian parameters (with the only exception of the U(5) dynamical symmetry limit) one can always find another set that generates the equivalent spectrum. We discuss the origin of the symmetry and its relevance for physical applications.
Approximating parameters in nonlinear reaction diffusion equations
Directory of Open Access Journals (Sweden)
Robert R. Ferdinand
2001-07-01
Full Text Available We present a model describing population dynamics in an environment. The model is a nonlinear, nonlocal, reaction diffusion equation with Neumann boundary conditions. An inverse method, involving minimization of a least-squares cost functional, is developed to identify unknown model parameters. Finally, numerical results are presented which display estimates of these parameters using computationally generated data.
Robust stability of interval parameter matrices
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This note is devoted to the problem of robust stability of interval parameter matrices. Based on some basic facts relating the H∞ norm of a transfer function to the Riccati matrix inequality and Hamilton matrix, several test conditions with parameter perturbation bounds are obtained.
Trait Characteristics of Diffusion Model Parameters
Directory of Open Access Journals (Sweden)
Anna-Lena Schubert
2016-07-01
Full Text Available Cognitive modeling of response time distributions has seen a huge rise in popularity in individual differences research. In particular, several studies have shown that individual differences in the drift rate parameter of the diffusion model, which reflects the speed of information uptake, are substantially related to individual differences in intelligence. However, if diffusion model parameters are to reflect trait-like properties of cognitive processes, they have to qualify as trait-like variables themselves, i.e., they have to be stable across time and consistent over different situations. To assess their trait characteristics, we conducted a latent state-trait analysis of diffusion model parameters estimated from three response time tasks that 114 participants completed at two laboratory sessions eight months apart. Drift rate, boundary separation, and non-decision time parameters showed a great temporal stability over a period of eight months. However, the coefficients of consistency and reliability were only low to moderate and highest for drift rate parameters. These results show that the consistent variance of diffusion model parameters across tasks can be regarded as temporally stable ability parameters. Moreover, they illustrate the need for using broader batteries of response time tasks in future studies on the relationship between diffusion model parameters and intelligence.
Updated Abraham solvation parameters for polychlorinated biphenyls
van Noort, P.C.M.; Haftka, J.J.H.; Parsons, J.R.
2010-01-01
This study shows that the recently published polychlorinated biphenyl (PCB) Abraham solvation parameters predict PCB air−n-hexadecane and n-octanol−water partition coefficients very poorly, especially for highly ortho-chlorinated congeners. Therefore, an updated set of PCB solvation parameters was d
Design Parameters in Multimodal Games for Rehabilitation.
Shah, Nauman; Basteris, Angelo; Amirabdollahian, Farshid
2014-02-01
Objectives: The repetitive and sometimes mundane nature of conventional rehabilitation therapy provides an ideal opportunity for development of interactive and challenging therapeutic games that have the potential to engage and motivate the players. Certain game design parameters that may encourage patients to actively participate by making the games more enjoyable have been identified. In this article, we describe a formative study in which we designed and evaluated some of these parameters with healthy subjects. Materials and Methods: The "operant conditioning" and "scoring" design parameters were incorporated in a remake of a classic labyrinth game, "Marble Maze." A group of participants (n=37) played the game twice: Once in the control condition without both modalities and then with either one of the parameters or with both. Measures of game duration and number of fails in the game were recorded along with survey questionnaires to measure player perceptions of intrinsic motivation on the game. Results: Longer playtimes, higher levels of interest/enjoyment, and effort to play the game were recorded with the introduction of these parameters. Conclusions: This study provides an understanding on how game design parameters can be used to motivate and encourage people to play longer. With these positive results, future aims are to test the parameters with stroke patients, providing much clearer insight as to what influences these parameters have on patients undergoing therapy. The ultimate goal is to utilize game design in order to maintain longer therapeutic interaction between a patient and his or her therapy medium.
Braiding Parameters of Medical Silk Braided Suture
Institute of Scientific and Technical Information of China (English)
张佩华; 吴建华
2001-01-01
The relationships between braiding parameters and properties of medical silk braided suture are investigated. Experimental results indicate that the main factors affecting the suture properties include the proportion of core silk and shell silk, braiding density and braiding tension. The results show that the braiding technology significantly influences the suture properties and the optimal braiding parameters were obtained by using the regression method.
Multi-Parameter Estimation for Orthorhombic Media
Masmoudi, Nabil
2015-08-19
Building reliable anisotropy models is crucial in seismic modeling, imaging and full waveform inversion. However, estimating anisotropy parameters is often hampered by the trade off between inhomogeneity and anisotropy. For instance, one way to estimate the anisotropy parameters is to relate them analytically to traveltimes, which is challenging in inhomogeneous media. Using perturbation theory, we develop travel-time approximations for orthorhombic media as explicit functions of the anellipticity parameters η1, η2 and a parameter Δγ in inhomogeneous background media. Specifically, our expansion assumes inhomogeneous ellipsoidal anisotropic background model, which can be obtained from well information and stacking velocity analysis. This approach has two main advantages: in one hand, it provides a computationally efficient tool to solve the orthorhombic eikonal equation, on the other hand, it provides a mechanism to scan for the best fitting anisotropy parameters without the need for repetitive modeling of traveltimes, because the coefficients of the traveltime expansion are independent of the perturbed parameters. Furthermore, the coefficients of the traveltime expansion provide insights on the sensitivity of the traveltime with respect to the perturbed parameters. We show the accuracy of the traveltime approximations as well as an approach for multi-parameter scanning in orthorhombic media.
determination of some haematological parameters in malaria
African Journals Online (AJOL)
USER
2015-06-01
Jun 1, 2015 ... 2Department of Medical Laboratory Science, School of Health Technology, Jahun, ... that malaria parasites may have effect on some haematological parameters. ... study is to assess the effects of malaria parasites on some haematological parameters in Sokoto ..... Children in Rural Muea, Cameroom.
Methods for measurement of durability parameters
DEFF Research Database (Denmark)
Hansen, Ernst Jan De Place
1996-01-01
Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included.......Present selected methods for measurement of durabilty parameters relating to chlorides, corrosion, moisture and freeze-thaw, primarly on concrete. Advantages and drawbacks of the different methods are included....
Acoustical parameters in concert hall acoustics
Institute of Scientific and Technical Information of China (English)
LIU Ke; ZHOU Qijun
2003-01-01
Professor Beranek talked about the sound qualities of concert hall. The 58 famousconcert halls in the world were graded according to the subjective comparison from the profes-sional musicians and music lovers. Six measurable objective parameters were proposed. Theranking according to these parameters were presented.
Neutron Resonance Parameters for Ra-226 (Radium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Ra-226 (Radium).
On parameter estimation in deformable models
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael
1998-01-01
Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian...... method is based on a modified version of the EM algorithm. Experimental results for a deformable template used for textile inspection are presented...
Novel system for modulated lidar parameter optimization
Institute of Scientific and Technical Information of China (English)
Bo Zhou; Yong Ma; Kun Liang; Zhiqiang Tu; Hongyuan Wang
2011-01-01
We present a novel system for parameter design and optimization of modulated lidar. The system is realized by combining software simulation with hardware circuit. This method is more reliable and flexible for lidar parameter optimization compared with theoretical computation or fiber-simulated system. Experiments confirm that the system is capable of optimizing parameters for modulated lidar. Key parameters are analyzed as well. The optimal filter bandwidth is 200 MHz and the optimal modulation depth is 0.5 under typical application environment.%@@ We present a novel system for parameter design and optimization of modulated lidar.The system is realized by combining software simulation with hardware circuit.This method is more reliable and flexible for lidar parameter optimization compared with theoretical computation or fiber-simulated system.Experiments confirm that the system is capable of optimizing parameters for modulated lidar.Key parameters are analyzed as well.The optimal filter bandwidth is 200 MHz and the optimal modulation depth is 0.5 under typical application environment.
Cosmological models with constant deceleration parameter
Energy Technology Data Exchange (ETDEWEB)
Berman, M.S.; de Mello Gomide, F.
1988-02-01
Berman presented elsewhere a law of variation for Hubble's parameter that yields constant deceleration parameter models of the universe. By analyzing Einstein, Pryce-Hoyle and Brans-Dicke cosmologies, we derive here the necessary relations in each model, considering a perfect fluid.
Article choice parameters in L2
Guella, H.; Déprez, V.; Sleeman, P.; Slabakova, R.; Rothman, J.; Kempchinsky, P.; Gavruseva, E.
2008-01-01
This article concerns Ionin's (2003) Article Choice Parameter Hypothesis, which proposes a new semantic classification of languages. Article-based languages distribute articles on the basis of either a definiteness or a specificity parameter. Ionin's (2003) study shows that Russian and Korean (artic
Visualization of Parameter Space for Image Analysis
Pretorius, A. Johannes; Bray, Mark-Anthony P.; Carpenter, Anne E.; Ruddle, Roy A.
2013-01-01
Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach. PMID:22034361
Supersymmetry Parameter Analysis : SPA Convention and Project
Aguilar-Saavedra, J A; Allanach, Benjamin C; Arnowitt, R; Baer, H A; Bagger, J A; Balázs, C; Barger, V; Barnett, M; Bartl, Alfred; Battaglia, M; Bechtle, P; Belyaev, A; Berger, E L; Blair, G; Boos, E; Bélanger, G; Carena, M S; Choi, S Y; Deppisch, F; Desch, Klaus; Djouadi, A; Dutta, B; Dutta, S; Díaz, M A; Eberl, H; Ellis, Jonathan Richard; Erler, Jens; Fraas, H; Freitas, A; Fritzsche, T; Godbole, Rohini M; Gounaris, George J; Guasch, J; Gunion, J F; Haba, N; Haber, Howard E; Hagiwara, K; Han, L; Han, T; He, H J; Heinemeyer, S; Hesselbach, S; Hidaka, K; Hinchliffe, Ian; Hirsch, M; Hohenwarter-Sodek, K; Hollik, W; Hou, W S; Hurth, Tobias; Jack, I; Jiang, Y; Jones, D R T; Kalinowski, Jan; Kamon, T; Kane, G; Kang, S K; Kernreiter, T; Kilian, W; Kim, C S; King, S F; Kittel, O; Klasen, M; Kneur, J L; Kovarik, K; Kraml, Sabine; Krämer, M; Lafaye, R; Langacker, P; Logan, H E; Ma, W G; Majerotto, Walter; Martyn, H U; Matchev, K; Miller, D J; Mondragon, M; Moortgat-Pick, G; Moretti, S; Mori, T; Moultaka, G; Muanza, S; Mukhopadhyaya, B; Mühlleitner, M M; Nauenberg, U; Nojiri, M M; Nomura, D; Nowak, H; Okada, N; Olive, Keith A; Oller, W; Peskin, M; Plehn, T; Polesello, G; Porod, Werner; Quevedo, Fernando; Rainwater, D L; Reuter, J; Richardson, P; Rolbiecki, K; de Roeck, A; Weber, Ch.
2006-01-01
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the d...
Parameter Estimation in Multivariate Gamma Distribution
Directory of Open Access Journals (Sweden)
V S Vaidyanathan
2015-05-01
Full Text Available Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for estimating the parameters using the marginal distributions and the concepts of maximum likelihood, spacings and least squares. The proposed methodology is easy to implement and is free from calculus. It optimizes the objective function by searching over a wide range of values and determines the estimate of the parameters. The consistency of the estimates is demonstrated in terms of mean, standard deviation and mean square error through simulation studies for different choices of parameters.
Pico: Parameters for the Impatient Cosmologist
Fendt, W A; Fendt, William A.; Wandelt, Benjamin D.
2006-01-01
We present a fast, accurate, robust and flexible method of accelerating parameter estimation. This algorithm, called Pico, can compute the CMB power spectrum and matter transfer function as well as any computationally expensive likelihoods in a few milliseconds. By removing these bottlenecks from parameter estimation codes, Pico decreases their computational time by 1 or 2 orders of magnitude. Pico has several important properties. First, it is extremely fast and accurate over a large volume of parameter space. Furthermore, its accuracy can continue to be improved by using a larger training set. This method is generalizable to an arbitrary number of cosmological parameters and to any range of l-values in multipole space. Pico is approximately 3000 times faster than CAMB for flat models, and approximately 2000 times faster then the WMAP 3 year likelihood code. In this paper, we demonstrate that using Pico to compute power spectra and likelihoods produces parameter posteriors that are very similar to those usin...
Parameter-Free Spectral Kernel Learning
Mao, Qi
2012-01-01
Due to the growing ubiquity of unlabeled data, learning with unlabeled data is attracting increasing attention in machine learning. In this paper, we propose a novel semi-supervised kernel learning method which can seamlessly combine manifold structure of unlabeled data and Regularized Least-Squares (RLS) to learn a new kernel. Interestingly, the new kernel matrix can be obtained analytically with the use of spectral decomposition of graph Laplacian matrix. Hence, the proposed algorithm does not require any numerical optimization solvers. Moreover, by maximizing kernel target alignment on labeled data, we can also learn model parameters automatically with a closed-form solution. For a given graph Laplacian matrix, our proposed method does not need to tune any model parameter including the tradeoff parameter in RLS and the balance parameter for unlabeled data. Extensive experiments on ten benchmark datasets show that our proposed two-stage parameter-free spectral kernel learning algorithm can obtain comparable...
Parameter information from nonlinear cosmological fields
Watts, A T P
2000-01-01
We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the nonlinear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the Cosmic Microwave Background. Generalising Maximum Likelihood analysis to second-order, we calculate the nonlinear Fisher Information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including nonlinearity. Our methods are applied to a realistic model of a galaxy redshift survey, including nonlinear evolution, galaxy bias, shot-noise and redshift-space distortions to second-order. We find that including nonlinearities allows all of the degeneracies between parameters to be lifted. Marginalised parameter uncertainties of a few percent will then be obtainable using forthcoming galaxy redshift surveys.
Sinane, Kamardine; David, Gilbert; Pennober, Gwenaëlle; Troadec, Roland
2011-01-01
Sur l’île d’Anjouan, aux Comores, les premiers levés topographiques effectués sur les plages entre 2008 et 2009 montrent des morphotypes de profils à tendance convexe ou concave accusée. L’évolution de ces profils de plages est influencée par l’extraction du sable et par l’exposition aux forçages météo-marins. L’extraction du sable de plage est plus importante sur les plages avec des profils concaves accusés que celles avec des profils à tendance convexe. L’érosion qui en résulte est souvent...
Energy Technology Data Exchange (ETDEWEB)
Moro, I.
2009-11-15
This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)
Parameter estimation methods for chaotic intercellular networks.
Mariño, Inés P; Ullner, Ekkehard; Zaikin, Alexey
2013-01-01
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.
A parametric reconstruction of the deceleration parameter
Mamon, Abdulla Al; Das, Sudipta
2017-07-01
The present work is based on a parametric reconstruction of the deceleration parameter q( z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q( z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q0 and q1 are obtained (within 1σ and 2σ confidence limits) by χ 2-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω _tot, the jerk parameter and have compared the reconstructed results of q( z) with other well-known parametrizations of q( z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models.
Identification Schemes for Unmanned Excavator Arm Parameters
Institute of Scientific and Technical Information of China (English)
Yahya H. Zweiri
2008-01-01
Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.
Selection of Parameters in Ball-Spinning
Institute of Scientific and Technical Information of China (English)
Maosheng LI; Yongnian YAN; Shihong ZHANG; Dachang KANG
2004-01-01
Nowadays, with the development of spinning processes, more and more systematic research about spinning parameters has been published. Based on these results, a routing about how to select spinning parameters has been gradually formed. However, ball spinning, due to its own features plus research lack, is still unclear about its parameter selections. In addition, some manufacture-enterprises only notice the use of this technique whereas ignore the theory creation. The optimal parameters about the ball spinning although have been released from these enterprises but in fact not a helpful theory for other researchers and producers. Focus on selecting the parameters based on the trial-and-error, this article has carried a series of experiments to study the influence on the spinning working course from those parameters, especially the peeling phenomena, and the tube diameter bulging. An optimal graph of the working angle, the axial feeding rate, and the acceptable working course is put forward. Additionally, based on the theory of the minimal reduction rate, the selection of the ball diameter is finally described. Thus, it has given the rules to get the proper parameters in ball spinning.
MFV Reductions of MSSM Parameter Space
AbdusSalam, S.S.; Quevedo, F.
2015-01-01
The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours...
MFV reductions of MSSM parameter space
Energy Technology Data Exchange (ETDEWEB)
AbdusSalam, S.S. [INFN - Sezione di Roma,P.le A. Moro 2, I-00185 Roma (Italy); The Abdus Salam ICTP,Trieste (Italy); Burgess, C.P. [Department of Physics & Astronomy, McMaster University,Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Division PH -TH, CERN,CH-1211, Genève 23 (Switzerland); Quevedo, F. [The Abdus Salam ICTP,Trieste (Italy); DAMTP, Cambridge University,Cambridge (United Kingdom)
2015-02-11
The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β∼10 with multi-TeV sparticles.
MFV reductions of MSSM parameter space
AbdusSalam, S. S.; Burgess, C. P.; Quevedo, F.
2015-02-01
The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β ˜ 10 with multi-TeV sparticles.
Selection of noise parameters for Kalman filter
Institute of Scientific and Technical Information of China (English)
Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok
2007-01-01
The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei
2013-09-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Bayesian parameter estimation by continuous homodyne detection
DEFF Research Database (Denmark)
Kiilerich, Alexander Holm; Molmer, Klaus
2016-01-01
and we show that the ensuing transient evolution is more sensitive to system parameters than the steady state of the system. The parameter sensitivity can be quantified by the Fisher information, and we investigate numerically and analytically how the temporal noise correlations in the measurement signal......We simulate the process of continuous homodyne detection of the radiative emission from a quantum system, and we investigate how a Bayesian analysis can be employed to determine unknown parameters that govern the system evolution. Measurement backaction quenches the system dynamics at all times...
Hubble Parameter Corrected Interactions in Cosmology
Directory of Open Access Journals (Sweden)
J. Sadeghi
2014-01-01
character opening a room for different kinds of manipulations. In this paper we will consider a modification of an interaction Q, where we accept that interaction parameter b1 (order of unity in Q=3Hb1ρ is time dependent and presented as a linear function of Hubble parameter H of the form b0+btH, where b and b0 are constants. We consider two different models including modified Chaplygin gas and polytropic gas which have bulk viscosity. Then, we investigate problem numerically and analyze behavior of different cosmological parameters concerning fluids and behavior of the universe.
Identification of fractional chaotic system parameters
Energy Technology Data Exchange (ETDEWEB)
Al-Assaf, Yousef E-mail: yassaf@aus.ac.ae; El-Khazali, Reyad E-mail: khazali@ece.ac.ae; Ahmad, Wajdi E-mail: wajdi@sharjah.ac.ae
2004-11-01
In this work, a technique is introduced for parameter identification of fractional order chaotic systems. Features are extracted, from chaotic system outputs obtained for different system parameters, using discrete Fourier transform (DFT), power spectral density (PSD), and wavelets transform (WT). Artificial neural networks (ANN) are then trained on these features to predict the fractional chaotic system parameters. A fractional chaotic oscillator model is used through this work to demonstrate the developed technique. Numerical results show that recurrent Jordan-Elman neural networks with features obtained by the PSD estimate via Welch functions give adequate identification accuracy compared to other techniques.
Deductive multiscale simulation using order parameters
Energy Technology Data Exchange (ETDEWEB)
Ortoleva, Peter J.
2017-05-16
Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.
The Gruneisen parameter for silver azide
Zhuravlyov, Yu. N.; Lisitsyn, V. M.
2011-12-01
A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2.3 and 1.6.
Parameter Estimation, Model Reduction and Quantum Filtering
Chase, Bradley A
2009-01-01
This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimator's uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.
Domain Knowledge Uncertainty and Probabilistic Parameter Constraints
Mao, Yi
2012-01-01
Incorporating domain knowledge into the modeling process is an effective way to improve learning accuracy. However, as it is provided by humans, domain knowledge can only be specified with some degree of uncertainty. We propose to explicitly model such uncertainty through probabilistic constraints over the parameter space. In contrast to hard parameter constraints, our approach is effective also when the domain knowledge is inaccurate and generally results in superior modeling accuracy. We focus on generative and conditional modeling where the parameters are assigned a Dirichlet or Gaussian prior and demonstrate the framework with experiments on both synthetic and real-world data.
Systematics of nuclear level density parameters
Energy Technology Data Exchange (ETDEWEB)
Bucurescu, Dorel [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Egidy, Till von [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany)
2005-10-01
The level density parameters for the back-shifted Fermi gas (both without and with energy-dependent level density parameter) and the constant temperature models have been determined for 310 nuclei between {sup 18}F and {sup 251}Cf by fitting the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energies. Simple formulae are proposed for the description of the two parameters of each of these models, which involve only quantities available from the mass tables. These formulae may constitute a reliable tool for extrapolating to nuclei far from stability, where nuclear level densities cannot be measured.
Parameter identification of civil engineering structures
Juang, J. N.; Sun, C. T.
1980-01-01
This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.
Bayesian parameter estimation by continuous homodyne detection
Kiilerich, Alexander Holm; Mølmer, Klaus
2016-09-01
We simulate the process of continuous homodyne detection of the radiative emission from a quantum system, and we investigate how a Bayesian analysis can be employed to determine unknown parameters that govern the system evolution. Measurement backaction quenches the system dynamics at all times and we show that the ensuing transient evolution is more sensitive to system parameters than the steady state of the system. The parameter sensitivity can be quantified by the Fisher information, and we investigate numerically and analytically how the temporal noise correlations in the measurement signal contribute to the ultimate sensitivity limit of homodyne detection.
Manifold parameter space and its applications
Sato, Atsushi
2004-11-01
We review the several features of the new parameter space which we presented in the previous paper, and show the differentiable manifold properties of this parameter space coordinate. Using this parameter coordinate we calculate three Feynman amplitudes of the vacuum polarization with a gluon loop, a quark loop and a ghost loop in QCD and show that the results are perfectly equal to those of the usual calculations by the Feynman parametrization technique in the scheme of the dimensional regularization. Then we try to calculate the anomalous magnetic moment of an on-shell quark in QCD by using the dimensional regularization, our new parametrization and integral method.
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
New ridge parameters for ridge regression
Directory of Open Access Journals (Sweden)
A.V. Dorugade
2014-04-01
Full Text Available Hoerl and Kennard (1970a introduced the ridge regression estimator as an alternative to the ordinary least squares (OLS estimator in the presence of multicollinearity. In ridge regression, ridge parameter plays an important role in parameter estimation. In this article, a new method for estimating ridge parameters in both situations of ordinary ridge regression (ORR and generalized ridge regression (GRR is proposed. The simulation study evaluates the performance of the proposed estimator based on the mean squared error (MSE criterion and indicates that under certain conditions the proposed estimators perform well compared to OLS and other well-known estimators reviewed in this article.
The Importance of Vocal Parameters Correlation
Directory of Open Access Journals (Sweden)
Valentin Ghisa
2016-06-01
Full Text Available To analyze communication we need to study the main parameters that describe the vocal sounds from the point of view of information content transfer efficiency. In this paper we analyze the physical quality of the “on air" information transfer, according to the audio streaming parameters and from the particular phonetic nature of the human factor. Applying this statistical analysis we aim to identify and record the correlation level of the acoustical parameters with the vocal ones and the impact which the presence of this cross-correlation can have on communication structures’ improvement.
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Sun, Yu; Tesfa, Teklu; Ruby Leung, L.
2016-05-01
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrological parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified according to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using Principal component analysis (PCA) and expectation-maximization (EM) - based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each parameter sensitivity-based classification system (S-Class) with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the
Investigation into the Origin of Magnetic Properties of Amorphous Metallic Alloys.
1981-10-01
alloys investigated. Rksums-Nous avons trouve que certains verres metalliques etaient fragilises par un recuit a basse temperature, comme certains aciers ...article, nous pr sentons les effets de I’addition de Sb, Sc and Te, qui sont des elements fragilisant des aciers , sur des verres metalliques dont les...les aciers . On augmente l’effect d’un element fragilisant en remplaqant du Ni par du Fe. Nous n’avons pas vu de changement notable du DSC ou des
Robust Parameter Coordination for Multidisciplinary Design
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.
Matrix Superpotential Linear in Variable Parameter
Karadzhov, Yuri
2011-01-01
The paper presents the classification of matrix valued superpotentials corresponding to shape invariant systems of Schr\\"odinger equations. All inequivalent irreducible matrix superpotentials realized by matrices of arbitrary dimension with linear dependence on variable parameter are presented explicitly.
Hansen Solubility Parameters for Octahedral Oligomeric Silsesquioxanes
2012-08-28
and thermal and electrical insulation enhancers. The inorganic core is both mechanically robust, resistant to oxidation, and thermally stable, and...Choi, P.; Kavassalis, T. A.; Rudin, A. Estimation of Hansen Solubility Parameters for (Hydroxyethyl)- Cellulose and (Hydroxypropyl) Cellulose through
ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS
Directory of Open Access Journals (Sweden)
muhammad zahid rashid
2011-04-01
Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR, moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes
Discussion of Muskingum method parameter X
Directory of Open Access Journals (Sweden)
Xiao-fang RUI
2008-09-01
Full Text Available The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X<=0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients C0 , C1 and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.
Parameter Estimation of Turbo Code Encoder
Directory of Open Access Journals (Sweden)
Mehdi Teimouri
2014-01-01
Full Text Available The problem of reconstruction of a channel code consists of finding out its design parameters solely based on its output. This paper investigates the problem of reconstruction of parallel turbo codes. Reconstruction of a turbo code has been addressed in the literature assuming that some of the parameters of the turbo encoder, such as the number of input and output bits of the constituent encoders and puncturing pattern, are known. However in practical noncooperative situations, these parameters are unknown and should be estimated before applying reconstruction process. Considering such practical situations, this paper proposes a novel method to estimate the above-mentioned code parameters. The proposed algorithm increases the efficiency of the reconstruction process significantly by judiciously reducing the size of search space based on an analysis of the observed channel code output. Moreover, simulation results show that the proposed algorithm is highly robust against channel errors when it is fed with noisy observations.
ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS
Directory of Open Access Journals (Sweden)
muhammad zahid rashid
2011-04-01
Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR, moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes
LISA parameter estimation using numerical merger waveforms
Energy Technology Data Exchange (ETDEWEB)
Thorpe, J I; McWilliams, S T; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G, E-mail: James.I.Thorpe@nasa.go [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)
2009-05-07
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10{sup 6} M{sub o-dot} at a redshift of z approx 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
LISA parameter estimation using numerical merger waveforms
Thorpe, J I; Kelly, B J; Fahey, R P; Arnaud, K; Baker, J G
2008-01-01
Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of one million Solar masses at a redshift of one were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.
On Carleman estimates with two large parameters
Energy Technology Data Exchange (ETDEWEB)
Le Rousseau, Jerome, E-mail: jlr@univ-orleans.fr [Jerome Le Rousseau. Universite d' Orleans, Laboratoire Mathematiques et Applications, Physique Mathematique d' Orleans, CNRS UMR 6628, Federation Denis-Poisson, FR CNRS 2964, B.P. 6759, 45067 Orleans cedex 2 (France)
2011-04-01
We provide a general framework for the analysis and the derivation of Carleman estimates with two large parameters. For an appropriate form of weight functions strong pseudo-convexity conditions are shown to be necessary and sufficient.
Thermodynamic consistency of the interaction parameter formalism
Srikanth, S.; Jacob, K. T.
1988-04-01
The apparent contradiction between the exact nature of the interaction parameter formalism as presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of the expression for the logarithm of the activity coefficient of a solute in a multi-component system. The integrals are therefore path dependent. Formulae for integration along paths of constant Xi, or X i/Xj are presented. The expression for In γsolvent given by Pelton and Bale is valid only in the limit that the mole fraction of solvent tends to one. The truncation also destroys the general relations between interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special relationships are obtained between interaction parameters.
Relationship between platelet parameters and sudden ...
African Journals Online (AJOL)
Relationship between platelet parameters and sudden sensorineural hearing loss: a ... Data source: A PubMed, Science Direct, Scopus, OVID, EMBASE and ... relationship of PDW and SSNHL but due to the limited studies on this subject more ...
Organogel formation rationalized by Hansen solubility parameters.
Raynal, Matthieu; Bouteiller, Laurent
2011-08-07
Some organic compounds gelate particular solvents by forming a network of anisotropic fibres. We show that Hansen solubility parameters can be used to predict the range of solvents that are likely to be gelled by any given gelator.
Predicting Engine Parameters using the Optical Spectrum
National Aeronautics and Space Administration — The Optical Plume Anomaly Detection (OPAD) system is under development to predict engine anomalies and engine parameters of the Space Shuttle's Main Engine (SSME)....
Discussion of Muskingum method parameter X
Institute of Scientific and Technical Information of China (English)
Rui Xiaofang; Liu Fanggui; Yu Mei
2008-01-01
The parameter X of the Muskingum method is a physical parameter that reflects the flood peak attenuation and hydrograph shape flattening of a diffusion wave in motion. In this paper, the historic process that hydrologists have undergone to find a physical explanation of this parameter is briefly discussed. Based on the fact that the Muskingum method is the second-order accuracy difference solution to the diffusion wave equation, its numerical stability condition is analyzed, and a conclusion is drawn: X ≤ 0.5 is the uniform condition satisfying the demands for its physical meaning and numerical stability. It is also pointed out that the methods that regard the sum of squares of differences between the calculated and observed discharges or stages as the objective function and the routing coefficients Co, C0, and C2 of the Muskingum method as the optimization parameters cannot guarantee the physical meaning of X.
Optimization of electrospinning parameters for chitosan nanofibres
CSIR Research Space (South Africa)
Jacobs, V
2011-06-01
Full Text Available Electrospinning of chitosan, a naturally occurring polysaccharide biopolymer, has been investigated. In this paper, the authors report the optimization of electrospinning process and solution parameters using factorial design approach to obtain...
Vertebral Geometry Parameters Can Predict Fractures
Directory of Open Access Journals (Sweden)
P Tofighi
2007-01-01
Conclusion: Vertebral fractures are common fractures in postmenopausal women. There was a correlation between verte¬bral height and fractures. Vertebral geometric parameters especially height T score can be used for fracture screening.
Sensor Placement for Modal Parameter Subset Estimation
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars
2016-01-01
The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency...... responses carry on the selected modal parameter subset is, in some sense, maximized. The approach is validated in the context of a simple 10-DOF mass-spring-damper system by computing the variance of a set of identified modal parameters in a Monte Carlo setting for a set of sensor configurations, whose......). It is shown that the widely used Effective Independence (EI) method, which uses the modal amplitudes as surrogates for the parameters of interest, provides sensor configurations yielding theoretical lower bound variances whose maxima are up to 30 % larger than those obtained by use of the max-min approach....
One-parameter nonrelativistic supersymmetry for microtubules
Rosu, H C
2003-01-01
The simple supersymmetric model of Caticha [PRA 51, 4264 (1995)], as used by Rosu [PRE 55, 2038 (1997)] for microtubules, is generalized to the case of Mielnik's one-parameter nonrelativistic susy [JMP 25, 3387 (1984)
The Mystery of the Shape Parameter II
Luh, Lin-Tian
2010-01-01
In this paper we present criteria for the choice of the shape parameter c contained in the famous radial function multiquadric. It may be of interest to RBF people and all people using radial basis functions to do approximation.
Microbiological, physico-chemical and management parameters ...
African Journals Online (AJOL)
Microbiological, physico-chemical and management parameters impinging on the efficiency ... Management issues impacting on quality of water supply were determined by use of questionnaires and focus group discussions. ... Article Metrics.
Precursor Parameter Identification for IGBT Prognostics
National Aeronautics and Space Administration — Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to...
Relationship between maximal exercise parameters and individual ...
African Journals Online (AJOL)
Relationship between maximal exercise parameters and individual time trial ... It is widely accepted that the ventilatory threshold (VT) is an important ... This study investigated whether the physiological responses during a 20km time trial (TT) ...
Model comparisons and genetic and environmental parameter ...
African Journals Online (AJOL)
arc
South African Journal of Animal Science 2005, 35 (1) ... Genetic and environmental parameters were estimated for pre- and post-weaning average daily gain ..... and BWT (and medium maternal genetic correlations) indicates that these traits ...
Inference for ordered parameters in multinomial distributions
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
This paper discusses inference for ordered parameters of multinomial distributions. We first show that the asymptotic distributions of their maximum likelihood estimators (MLEs) are not always normal and the bootstrap distribution estimators of the MLEs can be inconsistent. Then a class of weighted sum estimators (WSEs) of the ordered parameters is proposed. Properties of the WSEs are studied, including their asymptotic normality. Based on those results, large sample inferences for smooth functions of the ordered parameters can be made. Especially, the confidence intervals of the maximum cell probabilities are constructed. Simulation results indicate that this interval estimation performs much better than the bootstrap approaches in the literature. Finally, the above results for ordered parameters of multinomial distributions are extended to more general distribution models.
Haematological Parameters in Open Angle Glaucoma Patients ...
African Journals Online (AJOL)
GA Akinlabi, VI Iyawe. Abstract. There is potential for blood related factors to affect aqueous production or optic nerve functions. ... Here we compare hematological parameters for a group of 68 chronic open-angle glaucoma (OAG) patients and ...
PARAMETER ESTIMATION IN BREAD BAKING MODEL
Directory of Open Access Journals (Sweden)
Hadiyanto Hadiyanto
2012-05-01
Full Text Available Bread product quality is highly dependent to the baking process. A model for the development of product quality, which was obtained by using quantitative and qualitative relationships, was calibrated by experiments at a fixed baking temperature of 200°C alone and in combination with 100 W microwave powers. The model parameters were estimated in a stepwise procedure i.e. first, heat and mass transfer related parameters, then the parameters related to product transformations and finally product quality parameters. There was a fair agreement between the calibrated model results and the experimental data. The results showed that the applied simple qualitative relationships for quality performed above expectation. Furthermore, it was confirmed that the microwave input is most meaningful for the internal product properties and not for the surface properties as crispness and color. The model with adjusted parameters was applied in a quality driven food process design procedure to derive a dynamic operation pattern, which was subsequently tested experimentally to calibrate the model. Despite the limited calibration with fixed operation settings, the model predicted well on the behavior under dynamic convective operation and on combined convective and microwave operation. It was expected that the suitability between model and baking system could be improved further by performing calibration experiments at higher temperature and various microwave power levels. Abstrak PERKIRAAN PARAMETER DALAM MODEL UNTUK PROSES BAKING ROTI. Kualitas produk roti sangat tergantung pada proses baking yang digunakan. Suatu model yang telah dikembangkan dengan metode kualitatif dan kuantitaif telah dikalibrasi dengan percobaan pada temperatur 200oC dan dengan kombinasi dengan mikrowave pada 100 Watt. Parameter-parameter model diestimasi dengan prosedur bertahap yaitu pertama, parameter pada model perpindahan masa dan panas, parameter pada model transformasi, dan
Parton Distributions in Impact Parameter Space
Dahiya, H; Ray, S
2007-01-01
Fourier transform of the generalized parton distributions (GPDs) at zero skewness with respect to the transverse momentum transfer gives the distribution of partons in the impact parameter space. We investigate the GPDs as well as the impact parameter dependent parton distributions (ipdpdfs) by expressing them in terms of overlaps of light front wave functions (LFWFs) and present a comparative study using three different model LFWFs.
Earth Rotation Parameter Estimation by GPS Observations
Institute of Scientific and Technical Information of China (English)
YAO Yibin
2006-01-01
The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.
Parameter Estimation in Multivariate Gamma Distribution
V S Vaidyanathan; R Vani Lakshmi
2015-01-01
Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for...
Online identification of linear loudspeakers parameters
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Rubak, Per
2007-01-01
Feed forward nonlinear error correction of loudspeakers can improve sound quality. For creating a realistic feed forward strategy identification of the loudspeaker parameters is needed. The strategy of the compensator is that the nonlinear behaviour of the loudspeakers has relatively small drift...... algorithms. Two different identification techniques (ARMA and FIR) are compared. The stability of the nonlinearities and linear loudspeaker parameters are tested in a measurement series....
Parameter space of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu
2009-07-27
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Application of lumped-parameter models
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil. Subsequently, the assembly of the dynamic stiffness matrix for the foundation is considered, and the solution for obtaining the steady state response, when using lumped-parameter models is given. (au)
Parameter counting in models with global symmetries
Energy Technology Data Exchange (ETDEWEB)
Berger, Joshua [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: jb454@cornell.edu; Grossman, Yuval [Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)], E-mail: yuvalg@lepp.cornell.edu
2009-05-18
We present rules for determining the number of physical parameters in models with exact flavor symmetries. In such models the total number of parameters (physical and unphysical) needed to described a matrix is less than in a model without the symmetries. Several toy examples are studied in order to demonstrate the rules. The use of global symmetries in studying the minimally supersymmetric standard model (MSSM) is examined.
Measurements of thermal parameters of solar modules
Górecki, K.; Krac, E.
2016-04-01
In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed.
Matrix parameters and storage conditions of manure
Energy Technology Data Exchange (ETDEWEB)
Weinfurtner, Karlheinz [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)
2011-01-15
The literature study presents an overview of storage conditions for manure and information about important matrix parameters of manure such as dry matter content, pH value, total organic carbon, total nitrogen and ammonium nitrogen. The presented results show that for matrix parameters a dissimilarity of cattle and pig manure can be observed but no difference within the species for different production types occurred with exception of calves. A scenario for western and central European countries is derived. (orig.)
Discriminative Parameter Estimation for Random Walks Segmentation
Baudin, Pierre-Yves; Goodman, Danny; Kumar, Puneet; Azzabou, Noura; Carlier, Pierre G.; Paragios, Nikos; Pawan Kumar, M.
2013-01-01
International audience; The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challen...
Determination of Induction Machine Parameters by Simulation
Dr. E.A. Anazia; Engr. Samson Ugochukwu; Dr. J. C. Onuegbu; Engr. Onyedikachi S.N
2016-01-01
A 38.1 Watt fractional horse power induction laboratory test motor model was created using MotorSolve 5.2; an electrical machine design application. Initial machine parameters such as voltage, speed, and main dimensions were selected and fed into the application and simulations ran. The simulated results were presented and analyzed. Unlike other induction machine parameter identification process, this method is simple, flexible and accurate since it does not involve rigorous mathe...
Statistical Inference for Data Adaptive Target Parameters.
Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J
2016-05-01
Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.
Uncertainty Analysis in the Noise Parameters Estimation
Directory of Open Access Journals (Sweden)
Pawlik P.
2012-07-01
Full Text Available The new approach to the uncertainty estimation in modelling acoustic hazards by means of the interval arithmetic is presented in the paper. In the case of the noise parameters estimation the selection of parameters specifying the acoustic wave propagation in an open space as well as parameters which are required in a form of average values – often constitutes a difficult problem. In such case, it is necessary to determine the variance and then, related strictly to it, the uncertainty of model parameters. The application of the interval arithmetic formalism allows to estimate the input data uncertainties without the necessity of the determination their probability distribution, which is required by other methods of uncertainty assessment. A successive problem in the acoustic hazards estimation is a lack of the exact knowledge of the input parameters. In connection with the above, the analysis of the modelling uncertainty in dependence of inaccuracy of model parameters was performed. To achieve this aim the interval arithmetic formalism – representing the value and its uncertainty in a form of an interval – was applied. The proposed approach was illustrated by the example of the application the Dutch RMR SRM Method, recommended by the European Union Directive 2002/49/WE, in the railway noise modelling.
A parametric reconstruction of the deceleration parameter
Mamon, Abdulla Al
2016-01-01
The present work is based on a parametric reconstruction of the deceleration parameter $q(z)$ in a model for the spatially flat FRW universe filled with dark energy and non- relativistic matter. We have proposed a divergence-free logarithmic parametrization of $q(z)$ to probe the entire evolution history of the universe. Using the SN Ia and Hubble parameter datasets, the constraints on the arbitrary model parameters $q_{0}$ and $q_{1}$ are obtained (within $1\\sigma$ and $2\\sigma$ confidence limits) by $\\chi^{2}$-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter $\\omega_{tot}$, the jerk parameter and have compared the reconstructed results with the spatially flat $\\Lambda$CDM model. It has been found that the behavior of $q(z)$ and $\\omega_{tot}$ in our model are very similar (within $1\\sigma$ confidence limit) to that of the $\\Lambda$CDM model if we consider Type Ia Supernova (SN Ia) dataset only, but the evolutions of $q(z)$ and $\\omega_{tot}$ are differen...
[Nonischemic dilated cardiomyopathy. Parameters of autonomic tone].
Demming, Thomas; Sandrock, Sarah; Bonnemeier, Hendrik
2015-03-01
Nonischemic dilated cardiomyopathies (DCM) are the most common reason for heart failure in developed countries after ischemic disease. They often lead to device therapy. Left ventricular ejection fraction as a single parameter to identify patients at risk for sudden cardiac death revealed inconclusive data in patients with DCM. Autonomic tone, measured by classical and innovative parameters of heart rate variability (HRV), heart rate turbulence or baroreceptor reflex, was demonstrated to give valuable prognostic information especially in patients with ischemic disease and after acute myocardial infarction. In patients with DCM, classical parameters of HRV showed inhomogeneous data in a heterogeneous patient collective caused by unsystematic measurement of single parameters in various patient collectives. Innovative parameters of HRV are promising in patients with DCM and showed prognostic relevance although patient numbers are limited and prospective data are missing. Further studies are needed in this field. Despite the in part convincing evidence for the relevance of autonomic tone as a prognostic marker in patients with DCM, their evaluation is still not part of clinical routine. Additional parameters to estimate the risk of sudden cardiac death are urgently needed.
Food allergy: a practice parameter update-2014.
Sampson, Hugh A; Aceves, Seema; Bock, S Allan; James, John; Jones, Stacie; Lang, David; Nadeau, Kari; Nowak-Wegrzyn, Anna; Oppenheimer, John; Perry, Tamara T; Randolph, Christopher; Sicherer, Scott H; Simon, Ronald A; Vickery, Brian P; Wood, Robert; Bernstein, David; Blessing-Moore, Joann; Khan, David; Lang, David; Nicklas, Richard; Oppenheimer, John; Portnoy, Jay; Randolph, Christopher; Schuller, Diane; Spector, Sheldon; Tilles, Stephen A; Wallace, Dana; Sampson, Hugh A; Aceves, Seema; Bock, S Allan; James, John; Jones, Stacie; Lang, David; Nadeau, Kari; Nowak-Wegrzyn, Anna; Oppenheimer, John; Perry, Tamara T; Randolph, Christopher; Sicherer, Scott H; Simon, Ronald A; Vickery, Brian P; Wood, Robert
2014-11-01
This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the Joint Council of Allergy, Asthma & Immunology (JCAAI). The AAAAI and the ACAAI have jointly accepted responsibility for establishing "Food Allergy: A practice parameter update-2014." This is a complete and comprehensive document at the current time. The medical environment is a changing one, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, ACAAI, and JCAAI. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Neural network parameters affecting image classification
Directory of Open Access Journals (Sweden)
K.C. Tiwari
2001-07-01
Full Text Available The study is to assess the behaviour and impact of various neural network parameters and their effects on the classification accuracy of remotely sensed images which resulted in successful classification of an IRS-1B LISS II image of Roorkee and its surrounding areas using neural network classification techniques. The method can be applied for various defence applications, such as for the identification of enemy troop concentrations and in logistical planning in deserts by identification of suitable areas for vehicular movement. Five parameters, namely training sample size, number of hidden layers, number of hidden nodes, learning rate and momentum factor were selected. In each case, sets of values were decided based on earlier works reported. Neural network-based classifications were carried out for as many as 450 combinations of these parameters. Finally, a graphical analysis of the results obtained was carried out to understand the relationship among these parameters. A table of recommended values for these parameters for achieving 90 per cent and higher classification accuracy was generated and used in classification of an IRS-1B LISS II image. The analysis suggests the existence of an intricate relationship among these parameters and calls for a wider series of classification experiments as also a more intricate analysis of the relationships.
Asymmetry parameter of peaked Fano line shapes
Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.
2016-10-01
The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.
A new fifth parameter for transverse isotropy
Kawakatsu, Hitoshi
2016-04-01
Kawakatsu et al. (2015) recently proposed a new parameter, ηκ that properly characterizes the incidence angle dependence (relative to the symmetry axis) of seismic bodywaves in a transverse isotropy (TI) system. While the commonly used fifth parameter in global seismology to describe TI system, η = F/(A - 2L), has no simple physical meaning, the newly defined parameter, ηκ = (F + L)/[(A - L)1/2(C - L)1/2] where A, C, F and L denote the Love's elastic constants for TI, measures the departure from the "elliptic condition" when ηκ not equal to unity, and characterizes nicely the incidence angle dependence of bodywaves. When existing models of upper mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220km), ηκ 1 in the lower half. If ηκ > 1, anisotropy cannot be attributed to the layering of homogeneous layers, and thus requires the presence of intrinsic anisotropy (Kawakatsu, 2016). To further investigate significance of the new parameter for long-period seismology, partial derivatives of surface wave phase velocity and normal mode eigen-frequency for the new set of five parameters are examined. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ is more resolved than is usually considered. While partial derivatives for (anisotropic) S-velocities are not so changed, those for (anisotropic) P-velocities are significantly modified; the sensitivity for anisotropic P-velocities is greatly reduced. In contrary to Dziewonski and Anderson (1981)'s suggestion, there is not much control on the anisotropic P-velocities. The significance of ηκ for the long-period seismology has been shown. While how well the fifth parameter is constrained from data needs to be carefully examined, we now have, at least, a parameter that properly characterizes the TI system. This parameter should be used in future
Modelling spin Hamiltonian parameters of molecular nanomagnets.
Gupta, Tulika; Rajaraman, Gopalan
2016-07-12
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Parameter estimation methods for chaotic intercellular networks.
Directory of Open Access Journals (Sweden)
Inés P Mariño
Full Text Available We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.
Delineating parameter unidentifiabilities in complex models
Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis
2017-03-01
Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.
Systematic parameter inference in stochastic mesoscopic modeling
Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Parameter Estimation for Thurstone Choice Models
Energy Technology Data Exchange (ETDEWEB)
Vojnovic, Milan [London School of Economics (United Kingdom); Yun, Seyoung [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-24
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one or more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.
A Tool for Parameter-space Explorations
Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu
A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.
Statistics of Parameter Estimates: A Concrete Example
Aguilar, Oscar
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Most mathematical models include parameters that need to be determined from measurements. The estimated values of these parameters and their uncertainties depend on assumptions made about noise levels, models, or prior knowledge. But what can we say about the validity of such estimates, and the influence of these assumptions? This paper is concerned with methods to address these questions, and for didactic purposes it is written in the context of a concrete nonlinear parameter estimation problem. We will use the results of a physical experiment conducted by Allmaras et al. at Texas A&M University [M. Allmaras et al., SIAM Rev., 55 (2013), pp. 149-167] to illustrate the importance of validation procedures for statistical parameter estimation. We describe statistical methods and data analysis tools to check the choices of likelihood and prior distributions, and provide examples of how to compare Bayesian results with those obtained by non-Bayesian methods based on different types of assumptions. We explain how different statistical methods can be used in complementary ways to improve the understanding of parameter estimates and their uncertainties.
Structural Parameters of Galaxies in CANDELS
van der Wel, A; Haussler, B; McGrath, E J; Chang, Yu-Yen; Guo, Yicheng; McIntosh, D H; Rix, H -W; Barden, M; Cheung, E; Faber, S M; Ferguson, H C; Galametz, A; Grogin, N A; Hartley, W; Kartaltepe, J S; Kocevski, D D; Koekemoer, A M; Lotz, J; Mozena, M; Peth, M A; Peng, Chien Y
2012-01-01
We present global structural parameter measurements of 109,533 unique, H_F160W-selected objects from the CANDELS multi-cycle treasury program. Sersic model fits for these objects are produced with GALFIT in all available near-infrared filters (H_F160W, J_F125W and, for a subset, Y_F105W). The parameters of the best-fitting Sersic models (total magnitude, half-light radius, Sersic index, axis ratio, and position angle) are made public, along with newly constructed point spread functions for each field and filter. Random uncertainties in the measured parameters are estimated for each individual object based on a comparison between multiple, independent measurements of the same set of objects. To quantify systematic uncertainties we create a mosaic with simulated galaxy images with a realistic distribution of input parameters and then process and analyze the mosaic in an identical manner as the real data. We find that accurate and precise measurements -- to 10% or better -- of all structural parameters can typic...
Application of spreadsheet to estimate infiltration parameters
Directory of Open Access Journals (Sweden)
Mohammad Zakwan
2016-09-01
Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.
Analysis of sagittal spinopelvic parameters in achondroplasia.
Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Park, Jong-Woong; Park, Jung-Ho
2011-08-15
Prospective radiological analysis of patients with achondroplasia. To analyze sagittal spinal alignment and pelvic orientation in achondroplasia patients. Knowledge of sagittal spinopelvic parameters is important for the treatment of achondroplasia, because they differ from those of the normal population and can induce pain. The study and control groups were composed of 32 achondroplasia patients and 24 healthy volunteers, respectively. All underwent lateral radiography of the whole spine including hip joints. The radiographic parameters examined were sacral slope (SS), pelvic tilt, pelvic incidence (PI), S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis (LL1, LL2), and sagittal balance. Statistical analysis was performed to identify significant differences between the two groups. In addition, correlations between parameters and symptoms were sought. Sagittal spinopelvic parameters, namely, pelvic tilt, pelvic incidence, S1 overhang, thoracic kyphosis, T10-L2 kyphosis, lumbar lordosis 1 and sagittal balance were found to be significantly different in the patient and control groups (P achondroplasia patients and normal healthy controls. The present study shows that sagittal spinal and pelvic parameters can assist the treatment of spinal disorders in achondroplasia patients.
Multi-parameters scanning in HTI media
Masmoudi, Nabil
2014-08-05
Building credible anisotropy models is crucial in imaging. One way to estimate anisotropy parameters is to relate them analytically to traveltime, which is challenging in inhomogeneous media. Using perturbation theory, we develop traveltime approximations for transversely isotropic media with horizontal symmetry axis (HTI) as explicit functions of the anellipticity parameter η and the symmetry axis azimuth ϕ in inhomogeneous background media. Specifically, our expansion assumes an inhomogeneous elliptically anisotropic background medium, which may be obtained from well information and stacking velocity analysis in HTI media. This formulation has advantages on two fronts: on one hand, it alleviates the computational complexity associated with solving the HTI eikonal equation, and on the other hand, it provides a mechanism to scan for the best fitting parameters η and ϕ without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameters η and ϕ. The accuracy of our expansion is further enhanced by the use of shanks transform. We show the effectiveness of our scheme with tests on a 3D model and we propose an approach for multi-parameters scanning in TI media.
Supersymmetry Parameter Analysis: SPA Convention and Project
Energy Technology Data Exchange (ETDEWEB)
Hinchliffe, I.; et al.
2005-05-05
High-precision analyses of supersymmetry parameters aim atreconstructing the fundamental supersymmetric theory and its breakingmechanism. A well defined theoretical framework is needed whenhigher-order corrections are included. We propose such a scheme,Supersymmetry Parameter Analysis SPA, based on a consistent set ofconventions and input parameters. A repository for computer programs isprovided which connect parameters in different schemes and relate theLagrangian parameters to physical observables at LHC and high energy e+e-linear collider experiments, i.e., masses, mixings, decay widths andproduction cross sections for supersymmetric particles. In addition,programs for calculating high-precision low energy observables, thedensity of cold dark matter (CDM) in the universe as well as the crosssections for CDM search experiments are included. The SPA scheme stillrequires extended efforts on both the theoretical and experimental sidebefore data can be evaluated in the future at the level of the desiredprecision. We take here an initial step of testing the SPA scheme byapplying the techniques involved to a specific supersymmetry referencepoint.
[Incidental finding of pathological coagulation parameters].
Luxembourg, B; Lindhoff-Last, E
2014-10-01
Pathological coagulation parameters may reflect life-threatening hemorrhagic or thromboembolic diseases but may also be a laboratory result without any clinical significance, result from in vitro phenomena or preanalytical errors. This article gives an overview of potential pitfalls in coagulation diagnostics, lists the differential diagnoses of pathological coagulation parameters and describes further steps in the diagnostic approach to clarify pathological results. The focus lies on coagulation parameters that are frequently determined in routine clinical investigations, e.g. platelet count, prothrombin time, activated partial thromboplastin time (aPTT) and fibrinogen. Besides heparin, fondaparinux, danaparoid, and vitamin K antagonists, direct factor Xa inhibitors and direct thrombin inhibitors are nowadays available for therapeutic anticoagulation. This article gives an overview of the influence of anticoagulants on coagulation parameters which depends on the dose, the time of the last administration, as well as the method used for the determination of coagulation parameters. Moreover, common reasons for elevation of the fibrin degradation product D-dimer are presented. The clinical utility of D-dimer assays is limited by their poor specificity. Elevated D-dimer concentrations can be found in various diseases and also under normal physiological circumstances (e.g. in the elderly). Thus, the most useful clinical application of D-dimer is evidence of normal values to essentially rule out venous thromboembolism.
On closure parameter estimation in chaotic systems
Directory of Open Access Journals (Sweden)
J. Hakkarainen
2012-02-01
Full Text Available Many dynamical models, such as numerical weather prediction and climate models, contain so called closure parameters. These parameters usually appear in physical parameterizations of sub-grid scale processes, and they act as "tuning handles" of the models. Currently, the values of these parameters are specified mostly manually, but the increasing complexity of the models calls for more algorithmic ways to perform the tuning. Traditionally, parameters of dynamical systems are estimated by directly comparing the model simulations to observed data using, for instance, a least squares approach. However, if the models are chaotic, the classical approach can be ineffective, since small errors in the initial conditions can lead to large, unpredictable deviations from the observations. In this paper, we study numerical methods available for estimating closure parameters in chaotic models. We discuss three techniques: off-line likelihood calculations using filtering methods, the state augmentation method, and the approach that utilizes summary statistics from long model simulations. The properties of the methods are studied using a modified version of the Lorenz 95 system, where the effect of fast variables are described using a simple parameterization.
Setting parameters in the cold chain
Directory of Open Access Journals (Sweden)
Victoria Rodríguez
2011-12-01
Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.
Effect of Burnishing Parameters on Surface Finish
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2017-08-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
Electromagnetic parameter retrieval at oblique incidence
Khan, Saima I.; De La Rue, Richard M.; Drysdale, Tim D.; Johnson, Nigel P.
2013-05-01
Optical metamaterials are able to achieve optical properties that do not exist in nature. Approaches to the homogenization of optical metamaterials are becoming more and more complex in the desire to achieve accurate representation. Here we propose to modify an existing retrieval approach for metamaterials to characterize their properties. To extract the effective refractive index and material parameters from reflection and transmission coefficients for double negative metamaterial in the optical regime, the modified Nicholson-Ross-Weir (NRW) method is used. In order to obtain a true picture of these metamaterials, as a function of angle of incidence of the illumination, it is important to present not only the effective parameters of permittivity and permeability but also some other important parameters such as coupling coefficients, that represent the inherent anisotropy.
Cosmological parameters from lenses distance ratio
Cardone, Vincenzo F; Scudellaro, Paolo
2015-01-01
Strong lensing provides popular techniques to investigate the mass distribution of intermediate redshift galaxies, testing galaxy evolution and formation scenarios. It especially probes the background cosmic expansion, hence constraining cosmological parameters. The measurement of Einstein radii and central velocity dispersions indeed allows to trace the ratio D_s/D_ls between the distance D_s from the observer to the source and the distance D_ls from the lens to the source. We present an improved method to explicitly include the two - component structure in the galaxy lens modeling, in order to analyze the role played by the redshift and the model dependence on a nuisance parameter, F_E, which is usually marginalized in the cosmological applications. We show how to deal with these problems and carry on a Fisher matrix analysis to infer the accuracy on cosmological parameters achieved by this method.
Structural Parameters of Star Clusters: Stochastic Effects
Narbutis, D; de Meulenaer, P; Mineikis, T; Vansevičius, V
2014-01-01
Stochasticity of bright stars introduces uncertainty and bias into derived structural parameters of star clusters. We have simulated a grid of cluster $V$-band images, observed with Subaru Suprime-Cam with age, mass, and size representing a cluster population in the M31 galaxy and derived their structural parameters by fitting King model to the surface brightness distribution. We have found that clusters less massive than $10^4 M_\\odot$ show significant uncertainty in their core and tidal radii for all ages, while clusters younger than 10 Myr have their sizes systematically underestimated for all masses. This emphasizes the importance of stochastic simulations to asses the true uncertainty of structural parameters in studies of semi-resolved and unresolved clusters.
Earth Similarity Index with two free parameters
Chandra, Suresh; Sharma, Mohit K
2015-01-01
We have derived Earth Similarity Index (ESI) with two free parameters m and T. These free parameters are optimized with the consideration that the planet Mars is almost similar to the Earth. For the optimized values of free parameters, the interior-ESI, surface-ESI and ESI for some planets are calculated. The results for m = 0.8 and T = 0.8 are compared with the values obtained by Schulze-Makuch {\\it et al.} (2011). We have found that the exoplanet 55 Cnc f is within 10% away from the threshold value T. The exoplanets HD 69830 c, 55 Cnc c, 55 Cnc f, 61 Vir d and HIP 57050 b are found to have ESI within 10% from the threshold value.
Testing the Copernican Principle with Hubble Parameter
Zhang, Tong-Jie; Ma, Cong
2012-01-01
By way of expressing the Hubble expansion rate for the general Lema\\^{i}tre-Tolman-Bondi (LTB) metric as a function of cosmic time, we test the scale on which the Copernican Principle holds in the context of a void model. By performing parameter estimation on the CGBH void model, we show the Hubble parameter data favors a void with characteristic radius of $2 \\sim 3$ Gpc. This brings the void model closer, but not yet enough, to harmony with observational indications given by the background kinetic Sunyaev-Zel'dovich effect and the normalization of near-infrared galaxy luminosity function. However, the test of such void models may ultimately lie in the future detection of the discrepancy between longitudinal and transverse expansion rates, a touchstone of inhomogeneous models. With the proliferation of observational Hubble parameter data and future large-scale structure observation, a definitive test could be performed on the question of cosmic homogeneity.
Effect of Burnishing Parameters on Surface Finish
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2016-06-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
The CLICopti RF structure parameter estimator
Sjobak, Kyrre Ness
2014-01-01
This document describes the CLICopti RF structure parameter estimator. This is a C++ library which makes it possible to quickly estimate the parameters of an RF structure from its length, apertures, tapering, and basic cell type. Typical estimated parameters are the input power required to reach a certain voltage with a given beam current, the maximum safe pulse length for a given input power and the minimum bunch spacing in RF cycles allowed by a given long-range wake limit. The document describes the implemented physics, usage of the library through its Application Programming Interface (API) and the relation between the different parts of the library. Also discussed is how the library is checked for correctness, and the example programs included with the sources are described.
Delineating Parameter Unidentifiabilities in Complex Models
Raman, Dhruva V; Papachristodoulou, Antonis
2016-01-01
Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditional...
Asteroid absolute magnitudes and slope parameters
Tedesco, Edward F.
1991-01-01
A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.
Beyond six parameters: extending $\\Lambda$CDM
Di Valentino, Eleonora; Silk, Joseph
2015-01-01
Cosmological constraints are usually derived under the assumption of a $6$ parameters $\\Lambda$-CDM theoretical framework or simple one-parameter extensions. In this paper we present, for the first time, cosmological constraints in a significantly extended scenario, varying up to $12$ cosmological parameters simultaneously, including the sum of neutrino masses, the neutrino effective number, the dark energy equation of state, the gravitational waves background and the running of the spectral index of primordial perturbations. Using the latest Planck 2015 data release (with polarization) we found no significant indication for extensions to the standard $\\Lambda$-CDM scenario, with the notable exception of the angular power spectrum lensing amplitude, $A_{\\rm lens}$ that is larger than the expected value at more than two standard deviations even when combining the Planck data with BAO and supernovae type Ia external datasets. In our extended cosmological framework, we find that a combined Planck+BAO analysis co...
Comparing anisotropic displacement parameters in protein structures.
Merritt, E A
1999-12-01
The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.
Escape statistics for parameter sweeps through bifurcations.
Miller, Nicholas J; Shaw, Steven W
2012-04-01
We consider the dynamics of systems undergoing parameter sweeps through bifurcation points in the presence of noise. Of interest here are local codimension-one bifurcations that result in large excursions away from an operating point that is transitioning from stable to unstable during the sweep, since information about these "escape events" can be used for system identification, sensing, and other applications. The analysis is based on stochastic normal forms for the dynamic saddle-node and subcritical pitchfork bifurcations with a time-varying bifurcation parameter and additive noise. The results include formulation and numerical solution for the distribution of escape events in the general case and analytical approximations for delayed bifurcations for which escape occurs well beyond the corresponding quasistatic bifurcation points. These bifurcations result in amplitude jumps encountered during parameter sweeps and are particularly relevant to nano- and microelectromechanical systems, for which noise can play a significant role.
Confidence intervals with a priori parameter bounds
Lokhov, A V
2014-01-01
We review the methods of constructing confidence intervals that account for a priori information about one-sided constraints on the parameter being estimated. We show that the so-called method of sensitivity limit yields a correct solution of the problem. Derived are the solutions for the cases of a continuous distribution with non-negative estimated parameter and a discrete distribution, specifically a Poisson process with background. For both cases, the best upper limit is constructed that accounts for the a priori information. A table is provided with the confidence intervals for the parameter of Poisson distribution that correctly accounts for the information on the known value of the background along with the software for calculating the confidence intervals for any confidence levels and magnitudes of the background (the software is freely available for download via Internet).
Errors on errors - Estimating cosmological parameter covariance
Joachimi, Benjamin
2014-01-01
Current and forthcoming cosmological data analyses share the challenge of huge datasets alongside increasingly tight requirements on the precision and accuracy of extracted cosmological parameters. The community is becoming increasingly aware that these requirements not only apply to the central values of parameters but, equally important, also to the error bars. Due to non-linear effects in the astrophysics, the instrument, and the analysis pipeline, data covariance matrices are usually not well known a priori and need to be estimated from the data itself, or from suites of large simulations. In either case, the finite number of realisations available to determine data covariances introduces significant biases and additional variance in the errors on cosmological parameters in a standard likelihood analysis. Here, we review recent work on quantifying these biases and additional variances and discuss approaches to remedy these effects.
Discussion on the parameters of design waves
Institute of Scientific and Technical Information of China (English)
WANG Yan-ying
2008-01-01
In order to respond the discredit on the design wave standard and to recommend new consideration on design wave parameters, based on the long-term distribution of statistic characteristics of waves and the short-term probability properties of sea state defined by giving the return period, the calculation of the return period, the height, the period, and the oceanic wave parameters of the design wave and the forecasting methods are discussed in this paper. To provide references for the operation reliability of floating structures in the extreme sea state, the method of determining the design wave parameters is resurveyed. A proposal is recommended that the design wave, which can be either significant wave with 500-year of the return period, or the maximum wave with 1/N of exceeding probability, 100-year of the return period, can be applied in the engineering design practice.
Determination of kinetic parameters for biomass combustion.
Álvarez, A; Pizarro, C; García, R; Bueno, J L; Lavín, A G
2016-09-01
The aim of this work is to provide a wide database of kinetic data for the most common biomass by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). Due to the characteristic parameters of DTG curves, a two-stage reaction model is proposed and the kinetic parameters obtained from model-based methods with energy activation values for first and second stages in the range 1.75·10(4)-1.55·10(5)J/mol and 1.62·10(4)-2.37·10(5)J/mol, respectively. However, it has been found that Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose model-free methods are not suitable to determine the kinetic parameters of biomass combustion since the assumptions of these two methods were not accomplished in the full range of the combustion process.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Parameter likelihood of intrinsic ellipticity correlations
Capranico, Federica; Schaefer, Bjoern Malte
2012-01-01
Subject of this paper are the statistical properties of ellipticity alignments between galaxies evoked by their coupled angular momenta. Starting from physical angular momentum models, we bridge the gap towards ellipticity correlations, ellipticity spectra and derived quantities such as aperture moments, comparing the intrinsic signals with those generated by gravitational lensing, with the projected galaxy sample of EUCLID in mind. We investigate the dependence of intrinsic ellipticity correlations on cosmological parameters and show that intrinsic ellipticity correlations give rise to non-Gaussian likelihoods as a result of nonlinear functional dependencies. Comparing intrinsic ellipticity spectra to weak lensing spectra we quantify the magnitude of their contaminating effect on the estimation of cosmological parameters and find that biases on dark energy parameters are very small in an angular-momentum based model in contrast to the linear alignment model commonly used. Finally, we quantify whether intrins...
Hubble parameter data constraints on dark energy
Energy Technology Data Exchange (ETDEWEB)
Chen Yun, E-mail: chenyun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Ratra, Bharat, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)
2011-09-20
We use Hubble parameter versus redshift data from Stern et al. (2010) and Gaztanaga et al. (2009) to place constraints on model parameters of constant and time-evolving dark energy cosmological models. These constraints are consistent with (through not as restrictive as) those derived from supernova Type Ia magnitude-redshift data. However, they are more restrictive than those derived from galaxy cluster angular diameter distance, and comparable with those from gamma-ray burst and lookback time data. A joint analysis of the Hubble parameter data with more restrictive baryon acoustic oscillation peak length scale and supernova Type Ia apparent magnitude data favors a spatially-flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude time-varying dark energy.
Density Matrix for Mesoscopic Distributed Parameter Circuits
Institute of Scientific and Technical Information of China (English)
JI Ying-Hua; WANG Qi; LUO Hai-Mei; LEI Min-Sheng
2005-01-01
Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for nondissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix p(q, q',β). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.
ILC Extraction Line Simulations with TDR Parameters
Marin, Eduardo
2014-01-01
The goal of this study is to evaluate the impact of the latest ILC beam parameters at the Interaction Point (IP), as specified in the 2013 ILC Technical Design Report (TDR), on beam losses in the extraction line. The previous beam loss evaluation was based on the parameters specified in the 2007 ILC Reference Design Report (RDR). The results of this study are compared to the results obtained in the past for the ``nominal'' and the ``low power'' (low-P) parameter options of the RDR. The initial disrupted beam distribution at IP was generated using Guinea-Pig code, and the beam losses were obtained in tracking simulations using DIMAD. The study is performed for 500 GeV center-of-mass beam energy and the extraction line optics corresponding to the latest final focus optics with L* = 4.5 m, with and without detector solenoid.
State and parameter estimation in bio processes
Energy Technology Data Exchange (ETDEWEB)
Maher, M.; Roux, G.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)
1994-12-31
A major difficulty in monitoring and control of bio-processes is the lack of reliable and simple sensors for following the evolution of the main state variables and parameters such as biomass, substrate, product, growth rate, etc... In this article, an adaptive estimation algorithm is proposed to recover the state and parameters in bio-processes. This estimator utilizes the physical process model and the reference model approach. Experimentations concerning estimation of biomass and product concentrations and specific growth rate, during batch, fed-batch and continuous fermentation processes are presented. The results show the performance of this adaptive estimation approach. (authors) 12 refs.
Fractional Action Cosmology with Variable Order Parameter
El-Nabulsi, Rami Ahmad
2017-04-01
Fractional action cosmology with variable order parameter was constructed in this paper. Starting from a fractional weighted action which generalizes the fractional actionlike variational approach, a large number of cosmological dynamical equations are obtained depending on the mathematical type of the fractional order parameter. Through this paper, we selected two independent types which result on a number of cosmological scenarios and we discussed their dynamical consequences. It was observed that the present fractional cosmological formalism holds a large family of solutions and offers new features not found in the standard formalism and in many fundamental research papers.
Hail parameter relations - A comprehensive digest
Ulbrich, C. W.; Atlas, D.
1982-01-01
Diagrams of hail size parameters are presented and attempts are made to correlate size and mass/volume as indicators of integral quantities of hailstone fall. Radar cross-sections are presented, along with related radar parameters such as the equivalent radar reflectivity factor, the mean Doppler fallspeed, the variance of the Doppler spectrum, and the ratio of the reflectivity factors for the 3.21 and 10.0 cm radar wavelengths used. An analysis of the possible effects of natural or artificial modification of the hail size distribution are discussed.
Order Parameter Hysteresis on the Complex Network
Institute of Scientific and Technical Information of China (English)
MA Pei-Jie; WANG Bing-Hong
2008-01-01
Collective synchronization is investigated on the small-world network (NW model). The order parameter is introduced to measure the synchronization of phase. It is found that there are differences between the processes of synchronization and desynchronization. The dependence of order parameter on the coupling strength is shown like a hysteresis loop. The size of the 10019 demonstrates the non-monotonicity with the change of adding probability,and is relevant to the construction of the network. The area may be maximum, as the adding probability is equal to 0.4. This phenomenon indicates that the clusters in the network play an important role in the processes of synchronization and desynchronization.
Statefinder parameters in two dark energy models
Panotopoulos, Grigoris
2007-01-01
The statefinder parameters ($r,s$) in two dark energy models are studied. In the first, we discuss in four-dimensional General Relativity a two fluid model, in which dark energy and dark matter are allowed to interact with each other. In the second model, we consider the DGP brane model generalized by taking a possible energy exchange between the brane and the bulk into account. We determine the values of the statefinder parameters that correspond to the unique attractor of the system at hand. Furthermore, we produce plots in which we show $s,r$ as functions of red-shift, and the ($s-r$) plane for each model.
Measurement of the Muon Decay Parameter delta
Gaponenko, A N; Davydov, Yu I; Depommier, P; Doornbos, J; Faszer, W; Fujiwara, M C; Gagliardi, C A; Gill, D R; Green, P; Gumplinger, P; Hasinoff, M D; Henderson, R S; Hu, J; Jamieson, B; Kitching, P; Koetke, D D; Krushinsky, A A; Lachin, Yu Yu; MacDonald, J A; MacDonald, R P; Marshall, G M; Mathie, E L; Miasoedov, L V; Mischke, R E; Musser, J R; Nord, P M; Nozar, M; Olchanski, K; Olin, A; Openshaw, R; Porcelli, T A; Poutissou, J M; Poutissou, R; Quraan, M A; Rodning, N L; Selivanov, V; Sheffer, G; Shin, B; Sobratee, F; Stanislaus, T D S; Tacik, R; Torokhov, V D; Tribble, R E; Vasilev, M A; Wright, D H
2004-01-01
The muon decay parameter delta has been measured by the TWIST collaboration. We find delta = 0.74964 +- 0.00066(stat.) +- 0.00112(syst.), consistent with the Standard Model value of 3/4. This result implies that the product Pmuxi of the muon polarization in pion decay, Pmu, and the muon decay parameter xi falls within the 90% confidence interval 0.9960 < Pmuxi < xi < 1.0040. It also has implications for left-right-symmetric and other extensions of the Standard Model.
Order parameter fluctuations in the holographic superconductor
Plantz, N W M; Vandoren, S
2015-01-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.
Parameter Estimation of Noise Corrupted Sinusoids
O'Brien, Francis J; Johnnie, Nathan
2011-01-01
Existing algorithms for fitting the parameters of a sinusoid to noisy discrete time observations are not always successful due to initial value sensitivity and other issues. This paper demonstrates the techniques of FIR filtering, Fast Fourier Transform, and nonlinear least squares minimization as useful in the parameter estimation of amplitude, frequency and phase exemplified for a low-frequency time-delayed sinusoid describing simple harmonic motion. Alternative means are described for estimating frequency and phase angle. An autocorrelation function for harmonic motion is also derived.
Effective operator contributions to the oblique parameters
Sánchez-Colón, G
1998-01-01
We present a model and process independent study of the contributions from non-Standard Model physics to the oblique parameters S, T and U. We show that within an effective lagrangian parameterization the expressions for the oblique parameters in terms of observables are consistent, while those in terms of the vector-boson vacuum polarization tensors are ambiguous. We obtain the constraints on the scale of new physics derived from current data on S, T and U and note that deviations in U from its Standard Model value would favor a scenario where the underlying physics does not decouple.
METHOD ON ESTIMATION OF DRUG'S PENETRATED PARAMETERS
Institute of Scientific and Technical Information of China (English)
刘宇红; 曾衍钧; 许景锋; 张梅
2004-01-01
Transdermal drug delivery system (TDDS) is a new method for drug delivery. The analysis of plenty of experiments in vitro can lead to a suitable mathematical model for the description of the process of the drug's penetration through the skin, together with the important parameters that are related to the characters of the drugs.After the research work of the experiments data,a suitable nonlinear regression model was selected. Using this model, the most important parameter-penetrated coefficient of 20 drugs was computed.In the result one can find, this work supports the theory that the skin can be regarded as singular membrane.
Rescaling the nonadditivity parameter in Tsallis thermostatistics
Korbel, Jan
2017-08-01
The paper introduces nonadditivity parameter transformation group induced by Tsallis entropy. We discuss simple physical applications such as systems in the contact with finite heat bath or systems with temperature fluctuations. With help of the transformation, it is possible to introduce generalized distributive rule in q-deformed algebra. We focus on MaxEnt distributions of Tsallis entropy with rescaled nonadditivity parameter under escort energy constraints. We show that each group element corresponds to one class of q-deformed distributions. Finally, we briefly discuss the application of the transformation to Jizba-Arimitsu hybrid entropy and its connection to Average Hybrid entropy.
Asymmetry in the reconstructed deceleration parameter
Bernal, Carla; Motta, Veronica
2016-01-01
We study the orientation dependence of the reconstructed deceleration parameter as a function of redshift. We use the Union 2 and Loss datasets, by using the well known preferred axis discussed in the literature, finding the best fit reconstructed deceleration parameter. We found that a low redshift transition of the reconstructed $q(z)$ is clearly absent in one direction and amazingly sharp in the opposite one. We discuss the possibility that such a behavior can be associated with large scale structures affecting the data.
Parameter identifiability of linear dynamical systems
Glover, K.; Willems, J. C.
1974-01-01
It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.
Important Parameters and Applications for Nickel Electroforming
DEFF Research Database (Denmark)
Tang, Peter Torben; Benzon, Michael Eis; Rasmussen, J.P.;
1996-01-01
Electroforming is versatile process that is being used more and more, although the basic idea is almost a hundred years old. This paper will concentrate on the important mechanical properties and electrolyte parameters of nickel electroforming. Electrolyte parameters such as current density, p......H-value, temperature and the use of pulse plating and additives will be examined with respect to mechanical properties such as internal stress, material distribution and hardness. Pulse plating in a chloride and Watts nickel bath and DC plating in sulphamate bath will be discussed, as well as different methods...
Fractional Action Cosmology with Variable Order Parameter
El-Nabulsi, Rami Ahmad
2017-01-01
Fractional action cosmology with variable order parameter was constructed in this paper. Starting from a fractional weighted action which generalizes the fractional actionlike variational approach, a large number of cosmological dynamical equations are obtained depending on the mathematical type of the fractional order parameter. Through this paper, we selected two independent types which result on a number of cosmological scenarios and we discussed their dynamical consequences. It was observed that the present fractional cosmological formalism holds a large family of solutions and offers new features not found in the standard formalism and in many fundamental research papers.
Quantum Estimation of Parameters of Classical Spacetimes
Downes, T G; Knill, E; Milburn, G J; Caves, C M
2016-01-01
We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.
Order parameter fluctuations in the holographic superconductor
Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.
2017-03-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.
Weigh in Motion Based on Parameters Optimization
Institute of Scientific and Technical Information of China (English)
ZHOU Zhi-feng; CAI Ping; CHEN Ri-xing
2009-01-01
Dynamic tire forces are the main factor affecting the measurement accuracy of the axle weight of moving vehicle. This paper presents a novel method to reduce the influence of the dynamic tire forces on the weighing accuracy. On the basis of analyzing the characteristic of the dynamic tire forces, the objective optimization equation is constructed. The optimization algorithm is presented to get the optimal estimations of the objective parameters. According to the estimations of the parameters, the dynamic tire forces are separated from the axle weigh signal. The results of simulation and field experiments prove the effectiveness of the proposed method.
Research on anisotropic parameters by synthetic seismogram
Institute of Scientific and Technical Information of China (English)
FAN Xiao-ping; LI Qing-he; YANG Cong-jie
2005-01-01
ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.
Online Dynamic Parameter Estimation of Synchronous Machines
West, Michael R.
Traditionally, synchronous machine parameters are determined through an offline characterization procedure. The IEEE 115 standard suggests a variety of mechanical and electrical tests to capture the fundamental characteristics and behaviors of a given machine. These characteristics and behaviors can be used to develop and understand machine models that accurately reflect the machine's performance. To perform such tests, the machine is required to be removed from service. Characterizing a machine offline can result in economic losses due to down time, labor expenses, etc. Such losses may be mitigated by implementing online characterization procedures. Historically, different approaches have been taken to develop methods of calculating a machine's electrical characteristics, without removing the machine from service. Using a machine's input and response data combined with a numerical algorithm, a machine's characteristics can be determined. This thesis explores such characterization methods and strives to compare the IEEE 115 standard for offline characterization with the least squares approximation iterative approach implemented on a 20 h.p. synchronous machine. This least squares estimation method of online parameter estimation shows encouraging results for steady-state parameters, in comparison with steady-state parameters obtained through the IEEE 115 standard.
A tool for parameter-space explorations
Murase, Yohsuke; Ito, Nobuyasu
2014-01-01
A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results....
Solar Eruption and Local Magnetic Parameters
Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul
2016-11-01
It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5-1.5) and high decay index (0.9-1.1) at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.
Saliva parameters and erosive wear in adolescents
Zwier, N.; Huysmans, M.C.D.N.J.M.; Jager, D.H.J.; Ruben, J.; Bronkhorst, E.M.; Truin, G.J.
2013-01-01
The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 ± 1 years). Flow rate, pH and buffer capacity were determined immediately.
Saliva Parameters and Erosive Wear in Adolescents
Zwier, N.; Huysmans, M. C. D. N. J. M.; Jager, D. H. J.; Ruben, J.; Bronkhorst, E. M.; Truin, G. J.
2013-01-01
The aim of this study was to investigate the relationship between several parameters of saliva and erosive wear in adolescents. (Un-)stimulated saliva was collected from 88 adolescents with erosion and 49 controls (age 16 +/- 1 years). Flow rate, pH and buffer capacity were determined immediately.
Estimation of Model Parameters for Steerable Needles
Park, Wooram; Reed, Kyle B.; Okamura, Allison M.; Chirikjian, Gregory S.
2010-01-01
Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%. PMID:21643451
Generalized Schur functions and augmented Schur parameters
Dijksma, Aad; Wanjala, Gerald; Forster, KH; Jonas, P; Langer, H
2006-01-01
Every Schur function s(z) is the uniform limit of a sequence of finite Blaschke products on compact subsets of the open unit disk. The Blaschke products in the sequence are defined inductively via the Schur parameters of s(z). In this note we prove a similar result for generalized Schur functions.
Scheduling parameters in flexible manufacturing cells
Slomp, J.; Gaalman, G.J.C.; Ahmad, M.M.; Sullivan, W.G.; Migliore, H.; Randhawa, S.
1998-01-01
The existence of a well-designed scheduling procedure is a major condition for an effective integration of a flexible manufacturing cell (FMC) in the material flow of a firm. This paper shows the presence and relative importance of three parameter types in the scheduling of operations on a flexible
Parameter estimation of harmonic polluting industrial loads
Energy Technology Data Exchange (ETDEWEB)
Maza-Ortega, J.M.; Gomez-Exposito, A.; Trigo-Garcia, J.L.; Burgos-Payan, M. [University of Sevilla, Sevilla (Spain). Department of Electrical Engineering
2005-12-01
This paper develops a methodology for the estimation of relevant parameters characterizing harmonic polluting industrial loads through a set of measurements acquired at the point of common coupling. The proposed method is capable of obtaining an accurate load model in absence of detailed information about its internal structure and composition. (author)
ASSESSMENT OF PHYSICO-CHEMICAL PARAMETERS OF ...
African Journals Online (AJOL)
B. S. Chandravanshi
The present work was conducted to assess the physico-chemical parameters of Tsada Agam River ... Mekelle is the capital city of Tigray regional state, Ethiopia and it is experiencing poor quality ... But, to the best of our knowledge no research was conducted on ..... Clean Water Initiative: Volunteer Stream Monitoring.
Scheduling parameters in flexible manufacturing cells
Slomp, J.; Gaalman, G.J.C.; Ahmad, M.M.; Sullivan, W.G.; Migliore, H.; Randhawa, S.
1998-01-01
The existence of a well-designed scheduling procedure is a major condition for an effective integration of a flexible manufacturing cell (FMC) in the material flow of a firm. This paper shows the presence and relative importance of three parameter types in the scheduling of operations on a flexible
Postprocessing MPEG based on estimated quantization parameters
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
Postprocessing of MPEG(-2) video is widely used to attenuate the coding artifacts, especially deblocking but also deringing have been addressed. The focus has been on filters where the decoder has access to the code stream and e.g. utilizes information about the quantization parameter. We consider...
Application of lumped-parameter models
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten
This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...
A variable parameter parametric snake method
Marouf, A.; Houacine, A.
2015-12-01
In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.
Models and parameters for environmental radiological assessments
Energy Technology Data Exchange (ETDEWEB)
Miller, C W [ed.
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Quality control parameters for Tamra (copper) Bhasma.
Jagtap, Chandrashekhar Yuvaraj; Prajapati, Pradeepkumar; Patgiri, Biswajyoti; Shukla, Vinay J
2012-04-01
Metallic Bhasmas are highly valued and have their own importance in Ayurvedic formulations. To testify the Bhasmas various parameters have been told in Rasashastra classics. Tamra Bhasma (TB) with its different properties is used in the treatment of various diseases is quiet famous among the Ayurvedic physicians (Vaidyas). The present study was carried out to set up the quality control parameters for the TB by making the use of classical tests along with advanced analytical tools. Copper wire taken for the preparation of Bhasma was first analyzed for its copper content and then subjected to Shodhana, Marana and Amrutikarana procedures as per the classical references. Final product complied with all the classical parameters like Rekhapurnatwa, Varitaratwa etc. After complying with these tests TB was analyzed by advanced analytical techniques like particle size distribution (PSD) analysis, scanning electron microscopy (SEM), and inductive coupled plasma spectrometry (ICP). PSD analysis of TB showed volumetric mean diameter of 28.70 μm, 50% of the material was below 18.40 μm size. Particle size less than 2μm were seen in SEM. 56.24 wt % of copper and 23.06 wt % of sulphur was found in ICP-AES. Heavy metals like cadmium, selenium were not detected while others like arsenic, lead and mercury were present in traces. These observations could be specified as the quality control parameters conforming to all the classical tests under the Bhasma Pariksha.
Estimation of Model Parameters for Steerable Needles.
Park, Wooram; Reed, Kyle B; Okamura, Allison M; Chirikjian, Gregory S
2010-01-01
Flexible needles with bevel tips are being developed as useful tools for minimally invasive surgery and percutaneous therapy. When such a needle is inserted into soft tissue, it bends due to the asymmetric geometry of the bevel tip. This insertion with bending is not completely repeatable. We characterize the deviations in needle tip pose (position and orientation) by performing repeated needle insertions into artificial tissue. The base of the needle is pushed at a constant speed without rotating, and the covariance of the distribution of the needle tip pose is computed from experimental data. We develop the closed-form equations to describe how the covariance varies with different model parameters. We estimate the model parameters by matching the closed-form covariance and the experimentally obtained covariance. In this work, we use a needle model modified from a previously developed model with two noise parameters. The modified needle model uses three noise parameters to better capture the stochastic behavior of the needle insertion. The modified needle model provides an improvement of the covariance error from 26.1% to 6.55%.
Practice Parameter for Psychodynamic Psychotherapy with Children
Medicus, Jennifer
2012-01-01
This Practice Parameter describes the principles of psychodynamic psychotherapy with children and is based on clinical consensus and available research evidence. It presents guidelines for the practice of child psychodynamic psychotherapy, including indications and contraindications, the setting, verbal and interactive (play) techniques, work with…
Estimation of motility parameters from trajectory data
DEFF Research Database (Denmark)
Vestergaard, Christian L.; Pedersen, Jonas Nyvold; Mortensen, Kim I.;
2015-01-01
Given a theoretical model for a self-propelled particle or micro-organism, how does one optimally determine the parameters of the model from experimental data in the form of a time-lapse recorded trajectory? For very long trajectories, one has very good statistics, and optimality may matter little...... to which similar results may be obtained also for self-propelled particles....
Fractal parameters and vascular networks: facts & artifacts
Directory of Open Access Journals (Sweden)
Maniero Fabrizio
2008-07-01
Full Text Available Abstract Background Several fractal and non-fractal parameters have been considered for the quantitative assessment of the vascular architecture, using a variety of test specimens and of computational tools. The fractal parameters have the advantage of being scale invariant, i.e. to be independent of the magnification and resolution of the images to be investigated, making easier the comparison among different setups and experiments. Results The success of several commercial and/or free codes in computing the fractal parameters has been tested on well known exact models. Based on such a preliminary study, we selected the code Frac-lac in order to analyze images obtained by visualizing the angiogenetic process occurring in chick Chorio Allontoic Membranes (CAM, assumed to be paradigmatic of a realistic 2D vascular network. Among the parameters investigated, the fractal dimension Df proved to be the most robust estimator for CAM vascular networks. Moreover, only Df was able to discriminate between effective and elusive increases in vascularization after drug-induced angiogenic stimulations on CAMs. Conclusion The fractal dimension Df is likely to be the most promising tool for monitoring the effectiveness of anti-angiogenic therapies in various clinical contexts.
Estimation of Modal Parameters and their Uncertainties
DEFF Research Database (Denmark)
Andersen, P.; Brincker, Rune
1999-01-01
In this paper it is shown how to estimate the modal parameters as well as their uncertainties using the prediction error method of a dynamic system on the basis of uotput measurements only. The estimation scheme is assessed by means of a simulation study. As a part of the introduction, an example...
ON THE REDUNDANCY OF COMPLEX MODAL PARAMETERS
Institute of Scientific and Technical Information of China (English)
陈奎孚; 焦群英
2004-01-01
Generating the simulation transfer function (TF) is indispensable to modal analysis, such as examining modal parameters identification algorithm, and assessing modal analysis software. Comparing 3 feasible algorithms to simulate TF shows that, one of them is preperable, which is expressing the TF as the function of the complex modal parameters ( CMPs ) , because the deliberate behaviors of CMPs can be implemented easily,such as, dense modals , large damping, and complex modal shape, etc. Nonetheless, even this preferable algorithms is elected, the complex modal shapes cannot be specified arbitrarily, because the number of CMPs far more exceeds that in physical coordinate. So for physical realizable system, there are redundant constraints in CMPs. By analyzing the eigenvalue problem of a complex modal system, and the inversion equations from CMPs to physical parameters, the explicit redundancy constraints were presented. For the special cases, such as the real modal, the damping free modal, and non-complete identification, the specific forms of the redundancy constraints were discussed, along with the number of independent parameters. It is worthy of noting that, redundancy constraints are automatically satisfied for the real modal case. Their equivalent forms on the transfer matrix and a column of transfer matrix were also provided. These results are applicable to generate TF, to implement identification by optimization and appreciate the identification results, to evaluate residual modal, and to verify the complementary of identified modal orders.
Correlation between Global Parameters of Galaxies
Chang, Yu-Yen; Wang, Wei-Hao; Chen, Pisin
2010-01-01
Recently Disney et al. (2008) found a striking correlation among the five basic parameters that govern the galactic dynamics: R50, R90, Lr, Md, and MHI . They suggested that this is in conflict with the LCDM model, which predicts the hierarchical formation of cosmic structures from bottom up. In light of the importance of the issue, we performed a similar analysis on global parameters of galaxies with a significantly larger database and two additional parameters, LJ and RJ, of the near-infrared J band. We used databases from the Arecibo Legacy Fast Arecibo L-band Feed Array Survey for the atomic gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties, of the galaxies. We conducted principal component analysis (PCA) to find relations among these observational variables and confirmed that the five parameters in the work of Disney et al. are indeed correlated. The first principal component dominates the correlations among the fiv...
Using Digital Filtration for Hurst Parameter Estimation
Directory of Open Access Journals (Sweden)
J. Prochaska
2009-06-01
Full Text Available We present a new method to estimate the Hurst parameter. The method exploits the form of the autocorrelation function for second-order self-similar processes and is based on one-pass digital filtration. We compare the performance and properties of the new method with that of the most common methods.
An Optimization Model of Tunnel Support Parameters
Directory of Open Access Journals (Sweden)
Su Lijuan
2015-05-01
Full Text Available An optimization model was developed to obtain the ideal values of the primary support parameters of tunnels, which are wide-ranging in high-speed railway design codes when the surrounding rocks are at the III, IV, and V levels. First, several sets of experiments were designed and simulated using the FLAC3D software under an orthogonal experimental design. Six factors, namely, level of surrounding rock, buried depth of tunnel, lateral pressure coefficient, anchor spacing, anchor length, and shotcrete thickness, were considered. Second, a regression equation was generated by conducting a multiple linear regression analysis following the analysis of the simulation results. Finally, the optimization model of support parameters was obtained by solving the regression equation using the least squares method. In practical projects, the optimized values of support parameters could be obtained by integrating known parameters into the proposed model. In this work, the proposed model was verified on the basis of the Liuyang River Tunnel Project. Results show that the optimization model significantly reduces related costs. The proposed model can also be used as a reliable reference for other high-speed railway tunnels.
Parameters for natural resistance in bovine milk
Ploegaert, T.C.W.
2010-01-01
Parameters for natural resistance in bovine milk Mastitis or udder inflammation is one of the most important health problems of dairy cattle. Resistance against mastitis and many other diseases is partly based on the naturally present disease resistance capacity: innate immunity. This research
Planck 2015 results. XIII. Cosmological parameters
Ade, P A R; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Giusarma, E.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Serra, P.; Shellard, E.P.S.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2015-01-01
We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints fr...
Hypotheses testing for fuzzy robust regression parameters
Energy Technology Data Exchange (ETDEWEB)
Kula, Kamile Sanli [Ahi Evran University, Department of Mathematics, 40200 Kirsehir (Turkey)], E-mail: sanli2004@hotmail.com; Apaydin, Aysen [Ankara University, Department of Statistics, 06100 Ankara (Turkey)], E-mail: apaydin@science.ankara.edu.tr
2009-11-30
The classical least squares (LS) method is widely used in regression analysis because computing its estimate is easy and traditional. However, LS estimators are very sensitive to outliers and to other deviations from basic assumptions of normal theory [Huynh H. A comparison of four approaches to robust regression. Psychol Bull 1982;92:505-12; Stephenson D. 2000. Available from: (http://folk.uib.no/ngbnk/kurs/notes/node38.html); Xu R, Li C. Multidimensional least-squares fitting with a fuzzy model. Fuzzy Sets and Systems 2001;119:215-23.]. If there exists outliers in the data set, robust methods are preferred to estimate parameters values. We proposed a fuzzy robust regression method by using fuzzy numbers when x is crisp and Y is a triangular fuzzy number and in case of outliers in the data set, a weight matrix was defined by the membership function of the residuals. In the fuzzy robust regression, fuzzy sets and fuzzy regression analysis was used in ranking of residuals and in estimation of regression parameters, respectively [Sanli K, Apaydin A. Fuzzy robust regression analysis based on the ranking of fuzzy sets. Inernat. J. Uncertainty Fuzziness and Knowledge-Based Syst 2008;16:663-81.]. In this study, standard deviation estimations are obtained for the parameters by the defined weight matrix. Moreover, we propose another point of view in hypotheses testing for parameters.
Identification of pork quality parameters by proteomics
Wiel, van de D.F.M.; Zhang, W.L.
2007-01-01
A major parameter for quality of pork is its waterholding capacity (WHC). Prediction of WHC immediately after slaughter would be of benefit both to slaughterhouses for reasons of better logistics and/or branding of premium-meat, and to consumers for improved quality of meat products such as ham. In
Deriving force field parameters for coordination complexes
DEFF Research Database (Denmark)
Norrby, Per-Ola; Brandt, Peter
2001-01-01
The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters,...
Multi-Parameter Scattering Sensor and Methods
Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)
2016-01-01
Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.
Wind Farm Decentralized Dynamic Modeling With Parameters
DEFF Research Database (Denmark)
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran;
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Polarimetry for four Stockes parameters in space
Institute of Scientific and Technical Information of China (English)
张肇先; 王培纲
2002-01-01
Continuously growing attention has been paid to potential of polarimetry to provide additional information of remote sounding of the earth and other planets and to detect some special targets. In the present paper the polarimetric technique in space for all the four Stockes parameters is presented.
Penalty parameter of the penalty function method
DEFF Research Database (Denmark)
Si, Cheng Yong; Lan, Tian; Hu, Junjie;
2014-01-01
The penalty parameter of penalty function method is systematically analyzed and discussed. For the problem that Deb's feasibility-based rule doesnot give the detailed instruction as how to rank two solutions when they have the same constraint violation, an improved Deb's feasibility-based rule...
Setting Parameters for Biological Models With ANIMO
Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole; van de Pol, Jan Cornelis; Langerak, Romanus; André, Étienne; Frehse, Goran
2014-01-01
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions
Compositional modelling of distributed-parameter systems
Maschke, Bernhard; Schaft, van der Arjan; Lamnabhi-Lagarrigue, F.; Loría, A.; Panteley, E.
2005-01-01
The Hamiltonian formulation of distributed-parameter systems has been a challenging reserach area for quite some time. (A nice introduction, especially with respect to systems stemming from fluid dynamics, can be found in [26], where also a historical account is provided.) The identification of the
Fuel Cell Equivalent Electric Circuit Parameter Mapping
DEFF Research Database (Denmark)
Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl
In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters c...
Dimensionless parameters for lidar performance characterization
Comerón, Adolfo; Agishev, Ravil R.
2014-10-01
A set of three dimensionless parameters is proposed to characterize lidar systems. Two of them are based on an asymptotic approximation of the output signal-to-noise ratio as a function of the input optical power reaching the photoreceiver when there is no background radiation. Of these, one is defined as the ratio between the input signal power level coming from a reference range in a reference atmosphere (reference power level) and the input power level that would produce a reference output signal-to-noise ratio if the photoreceiver operated always in signal-shot noise limited regime. The other is defined as the ratio between the reference power level and the input power level for which the signal-induced shot noise power equals the receiver noise power. A third parameter, defined as the ratio between the background optical power at the photoreceiver input and the reference power level, quantifies the effect of background radiation. With these three parameters a good approximation to the output signal-to-noise ratio of the lidar can be calculated as a function of the power reduction with respect to the power reaching the photodetector in the reference situation. These parameters can also be used to compare and rank the performance of different systems.
Hurst Parameter Estimation Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
S..Ledesma-Orozco
2011-08-01
Full Text Available The Hurst parameter captures the amount of long-range dependence (LRD in a time series. There are severalmethods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, theperiodogram, and Whittle’s estimator. The first three are graphical methods, and the estimation accuracy depends onhow the plot is interpreted and calculated. In contrast, Whittle’s estimator is based on a maximum likelihood techniqueand does not depend on a graph reading; however, it is computationally expensive. A new method to estimate theHurst parameter is proposed. This new method is based on an artificial neural network. Experimental results showthat this method outperforms traditional approaches, and can be used on applications where a fast and accurateestimate of the Hurst parameter is required, i.e., computer network traffic control. Additionally, the Hurst parameterwas computed on series of different length using several methods. The simulation results show that the proposedmethod is at least ten times faster than traditional methods.
Scanning anisotropy parameters in complex media
Alkhalifah, Tariq Ali
2011-03-21
Parameter estimation in an inhomogeneous anisotropic medium offers many challenges; chief among them is the trade-off between inhomogeneity and anisotropy. It is especially hard to estimate the anisotropy anellipticity parameter η in complex media. Using perturbation theory and Taylor’s series, I have expanded the solutions of the anisotropic eikonal equation for transversely isotropic (TI) media with a vertical symmetry axis (VTI) in terms of the independent parameter η from a generally inhomogeneous elliptically anisotropic medium background. This new VTI traveltime solution is based on a set of precomputed perturbations extracted from solving linear partial differential equations. The traveltimes obtained from these equations serve as the coefficients of a Taylor-type expansion of the total traveltime in terms of η. Shanks transform is used to predict the transient behavior of the expansion and improve its accuracy using fewer terms. A homogeneous medium simplification of the expansion provides classical nonhyperbolic moveout descriptions of the traveltime that are more accurate than other recently derived approximations. In addition, this formulation provides a tool to scan for anisotropic parameters in a generally inhomogeneous medium background. A Marmousi test demonstrates the accuracy of this approximation. For a tilted axis of symmetry, the equations are still applicable with a slightly more complicated framework because the vertical velocity and δ are not readily available from the data.
Sensor Placement for Modal Parameter Subset Estimation
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars
2016-01-01
The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...
On the measurement of cosmological parameters
Croft, Rupert A C
2011-01-01
We have catalogued and analysed cosmological parameter determinations and their error bars published between the years 1990 and 2010. Our study focuses on the number of measurements, their precision and their accuracy. The accuracy of past measurements is gauged by comparison with the WMAP7 results. The 637 measurements in our study are of 12 different parameters and we place the techniques used to carry them out into 12 different categories. We find that the number of published measurements per year in all 12 cases except for the dark energy equation of state parameter w_0 peaked between 1995 and 2004. Of the individual techniques, only BAO measurements were still rising in popularity at the end of the studied time period. The fractional error associated with most measurements has been declining relatively slowly, with several parameters, such as the amplitude of mass fluctutations sigma_{8} and the Hubble constant H_0 remaining close to the 10% precision level for a 10-15 year period. The accuracy of recent...
Averaged controllability of parameter dependent conservative semigroups
Lohéac, Jérôme; Zuazua, Enrique
2017-02-01
We consider the problem of averaged controllability for parameter depending (either in a discrete or continuous fashion) control systems, the aim being to find a control, independent of the unknown parameters, so that the average of the states is controlled. We do it in the context of conservative models, both in an abstract setting and also analysing the specific examples of the wave and Schrödinger equations. Our first result is of perturbative nature. Assuming the averaging probability measure to be a small parameter-dependent perturbation (in a sense that we make precise) of an atomic measure given by a Dirac mass corresponding to a specific realisation of the system, we show that the averaged controllability property is achieved whenever the system corresponding to the support of the Dirac is controllable. Similar tools can be employed to obtain averaged versions of the so-called Ingham inequalities. Particular attention is devoted to the 1d wave equation in which the time-periodicity of solutions can be exploited to obtain more precise results, provided the parameters involved satisfy Diophantine conditions ensuring the lack of resonances.
Hypergeometric Functions with Integral Parameter Differences
DEFF Research Database (Denmark)
Karlsson, Per W.
1971-01-01
For a generalized hypergeometric function pFq(z) with positive integral differences between certain numerator and denominator parameters, a formula expressing the pFq(z) as a finite sum of lower-order functions is proved. From this formula, Minton's two summation theorems for p = q + 1, z = 1...
Effect of Subsoil Compaction on Hydraulic Parameters
DEFF Research Database (Denmark)
Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per
a significant trend of reduced macroporosity for the compacted upper depth. We conclude that the measured changes in the analyzed transport parameters support our hypothesis that the colloid-facilitated transport of agrochemicals in spatially connected macropores leads to a higher risk of contamination of water...
Physical Interpretation Of Asymmetry Parameter in Galaxies
Directory of Open Access Journals (Sweden)
Divakara Mayya
2001-01-01
Full Text Available Early type galaxies, in general, appear to be more symmetric than late type galaxies. There have been attempts to quantify this trend into an asymmetry parameter, aiming to determine the morphological type of distant galaxies. Studies conducted on samples of nearby galaxies find a fairly reasonable correlation between asymmetry and morphological type of galaxies. However, it is important to understand the correlation physically before the correlation could be used to classify distant galaxies. With this purpose we carried out a multi-band analysis of asymmetry of nearby galaxies. We find a dependence between asymmetry parameter and wavelength which can be explained by a model, i n which recently formed stars play an important role. The model also reproduces the correlation of asymmetry parameter with global quantities such as color and Halpha flux of galaxies. From these analyses, we conclude that asymmetry parameter is closely tied to the current star formation rate and hence its use as a morphological indicator is limited.
Radiographic adenoid evaluation - suggestion of referral parameters
Directory of Open Access Journals (Sweden)
Murilo F.N. Feres
2014-06-01
Full Text Available OBJECTIVE: this study aimed to evaluate the usefulness of current radiographic measurements, which were originally conceived to evaluate adenoid hypertrophy, as potential referral parameters. METHODS: children aged from 4 to 14 years, of both genders, who presented nasal obstruction complaints, were subjected to cavum radiography. Radiographic examinations (n = 120 were evaluated according to categorical and quantitative parameters, and data were compared to gold-standard videonasopharyngoscopic examination, regarding accuracy (sensitivity, negative predictive value, specificity, and positive predictive value. RESULTS: radiographic grading systems presented low sensitivity for the identification of patients with two-thirds choanal space obstruction. However, some of these parameters presented relatively high specificity rates when three-quarters adenoid obstruction was the threshold of interest. Amongst the quantitative variables, a mathematical model was found to be more suitable for identifying patients with more than two-thirds obstruction. CONCLUSION: this model was shown to be potentially useful as a screening tool to include patients with, at least, two-thirds adenoid obstruction. Moreover, one of the categorical parameters was demonstrated to be relatively more useful, as well as a potentially safer assessment tool to exclude patients with less than three-quarters obstruction, to be indicated for adenoidectomy.
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.
Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Energy Technology Data Exchange (ETDEWEB)
Graf, Bernhard; Brandl, Stephan [AVL List GmbH, Graz (Austria); Sontacchi, Alois [Univ. fuer Musik und Darstellende Kunst, Graz (Austria). Inst. fuer Elektronische Musik und Akustik; Girstmair, Josef [Kompetenzzentrum Das Virtuelle Fahrzeug, Graz (Austria). Gruppe Antriebsstrang Dynamik und Akustik
2013-06-01
Due to ongoing downsizing efforts and more stringent emission regulations, relevance of sound quality monitoring during engine and vehicle development is strongly increasing. Therefore AVL developed new sound quality parameters like CKI (Combustion Knocking Index) and HI (Harshness Index). Using these parameters sound quality can be objectively monitored, without subjective evaluations, online throughout the complete development process. (orig.)
Directory of Open Access Journals (Sweden)
Christian Held
2013-01-01
Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941
Sensitivity of adjustment to parameter correlations and to response-parameter correlations
Energy Technology Data Exchange (ETDEWEB)
Wagschal, J.J. [Racah Inst. of Physics, Hebrew Univ. of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904 (Israel)
2011-07-01
The adjusted parameters and response, and their respective posterior uncertainties and correlations, are presented explicitly as functions of all relevant prior correlations for the two parameters, one response case. The dependence of these adjusted entities on the various prior correlations is analyzed and portrayed graphically for various valid correlation combinations on a simple criticality problem. (authors)
Parameter estimation for lithium ion batteries
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of
Renal parameter estimates in unrestrained dogs
Rader, R. D.; Stevens, C. M.
1974-01-01
A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.
Cosmological Parameters from Redshift-Space Correlations
Matsubara, T; Matsubara, Takahiko; Szalay, Alexander S.
2002-01-01
We estimate how clustering in large-scale redshift surveys can constrain various cosmological parameters. Depth and sky coverage of modern redshift surveys are greater than ever, opening new possibilities for statistical analysis. We have constructed a novel maximum likelihood technique applicable to deep redshift surveys of wide sky coverage by taking into account the effects of both curvature and linear velocity distortions. The Fisher information matrix is evaluated numerically to show the bounds derived from a given redshift sample. We find that intermediate-redshift galaxies, such as the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey, can constrain cosmological parameters, including the cosmological constant, unexpectedly well. The importance of the dense as well as deep sampling in designing redshift surveys is emphasized.
Parameter estimation in stochastic differential equations
Bishwal, Jaya P N
2008-01-01
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.
Optimum Operational Parameters for Yawed Wind Turbines
Directory of Open Access Journals (Sweden)
David A. Peters
2011-01-01
Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.
Chronic boron exposure and human semen parameters.
Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu
2010-04-01
Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (pBoron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups.
Determination and analysis of synchronous motor's parameters
Mesņajevs, Aleksandrs; Zviedris, Andrejs
2009-01-01
In this work the parameters of synchronous machines are analyzed- direct-axis reaction Xad and quadrature-axis reaction Xaq. Methods of calculation in view of magnetic system's and its element's saturation are presented. It is shown that definition of these reactances, using as a basis a two-reaction method, is not correct and connected with work demanding chart analyzing calculations. The new approach to the qualitative and quantitative analysis of synchronous machine's operating modes which is based on consecutive use of the magnetic field's theory is offered, without it with two-reaction parameters Xad and Xaq. This approach is realized by means of a magnetic field's modeling using numerical methods with help of modern computers.
The Cultural and Rhetorical Parameters of CSR
DEFF Research Database (Denmark)
Kampf, Constance
How are the parameters of CSR constructed?-corporate communication policy or the interaction between civil society, governments, and corporations? Recognition of the presentation of CSR on the Web as socially constructed argumentation (Coupland 2005) opens the door for a rhetorical approach to bo...... in Corporate Web Sites. Corporate Communication: An International Journal. 12(1). Pollach. I. (2005) Corporate self-presentation on the WWW: Strategies for enhancing usability, credibility and utility. Corporate Communications: An International Journal. 10(4): 285-301....... and the situated choices of corporate website designers with respect to communicating CSR initiatives in those systems offers a nuanced approach to understanding the cultural and rhetorical parameters of communicating CSR knowledge online. Brockreide, Wayne. "Dimensions of the Concept of Rhetoric." in Bernard L...
Bayesian parameter estimation for effective field theories
Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A
2015-01-01
We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Exploring Cosmic Origins with CORE: Cosmological Parameters
Di Valentino, Eleonora; Gerbino, Martina; Poulin, Vivian; Bouchet, François R; Lesgourgues, Julien; Melchiorri, Alessandro; Chluba, Jens; Clesse, Sebastien; Delabrouille, Jacques; Dvorkin, Cora; Forastieri, Francesco; Galli, Silvia; Hooper, Deanna C; Lattanzi, Massimiliano; Martins, Carlos J A P; Salvati, Laura; Cabass, Giovanni; Caputo, Andrea; Giusarma, Elena; Hivon, Eric; Natoli, Paolo; Pagano, Luca; Paradiso, Simone; Rubino-Martin, Jose Alberto; Achucarro, Ana; Ballardini, Mario; Bartolo, Nicola; Baumann, Daniel; Bartlett, James G; de Bernardis, Paolo; Bonaldi, Anna; Bucher, Martin; Cai, Zhen-Yi; De Zotti, Gianfranco; Diego, Josè Maria; Errard, Josquin; Ferraro, Simone; Finelli, Fabio; Genova-Santos, Ricardo T; Gonzalez-Nuevo, Joaquin; Grandis, Sebastian; Greenslade, Josh; Hagstotz, Steffen; Handley, Will; Hindmarsh, Mark; Hernandez-Monteagudo, Carlos; Kiiveri, Kimmo; Kunz, Martin; Lasenby, Anthony; Liguori, Michele; Lopez-Caniego, Marcos; Luzzi, Gemma; Melin, Jean-Baptiste; Mohr, Joseph J; Negrello, Mattia; Paoletti, Daniela; Remazeilles, Mathieu; Ringeval, Christophe; Valiviita, Jussi; Van Tent, Bartjan; Vennin, Vincent; Vittorio, Nicola
2016-01-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify...
Circular object recognition based on shape parameters
Institute of Scientific and Technical Information of China (English)
Chen Aijun; Li Jinzong; Zhu Bing
2007-01-01
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented.The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique.Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects.The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided.The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming.In addition, the method performs well when some circular objects are little deformed and partly misshapen.
Boolean networks with multiexpressions and parameters.
Zou, Yi Ming
2013-01-01
To model biological systems using networks, it is desirable to allow more than two levels of expression for the nodes and to allow the introduction of parameters. Various modeling and simulation methods addressing these needs using Boolean models, both synchronous and asynchronous, have been proposed in the literature. However, analytical study of these more general Boolean networks models is lagging. This paper aims to develop a concise theory for these different Boolean logic-based modeling methods. Boolean models for networks where each node can have more than two levels of expression and Boolean models with parameters are defined algebraically with examples provided. Certain classes of random asynchronous Boolean networks and deterministic moduli asynchronous Boolean networks are investigated in detail using the setting introduced in this paper. The derived theorems provide a clear picture for the attractor structures of these asynchronous Boolean networks.
Parameter inference with estimated covariance matrices
Sellentin, Elena
2015-01-01
When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data errors and their correlations. If the covariance matrix is not known a priori, it may be estimated and thereby becomes a random object with some intrinsic uncertainty itself. We show how to infer parameters in the presence of such an estimated covariance matrix, by marginalising over the true covariance matrix, conditioned on its estimated value. This leads to a likelihood function that is no longer Gaussian, but rather an adapted version of a multivariate $t$-distribution, which has the same numerical complexity as the multivariate Gaussian. As expected, marginalisation over the true covariance matrix improves inference when compared with Hartlap et al.'s method, which uses an unbiased estimate of the inverse covariance matrix but still assumes that the likelihood is Gaussian.
Beam Parameters Measurement Based On Tv Methods
Klimenkov, E; Milichenko, Yu; Voevodin, V
2004-01-01
The paper describes hardware and software used to control TV-cameras and to process TV-images of luminescent screens placed along the beam transfer lines. Industrial devices manually control the movements and focusing of the cameras. All devices are linked to PC via PCI interfaces with homemade drivers for Linux OS and provide both selection of camera and digitizing of video signal synchronized with beam. One part of software provides means to set initial parameters using PC consol. Thus an operator can choose contrast, brightness, some number of significant points on TV-image to calculate beam position and its size. Second part supports remote TV controls and data processing from Control Rooms of U-70 complex using set initial parameters. First experience and results of the method realization are discussed.
Superconducting State Parameters of Binary Superconductors
Directory of Open Access Journals (Sweden)
Aditya M. Vora
2012-05-01
Full Text Available A well known pseudopotential is used to investigate the superconducting state parameters viz. electron-phonon coupling strength , Coulomb pseudopotential *, transition temperature ТС, isotope effect exponent and effective interaction strength N0V for the AgxZn1 – x and AgxAl1 – x binary superconductors theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such experimental values is encouraging, which confirms the applicability of the model potential in explaining the superconducting state parameters of binary mixture.
Quantum Fluctuations of a Superconductor Order Parameter.
Arutyunov, K Yu; Lehtinen, J S
2016-12-01
Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed.
Systematic parameter inference in stochastic mesoscopic modeling
Lei, Huan; Li, Zhen; Karniadakis, George
2016-01-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are sparse. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space....
Analysis of Modeling Parameters on Threaded Screws.
Energy Technology Data Exchange (ETDEWEB)
Vigil, Miquela S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vangoethem, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
Rapid Compact Binary Coalescence Parameter Estimation
Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong
2016-03-01
The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.
CosmoSIS: modular cosmological parameter estimation
Zuntz, Joe; Jennings, Elise; Rudd, Douglas; Manzotti, Alessandro; Dodelson, Scott; Bridle, Sarah; Sehrish, Saba; Kowalkowski, James
2014-01-01
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis
The multiple-parameter fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
LANG Jun; TAO Ran; RAN QiWen; WANG Yue
2008-01-01
The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in frac-tional operator. A new source for the multiplicity of the weight-type fractional Fou-rier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters MN,∈ZM. Therefore a generalized frac-tional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.
Holographic renormalization and the electroweak precision parameters
Round, Mark
2010-09-01
We study the effects of holographic renormalization on an AdS/QCD inspired description of dynamical electroweak symmetry breaking. Our model is a 5D slice of AdS5 geometry containing a bulk scalar and SU(2)×SU(2) gauge fields. The scalar field obtains a vacuum expectation value (VEV) which represents a condensate that triggers electroweak symmetry breaking. Fermion fields are constrained to live on the UV brane and do not propagate in the bulk. The two-point functions are holographically renormalized through the addition of boundary counterterms. Measurable quantities are then expressed in terms of well-defined physical parameters, free from any spurious dependence on the UV cutoff. A complete study of the precision parameters is carried out and bounds on physical quantities derived. The large-N scaling of results is discussed.
Holographic Renormalisation and the Electroweak Precision Parameters
Round, Mark
2010-01-01
We study the effects of holographic renormalisation on an AdS/QCD inspired description of dynamical electroweak symmetry breaking. Our model is a 5D slice of AdS_5 geometry containing a bulk scalar and SU(2) times SU(2) gauge fields. The scalar field obtains a VEV which represents a condensate that triggers electroweak symmetry breaking. Fermion fields are constrained to live on the UV brane and do not propagate in the bulk. The two-point functions are holographically renormalised through the addition of boundary counterterms. Measurable quantities are then expressed in terms of well defined physical parameters, free from any spurious dependence on the UV cut-off. A complete study of the precision parameters is carried out and bounds on physical quantities derived. The large-N scaling of results is discussed.
Useful scaling parameters for the pulse tube
Energy Technology Data Exchange (ETDEWEB)
Lee, J.M.; Kittel, P. [NASA Ames Research Center, Moffett Field, CA (United States); Timmerhaus, K.D. [Univ. of Colorado, Boulder, CO (United States)] [and others
1996-12-31
A set of dimensionless scaling parameters for use in correlating performance data for Pulse Tube Refrigerators is presented. The dimensionless groups result after scaling the mass and energy conservation equations, and the equation of motion for an axisymmetric, two-dimensional ideal gas system. Allowed are viscous effects and conduction heat transfer between the gas and the tube wall. The scaling procedure results in reducing the original 23 dimensional variables to a set of 11 dimensionless scaling groups. Dimensional analysis is used to verify that the 11 dimensionless groups obtained is the minimum number needed to describe the system. The authors also examine 6 limiting cases which progressively reduce the number of dimensionless groups from 11 to 3. The physical interpretation of the parameters are described, and their usefulness is outlined for understanding how heat transfer and mass streaming affect ideal enthalpy flow.
Parameters of PNe: Old fashioned or Trendy?
Kraus, M
2004-01-01
We derive the stellar and circumstellar parameters with two models: the classical constant density nebula model and a stellar wind model. Depending on the mass loss rate of the star the stellar wind model results in a range of valid values which can deviate from the classical model results. This is especially true for the elemental abundances which are for every valid stellar wind model larger than the value found with the classical nebula model. We argue that a density distribution in the shells of PNe formed due to a stellar wind with high mass loss rate is more reliable when deriving stellar and nebular parameters than using the classical constant density nebula model.
Bayesian parameter estimation for effective field theories
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
The Redshift Evolution of LCDM Halo Parameters
Muñoz-Cuartas, J C; Gottlöber, Stefan; Dutton, Aaron
2011-01-01
We study the mass and redshift dependence of the concentration parameter in Nbody simulations spanning masses from $10^{10} \\hMsun$ to $10^{15} \\hMsun$ and redshifts from 0 to 2. We present a series of fitting formulas that accurately describe the time evolution of the concentration-mass relation since z=2. Using arguments based on the spherical collapse model we study the behaviour of the scale length of the density profile during the assembly history of haloes, obtaining physical insights on the origin of the observed time evolution of the concentration mass relation. We present preliminary results of the implementation of this model in the prediction of the values of the concentration parameter for different masses and redshifts.
Perturbing Misiurewicz Parameters in the Exponential Family
Dobbs, Neil
2015-04-01
In one-dimensional real and complex dynamics, a map whose post-singular (or post-critical) set is bounded and uniformly repelling is often called a Misiurewicz map. In results hitherto, perturbing a Misiurewicz map is likely to give a non-hyperbolic map, as per Jakobson's Theorem for unimodal interval maps. This is despite genericity of hyperbolic parameters (at least in the interval setting). We show the contrary holds in the complex exponential family Misiurewicz maps are Lebesgue density points for hyperbolic parameters. As a by-product, we also show that Lyapunov exponents almost never exist for exponential Misiurewicz maps. The lower Lyapunov exponent is -∞ almost everywhere. The upper Lyapunov exponent is non-negative and depends on the choice of metric.
UPRE method for total variation parameter selection
Energy Technology Data Exchange (ETDEWEB)
Wohlberg, Brendt [Los Alamos National Laboratory; Lin, Youzuo [Los Alamos National Laboratory
2008-01-01
Total Variation (TV) Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter for Tikhonov Regularization. In this paper we propose an approach to extend UPRE method to the TV problem. However, applying the extended UPRE is impractical in the case of inverse problems such as de blurring, due to the large scale of the associated linear problem. We also propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.
Constitutive Parameter Measurement Using Double Ridge Waveguide
2013-03-01
PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE Nathan J. Lehman, B.S.E.E. Captain, USAF Approved: Michael Havrilla , PhD (Chairman) Maj Milo Hyde, PhD...would like express my gratitude to Dr. Michael Havrilla , my research advisor. Your ability to illustrate the entire picture of the subject was...electromagnetics U U U UU 83 Dr. Michael J. Havrilla (ENG) (937) 255-3636 x4582 michael.havrilla@afit.edu
Entanglement as a quantum order parameter
Brandão, F G S L
2005-01-01
We show that the quantum order parameters (QOP) associated with the transitions between a normal conductor and a superconductor in the BCS and $\\eta$-pairing models and between a Mott-insulator and a superfluid in the Bose-Hubbard model are directly related to the amount of entanglement existent in the ground state of each system. This gives a physical meaningful interpretation to these QOP, which shows the intrinsically quantum nature of the phase transitions considered.
2-rational Cubic Spline Involving Tension Parameters
Indian Academy of Sciences (India)
M Shrivastava; J Joseph
2000-08-01
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a 2-rational cubic spline interpolant are established. The error analysis of the spline interpolant is also given.
System parameter identification information criteria and algorithms
Chen, Badong; Hu, Jinchun; Principe, Jose C
2013-01-01
Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research pr
Effects of Mismatched Parameter on Chaotic Synchronization
Institute of Scientific and Technical Information of China (English)
PENGJiang-hua; FANGJin-qing
2003-01-01
Chaos-based security communication has become one of the most interesting hot subjects for research of chaotic theory in real world since. In recent years, secure communication via synchronized chaos has been intensely studied. However, in practical application it is difficult to construct two complete identical chaotic systems since there are many reasons to induce parameter mismatch between two systems (response system and drive system).
Parameter Uncertainty for Repository Thermal Analysis
Energy Technology Data Exchange (ETDEWEB)
Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-10-01
This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).
Beyond six parameters: Extending Λ CDM
Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph
2015-12-01
Cosmological constraints are usually derived under the assumption of a six-parameter Λ CDM theoretical framework or simple one-parameter extensions. In this paper we present, for the first time, cosmological constraints in a significantly extended scenario, varying up to 12 cosmological parameters simultaneously, including the sum of neutrino masses, the neutrino effective number, the dark energy equation of state, the gravitational wave background and the running of the spectral index of primordial perturbations. Using the latest Planck 2015 data release (with polarization), we found no significant indication for extensions to the standard Λ CDM scenario, with the notable exception of the angular power spectrum lensing amplitude, Alens , which is larger than the expected value at more than 2 standard deviations, even when combining the Planck data with BAO and supernovae type Ia external data sets. In our extended cosmological framework, we find that a combined Planck+BAO analysis constrains the value of the rms density fluctuation parameter to σ8=0.781-0.063+0.065 at 95 % C.L., helping to relieve the possible tensions with the CFHTlenS cosmic shear survey. We also find a lower value for the reionization optical depth τ =0.058-0.043+0.040 at 95 % C.L. with respect to the one derived under the assumption of Λ CDM . The scalar spectral index nS is now compatible with a Harrison-Zeldovich spectrum to within 2.5 standard deviations. Combining the Planck data set with the Hubble Space Telescope prior on the Hubble constant provides a value for the equation of state w <-1 at more than 2 standard deviations, while the neutrino effective number is fully compatible with the expectations of the standard three neutrino framework.
Source parameters of the 2004 Kaliningrad earthquakes
Domański, Bogusław
2007-09-01
An analysis of source parameters of the two unexpected earthquakes from the Kaliningrad (Russia) area is presented. The earthquakes occurred on 21 September 2004 at 11:05:01 and 13:32:31 UT, respectively. The first event was located at the latitude φ = 54.924°N and the longitude λ = 20.120°E, with a depth h = 16 km, and the second event at φ = 54.876°N, λ = 20.120°E and h = 20 km. Magnitudes Mw of the two events were very similar: 5.1 and 5.2. The magnitude values reported by various international data centers have been meaningfully different. The reason is the presence of high-frequency components in Z velocity component of the S wavefield. They were observed along the direction defined by two stations, BLEU in Sweden and SUW in Poland, located in opposite sides of the source. Along the direction perpendicular to it, the effects are relatively very small. The high-frequency waves are understood to mean components in the 6-8 Hz band for event 1 and 2-4 Hz for event 2. The effects in question are also clearly visible on displacement spectrograms. The magnitude values calculated at such stations from S-wave amplitudes or from seismic spectra are clearly overestimated and are close to 6. Therefore, we made a careful selection of channels in order to determine the spectral parameters and, on this basis, the source parameters. The size of the source is relatively small, of about 2 km. The closest seismic station is at 100 source radii from the source. One can clearly see the effect of the TT zone which markedly reduces the seismic moment value for seismic stations laying on the opposite sides of the source. Both events have very similar spatial distributions of the source parameters: magnitude, seismic moment and radius.
The Lund Model at Nonzero Impact Parameter
Janik, R A; Janik, Romuald A.; Peschanski, Robi
2003-01-01
We extend the formulation of the longitudinal 1+1 dimensional Lund model to nonzero impact parameter using the minimal area assumption. Complete formulae for the string breaking probability and the momenta of the produced mesons are derived using the string worldsheet Minkowskian helicoid geometry. For strings stretched into the transverse dimension, we find probability distribution with slope linear in m_T similar to the statistical models but without any thermalization assumptions.
One-parameter groups and combinatorial physics
Duchamp, G; Solomon, A I; Horzela, A; Blasiak, P; Duchamp, Gerard; Penson, Karol A.; Solomon, Allan I.; Horzela, Andrej; Blasiak, Pawel
2004-01-01
In this communication, we consider the normal ordering of sums of elements of the form (a*^r a a*^s), where a* and a are boson creation and annihilation operators. We discuss the integration of the associated one-parameter groups and their combinatorial by-products. In particular, we show how these groups can be realized as groups of substitutions with prefunctions.
Optimization of audio - ultrasonic plasma system parameters
Haleem, N. A.; Abdelrahman, M. M.; Ragheb, M. S.
2016-10-01
The present plasma is a special glow plasma type generated by an audio ultrasonic discharge voltage. A definite discharge frequency using a gas at a narrow band pressure creates and stabilizes this plasma type. The plasma cell is a self-extracted ion beam; it is featured with its high output intensity and its small size. The influence of the plasma column length on the output beam due to the variation of both the audio discharge frequency and the power applied to the plasma electrodes is investigated. In consequence, the aim of the present work is to put in evidence the parameters that influence the self-extracted collected ion beam and to optimize the conditions that enhance the collected ion beam. The experimental parameters studied are the nitrogen gas, the applied frequency from 10 to 100 kHz, the plasma length that varies from 8 to 14 cm, at a gas pressure of ≈ 0.25 Torr and finally the discharge power from 50 to 500 Watt. A sheet of polyethylene of 5 micrometer covers the collector electrode in order to confirm how much ions from the beam can go through the polymer and reach the collector. To diagnose the occurring events of the beam on the collector, the polymer used is analyzed by means of the FTIR and the XRF techniques. Optimization of the plasma cell parameters succeeded to enhance and to identify the parameters that influence the output ion beam and proved that its particles attaining the collector are multi-energetic.
The PASTEL catalogue of stellar parameters
Soubiran, C.; Le Campion, J.-F.; Cayrel de Strobel, G.; Caillo, A.
2010-06-01
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue, published in 1997 and 2001. It is a bibliographical compilation of stellar atmospheric parameters providing (T_eff, log g, [Fe/H]) determinations obtained from the analysis of high resolution, high signal-to-noise spectra, carried out with model atmospheres. PASTEL also provides determinations of the one parameter T_eff based on various methods. It is aimed in the future to provide also homogenized atmospheric parameters and elemental abundances, radial and rotational velocities. A web interface has been created to query the catalogue on elaborated criteria. PASTEL is also distributed through the CDS database and VizieR. Methods: To make it as complete as possible, the main journals have been surveyed, as well as the CDS database, to find relevant publications. The catalogue is regularly updated with new determinations found in the literature. Results: As of Febuary 2010, PASTEL includes 30151 determinations of either T_eff or (T_eff, log g, [Fe/H]) for 16 649 different stars corresponding to 865 bibliographical references. Nearly 6000 stars have a determination of the three parameters (T_eff, log g, [Fe/H]) with a high quality spectroscopic metallicity. The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/. It is also available in electronic form at the Centre de Données Stellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel), at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111
Core Dominance Parameter for -Ray Loud Blazars
Indian Academy of Sciences (India)
S. H. Li; J. H. Fan; D. X. Wu
2014-09-01
In this paper, we compiled 572 blazars that have known core dominance parameter (log ), out of which 121 blazars are -ray loud blazars. We compared log between 121 blazars and the rest with non -ray detections, and found that -ray loud blazars showed a different distribution, and their average value of log is greater than that for non -ray blazars. Our analysis suggests that the -ray emissions are strongly beamed.
Identifying crucial parameter correlations maintaining bursting activity.
Directory of Open Access Journals (Sweden)
Anca Doloc-Mihu
2014-06-01
Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.
Discontinuities, Feynman parameters and d-lines
Halliday, I G
1977-01-01
The calculation of asymptotic limits of Feynman diagrams using Feynman parameter techniques has developed a powerful and useful technology. A major gap in this armory has concerned the calculation of specific discontinuities of Feynman diagrams. The author remedies this gap and illustrates the new technique on a series of familiar situations. These include in the Regge limit, the ladder and the AFS diagrams, and the x approximately 1 deep inelastic electroproduction region. (4 refs).
Identifying tectonic parameters that influence tsunamigenesis
van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca
2017-04-01
The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.
Dimensionless parameters for lidar performance characterization
Comerón Tejero, Adolfo; Agishev, Ravil R.
2014-01-01
A set of three dimensionless parameters is proposed to characterize lidar systems. Two of them are based on an asymptotic approximation of the output signal-to-noise ratio as a function of the input optical power reaching the photoreceiver when there is no background radiation. Of these, one is defined as the ratio between the input signal power level coming from a reference range in a reference atmosphere (reference power level) and the input power level that would produce a reference output...
Plasma diagnostics discharge parameters and chemistry
Auciello, Orlando
1989-01-01
Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che
APPLICATION OF QUATERNIONS FOR REFLECTOR PARAMETER
Directory of Open Access Journals (Sweden)
I. A. Konyakhin
2016-09-01
Full Text Available Subject of Research. The paper deals with application of quaternions for optimization of reflector parameters at autocollimation measurements in comparison with a matrix method. Computer-based results on the quaternionic models are presented that have given the possibility to determine conditions of measurement error reduction in view of apriori information on the rotation axis position. The practical synthesis technique for tetrahedron reflector parameters using found ratios is considered. Method. Originally, received conditions for reduction of autocollimation system measurement error are determined with the use of a matrix method for definition of an angular object position as a set of three equivalent consecutive turns about coordinate axes. At realization of these conditions the numerous recalculation of orientation parameters between various systems of coordinates is necessary that increases complexity and reduces resulting accuracy of autocollimation system at practical measurements. The method of quaternions gives the possibility to analyze the change of an absolute angular position in space, thus, there are conditions of accuracy increase regardless of the used systems of coordinates. Main Results. Researches on the mathematical model have shown, that the orthogonal arrangement of two basic constant directions for autocollimator tetrahedron reflector is optimal with respect to criterion of measurement error reduction at bisection arrangement of actual turn axis against them. Practical Relevance. On the basis of the found ratios between tetrahedron reflector angles and angles of its initial orientation parameters we have developed a practical method of reflector synthesis for autocollimation measurements in case of apriori information on an actual turn axis at monitoring measurements of the shaft or pipelines deformations.
Modular Parameter Identification of Biomolecular Networks
Lang, Moritz; Stelling, Jörg
2016-01-01
The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the "curse of dimensionality," abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we pr...
IMPROVEMENT OF FLUID PIPE LUMPED PARAMETER MODEL
Institute of Scientific and Technical Information of China (English)
Kong Xiaowu; Wei Jianhua; Qiu Minxiu; Wu Genmao
2004-01-01
The traditional lumped parameter model of fluid pipe is introduced and its drawbacks are pointed out.Furthermore, two suggestions are put forward to remove these drawbacks.Firstly, the structure of equivalent circuit is modified, and then the evaluation of equivalent fluid resistance is change to take the frequency-dependent friction into account.Both simulation and experiment prove that this model is precise to characterize the dynamic behaviors of fluid in pipe.
Parameters affecting seat belt use in Greece.
Yannis, G; Laiou, A; Vardaki, S; Papadimitriou, E; Dragomanovits, A; Kanellaidis, G
2011-09-01
The objective of this research is the exploration of seat belt use in Greece and particularly the identification of the parameters affecting seat belt use in Greece. A national field survey was conducted for the analytical recording of seat belt use. A binary logistic regression model was developed, and the impact of each parameter on seat belt use in Greece was quantified. Parameters included in the model concern characteristics of car occupants (gender, age and position in the car), the type of the car and the type of the road network. The data collection revealed that in Greece, the non-use of seat belt on the urban road network was higher than on the national and rural road network and young and older men use seat belts the least. The developed model showed that travelling on a national road is negative for not wearing the seat belt. Finally, the variable with the highest impact on not wearing a seat belt is being a passenger on the back seats.
Automated reticulocyte parameters for hereditary spherocytosis screening.
Lazarova, Elena; Pradier, Olivier; Cotton, Frédéric; Gulbis, Béatrice
2014-11-01
The laboratory diagnosis of hereditary spherocytosis (HS) is based on several screening and confirmatory tests; our algorithm includes clinical features, red blood cell morphology analysis and cryohaemolysis test, and, in case of positive screening, sodium dodecyl sulphate polyacrylamide gel electrophoresis as a diagnostic test. Using the UniCel DxH800 (Beckman Coulter) haematology analyser, we investigated automated reticulocyte parameters as HS screening tool, i.e. mean reticulocyte volume (MRV), immature reticulocyte fraction (IRF) and mean sphered cell volume (MSCV). A total of 410 samples were screened. Gel electrophoresis was applied to 159 samples that were positive for the screening tests. A total of 48 patients were diagnosed as HS, and seven were diagnosed as acquired autoimmune haemolytic anaemia (AIHA). Some other 31 anaemic conditions were also studied. From the receiver operating characteristic (ROC) curve analysis, both delta (mean cell volume (MCV)-MSCV) and MRV presented an area under the curve (AUC) of 0.98. At the diagnostic cut-off of 100 % sensitivity, MRV showed the best specificity of 88 % and a positive likelihood ratio of 8.7. The parameters IRF, MRV and MSCV discriminated HS not only from controls and other tested pathologies but also from AIHA contrary to the cryohaemolysis test. In conclusion, automated reticulocyte parameters might be helpful for haemolytic anaemia diagnostic orientation even for general laboratories. In combination with cryohaemolysis, they ensure an effective and time-saving screening for HS for more specialised laboratories.
Physicochemical parameters of Amazon Melipona honey
Directory of Open Access Journals (Sweden)
Ligia Bicudo de Almeida-Muradian
2007-06-01
Full Text Available Stingless bees produce a honey that is different from the Apis honey in terms of composition. There aren't enough data to establish quality control parameters for this product, mainly due to lack of research results. The aim of this work is to evaluate some physicochemical parameters that can be used for the characterization and for the quality control of the Meliponinae honey. Four different samples were collected in the Amazon region of Brazil in 2004 (Melipona compressipes manaoense bee and Melipona seminigra merribae bee. Honey analyses were performed as described by the official methods. The mean results were: moisture (30.13%, pH (3.65, acidity (24.57 mEq/kg, water activity (0.75, fructose (31.91%, glucose (29.30% and sucrose (0.19%. These results reinforce the need for a specific regulation for stingless bee honey. This will only be feasible when enough data is available to establish upper and lower limits for the physicochemical parameters used for quality control.
Bias in parameter estimation of form errors
Zhang, Xiangchao; Zhang, Hao; He, Xiaoying; Xu, Min
2014-09-01
The surface form qualities of precision components are critical to their functionalities. In precision instruments algebraic fitting is usually adopted and the form deviations are assessed in the z direction only, in which case the deviations at steep regions of curved surfaces will be over-weighted, making the fitted results biased and unstable. In this paper the orthogonal distance fitting is performed for curved surfaces and the form errors are measured along the normal vectors of the fitted ideal surfaces. The relative bias of the form error parameters between the vertical assessment and orthogonal assessment are analytically calculated and it is represented as functions of the surface slopes. The parameter bias caused by the non-uniformity of data points can be corrected by weighting, i.e. each data is weighted by the 3D area of the Voronoi cell around the projection point on the fitted surface. Finally numerical experiments are given to compare different fitting methods and definitions of the form error parameters. The proposed definition is demonstrated to show great superiority in terms of stability and unbiasedness.
Multi-parameter singular Radon transforms
Stein, Elias M
2010-01-01
The purpose of this announcement is to describe a development given in a series of forthcoming papers by the authors that concern operators of the form \\[ f\\mapsto \\psi(x) \\int f(\\gamma_t(x)) K(t)\\: dt, \\] where $\\gamma_t(x)=\\gamma(t,x)$ is a $C^\\infty$ function defined on a neighborhood of the origin in $(t,x)\\in \\mathbb{R}^N\\times \\mathbb{R}^n$ satisfying $\\gamma_0(x)\\equiv x$, $K(t)$ is a "multi-parameter singular kernel" supported near $t=0$, and $\\psi$ is a cutoff function supported near $x=0$. This note concerns the case when $K$ is a "product kernel". The goal is to give conditions on $\\gamma$ such that the above operator is bounded on $L^p$ for $1
parameter" case when $K$ is a Calder\\'on-Zygmund kernel was studied by Christ, Nagel, Stein, and Wainger. The theory here extends these results to the multi-parameter context and also deals effectively with the case when $\\gamma$ is real-analytic.
Order Parameter Theory for Anderson Localization
Dobrosavljevic, Vladimir; Pastor, Andrei
2001-03-01
The Anderson metal-insulator transition is well known to display many similarities to standard critical phenomena, yet an obvious order parameter has remained difficult to find. In this work, we demonstrate that a relevant local order parameter can be defined and self-consistently determined, providing a simple and physically transparent picture of the Anderson transition. Our formulation proceeds in close analogy with the well-known coherent potential approximation (CPA), with a small but crucial difference. Our theory self-consistently calculates not the average but instead the typical local density of states, which serves as the order parameter, and is found to vanish at the Anderson transition. As a result, we show that both the escape rate of an electron from a given site, and the conductivity vanish in the insulating phase, which emerges for disorder strengths comparable to the electronic bandwidth. Due to the local character of our theory, it can easily be combined with standard dynamical mean-field approaches for strong electronic correlations, thus opening an attractive avenue for the study of the interplay (A. A. Pastor and V. Dobrosavljevic, Phys. Rev. Lett. 83), 4642 (1999) ( V. Dobrosavljevic and G. Kotliar, Phys. Rev. Lett. 78), 3943 (1997) of interaction and disorder.
Unsaturated flow parameters of municipal solid waste.
Feng, Shi-Jin; Zheng, Qi-Teng; Chen, H X
2017-05-01
Leachate pollution/recirculation and landfill gas emission are the major environmental concerns in municipal solid waste (MSW) landfills. A good understanding and prediction of MSW unsaturated properties are critical for the design of piping systems and the control of these problems within landfills. This paper reviews the recent studies of unsaturated properties of MSW, including experimental methods, theoretical models and corresponding model parameters. For experimental methods, the sample size is a common and significant limitation and large test apparatuses (e.g., >80cm in diameter) are generally required and valuable. The theoretical models for MSW also have some limitations due to the changes in waste composition and particle size distribution caused by biodegradation. Thus, the available data of intrinsic permeabilities, water retention curves, relative permeabilities and anisotropy of MSW were summarized to investigate the influences of porosity, waste composition and particle size distribution. A series of estimation methods were subsequently proposed to determine the parameters of water retention curve like θLm, θLr, nv and α. The other parameters such as the pore connectivity term (l) and the degree of anisotropy (k) were significantly lacking data, thus only their relationships with porosity were proposed. The results show that it is possible to define the second order effects caused by variations in porosity, waste composition and particle size distribution. However, the estimation methods still need more experimental data for improvement, especially their dependence on waste composition and particle size distribution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Approximation Algorithms for Directed Width Parameters
Kintali, Shiva; Kumar, Akash
2011-01-01
Treewidth of an undirected graph measures how close the graph is to being a tree. Several problems that are NP-hard on general graphs are solvable in polynomial time on graphs with bounded treewidth. Motivated by the success of treewidth, several directed analogues of treewidth have been introduced to measure the similarity of a directed graph to a directed acyclic graph (DAG). Directed treewidth, D-width, DAG-width, Kelly-width and directed pathwidth are some such parameters. In this paper, we present the first approximation algorithms for all these five directed width parameters. For directed treewidth and D-width we achieve an approximation factor of O(sqrt{logn}). For DAG-width, Kelly-width and directed pathwidth we achieve an O({\\log}^{3/2}{n}) approximation factor. Our algorithms are constructive, i.e., they construct the decompositions associated with these parameters. The width of these decompositions are within the above mentioned factor of the corresponding optimal width.
Fast Harmonic Splines and Parameter Choice Methods
Gutting, Martin
2017-04-01
Solutions to boundary value problems in geoscience where the boundary is the Earth's surface are constructed in terms of harmonic splines. These are localizing trial functions that allow regional modeling or the improvement of a global model in a part of the Earth's surface. Some cases of the occurring kernels can be equipped with a fast matrix-vector multiplication using the fast multipole method (FMM). The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. The numerical effort of the matrix-vector multiplication becomes linear in reference to the number of points for a prescribed accuracy of the kernel approximation. This fast spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate several methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. However, in order to keep a fast solution algorithm we do no longer have access to the whole matrix or e.g. its singular values whose computation requires a much larger numerical effort. This must be reflected by the parameter choice methods. Therefore, in some cases a further approximation is necessary. The performance of these methods is considered for different types of noise in a large simulation study with applications to gravitational field modeling as well as to boundary value problems.
Reproductive Parameters of the Dogo Argentino Bitch
Directory of Open Access Journals (Sweden)
Marina Caffaratti
2013-01-01
Full Text Available The Dogo Argentino (DA is the first and only breed from Argentina recognized worldwide. Although its morphologic features have been well established, its normal reproductive parameters are not clearly known. The aim of this study was to determine the main DA bitch reproductive parameters. One hundred and forty-nine surveys were obtained from breeders from Córdoba province, Argentina: one for each intact DA bitch from 1 to 14 years old. The DA bitch reached puberty at an average of 8.93 months. The mean duration of vulval bleeding found in this study was 11.11 days. The clinical signs characteristic for proestrous-estrous were vulval edema (89.93%, bleeding during the time of mating (32.21%, holding the tail to the side (95.30%, and docility during mating (85.91%. DA bitches had a whelping rate of 84%. Out of 299 pregnancies, 89.30% exhibited a normal parturition, 6.69% presented dystocia, 2.68% needed Cesarean section, and 1.34% aborted. In conclusion, the reproductive parameters of the DA bitch are similar to those identified for other large breeds. DA often showed a prolonged vulval bleeding longer than proestrus. Its high whelping rate, its low incidence of dystocia, and its good maternal ability define the DA as a good reproductive breed with normal reproductive functions.
Fast cosmological parameter estimation using neural networks
Auld, T; Hobson, M P; Gull, S F
2006-01-01
We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called CosmoNet, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released Pico algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of CosmoNet by computing CMB power spectra over a box in the parameter space of flat \\Lambda CDM models containing the 3\\sigma WMAP1 confidence region. We also use CosmoNet to compute the WMAP3 likelihood for flat \\Lambda CDM models and show that marginalised posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3% of cosmic variance, and that CosmoNet is \\sim 7 \\times 10^4 faster than CAMB (for flat ...
Regularization Parameter Selections via Generalized Information Criterion.
Zhang, Yiyun; Li, Runze; Tsai, Chih-Ling
2010-03-01
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC), for selecting the regularization parameter. Our proposal makes a connection between the classical variable selection criteria and the regularization parameter selections for the nonconcave penalized likelihood approaches. We show that the BIC-type selector enables identification of the true model consistently, and the resulting estimator possesses the oracle property in the terminology of Fan and Li (2001). In contrast, however, the AIC-type selector tends to overfit with positive probability. We further show that the AIC-type selector is asymptotically loss efficient, while the BIC-type selector is not. Our simulation results confirm these theoretical findings, and an empirical example is presented. Some technical proofs are given in the online supplementary material.
The PASTEL catalogue of stellar parameters
Soubiran, C; de Strobel, G Cayrel; Caillo, A
2010-01-01
The PASTEL catalogue is an update of the [Fe/H] catalogue, published in 1997 and 2001. It is a bibliographical compilation of stellar atmospheric parameters providing (Teff,logg,[Fe/H]) determinations obtained from the analysis of high resolution, high signal-to-noise spectra, carried out with model atmospheres. PASTEL also provides determinations of the one parameter Teff based on various methods. It is aimed in the future to provide also homogenized atmospheric parameters and elemental abundances, radial and rotational velocities. A web interface has been created to query the catalogue on elaborated criteria. PASTEL is also distributed through the CDS database and VizieR. To make it as complete as possible, the main journals have been surveyed, as well as the CDS database, to find relevant publications. The catalogue is regularly updated with new determinations found in the literature. As of Febuary 2010, PASTEL includes 30151 determinations of either Teff or (Teff,logg,[Fe/H]) for 16649 different stars cor...
The QCD improved electroweak parameter $\\rho$
Wang, Sheng-Quan; Shen, Jian-Ming; Han, Hua-Yong; Ma, Yang
2014-01-01
In the present paper, we make a detailed analysis for the QCD corrections to the electroweak $\\rho$ parameter by applying the principle of maximum conformality (PMC). Up to four-loop level, we obtain $\\Delta\\rho|_{\\rm N^3LO} = \\left(8.256^{+0.045}_{-0.012}\\right) \\times10^{-3}$ for $\\mu_{r}\\in[M_{t}/2$, $2M_{t}]$ under the conventional scale setting. More over, by defining a ratio, $\\Delta R=\\Delta\\rho/3X_t-1$, it is found that its conventional scale error is $\\sim \\pm9 \\%$ at the two-loop level, which changes to $\\sim\\pm4\\%$ at the three-loop level and $\\sim \\pm 2.5\\%$ at the four-loop level, respectively. This shows that the scale uncertainty constitutes an important error for estimating the $\\rho$ parameter. On the other hand, by applying the PMC scale setting, $\\Delta\\rho|_{\\rm N^3LO}$ is almost fixed to be $8.228\\times10^{-3}$, and the conventional scale uncertainty can be eliminated and the pQCD convergence can also be greatly improved. Finally, as applications of the QCD improved $\\rho$ parameter, we o...
Planck 2013 results. XVI. Cosmological parameters
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cappellini, B.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chen, X.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Haissinski, J.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T.J.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the additi...
Shape parameters of Galactic open clusters
Kharchenko, N V; Petrov, M I; Piskunov, A E; Röser, S; Schilbach, E; Scholz, R -D
2008-01-01
(abridged) In this paper we derive observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. We provide the observed shape parameters of Galactic open clusters, computed with the help of a multi-component analysis. For the vast majority of clusters these parameters are determined for the first time. High resolution ("star by star") N-body simulations are carried out with the specially developed $\\phi$GRAPE code providing models of clusters of different initial masses, Galactocentric distances and rotation velocities. The comparison of models and observations of about 150 clusters reveals ellipticities of observed clusters which are too low (0.2 vs. 0.3), and offers the basis to find the main reason for this discrepancy. The models predict that after $\\approx 50$ Myr clusters reach an oblate shape with an axes ratio of $1.65:1.35:1$, and with the major axis tilted by an angle of $q_{XY} \\approx 30^\\circ$ with...
The Advanced Photon Source list of parameters
Energy Technology Data Exchange (ETDEWEB)
Bizek, H.M. [comp.
1996-07-01
The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system`s parameters include parameters for both an undulator and a wiggler.
Cosmological parameter estimation: impact of CMB aberration
Catena, Riccardo
2012-01-01
The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...
Efficient cosmological parameter sampling using sparse grids
Frommert, Mona; Riller, Thomas; Reinecke, Martin; Bungartz, Hans-Joachim; Ensslin, Torsten
2010-01-01
We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary...
Directory of Open Access Journals (Sweden)
Baker Syed
2011-01-01
Full Text Available Abstract In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF, rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.
Baker, Syed Murtuza; Poskar, C Hart; Junker, Björn H
2011-10-11
In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison.
Scheipers, U; Ermert, H; Sommerfeld, H J; Garcia-Schürmann, M; Kühne, K; Senge, T; Philippou, S
2003-05-01
An ultrasonic multi-feature tissue characterizing system for the detection of prostate cancer is presented. The system is based on the processing of radio frequency (RF) ultrasonic echo data. Data from 100 patients was acquired in a clinical study. Parameters are extracted from the RF echo data and classified using two adaptive network-based fuzzy inference systems (FIS) working in parallel as a nonlinear classifier. Next to spectral parameters, conventional texture parameters are calculated using demodulated and log-compressed echo data. In the first approach, the classifier is trained on both, spectral and texture parameters. In the second approach, the classifier is only trained on texture parameters. Classification results of both approaches are compared and it is demonstrated, that only the use of spectral parameters yields satisfying classification results. Results of a minimum distance classifier (MDC) are presented for comparison with the fuzzy inference system. For the final fuzzy inference systems used in this approach, the area under the ROC curve is between 84% and 86% for the combined approach and between 70% and 74% for the approach based on texture parameters only.
Institute of Scientific and Technical Information of China (English)
Wang Hong-xin; Cheng Shu-kang; Wen Xi-shan; Sun Xiong-fei; Chen Yun-ping
2004-01-01
This paper deals with the experimental study on the correlation between the geometrical parameters of electrical tree and corresponding partial discharge (PD) characteristic parameters in the course of electrical tree aging within cross linked polyethylene (XLPE) insulation. The electrical tree aging tests were performed on specimens removed from a section of 220 kV transmission cable. The PD macroscopic characteristic parameters were found to be significantly dependent on the corresponding geometrical parameters of electrical tree channels in the course of aging of XLPE, and different kind of electrical tree bas different characteristics, and there is obvious correlation between the type of electrical tree and the pre-applied power-frequency stress. Beside, using regression analysis, the expression of the relation between them were obtained,and from which it can be seen that there is significant nonlinear correlation between geometrical parameters of electrical tree and corresponding PD characteristic parameters in the course of aging of XLPE. Therefore, the aging degree of XLPE can be effectively evaluated by recognizing the changing regularity of the PD macroscopic characteristic parameters.
Determining extreme parameter correlation in ground water models
DEFF Research Database (Denmark)
Hill, Mary Cole; Østerby, Ole
2003-01-01
In ground water flow system models with hydraulic-head observations but without significant imposed or observed flows, extreme parameter correlation generally exists. As a result, hydraulic conductivity and recharge parameters cannot be uniquely estimated. In complicated problems, such correlation...... correlation coefficients, but it required sensitivities that were one to two significant digits less accurate than those that required using parameter correlation coefficients; and (3) both the SVD and parameter correlation coefficients identified extremely correlated parameters better when the parameters...
Directory of Open Access Journals (Sweden)
Cihat Arslantürk
2016-08-01
Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.
Directory of Open Access Journals (Sweden)
A. Elsonbaty
2014-10-01
Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.
Composite likelihood estimation of demographic parameters
Directory of Open Access Journals (Sweden)
Garrigan Daniel
2009-11-01
Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable
Parameter estimation, model reduction and quantum filtering
Chase, Bradley A.
This thesis explores the topics of parameter estimation and model reduction in the context of quantum filtering. The last is a mathematically rigorous formulation of continuous quantum measurement, in which a stream of auxiliary quantum systems is used to infer the state of a target quantum system. Fundamental quantum uncertainties appear as noise which corrupts the probe observations and therefore must be filtered in order to extract information about the target system. This is analogous to the classical filtering problem in which techniques of inference are used to process noisy observations of a system in order to estimate its state. Given the clear similarities between the two filtering problems, I devote the beginning of this thesis to a review of classical and quantum probability theory, stochastic calculus and filtering. This allows for a mathematically rigorous and technically adroit presentation of the quantum filtering problem and solution. Given this foundation, I next consider the related problem of quantum parameter estimation, in which one seeks to infer the strength of a parameter that drives the evolution of a probe quantum system. By embedding this problem in the state estimation problem solved by the quantum filter, I present the optimal Bayesian estimator for a parameter when given continuous measurements of the probe system to which it couples. For cases when the probe takes on a finite number of values, I review a set of sufficient conditions for asymptotic convergence of the estimator. For a continuous-valued parameter, I present a computational method called quantum particle filtering for practical estimation of the parameter. Using these methods, I then study the particular problem of atomic magnetometry and review an experimental method for potentially reducing the uncertainty in the estimate of the magnetic field beyond the standard quantum limit. The technique involves double-passing a probe laser field through the atomic system, giving
Rocks in motion: a one parameter description
Haug, O. T.; Rosenau, M.; Leever, K.; Oncken, O.
2013-12-01
Rock fall, slide and avalanches are dynamically different phenomena of rocks in motion: falls are mostly dominated by free fall and elastic impacts, slides by friction at their base and avalanches by granular flow. Despite these dynamical differences, the properties of the material involved can be viewed similar, and the main (and only?) difference is typically the size of the systems (falls: 10 meters, slides: 102 meters, avalanches: 103 meters). If only size matters: can gravitational rock movements be described in a simple quantitative framework without losing any underlying physics? To explore the dynamics of gravitational rock movements we performed a dimensional analysis combined with experimental validation. Dimensional analysis suggests 9 dimensionless parameters that describe the system, one of which is Π = C/ρgh, where ρ is density, h height and C cohesion of the material and g is the gravitational acceleration. This dimensionless number describes how strong the material is compared to its size, and varies from 10-4 for rock avalanches. Can this parameter be used to describe the spectrum of dynamics for rocks in motions in a physically meaningful way? To test this, we performed experiments using labscale rock analogues. Gravitational rock movements are modeled under normal gravity conditions, by releasing material down a 1 meter planar slope at an angle of 45°. The material used is a cemented granular material, the cohesion of which can be controlled over several order of magnitude (101 to 106 Pa). The experiments are monitored using a 50 Hz digital camera. Surface velocities are quantified using a Particle Image Velocimetry while other physical parameters (fragment size distribution, position, friction) are measured using optical image analysis. We perform experiments where the initial value of Π (Π0) is varied over 7 orders of magnitude (10-2 to 104), mapping a parameters space large enough to study a wide range of gravitational rock movement
Database of Physiological Parameters for Early Life Rats and Mice
U.S. Environmental Protection Agency — The Database of Physiological Parameters for Early Life Rats and Mice provides information based on scientific literature about physiological parameters. Modelers...
[Morbidity parameters in mining industry workers of Southern Urals].
Askarova, Z F; Askarov, R A
2009-01-01
The authors presented parameters of transitory disablement morbidity, occupational morbidity for workers in two mining enterprises (Bashkortostan Republic), calculated integral parameter of disablement.
Energy Technology Data Exchange (ETDEWEB)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Sun, Yu; Tesfa, Teklu; Ruby Leung, L.
2016-05-01
Effective uncertainty quantification approaches are needed to identify important parameters or factors that affect complex Earth system models that composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in Community Land Model (CLM) simulations of runoff and latent heat flux in a watershed are evaluated. Simple residual statistics, the Nash-Sutcliffe coefficient, and log mean square error are used as alternative measures of the deviations between the simulated and field observed values. The effects of the input parameters on the deviations are evaluated quantitatively using analysis of variance (ANOVA) based on the generalized linear model (GLM), and using generalized cross validation (GCV) based on the multivariate adaptive regression splines (MARS) model. These analyses 1) help identify how to adjust parameter values and therefore the calibration of the CLM parameters and to improve the model’s simulations, and 2) can approximately predict the model calibration performance. The convergence behavior of the sensitivity analysis with number of sampling points for both ANOVA and GCV is also examined relative to different combinations of input parameters and output response variables and their metrics.
Ozturk, Yusuf; Egemen Yilmaz, Asim; Ozbay, Ekmel
2016-04-01
In this study, we explain an approach including conversion from constitutive parameters to dispersive transmission line parameters using the double-band DNG (double-negative) properties of the circular type fishnet metamaterials. After designing the metamaterial structure, the numerical calculations and the composite right/left-handed (CRLH) modeling of circular-type metamaterials are realized in free space. Detailed dispersion characteristics give us the opportunity to explain the true behavior of the inclusions during the analysis stage. By combining the results coming from the standard retrieval procedure with the conventional CRLH theory, we calculate the actual values of the transmission line parameters for all frequency regimes. The constitutive parameters of an equivalent CRLH transmission line are derived and shown to be negative values. It is shown that the constitutive parameters present the same behavior for all negative refractive index regimes. The double-negative properties and the phase advance/lag behavior of metamaterials are observed based on the dispersive transmission line parameters.
Directory of Open Access Journals (Sweden)
Jonathan R Karr
2015-05-01
Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Optimal design criteria - prediction vs. parameter estimation
Waldl, Helmut
2014-05-01
G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.
Parameters of measuring of european political consciousness
Directory of Open Access Journals (Sweden)
M. M. Pikula
2015-09-01
Full Text Available In the article the author analyzes the parameters of European political consciousness, i.e. European research field of political consciousness in qualitative and quantitative terms, which may be based on different indicators. The issue of emergence and development of European political consciousness becomes topical because firstly, its formation as the subjective dimension of European integration policy is not a spontaneous process and, secondly, European integration is carried out not only from the top but from the bottom, requiring deliberate interference of the public with the process; the public possesses the formed European political consciousness. Since the latter is a specific mental construct, the author offers to apply the triad «criteria parameters – indicators». The characteristic that makes it possible to evaluate certain processes or phenomena in the system of Europeanness / Europeanism and specifies the quality system of views and opinions, which are realized in European behavior, is considered to be the criterion of European political consciousness. The European political consciousness parameters are seen to include the relevant historical memory, trends of public opinion and awareness regarding the European Union and position of its members in the European integration process, including the assessment of the existence and development of the EU; knowledge and views on the main EU institutions, assessing the importance of the main institutions of the EU and trust in them; a positive vision for the future of the European Union etc. The author considers the performance and objective characteristics and dimensions, including positive correlation of national and European levels of identity (European identity and European behavior to be the indicatiors of European political awareness. On the basis of these indicators the control of the condition and trends of European political consciousness development will be carried out.
Hematological parameters in children with Down syndrome
Directory of Open Access Journals (Sweden)
Renato Nisihara
2015-04-01
Full Text Available Introduction: There are few studies that investigated whether Down syndrome (DS interferes with references values for complete blood counts (CBC test in children with the syndrome. Objective: This study aimed to analyze the results of CBC performed in children with DS. Patients and methods: Data from CBC of DS children were included; at the time of examination they were aged between 2 and 10 years and had no clinical signs and/or symptoms of infectious disease. The hematological parameters analyzed were: total number of erythrocytes (RBC, hemoglobin (Hb concentration, hematological indices, platelet count, and total number of leucocytes. Additionally, we compared the collected parameters according to gender and age of the children studied. Results: A total of 203 CBC (100 girls and 103 boys were evaluated. In general, no significant differences were observed in studied parameters between the values found in samples of DS children and the values described in the literature as a reference for children in this age group. No difference in the prevalence of anemia was observed in relation to gender (p = 0.33, 14/103 (13.6% boys, and 11/100 (11% girls had anemia. However, the Hb and hematological indices values found in boys was significantly lower than in girls (p < 0.001. Conclusion: This investigation is the first one in Brazil to present and analyze the CBC results of DS children, reporting that their hematological indices are within the expected range for children without DS. Additionally, it was found that 12.3% of them had anemia.