WorldWideScience

Sample records for micro-gravimetric corrosion studies

  1. Study of the corrosion behavior of magnesium alloy weddings in NaCl solutions by gravimetric tests

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, J. A.; Calderon, B.; Portoles, A.

    2015-07-01

    In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS). The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW) and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior. (Author)

  2. Comparison Of Metal Corrosion Inhibition By Gravimetric And Linear Polarization Resistance Methods

    OpenAIRE

    Banerji, Shankha

    1992-01-01

    Studies were conducted to evaluate the effectiveness of various dosages of the selected silicate and phosphate compounds applied for corrosion inhibition of cast iron, copper, lead, and galvanized steel specimens. The compounds selected for study were zinc polyphosphate (Calgon C-39), zinc orthophosphate (Virchem V-931), sodium metasilicate and glassy silicate. The effectiveness of these compounds for corrosion inhibition were studied under differing water quality conditions using gravimetric...

  3. Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests

    Directory of Open Access Journals (Sweden)

    Segarra, José A.

    2015-09-01

    Full Text Available In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS. The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior.En este artículo se ha investigado el comportamiento frente a la corrosión en medios acuosos salinos de chapas soldadas de aleación AZ31 mediante técnicas gravimétricas y ensayo en cámara de niebla salina. Las muestras estudiadas han sido soldadas mediante soldadura TIG (Tungsten Inert Gas y con diferentes materiales de aporte. En el estudio se ha empleado microscopía óptica para analizar la microestructura. Los ensayos de gravimetría y los ensayos de niebla salina indican que el empleo de materiales de aporte más nobles para soldar las muestras evitando la disminución del contenido en aluminio en los cordones, no implica un mejor comportamiento frente a la corrosión.

  4. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  5. Comparison of macro-gravimetric and micro-colorimetric lipid determination methods.

    Science.gov (United States)

    Inouye, Laura S; Lotufo, Guiherme R

    2006-10-15

    In order to validate a method for lipid analysis of small tissue samples, the standard macro-gravimetric method of Bligh-Dyer (1959) [E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37 (1959) 911] and a modification of the micro-colorimetric assay developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1 (1985) 302] were compared. No significant differences were observed for wet tissues of two species of fish. However, limited analysis of wet tissue of the amphipod, Leptocheirusplumulosus, indicated that the Bligh-Dyer gravimetric method generated higher lipid values, most likely due to the inclusion of non-lipid materials. Additionally, significant differences between the methods were observed with dry tissues, with the micro-colorimetric method consistently reporting calculated lipid values greater than as reported by the gravimetric method. This was most likely due to poor extraction of dry tissue in the standard Bligh-Dyer method, as no significant differences were found when analyzing a single composite extract. The data presented supports the conclusion that the micro-colorimetric method described in this paper is accurate, rapid, and minimizes time and solvent use.

  6. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Directory of Open Access Journals (Sweden)

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  7. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Science.gov (United States)

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  8. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  9. Electrochemical and micro-gravimetric corrosion studies on spent fuel provide relevant source term data for a repository performance assessment

    International Nuclear Information System (INIS)

    Wegen, Detlef H.; Bottomley, Paul D. W.; Glatz, Jean-Paul

    2004-01-01

    Various electrochemical methods (corrosion potential monitoring, AC impedance analysis and electrochemical noise monitoring) were used in the investigation of UO 2 samples: natural and doped with two different levels of 238 Pu (0.1 and 10 wt%) simulating the increasing α-intensities seen with time in the repository. The results were compared and were able to show the intense, but also the very local nature of the radiolysis and to demonstrate that corrosion rates were proportional to α-radiolysis and hence the 238 Pu content; the corrosion rates were in accordance with earlier work at ITU. By contrast it was seen that the redox potentials only gave information as to the bulk solution that did not reflect the true conditions at the electrode interface that were driving the corrosion processes of UO 2 dissolution in groundwaters. The study shows how electrochemical techniques can provide vital information on the corrosion mechanism at the UO 2 /solution interface

  10. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    International Nuclear Information System (INIS)

    Schille, Ch.; Braun, M.; Wendel, H.P.; Scheideler, L.; Hort, N.; Reichel, H.-P.; Schweizer, E.; Geis-Gerstorfer, J.

    2011-01-01

    Highlights: ► Corrosion of eight Mg–based Biomaterials was tested in saline and human blood. ► Corrosion behaviour in physiological saline and in blood was entirely different. ► Al and Zn had the highest influence on corrosion behaviour in both electrolytes. ► MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. ► Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS minus (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS minus and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight loss was observed. When alloys are ranked according to corrosion susceptibility, the results differ also between the test systems. The

  11. Characterisation of the steel concrete interface submitted to chloride-induced corrosion

    International Nuclear Information System (INIS)

    L'Hostis, V.; Amblard, E.; Guillot, W.; Paris, C.; Bellot-Gurlet, L.

    2013-01-01

    This paper deals with the characterisation by means of electrochemical, gravimetric and analytical methods of chloride-induced-corrosion behaviour of steel coupons embedded in chloride-containing-cement pastes. Corrosion rates were estimated from electrochemical measurements as well as gravimetric ones. They vary from 2.6 to 5.7μm/year for 5 and 10 g/L chloride-containing cement pastes. Analytical characterisations (including optical and electron microscopy and Raman micro-spectroscopy) showed that corrosion patterns are not depending on the chloride content of the cement paste (5 and 10 g/L chloride in the interstitial solution). A localised corrosion pattern composed of pits growing inside the metallic substratum, a corrosion products layer (CPL) and a transformed medium (TM) was pointed out. CPL can be divided into two sub-layers (CPL1 and CPL2), characterised by the presence or absence of calcium coming from the cement matrix. (authors)

  12. An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel

    International Nuclear Information System (INIS)

    Wang Rongguang

    2004-01-01

    Micro-liquid of dilute sulfuric acid deposited on SUS304 steel surface were observed with the ac non-contact mode of an atomic force microscopy (AFM), and the detail of the corrosion process caused by them was investigated with the contact mode of the AFM, X-ray photoelectron spectroscopy (XPS) and wavelength dispersive X-ray spectroscopy (WDXS). As a result, even not applying bias voltages between the tip of the cantilever and the specimen, micro-liquid of sulfuric acid can be successfully imaged using the ac non-contact mode of AFM. Two shapes of micro-acid, i.e., micro-droplets and micro-films, were found to co-exist on the specimen surface. On areas covered by micro-films of acid, only small corrosion product particles appeared and no corrosion pits were found. Beneath micro-droplets, corrosion reaction continue to produce pits until they were all consumed to form a corrosion product (mainly iron oxides) with almost the same shape with the droplet. The total corrosion reaction time was speculated to be between 690 and 1500 ks. The corrosion product formed from micro-droplets was believed to be a process of accumulating small corrosion product particles from the liquid/substrate interface to the surface of the formerly produced corrosion product. The XPS and WDXS analysis also supports the above results

  13. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  14. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Schille, Ch., E-mail: Christine.Schille@med.uni-tuebingen.de [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Braun, M.; Wendel, H.P. [University Hospital Tuebingen, Div. Congenital and Paediatric Cardiac Surgery, University Children' s Hospital, Tuebingen, Germany, Calwerstr. 7/1, D-72076 Tuebingen (Germany); Scheideler, L. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Hort, N. [GKSS Research Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Reichel, H.-P. [Weissensee Company, Buergermeister-Ebert-Str. 30-32, D-36124 Eichenzell (Germany); Schweizer, E.; Geis-Gerstorfer, J. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of eight Mg-based Biomaterials was tested in saline and human blood. Black-Right-Pointing-Pointer Corrosion behaviour in physiological saline and in blood was entirely different. Black-Right-Pointing-Pointer Al and Zn had the highest influence on corrosion behaviour in both electrolytes. Black-Right-Pointing-Pointer MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. Black-Right-Pointing-Pointer Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS{sup minus} (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS{sup minus} and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight

  15. Stress corrosion of austenitic steels mono and polycrystals in Mg Cl2 medium: micro fractography and study of behaviour improvements

    International Nuclear Information System (INIS)

    Chambreuil-Paret, A.

    1997-01-01

    The austenitic steels in a hot chlorinated medium present a rupture which is macroscopically fragile, discontinuous and formed with crystallographic facets. The interpretation of these facies crystallographic character is a key for the understanding of the stress corrosion damages. The first aim of this work is then to study into details the micro fractography of 316 L steels mono and polycrystals. Two types of rupture are observed: a very fragile rupture which stresses on the possibility of the interatomic bonds weakening by the corrosive medium Mg Cl 2 and a discontinuous rupture (at the micron scale) on the sliding planes which is in good agreement with the corrosion enhanced plasticity model. The second aim of this work is to search for controlling the stress corrosion by the mean of a pre-strain hardening. Two types of pre-strain hardening have been tested. A pre-strain hardening with a monotonic strain is negative. Indeed, the first cracks starts very early and the cracks propagation velocity is increased. This is explained by the corrosion enhanced plasticity model through the intensifying of the local corrosion-deformation interactions. On the other hand, a cyclic pre-strain hardening is particularly favourable. The first micro strains starts later and the strain on breaking point levels are increased. The delay of the starting of the first strains is explained by a surface distortion structure which is very homogeneous. At last, the dislocations structure created in fatigue at saturation is a planar structure of low energy which reduces the corrosion-deformation interactions, source of micro strains. (O.M.)

  16. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    Kogo, A. A.. Department of Integrated Science, Federal College of Education, Kano, Nigeria. ... The corrosion rate of the galvanized steel pipe was measured using the gravimetric ... Key words: Liquid waste, galvanized steel, weight loss, gravimetric, corrosion, leaking ... the side of the test tubes, so that each side would be.

  17. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  18. Embrittlement and anodic process in stress corrosion cracking: study of the influent micro-mechanical parameters; Fragilisation et processus anodiques en corrosion sous contrainte: etude des parametres micro-mecaniques influents

    Energy Technology Data Exchange (ETDEWEB)

    Tinnes, J.Ph

    2006-11-15

    We study the influence of local mechanical parameters on crack propagation in Stress Corrosion Cracking, at the scale of the microstructure. Two systems are compared: the CuAl{sub 9}Ni{sub 3}Fe{sub 2} copper-aluminium alloy in synthetic sea water under cathodic polarization, where the crack propagation mechanism is related to strain-assisted anodic dissolution, and the 316L austenitic stainless steel in MgCl{sub 2} solution, where embrittlement mechanisms related to hydrogen effects prevail. We use micro-notched tensile specimen that allow to study isolated short cracks. These experiments are modelled by means of finite elements calculations, and further characterized by Electron Back scattered Diffraction (EBSD) in the case of the 316L alloy. In terms of the local mechanical parameters that control propagation, fundamental differences are outlined between the two systems. They are discussed from the viewpoint of the available models of Stress Corrosion Cracking. (author)

  19. Pitting corrosion behaviour study of aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M. C.; Merino, S.; Lopez, M. D.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2004-01-01

    The influence of the SiCp proportion on the pitting corrosion of A3xx.x/SiC/xxp composites was studies by means of potenciodinamic polarization and double cyclic polarization in saline environment at 25 degree centigrade A360/SiC/xxp matrix does not contain copper, whereas the A380/SiC/xxp matric contains 1,39-1,44 wt %Cu. The kinetic study was carried out by gravimetric measurements. The nature of corrosion products was analysed by low angle XRD and Scanning Electron Microscopy (SEM). The corrosion is due to nucleation and growth of Al 2 O 3 -3H 2 O on the material surface. The corrosion increases with the reinforcement proportion, chloride concentration and copper content. (Author) 10 refs

  20. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  1. Laboratory study of reinforcement protection with corrosion inhibitors

    International Nuclear Information System (INIS)

    Stefanescu, D.; Mihalache, M.; Mogosan, S.

    2013-01-01

    Concrete is a durable material and its performance as part of the containment function in NPPs has been good. However, experience shows that degradation of the reinforced concrete structures caused by the corrosion of the reinforcing steel represents more than 80% of all damages in the world. Much effort has been made to develop a corrosion inhibition process to prolong the life of existing structures and minimize corrosion damages in new structures. Migrating Corrosion Inhibitor technology was developed to protect the embedded steel rebar/concrete structure. These inhibitors can be incorporated as an admixture or can be surface impregnated on existing concrete structures. The effectiveness of two inhibitors (ethanolamine and diethanolamine) mixed in the reinforced concrete was evaluated by gravimetric measurements. The corrosion behavior of the steel rebar and the inhibiting effects of the amino alcohol chemistry in an aggressive environment were monitored using electrochemical measurements and scanning electron microscopy (SEM) investigations. (authors)

  2. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  3. Ampicillin potentials as Corrosion Inhibitor: fukui function ...

    African Journals Online (AJOL)

    The experimental study was carried out using gravimetric and Fourier transform infrared spectroscopy methods of monitoring corrosion while the computational study was carried out using quantum chemical approach via Hyperchem program suit. The results obtained showed that various concentrations of ampicillin ...

  4. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune

    2011-01-01

    Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...... be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level....

  5. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  6. Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance

    International Nuclear Information System (INIS)

    Veys-Renaux, Delphine; Rocca, Emmanuel; Martin, Julien; Henrion, Gérard

    2014-01-01

    Graphical abstract: - Highlights: • The dielectric breakdown occurs for a specific value of capacitance. • Before breakdown, Si is incorporated to the anodic film under MgSiO 3 form. • After breakdown, Si is incorporated to the anodic film also under Mg 2 SiO 4 form. • The presence of Mg 2 SiO 4 in the anodic film provides good corrosion resistance due to sealing of the porosities. - Abstract: In the framework of the new ecological regulations, micro-arc oxidation (MAO) appears as an alternative to usual processes in the field of corrosion protection of Mg alloys. In this work, the initial stages of anodic layer growth in KOH-based electrolytes are studied up to and beyond the initiation of the micro-arc regime. The properties of the first anodized film preceding the occurrence of the dielectric breakdown (corresponding to the start of the micro-arc regime) are mainly determined by the incorporation of additives (fluorides or silicates) in the film, as shown by in situ electrochemical measurements. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy reveal both the change of morphology and chemical state of silicate and fluoride in the anodized layer before and after the micro-arc regime. In terms of electrochemical behaviour, investigated by stationary methods and electrochemical impedance spectroscopy (EIS) in reference corrosive water, the anodic film grown in the silicate medium provides the best corrosion resistance thanks to a thick layer containing Mg 2 SiO 4 , whose degradation products seal the porosities of the coating

  7. Corrosion characterisation of laser beam and tungsten inert gas weldment of nickel base alloys: Micro-cell technique

    International Nuclear Information System (INIS)

    Abraham, Geogy J.; Kain, V.; Dey, G.K.; Raja, V.S.

    2015-01-01

    Highlights: • Grain matrix showed better corrosion resistance than grain boundary. • Microcell studies showed distinct corrosion behaviour of individual regions of weldment. • TIG welding resulted in increased stable anodic current density on weld fusion zone. • LB welding resulted in high stable anodic current density for heat affected zone. - Abstract: The electrochemical studies using micro-cell technique gave new understanding of electrochemical behaviour of nickel base alloys in solution annealed and welded conditions. The welding simulated regions depicted varied micro structural features. In case of tungsten inert gas (TIG) weldments, the weld fusion zone (WFZ) showed least corrosion resistance among all other regions. For laser beam (LB) weldments it was the heat-affected zone (HAZ) that showed comparatively high stable anodic current density. The high heat input of TIG welding resulted in slower heat dissipation hence increased carbide precipitation and segregation in WFZ resulting in high stable anodic current density

  8. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  9. Micro-EDXRF surface analyses of a bronze spear head: Lead content in metal and corrosion layers

    International Nuclear Information System (INIS)

    Figueiredo, E.; Valerio, P.; Araujo, M.F.; Senna-Martinez, J.C.

    2007-01-01

    A bronze spear head from Central Portugal dated to Late Bronze Age has been analyzed by non-destructive micro-EDXRF in the metal surface and corrosion layers. The artifact had previously been analyzed using a conventional EDXRF spectrometer having a larger incident beam. The quantification of the micro-EDXRF analyses showed that lead content in corrosion layers can reach values up to four times higher than the content determined in the metal surface. Results obtained with the higher energy incident beam from the EDXRF equipment, although referring mainly to the corrosion layers, seem to suffer some influence from the surface composition of the metallic alloy

  10. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  11. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  12. Pitting corrosion behaviour study of aluminium matrix composites (A3xx.x/SiCp); Estudio del comportamiento a la corrosion por picadura de materiales compuestos de matriz de aluminio (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M. C.; Merino, S.; Lopez, M. D.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2004-07-01

    The influence of the SiCp proportion on the pitting corrosion of A3xx.x/SiC/xxp composites was studies by means of potenciodinamic polarization and double cyclic polarization in saline environment at 25 degree centigree A360/SiC/xxp matrix does not contain copper, whereas the A380/SiC/xxp matric contains 1,39-1,44 wt %Cu. The kinetic study was carried out by gravimetric measurements. The nature of corrosion products was analysed by low angle XRD and Scanning Electron Microscopy (SEM). The corrosion is due to nucleation and growth of Al{sub 2}O{sub 3}-3H{sub 2}O on the material surface. The corrosion increases with the reinforcement proportion, chloride concentration and copper content. (Author) 10 refs.

  13. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from the ex...... of the corrosion products averaged through the specimen thickness. The total mass loss of steel, obtained by the x-ray attenuation method, was found to be in very good agreement with the mass loss obtained by gravimetric method as well as Faraday's law....

  14. Evaluation of pawpaw leaves extract as anti-corrosion agent for ...

    African Journals Online (AJOL)

    Pawpaw leaves extract was examined as anti-corrosion agent for aluminium in hydrochloric acid medium. The extract and corrosion product were analyzed using Fourier transform infrared spectrophotometer (FTIR). Thermometric, gravimetric, potentiodynamic polarization and scanning electron microscopic methods were ...

  15. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  16. Corrosion rates of fasteners in treated wood exposed to 100% relative humidity

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2009-01-01

    In the past, gravimetric corrosion data for fasteners exposed to treated wood has been reported as a percent weight loss. Although percent weight loss is a valid measure of corrosion for comparing identical fasteners, it can distort the corrosion performance of fasteners with different geometries and densities. This report reevaluates a key report on the corrosiveness...

  17. A comparative study of leaves extracts for corrosion inhibition effect on aluminium alloy in alkaline medium

    Directory of Open Access Journals (Sweden)

    Namrata Chaubey

    2017-12-01

    Full Text Available This paper deals with the comparative inhibition study of some plants leaves extract namely Cannabis sativa (CS, Rauwolfia serpentina (RS, Cymbopogon citratus (CC, Annona squamosa (AS and Adhatoda vasica (AV on the corrosion of aluminium alloy (AA in 1 M NaOH. The corrosion tests were performance by using gravimetric, electrochemical impedance spectroscopy (EIS, potentiodynamic polarization and linear polarization resistance (LPR techniques. RS showed maximum inhibition efficiency (η%, 97% at 0.2 g L−1. Potentiodynamic polarization curves justified that all the inhibitors are mixed-type. Surface morphology of AA is carried by scanning electron microscopy (SEM and atomic force microscopy (AFM.

  18. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  19. Stress corrosion of austenitic steels mono and polycrystals in Mg Cl{sub 2} medium: micro fractography and study of behaviour improvements; Corrosion sous contrainte de mono et polycristaux d`aciers inoxydables austenitiques en milieu MgCI{sub 2}: analyse microfractographique et recherche d`ameliorations du comportement

    Energy Technology Data Exchange (ETDEWEB)

    Chambreuil-Paret, A

    1997-09-19

    The austenitic steels in a hot chlorinated medium present a rupture which is macroscopically fragile, discontinuous and formed with crystallographic facets. The interpretation of these facies crystallographic character is a key for the understanding of the stress corrosion damages. The first aim of this work is then to study into details the micro fractography of 316 L steels mono and polycrystals. Two types of rupture are observed: a very fragile rupture which stresses on the possibility of the interatomic bonds weakening by the corrosive medium Mg Cl{sub 2} and a discontinuous rupture (at the micron scale) on the sliding planes which is in good agreement with the corrosion enhanced plasticity model. The second aim of this work is to search for controlling the stress corrosion by the mean of a pre-strain hardening. Two types of pre-strain hardening have been tested. A pre-strain hardening with a monotonic strain is negative. Indeed, the first cracks starts very early and the cracks propagation velocity is increased. This is explained by the corrosion enhanced plasticity model through the intensifying of the local corrosion-deformation interactions. On the other hand, a cyclic pre-strain hardening is particularly favourable. The first micro strains starts later and the strain on breaking point levels are increased. The delay of the starting of the first strains is explained by a surface distortion structure which is very homogeneous. At last, the dislocations structure created in fatigue at saturation is a planar structure of low energy which reduces the corrosion-deformation interactions, source of micro strains. (O.M.) 139 refs.

  20. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Alberghina, Maria Francesca; Barraco, Rosita; Brai, Maria; Schillaci, Tiziano, E-mail: tschillaci@unipa.it; Tranchina, Luigi

    2011-02-15

    The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.

  1. Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes

    International Nuclear Information System (INIS)

    Alberghina, Maria Francesca; Barraco, Rosita; Brai, Maria; Schillaci, Tiziano; Tranchina, Luigi

    2011-01-01

    The investigations on structure and micro-chemical composition of archaeological metal alloys are needed in archaeometry. The aim of this study is devoted both to acquire information about their provenance and production technology, and to improve our understanding about the corrosion processes. In this paper we present the study of the corrosion phenomena of bronze samples, laboratory-made according to binary, ternary and quaternary alloys typical of Roman archaeometallurgical production through an integrated methodology based on the use of non or micro invasive physical techniques. Among the analysed samples, two were artificially aged through burial in the archaeological site of Tharros, along the west coast of Sardinia (Italy). The corrosion products, typical of the bronzes in archaeological sites near the sea, have been characterized by non invasive and micro-destructive measurements. In particular, the corrosion patinas were examined through optical microscopy, scanning electron microscopy and microanalysis, X-ray fluorescence and laser ablation spectroscopy. The use of integrated technologies allowed us to determine both the elemental composition and surface morphology of the patina, highlighting the correlation between patina nature and chemical composition of the burial context. Moreover, data obtained by the laser-induced breakdown spectroscopy along the depth profile on the samples, have yielded information about the stratigraphic layers of corrosion products and their growth. Finally, the depth profiles allowed us to verify both the chemical elements constituting the patina, the metal ions constituting the alloy and the occurrence of migration phenomena from bulk to the surface.

  2. Micro-electrochemical characterization of galvanic corrosion of TA2/316L composite plate

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Li, X.; Dong, C.; Xiao, K. [Corrosion and Protection Center, University of Science and Technology Beijing (China)

    2011-12-15

    Galvanic corrosion behavior of TA2/316L composite plate was investigated in the solution of 3.5 wt% NaCl by galvanic potential monitoring, scanning localized electrochemical impedance spectroscopy (LEIS) and scanning vibrating micro-electrode (SVME) techniques. The results demonstrated that the pitting corrosion resistance of 316L for the galvanic combination sample is lower, and the coupled current density is higher than for the single 316L sample. It indicates that the galvanic action works on the corrosion behavior of the TA2 titanium alloy/316L stainless steel galvanic combination in sodium chloride solution. The galvanic effect width was determined as 1500 {mu}m. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electrochemical study of galvanic corrosion inhibitors in water-based and ethylene glycol-based heat transfer circuits

    International Nuclear Information System (INIS)

    Netter, Pierre

    1981-01-01

    This research thesis reports the search for and the efficiency assessment of mixes of inhibitors for coolant circuits of motor cars. After a discussion of the general properties of water-alcohol solvents (chemical properties, acid-base equilibriums) and of parameters affecting corrosion in coolant circuits, the author proposes an overview of the main inhibitors which are used to protect these circuits against corrosion, and discusses their action mechanism and efficiency. The different methods used to study the corrosion of these circuits are described, and the advantages and drawbacks of test methods are commented. The second part proposes a synthesis of the different corrosion electromechanical mechanisms which may occur with respect to the used metallic materials and to possible galvanic couplings. The next part describes the experimental installations. The last part focuses on the different protections obtained with the different used inhibitor class in terms of results obtained by gravimetric tests and visual examination of samples, current-voltage curves in hydrodynamic regime, and galvanic corrosion tests performed in laboratory or in situ in motor cars [fr

  4. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  5. Oxidation kinetics of reaction products formed in uranium metal corrosion

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O 2 and Ar-20%O 2 were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates

  6. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  7. Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy

    International Nuclear Information System (INIS)

    Dong, Kaihui; Song, Yingwei; Shan, Dayong; Han, En-Hou

    2015-01-01

    Highlights: • Pore sealing constituents fall off and titanium oxides remain during corrosion. • Dark regions of film are corroded by migration of corrosion media through pores. • Light regions of film are corroded by transverse expansion of cracks. • Both outer and inner layers of the film provide effective protection to substrate. - Abstract: The deterioration process of a self-sealing pore micro-arc oxidation (MAO) film was investigated. The surface and cross-section corrosion morphologies were observed by scanning electron microscopy (SEM). Chemical composition was detected by EDS elemental mapping and XRD. The corrosion process was analyzed by electrochemical impedance spectroscopy (EIS). The surface of the film in dark and light regions exhibits different corrosion behavior. In the dark regions, the corrosion process mainly concentrates on the migration of corrosion media through the pores inward. In the light regions, the transverse expansion of cracks plays a key role, accompanying the exfoliation of film constituents.

  8. Preliminary study of gravimetric anomalies in the Magallanes-Fagnano fault system, South America

    Directory of Open Access Journals (Sweden)

    Juan Manuel Alcacer

    2018-01-01

    Full Text Available The main objective of this research is to recognize several geological structures associated with the shear zones of the MFFS (Magallanes – Fagnano fault system by the analysis and interpretation of gravimetric anomalies. Besides, to compare the gravimetrical response of the cortical blocks that integrate the region under study, which is related to the different morphotectonic domains recognized in the region. This research was developed employing data obtained from World Gravity 1.0, which includes earth and satellite gravity data derived from the EGM2008 model. The study and interpretation of the MFFS from the analysis and processing of the gravimetric data, allowed appreciation of a noticeable correlation with the most superficial cortical structure.

  9. Bacterial degradation of naphtha and its influence on corrosion

    International Nuclear Information System (INIS)

    Rajasekar, A.; Maruthamuthu, S.; Muthukumar, N.; Mohanan, S.; Subramanian, P.; Palaniswamy, N.

    2005-01-01

    The degradation problem of naphtha arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. In the present study, biodegradation of naphtha in the storage tank and its influence on corrosion was studied. The corrosion studies were carried out by gravimetric method. Uniform corrosion was observed from the weight loss coupons in naphtha (0.024 mm/yr) whereas in presence of naphtha with water, blisters (1.2052 mm/yr) were noticed. The naphtha degradation by microbes was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). IR study reveals the formation of primary alcohol during degradation process. It was found that microbes degrade (CH 2 -CH 2 ) n to R-CH 3 . Iron bacteria, manganese oxidizing bacteria, acid producers, and heterotrophic bacteria were enumerated and identified in the pipeline. SRB could not be noticed. Since water stratifies in the pipeline, the naphtha-degraded product may adsorb on pipeline, which would enhance the rate of microbial corrosion. On the basis of degradation and corrosion data, a hypothesis for microbial corrosion has been proposed

  10. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  11. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  12. Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid

    OpenAIRE

    Adamu, M; Umoru, LE; Ige, OO

    2014-01-01

    Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of differ...

  13. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  14. Inhibitive effect by Psidium guajava leaf extract on the corrosion of Al-Si-Mg (SSM-HPDC alloy in simulated seawater environment

    Directory of Open Access Journals (Sweden)

    M. Abdulwahab

    2015-12-01

    Full Text Available The assessment of Psidium guajava leaf extract as corrosion inhibitor for Al-Si- Mg (SSM-HPDC alloy in 3.5%wt NaCl solution using the gravimetric based-mass loss and potentiodynamic polarization techniques was investigated. The gravimetric based mass loss test was carried out at different inhibitor concentration, time and temperature ranges of 0.1-0.5%v/v, 1-5 hrs and 30-70oC, respectively, the results revealed that Psidium guajava leaf extract in 3.5%wt NaCl solution-aluminium environment decreased the corrosion rate at various concentrations considered. Inhibition efficiency (IE as high as 63.17% at 0.5% v/v Psidium guajava leaf extract addition using the gravimetric method was demonstrated in 3.5%wt NaCl solution. The IE of 90.48% was obtained at 0.5%v/v using the potentiodynamic polarization method. The additions of Psidium guajava leaf extract as corrosion inhibitor in the solution indicate higher potential value, IE and polarization resistance with decrease in current density. The two methods used for assessment of the aluminium alloy corrosion behaviour were in agreement and mixed-type corrosion exists which obeyed the Langmuir adsorption isotherm.

  15. Corrosion performance of SiCsubp/6061 Al metal matrix composites in sodium chloride solution

    International Nuclear Information System (INIS)

    Mohmad Soib bin Selamat

    1995-01-01

    The corrosion performance of silicon carbide particle/aluminium metal matrix composites (SiCsubp/Al) were studied in sodium chloride solution by means of electrochemical, microscopic, gravimetric and analytical techniques. The materials under investigation were compocasting processed 6061 Al reinforced with increasing amounts of SiC particles. Potentiostatic polarization tests were done in 0.1M NaCl solutions that were aerated or deaerated to observe overall corrosion behaviour. It was seen that the corrosion potentials did not vary greatly in relation to the amounts of SiCsubp reinforcement. Corrosion tests showed that the degree of corrosion increased with increasing SiCsubp content. SEM analysis technique was used to study the corroded samples and the pitting morphology. By TEM, no intermetallic layer was found at SiC/Al interface. A model for pitting process was proposed

  16. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  17. A study on improvement of measurement capability for gravimetric flowmeter calibrator

    International Nuclear Information System (INIS)

    Lee, Dong Keun; Park, Jong Ho

    2009-01-01

    The calibration of flowmeter is a very important procedure to set up traceability from the national or international standards. The uncertainty of flow measurement defines reliability for measurement results. The uncertainty of gravimetric method combines uncertainties of each independent variable, including mass, time, water density, air density and the density of dead weight. In this study, it has been found that the uncertainties of mass and time measurement in the gravimetric method have dominant influence on the total measurement uncertainty. After improvements of a constant head tank and a diverter, the best measurement capability for K-water's calibration facility has been reached less than 0.1%.

  18. Transport phenomena of macro and micro flows behind orifice and flow accelerated corrosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Hayase, Toshiyuki; Ohara, Taku; Ikohagi, Toshiaki

    2008-01-01

    This paper describes experiment and numerical simulations for macro and micro flows behind an orifice model in a square pipe, which are carried from the viewpoint of flow accelerated corrosion (FAC). The measurements of velocity field behind the orifice model were carried out using particle image velocimetry, and the variations of velocity field with respect to the accuracy of the orifice position were studied. It is found that the reattachment behavior of the flow is highly influenced by the orifice position, which is a critical problem for predicting the pipe thinning phenomena by FAC. The DNS simulation was also conducted for calculating the macro flow behind the orifice. The result suggests that the DNS simulation is applicable to the prediction of pipe thinning macro flow for highly aged nuclear plant. The micro flow simulation can predict the pipe thinning phenomena near the wall. (author)

  19. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  20. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  1. Determination of corrosion potential of coated hollow spheres

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek

    2008-01-01

    Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )

  2. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  3. Protection against corrosion to high temperature by means of rich silicon coatings; Proteccion contra corrosion a alta temperatura por medio de recubrimientos ricos en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Porcayo Calderon, Jesus [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this research work the study of the process of corrosion by molten salts of sodium sulphate-vanadium pentoxide and its prevention by means of metallic coatings rich in silicon was contemplated. The research encompassed the development of the coating system, the chemical and thermochemical analysis of the system sodium sulphate - vanadium pentoxide, the evaluation of the resistance to the corrosion of the coating system by gravimetric and electrochemistry techniques, and the study of the stability of the coating system - substrate. [Spanish] En este trabajo de investigacion se contempla el estudio del proceso de corrosion por sales fundidas de sulfato de sodio - pentoxido de vanadio y su prevencion por medio de recubrimientos metalicos ricos en silicio. La investigacion abarca el desarrollo del sistema de recubrimientos, el analisis quimico y termoquimico del sistema sulfato de sodio - pentoxido de vanadio, la evaluacion de la resistencia a la corrosion del sistema de recubrimientos por tecnicas gravimetricas y electroquimicas, y el estudio de la estabilidad del sistema recubrimiento - sustrato.

  4. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  5. Residual gravimetric method to measure nebulizer output.

    Science.gov (United States)

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  6. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  7. Microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Stein, A.A.

    1988-01-01

    Biological attack is a problem that can affect all metallic materials in a variety of environments and systems. In the power industry, corrosion studies have focused on condensers and service water systems where slime, barnacles, clams, and other macro-organisms are easily detected. Efforts have been made to eliminate the effect of these organisms through the use of chlorination, backflushing, organic coating, or thermal shock. The objective is to maintain component performance by eliminating biofouling and reducing metallic corrosion. Recently, corrosion of power plant components by micro-organisms (bacteria) has been identified even in very clean systems. A system's first exposure to microbiologically induced corrosion (MIC) occurs during its first exposure to an aqueous environment, such as during hydrotest or wet layup. Corrosion of buried pipelines by sulfate-reducing bacteria has been studied by the petrochemical industry for years. This paper discusses various methods of diagnosing, monitoring, and controlling MIC in a variety of systems, as well as indicates areas where further study is needed

  8. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  9. Parametric Study of Solder Flux Hygroscopicity: Impact of Weak Organic Acids on Water Layer Formation and Corrosion of Electronics

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Ud Din, Rameez; Grumsen, Flemming Bjerg

    2018-01-01

    °C, 40°C, and 60°C. Water absorption levels were determined using the gravimetric method, and the influence on reliability was assessed using electrochemical impedance and leak current measurements performed on the surface insulation resistance comb patterns. The corrosion studies were correlated...... the critical RH level for water vapour absorption towards lower RH range, accelerating the formation of a conductive electrolyte and the occurrence of ion transport-induced electrochemical migration. The overall ranking of flux activators with the increasing order of aggressivity is: palmitic

  10. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  11. Gravimetric study on the western edge of the Rio de La Plata craton

    International Nuclear Information System (INIS)

    Rame, G; Miro, R

    2010-01-01

    This work is about the gravimetric study on the western edge of the Rio de la Plata craton which belongs to the Gondwana fragment in the south of Brazil, Uruguay and central eastern of Argentina. The work consisted of a survey of 332 gravimetric and topographic stations extended from the western edge of the Sierra Chica de Cordoba up to 200 km east on the pampas. The gravity values observed (gobs) were obtained using a LaCoste §Rom berg gravimeter G-961 and 200T Sodin both with 0.01 mGal, referred to IGSN71 (International Gravity Standardization Net 1971) network

  12. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  13. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  14. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  15. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. THE EFFECT OF HIGH OVERVOLTAGES AT ELECTROCRYSTALLIZATION ON THE CORROSION RESISTANCE OF THE FILMS CO-P

    Directory of Open Access Journals (Sweden)

    V. O. Zabludovskyi

    2009-03-01

    Full Text Available Electrochemical and gravimetric methods are used in order to research the influence of high overvoltages during electroplating on corrosive and electrochemical behavior of amorphous Co-P films, which were made using deposition from water solution of an electrolyte. It is obtained that alloys, which were plated using higher overvoltages on cathode, are more corrosion-resistant.

  17. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    Science.gov (United States)

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  18. Experimental and theoretical investigations on the inhibition of mild steel corrosion in the ground water medium using newly synthesised bipodal and tripodal imidazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, D., E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Sherif, El-Sayed M. [Center of Excellence for Research in Engineering Materials (CEREM), Advanced Manufacturing Institute, King Saud University, P.O. Box 800, Al-Riyadh 11421 (Saudi Arabia); Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre (NRC), Dokki, 12622 Cairo (Egypt); Surendiran, M. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Jothi, M.; Kumaradhas, P. [Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Kavitha, L. [Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur 610 101, Tamilnadu (India)

    2014-10-15

    Two new imidazole derivatives, namely 1,4-bis(N-imidazolylmethyl)-2-5-dimethoxybenzene (BIDM) and 1,3,5-tris(N-imidazolylmethyl)-2,4,6-trimethoxybenzene (TITM), were synthesised and their effects on the inhibition of mild steel corrosion in ground water medium are reported. The study was carried out using gravimetric and electrochemical techniques in order to determine the corrosion inhibition efficiencies of the bipodal and tripodal structured imidazoles. Further, the quantum chemical calculations using density functional theory (DFT) gave a profound insight into the inhibitory action mechanism of BIDM and TITM and their calculation parameters, such as E{sub HOMO}, E{sub LUMO} and ΔE were in good agreement with the results of the experimental studies. BIDM and TITM exhibited lowest corrosion current densities of circa 7.5 μA cm{sup −2} and 4.1 μAcm{sup −2} at the optimum concentrations of 0.67 and 0.49 mM, respectively. All measurements thus confirmed that both BIDM and TITM behaved as good inhibitors for mild steel corrosion in ground water medium. - Highlights: • Synthesis of new imidazole derivatives-BIDM(bipodal) and TITM(tripodal) inhibitors. • Gravimetric analysis to investigate mild steel corrosion inhibition in ground water. • Electrochemical characterizations to substantiate results of weight loss method. • Quantum studies to analyse the chemical behavior, structure and substituent effect.

  19. Experimental and theoretical investigations on the inhibition of mild steel corrosion in the ground water medium using newly synthesised bipodal and tripodal imidazole derivatives

    International Nuclear Information System (INIS)

    Gopi, D.; Sherif, El-Sayed M.; Surendiran, M.; Jothi, M.; Kumaradhas, P.; Kavitha, L.

    2014-01-01

    Two new imidazole derivatives, namely 1,4-bis(N-imidazolylmethyl)-2-5-dimethoxybenzene (BIDM) and 1,3,5-tris(N-imidazolylmethyl)-2,4,6-trimethoxybenzene (TITM), were synthesised and their effects on the inhibition of mild steel corrosion in ground water medium are reported. The study was carried out using gravimetric and electrochemical techniques in order to determine the corrosion inhibition efficiencies of the bipodal and tripodal structured imidazoles. Further, the quantum chemical calculations using density functional theory (DFT) gave a profound insight into the inhibitory action mechanism of BIDM and TITM and their calculation parameters, such as E HOMO , E LUMO and ΔE were in good agreement with the results of the experimental studies. BIDM and TITM exhibited lowest corrosion current densities of circa 7.5 μA cm −2 and 4.1 μAcm −2 at the optimum concentrations of 0.67 and 0.49 mM, respectively. All measurements thus confirmed that both BIDM and TITM behaved as good inhibitors for mild steel corrosion in ground water medium. - Highlights: • Synthesis of new imidazole derivatives-BIDM(bipodal) and TITM(tripodal) inhibitors. • Gravimetric analysis to investigate mild steel corrosion inhibition in ground water. • Electrochemical characterizations to substantiate results of weight loss method. • Quantum studies to analyse the chemical behavior, structure and substituent effect

  20. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  1. Visual estimation versus gravimetric measurement of postpartum blood loss: a prospective cohort study.

    Science.gov (United States)

    Al Kadri, Hanan M F; Al Anazi, Bedayah K; Tamim, Hani M

    2011-06-01

    One of the major problems in international literature is how to measure postpartum blood loss with accuracy. We aimed in this research to assess the accuracy of visual estimation of postpartum blood loss (by each of two main health-care providers) compared with the gravimetric calculation method. We carried out a prospective cohort study at King Abdulaziz Medical City, Riyadh, Saudi Arabia between 1 November 2009 and 31 December 2009. All women who were admitted to labor and delivery suite and delivered vaginally were included in the study. Postpartum blood loss was visually estimated by the attending physician and obstetrics nurse and then objectively calculated by a gravimetric machine. Comparison between the three methods of blood loss calculation was carried out. A total of 150 patients were included in this study. There was a significant difference between the gravimetric calculated blood loss and both health-care providers' estimation with a tendency to underestimate the loss by about 30%. The background and seniority of the assessing health-care provider did not affect the accuracy of the estimation. The corrected incidence of postpartum hemorrhage in Saudi Arabia was found to be 1.47%. Health-care providers tend to underestimate the volume of postpartum blood loss by about 30%. Training and continuous auditing of the diagnosis of postpartum hemorrhage is needed to avoid missing cases and thus preventing associated morbidity and mortality.

  2. Study of alloy 600'S stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, R.

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes

  3. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  4. Eco-Friendly Inhibitors for Copper Corrosion in Nitric Acid: Experimental and Theoretical Evaluation

    Science.gov (United States)

    Savita; Mourya, Punita; Chaubey, Namrata; Singh, V. K.; Singh, M. M.

    2016-02-01

    The inhibitive performance of Vitex negundo, Adhatoda vasica, and Saraka asoka leaf extracts on corrosion of copper in 3M HNO3 solution was investigated using gravimetric, potentiodynamic polarization, and electrochemical impedance spectroscopic techniques. Potentiodynamic polarization studies indicated that these extracts act as efficient and predominantly cathodic mixed inhibitor. Thermodynamic parameters revealed that the adsorption of these inhibitors on copper surface was spontaneous, controlled by physiochemical processes and occurred according to the Langmuir adsorption isotherm. AFM examination of copper surface confirmed that the inhibitor prevented corrosion by forming protective layer on its surface. The correlation between inhibitive effect and molecular structure was ascertained by density functional theory data.

  5. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  6. Influence of alloying elements on the marine corrosion of low alloy steels

    International Nuclear Information System (INIS)

    Dajoux, E.; Malard, S.; Lefevre, Y.; Kervadec, D.; Gil, O.

    2005-01-01

    The study of steel marine corrosion leads to the survey of the parameters having an influence on this phenomenon. These parameters may be dependent on the seawater environment or on steel characteristics. Thus it appears that an experimental procedure could be set up in order to simulate immersion conditions in natural seawater. The system allows fifteen different steels with compositions ranging from carbon steels to stainless steels to be tested during some 14 months in natural seawater with or without microbiological activity. Electrochemical and gravimetric measurements are performed on immersed steel samples. Microbiological analyses are carried out either on the metallic surface and on the liquid medium. Possible influences of alloying elements and bacteria are studied. After a two-month immersion, first results show an influence of the chromium content on the steel corrosion resistance and on marine bacteria behaviour. They also reveal that the bio-film formed onto the carbon steel and low alloy steels surfaces tends to slow down the generalized corrosion or to increase localized corrosion depending on the steel alloying elements content. (authors)

  7. Corrosion behaviour of Mg/Al alloys in high humidity atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R.; Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Facultad de Quimicas, Departamento de Ciencia de Materiales, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain)

    2011-04-15

    The influence of relative humidity (80-90-98% RH) and temperature (25 and 50 C) on the corrosion behaviour of AZ31, AZ80 and AZ91D magnesium alloys was evaluated using gravimetric measurements. The results were compared with the data obtained for the same alloys immersed in Madrid tap water. The corrosion rates of AZ alloys increased with the RH and temperature and were influenced by the aluminium content and alloy microstructure for RH values above 90%. The initiation of corrosion was localised around the Al-Mn inclusions in the AZ31 alloy and at the centre of the {alpha}-Mg phase in the AZ80 and AZ91D alloys. The {beta}-Mg{sub 17}Al{sub 12} phase acted as a barrier against corrosion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  9. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  10. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  11. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  12. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  13. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  14. Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium

    Science.gov (United States)

    Rama Krishna, L.; Poshal, G.; Sundararajan, G.

    2010-12-01

    In the present work, micro arc oxidation (MAO) coatings were synthesized on magnesium substrate employing 11 different electrolyte compositions containing systematically varied concentrations of sodium silicate (Na2SiO3), potassium hydroxide (KOH), and sodium aluminate (NaAlO2). The resultant coatings were subjected to coating thickness measurement, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), image analysis, and three-dimensional (3-D) optical profilometry. The corrosion performance of the coatings was evaluated by conducting potentiodynamic polarization tests in 3.5 wt pct NaCl solution. The inter-relationships between the electrolyte chemistry and the resulting chemistry and porosity of the coating, on one hand, and with the aqueous corrosion behavior of the coating, on the other, were studied. The changes in pore morphology and pore distribution in the coatings were found to be significantly influenced by the electrolyte composition. The coatings can have either through-thickness pores or pores in the near surface region alone depending on the electrolyte composition. The deleterious role of KOH especially when its concentration is >20 pct of total electrolyte constituents promoting the formation of large and deep pores in the coating was demonstrated. A reasonable correlation indicating the increasing pore volume implying the increased corrosion was noticed.

  15. Gravimetric determination of uranium in SALE samples

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    As a participant in the Safeguards Analytical Laboratory Evaluation (SALE) program, the Analytical Chemistry Laboratory at General Atomic routinely assays uranium dioxide and uranyl nitrate SALE samples for uranium content. Gravimetric methods are relatively easy and inexpensive to apply when the samples for uranium content. Gravimetric methods are relatively easy and inexpensive to apply when the samples are free from substantial amounts of metallic impurities. Clearly the gravimetric procedure alone is not specific for uranium and must be enhanced by the use of impurity corrections. Emission spectrography is used routinely as the technique of choice for making such corrections. In cases where it is essential to assay specifically for uranium, the modified Davies-Gray titration using a weighed titrant method is applied. In this paper some essential features of these gravimetric and titrimetric procedures are discussed

  16. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  17. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  18. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  19. The influence of solder mask and hygroscopic flux residues on water layer formation on PCBA surface and corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    was described in terms of their varying hygroscopicity defined by chemical structure and test temperature. The climatic testing of two acids was performed under relative humidity (RH) conditions varying from 30% to ~99% at 25˚C and 40˚C using gravimetric water vapour sorption/desorption and electrochemical...... impedance methods. The corrosivity of WOAs was evaluated via leakage current measurements using surface insulation resistance (SIR) comb patterns. The corrosion studies were correlated with the hygroscopicity studies. The results show that the water layer formation depends on the PCBA surface topography...

  20. Corrosion of 15th and early 16th century stained glass from the monastery of Batalha studied with external ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Vilarigues, M., E-mail: mgv@fct.unl.pt [Dep. de Conservacao e Restauro and Centro do Vidro e da Ceramica para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Redol, P. [Dep. de Conservacao e Restauro and Centro do Vidro e da Ceramica para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Monastery of Batalha, P-2440 (Portugal); Machado, A. [Dep. de Conservacao e Restauro and Centro do Vidro e da Ceramica para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Rodrigues, P.A.; Alves, L.C.; Silva, R.C. da [Dep. Fisica, LFI, ITN, E.N.10, 2686-953 Sacavem (Portugal)

    2011-02-15

    This paper reports the study of corrosion in two stained glass panels from the south aisle of Sta. Maria da Vitoria monastery, at Batalha (Portugal), one depicting the Last Supper (dated from 1508), and the other one showing a saint (c. 1450). These panels exhibit extensive corrosion with darkening phenomena that are an impediment to their correct visualization, a source of major concern both to conservators and curators. By using external micro-beam Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma Emission (PIGE) spectrometry, the elemental compositions of large fragments were obtained, enabling the selection of representative corroded areas, from which elemental distribution maps were produced by scanning. Calcium and potassium rich structures were found - at the surface and inside cavities in the glass - that were identified as oxalates and carbonates, by Raman microscopy and micro-FTIR. The dark spots present in the glass surfaces were found to be Zn and Pb rich. These findings indicate that the corrosion observed was due not only to reactions with atmospheric water and CO{sub 2} but also with the oxalic acid secreted by micro-organisms. Furthermore, it did not result from reactions with atmospheric SO{sub 2} or acid rain. The information obtained is relevant for a better understanding of the corrosion processes and products formed on the surface of these panels and therefore for the proper planning of much needed adequate conservation-restoration actions and appropriate display conditions. - Research Highlights: {yields} Corrosion and darkening of stained glasses is of concern to conservators and curators. {yields} A multi-technique approach is of relevance to study stained glass corrosion. {yields} External beam PIXE-PIGE provide valuable insight on stained glass corrosion.

  1. Investigation of corrosion of materials of the irradiation device in the RA reactor

    International Nuclear Information System (INIS)

    Zaric, M.; Mance, A.; Vlajic, M.

    1963-12-01

    Devices for sample irradiation in the vertical RA reactor channels will be made of aluminium alloys. According to the regulations concerned with introducing materials into the RA reactor core, corrosion characterisation of these materials is an obligation. Corrosion properties of four aluminium alloys were investigated both in contact with stainless steel and without it. First part of this report deals with the corrosion testing of aluminium alloys in water by gravimetric and electrochemical methods. Bi-distilled water at temperatures less than 100 deg C was used. Second part is related to aluminium alloys corrosion in carbon dioxide gas under experimental conditions. The second part of research was initiated by the design of the head of the independent CO 2 loop for samples cooling [sr

  2. A mini-catalogue of metal corrosion products studied by Raman microscopy

    International Nuclear Information System (INIS)

    Bouchard, M.; Smith, D.C.

    2000-01-01

    Full text.The extensive development of physical methods of analysis since the beginning of this century has revolutionised the classical observation techniques most frequently used by the archaeologist. Raman Microscopy (RM) appears to be one of the most promising tools due to the many advantages that it offers: e.g. non-destructive, in situ, micro-analysis. RM is being applied to many archaeological fields as well as to industrial or environmental sectors. In relation with parallel studies made on the identification of corrosion products on archaeological materials, and according to the principal condition for the RM characterisation of an unknown product being the comparison of its Raman spectrum with known standard spectra, the essential aim of this study is to build a mini-catalogue of standard corrosion products susceptible to be found on metallic objects; these could be from archaeological as well as from modern contexts. However, it is noted that the identification of a corrosion product may suggest either an urgent intervention from the restoration team (in the case of active corrosion products), or a stabilisation of the corrosion layer if this is considered to be a protective layer. All the standard samples are natural minerals coming from the Museum National d'Histoire Naturelle in Paris (France) and correspond to the corrosion products most frequently found on metals such copper, zinc, lead or tin. These samples have been analyzed by RM and also confirmed by powder x-ray diffraction analysis. This catalogue, including more than 30 standard species corresponding to the most common metal corrosion products, is very useful for the different studies in progress in collaboration with different archaeological metal restoration teams. The near future will probably see a mobile Raman Microprobe (MRM) equipped with many different mini-catalogues on the site of a corroded mettalic bridge, a corroded canalisation or under the sea to rapidly identify the different

  3. Study of alloy 600 (NC15Fe) stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, Richard

    1993-01-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies: hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author) [fr

  4. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  5. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  6. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    International Nuclear Information System (INIS)

    Xia, Y.H.; Zhang, B.P.; Lu, C.X.; Geng, L.

    2013-01-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF 2 was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF 2 is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed

  7. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R., E-mail: raularrabal@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Departamento de Ciencia de Materiales, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid (Spain); Paucar, K. [Gabinete de Corrosion, Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Cod. Postal 25, Lima (Peru); Garces, G. [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Nd addition modified the microstructure of AM50 and AZ91D magnesium alloys. Black-Right-Pointing-Pointer Volume of {beta}-Mg{sub 17}Al{sub 12} phase was reduced and Al{sub 2}Nd/Al-Mn-Nd particles were formed. Black-Right-Pointing-Pointer Nd-containing intermetallics revealed lower potential than Al-Mn inclusions. Black-Right-Pointing-Pointer 0.7-0.8 wt.% Nd reduced the corrosion rate of AM50 and AZ91D alloys by 90%. - Abstract: The corrosion performance of AM50 and AZ91D alloys containing up to 1.5 wt.% Nd was investigated by electrochemical and gravimetric measurements in 3.5 wt.% NaCl at 22 Degree-Sign C. The alloys were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and surface potential maps. In Nd-containing alloys, formation of Al{sub 2}Nd and Al-Mn-Nd intermetallic compounds reduced the volume fraction and modified the morphology of the {beta}-Mg{sub 17}Al{sub 12} phase. The addition of Nd improved the corrosion resistance of the alloys due to increased passivity of the surface film and suppression of micro-galvanic couples.

  8. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  9. Novel gravimetric measurement technique for quantitative volume calibration in the sub-microliter range

    International Nuclear Information System (INIS)

    Liang, Dong; Zengerle, Roland; Steinert, Chris; Ernst, Andreas; Koltay, Peter; Bammesberger, Stefan; Tanguy, Laurent

    2013-01-01

    We present a novel measurement method based on the gravimetric principles adapted from the ASTM E542 and ISO 4787 standards for quantitative volume determination in the sub-microliter range. Such a method is particularly important for the calibration of non-contact micro dispensers as well as other microfluidic devices. The novel method is based on the linear regression analysis of continuously monitored gravimetric results and therefore is referred to as ‘gravimetric regression method (GRM)’. In this context, the regression analysis is necessary to compensate the mass loss due to evaporation that is significant for very small dispensing volumes. A full assessment of the measurement uncertainty of GRM is presented and results in a standard measurement uncertainty around 6 nl for dosage volumes in the range from 40 nl to 1 µl. The GRM has been experimentally benchmarked with a dual-dye ratiometric photometric method (Artel Inc., Westbrook, ME, USA), which can provide traceability of measurement to the International System of Units (SI) through reference standards maintained by NIST. Good precision (max. CV = 2.8%) and consistency (bias around 7 nl in the volume range from 40 to 400 nl) have been observed comparing the two methods. Based on the ASTM and ISO standards on the one hand and the benchmark with the photometric method on the other hand, two different approaches for establishing traceability for the GRM are discussed. (paper)

  10. Corrosion of low alloy steels in natural seawater. Influence of alloying elements and bacteria

    International Nuclear Information System (INIS)

    Dajoux Malard, Emilie

    2006-01-01

    Metallic infrastructures immersed in natural seawater are exposed to important corrosion phenomena, sometimes characterised as microbiologically influenced corrosion. The presence of alloying elements in low alloy steels could present a corrosion resistance improvement of the structures. In this context, tests are performed with commercial steel grades, from 0,05 wt pc Cr to 11,5 wt pc Cr. They consist in 'on site' immersion in natural seawater on the one hand, and in laboratory tests with immersion in media enriched with marine sulphide-producing bacteria on the other hand. Gravimetric, microbiological, electrochemical measurements and corrosion product analyses are carried out and show that corrosion phenomenon is composed of several stages. A preliminary step is the reduction of the corrosion kinetics and is correlated with the presence of sessile sulphide-producing bacteria and an important formation of sulphur-containing species. This phase is shorter when the alloying element content of the steel increases. This phase is probably followed by an increase of corrosion, appearing clearly after an 8-month immersion in natural seawater for some of the grade steels. Chromium and molybdenum show at the same time a beneficial influence to generalised corrosion resistance and a toxic effect on sulphide-producing bacteria. This multidisciplinary study reflects the complexity of the interactions between bacteria and steels; sulphide-producing bacteria seem to be involved in corrosion processes in natural seawater and complementary studies would have to clarify occurring mechanisms. (author) [fr

  11. Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid

    Science.gov (United States)

    Ansari, K. R.; Quraishi, M. A.

    2015-05-01

    The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.

  12. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  13. Effect of friction stir processing on erosion–corrosion behavior of nickel–aluminum bronze

    International Nuclear Information System (INIS)

    Lotfollahi, M.; Shamanian, M.; Saatchi, A.

    2014-01-01

    Highlights: • The average hardness value of the FSP samples was higher than cast sample. • Erosion–corrosion rate of the FSP samples was higher than cast sample. • The gravimetric analysis showed a negative synergy. - Abstract: In the present investigation, effects of Friction Stir Processing (FSP) on Erosion–Corrosion (E–C) behavior of Nickel–Aluminum Bronze (NAB) were studied by weight-loss measurements and surface characterization using an impingement jet test system. After FSP, the initial coarse microstructure of the cast NAB was transformed to a fine structure, and the porosity defects were eliminated. In addition, different FSP structures were produced by each rotation rate. Microhardness measurements showed a marked increase in FSP samples depending upon the FSP parameters. E–C tests were carried out by erodent at kinetic energies about 0.45 μJ and in 30°, 60° and 90° impact angles to simulate actual service conditions. The maximum weight-loss was observed in FSP samples and Scanning Electron Microscopy (SEM) results showed signs of brittle fracture mechanism in FSP samples. By gravimetric analysis, the degree of synergy was evaluated at 0.45 μJ kinetic energy at normal impact angle and negative synergy result implies the presence of a protective film on all sample surfaces

  14. Bio-corrosion for underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.; Esnault, L.; Feron, D.

    2011-01-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H 2 , which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe 3 O 4 ) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  15. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    OpenAIRE

    Shola Elijah Adeniji; Bamigbola Abiola Akindehinde

    2018-01-01

    Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the tempe...

  16. Recent improvements of the French liquid micro-flow reference facility

    Science.gov (United States)

    Florestan, Ogheard; Sandy, Margot; Julien, Savary

    2018-02-01

    According to the mission of the national reference laboratory, LNE-CETIAT achieved in 2012 the construction and accreditation of a modern and innovative calibration laboratory based on the gravimetric method. The measurement capabilities cover a flow rate range for liquid from 10 kg · h-1 down to 1 g · h-1 with expanded relative uncertainties from 0.1% to 0.6% (k  =  2). Since 2012, several theoretical and experimental studies have allowed a better knowledge and control over uncertainty sources and have decreased calibration time. When dealing with liquid micro-flow using a reference method such as the gravimetric method, several difficulties have to be overcome. The main improvements described in this paper relate to the enhancement of the evaporation trap system, the merging of the four dedicated measurement lines into one, and the implementation of a gravimetric dynamic ‘flying’ method for the calculation of the reference flow rate. The evaporation-avoiding system has been replaced by an oil layer in order to remove the possibility of condensation of water on both the weighed vessel and the immersed capillary. The article describes the experimental method used to quantify the effect of surface tension of water/oil/air interfaces on the weighed mass. The traditional static gravimetric method has been upgraded by a dynamic ‘flying’ gravimetric method. The article presents the newly implemented method, its validation and its advantages compared to the static method. The four dedicated weighing devices, dispatched over four sub-ranges of flow rate, have been merged leading to the use of only one weighing scale with the same uncertainties on the reference flow rate. The article discusses the new uncertainty budget over the full flow rate range capability. Finally, the article discusses the improvements still under development and the general prospects of liquid micro-flow metrology.

  17. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  18. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  19. Local corrosion of high alloy steels under biodeposits

    International Nuclear Information System (INIS)

    Korovyakova, M.D.; Nikitin, V.M.; Speshneva, N.V.

    1999-01-01

    Impact of the bacteriozenosis different structural-functional state under biodeposits on corrosion resistance of the 12Kh18N10T and Kh18N10T high-alloy steels in the natural seawater is studied. It is shown that saturation of natural micro communities by separate aerobic and facultative-anaerobic bacterial monocultures increases corrosion resistance of these steels by their overgrow with biodeposits [ru

  20. Cashew Nut Testa Tannin: Assessing its Effects on the Corrosion of Aluminium in HCl

    OpenAIRE

    Nnaji, Nnaemeka J. N; Obi-Egbedi, Nelson O; Okoye, Chukwuma O. B

    2014-01-01

    Cashew nut testa tannin (CASTAN) has been found to inhibit the corrosion of aluminium in hydrochloric acid solutions using gravimetric, thermometric and UV/visible spectrophotometric techniques. CASTAN inhibition was by adsorption on aluminium following Temkin isotherm in 0.1 M HCl and Langmuir isotherm in 0.5 M and 2.0 M HCl at 303 Kelvin. Physical adsorption on aluminium has been proposed in studied HCl solutions; therefore, CASTAN is a cathodic inhibitor. Earlier reports (1) showed CASTAN ...

  1. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    2000-01-01

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified

  2. Study of alloy 600`S stress corrosion cracking mechanisms in high temperature water; Etude des mecanismes de corrosion sous contrainte de l`alliage 600 dans l`eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rios, R

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600`s stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens` fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes.

  3. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  4. The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Nishimura, Rokuro; Tsujino, Yoshio; Satoh, Yukihiro; Thi Phuong Thoa, Nguyen; Yokoi, Masayuki; Maeda, Yasuaki

    2005-01-01

    The atmospheric corrosion of marble was evaluated in terms of SO 2 concentration as air pollution and climatic factors such as rainfall, relative humidity, temperature and so on under the field exposure. Marble of calcite type (CaCO 3 ) was exposed to outdoor atmospheric environment with and without a rain shelter at four test sites in the southern part of Vietnam for 3-month, 1- and 2-year periods from July 2001 to September 2003. The thickness loss of marble was investigated gravimetrically. X-ray diffraction and X-ray fluorescent methods were applied to study corrosion products on marble. The corrosion product of marble was only gypsum (CaSO 4 . 2H 2 O) and was washed out by rain under the unsheltered exposure condition. It was found that the most substantial factors influencing the corrosion of marble were rainfall, SO 2 concentration in the air and relative humidity. Based on the results obtained, we estimated the dose-response functions for the atmospheric corrosion of marble in the southern part of Vietnam

  5. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    International Nuclear Information System (INIS)

    Zelinka, Samuel L.; Glass, Samuel V.; Derome, Dominique

    2014-01-01

    Highlights: • We examine the dependence of metal corrosion on wood moisture content. • Corrosion of steel and galvanized steel in treated wood were measured. • Corrosion products were analyzed across moisture contents using X-ray diffraction. • The corrosion rate has a sigmoidal dependence on moisture content. • The data herein can be used to improve combined hygrothermal–corrosion models. - Abstract: This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent with previous work. Uniform corrosion was observed for all fasteners and all conditions except steel fasteners embedded in water-saturated wood. Data of dependence of corrosion rate on moisture content, presented herein, are necessary to ensure the accuracy of combined hygrothermal/corrosion models used to predict durability of wood structures

  6. Corrosion evaluation of materials from the second deployment of the Gulf of Mexico Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, G.J.

    1979-10-01

    The corrosion behavior and nature of films formed on 5052 aluminum, CA706 copper-nickel alloy, AL-6X stainless alloy, and grade 2 titanium in seawater during the second deployment of the Gulf of Mexico Experiment (GOME II) were evaluated by optical and scanning-electron microscopy as well as gravimetric measurements. The thickness of the corrosion-product and biofouling film on the copper-nickel alloy increased linearly with time over the 99-day duration of the experiment, whereas the film thickness on aluminum was independent of exposure time. The uniform corrosion of aluminum and the copper-nickel alloy, based upon defilmed metal loss from preweighed ring specimens, was approx. 0.3 and 0.7 mils, respectively, for the 55-day exposure period. The thin films formed on stainless alloy and titanium were composed primarily of organic residues. The corrosion resistance of titanium and stainless alloy was excellent under the conditions in this experiment, although some evidence for pitting attack was found for the latter material. This study is directed toward the evaluation of candidate materials for OTEC heat exchangers.

  7. Corrosion studies on PREPP waste form

    International Nuclear Information System (INIS)

    Welch, J.M.; Neilson, R.M. Jr.

    1984-05-01

    Deformation or Failure Test and Accelerated Corrosion Test procedures were conducted to investigate the effect of formulation variables on the corrosion of oversize waste in Process Experimental Pilot Plant (PREPP) concrete waste forms. The Deformation or Failure Test did not indicate substantial waste form swelling from corrosion. The presence or absence of corrosion inhibitor was the most significant factor relative to measured half-cell potentials identified in the Accelerated Corrosion Test. However, corrosion inhibitor was determined to be only marginally beneficial. While this study produced no evidence that corrosion is of sufficient magnitude to produce serious degradation of PREPP waste forms, the need for corrosion rate testing is suggested. 11 references, 4 figures, 8 tables

  8. In situ synchrotron X-ray diffraction study of the effect of microstructure and boundary layer conditions on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Ko, M.; Ingham, B.; Laycock, N.; Williams, D.E.

    2015-01-01

    Highlights: • We studied the effects of steel microstructures and local conditions on CO 2 corrosion. • Microstructure influences the development of surface roughness during corrosion. • The effects of Cr alloying, on average, dominate over the effects of microstructure. • Spatial segregation of Cr between the phases in the steel may result in localised corrosion. - Abstract: This study demonstrates that the nucleation of crystalline scales of siderite and chukanovite onto the surface of low-alloy steels under CO 2 corrosion at elevated temperature is critically dependent on initial surface roughness, on microstructure-related surface roughness developed during corrosion, and on stirring in the solution. This study confirms that effects due to chromium micro-alloying in the steel are extremely important for siderite nucleation. On average, these effects dominate over the effects of microstructure. However, spatial variation of the corrosion deposit thickness indicates an interdependence between microstructure and chromium-enhanced siderite nucleation with the possibility of localised corrosion developing as a result

  9. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  10. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    Science.gov (United States)

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  12. Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, M.; Tourabi, M.; Nyassi, A. [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Zarrouk, A. [LCAE-URAC 18, Faculty of Science, First Mohammed University, PO Box 717, M-60 000 Oujda (Morocco); Jama, C. [UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F., E-mail: fbentiss@gmail.com [Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); UMET-ISP, CNRS UMR 8207, ENSCL, Université Lille Nord de France, CS 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2016-12-15

    Highlights: • 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole is good corrosion inhibitor for carbon steel in 1 M HCl. • XPS analysis has provided the composition of adsorbed protective layer on the steel surface. • The adsorption of the investigated 1,3,4-oxadiazole is mainly due to chemisorption. - Abstract: Corrosion inhibition of carbon steel in normal hydrochloric acid solution at 30 °C by 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole (DAPO) has been studied by weight loss measurements and electrochemical techniques (polarization and AC impedance). The experimental results showed that DAPO acted as an efficient inhibitor against the carbon steel corrosion in 1 M HCl, and its inhibition efficiency increased with the inhibitor concentration reaching a value up to 93% at 1 mM. Polarization studies showed that the DAPO was a mixed-type inhibitor. The adsorption of this 1,3,4-oxadiazole derivative on the carbon steel surface in 1 M HCl solution followed the Langmuir adsorption isotherm and the corresponding value of the standard Gibbs free energy of adsorption (ΔG°{sub ads}) is associated to a chemisorption mechanism. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) analyses were carried out to characterize the chemical composition of the inhibitive film formed on the steel surface. The surfaces studies showed that the inhibitive layer is composed of an iron oxide/hydroxide mixture where DAPO molecules are incorporated. The cytotoxicity of DAPO was also determined using cell culture system.

  13. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  14. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  15. The dual role of microbes in corrosion

    NARCIS (Netherlands)

    Kip, D.J.; Van Veen, J.A.

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced

  16. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  17. Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, H., E-mail: Hermann.Kalb@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Rzany, A., E-mail: Alexander.Rzany@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Hensel, B., E-mail: Bernhard.Hensel@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Localized Corrosion of WE43 and pure magnesium under static exposure to SBF. Black-Right-Pointing-Pointer Vigorous hydrogen evolution at particles, which act as micro-cathodes. Black-Right-Pointing-Pointer Zr at WE43 and Fe at pure magnesium are dominant micro-cathodes. Black-Right-Pointing-Pointer Protection of surrounding bulk and volcano-shaped depositions. Black-Right-Pointing-Pointer A comprehensive corrosion model including a corrosion double-layer is proposed. - Abstract: Corrosion of magnesium alloys was studied during exposure to simulated body fluid (SBF). Microgalvanic processes dominate degradation morphology and formation of the corrosion/conversion layer. Localized corrosion with vigorous hydrogen evolution was observed at zirconium- and iron-rich precipitates that act as micro-cathodes. These are surrounded by volcano-shaped deposits of Mg(OH){sub 2}. Circular areas around cathodic centers were found to be protected from corrosion, while bulk degradation takes place in between. In SBF, conversion to a corrosion double layer was demonstrated. Differences observed for WE43 and pure magnesium (Mg) are discussed within the framework of a comprehensive model of the mechanisms of corrosion.

  18. Study of API 5L X70 steel corrosion processes when in contact with some Brazilian soils

    International Nuclear Information System (INIS)

    Jesus, Sergio Luis de

    2007-01-01

    Pipelines, fuel storage tanks and other metallic structures are in permanent contact and exposed to different types of soils, of horizons or layers, or of soil aggressiveness. This interaction may cause expressive damages to the environment and to the planned work. Contamination may occur due to leakage of stored products, splitting during transportation, accidents caused by pipelines without extensive maintenance. The result of these accidents could be, among others, some financial losses. In order to recognize the dynamic interactions between metallic surfaces and the environment it is crucial to have preventive actions and to develop better-applied materials. API steel 5L X70 has been used in structures of low and high pressure with high mechanical strength and corrosion and, even so, it is susceptible to etching corrosion since it is in contact with different environments from mangrove regions to industrial environments. The present case evaluated the role of 5L X70 API steel in contact with different soil horizons representative of the Brazilian soil. This investigation correlated chemical species with solute ions in soil solution, secondary and primary phase minerals besides physical and chemical characteristics as pH, electric conductivity, total dissolved solids, among others, to the results of corrosion resistance and ways of corrosion. The evaluation was carried out using x-ray diffractometry, scanning electron microscopy, total reflection x-ray fluorescence, fuel injection flow besides texture and gravimetric analyses to soil characterization and mineralogy, identification of corrosion products, soil solution analyses, evaluation of tested materials and classification of ways and types of corrosion. This was an attempt to integrate the data to a better understanding of the process involving reagents and products. The results showed that different soil horizons such as different types of analyzed soils produce specific etching in metallic structures

  19. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    Science.gov (United States)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  20. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain)

    2004-07-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr{sub 23}C{sub 6} precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  1. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A.

    2004-01-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr 23 C 6 precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  2. On the characterisation of the corrosion layout of ferrous archaeological analogues in binders

    Energy Technology Data Exchange (ETDEWEB)

    Chitty, Walter-John [Laboratoire Pierre Sue, CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Dillmann, Philippe [LRC CEA DSM 01-27: CNRS IRAMAT UMR5060, IPSE, and Laboratoire Pierre Sue, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); L' Hostis, Valerie [Laboratoire d' Etude du Comportement des Betons et Argiles, CEA, CE Saclay, 91191 Gif-sur-Yvette cedex (France); Beranger, Gerard [Universite de technologie de Compiegne, BP 60319, 60203 Compiegne (France)

    2004-07-01

    This paper deals with an analytical study on ferrous reinforcements embedded in hydraulic binders found in ancient buildings from the Middle Age period to the beginning of the 20. c. AD. The study of these kind of archaeological analogues is necessary to improve the knowledge on the long-term corrosion of low carbon steels that could be used in concrete to build the substructure of nuclear wastes reversible storage facilities. The corrosion system can be described as a multi-layer pattern made of the metal, a dense corrosion product layer, a transformed medium and a binder. All the morphological and physicochemical properties as composition, structure and porosities of these different parts were studied with different analytical methods as optical and electron microscopy, EDS coupled to SEM, EPMA, mercury porosimetry, micro Raman spectroscopy and micro Diffraction under Synchrotron Radiation. Moreover, average corrosion rates were evaluated by two different methods. These rates are relatively low compared to the same parameters measured on low alloyed steels immersed in aqueous environments and are comparable with results obtained for passivated systems. (authors)

  3. On the characterisation of the corrosion layout of ferrous archaeological analogues in binders

    International Nuclear Information System (INIS)

    Chitty, Walter-John; Dillmann, Philippe; L'Hostis, Valerie; Beranger, Gerard

    2004-01-01

    This paper deals with an analytical study on ferrous reinforcements embedded in hydraulic binders found in ancient buildings from the Middle Age period to the beginning of the 20. c. AD. The study of these kind of archaeological analogues is necessary to improve the knowledge on the long-term corrosion of low carbon steels that could be used in concrete to build the substructure of nuclear wastes reversible storage facilities. The corrosion system can be described as a multi-layer pattern made of the metal, a dense corrosion product layer, a transformed medium and a binder. All the morphological and physicochemical properties as composition, structure and porosities of these different parts were studied with different analytical methods as optical and electron microscopy, EDS coupled to SEM, EPMA, mercury porosimetry, micro Raman spectroscopy and micro Diffraction under Synchrotron Radiation. Moreover, average corrosion rates were evaluated by two different methods. These rates are relatively low compared to the same parameters measured on low alloyed steels immersed in aqueous environments and are comparable with results obtained for passivated systems. (authors)

  4. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  5. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  6. The corrosion behaviour and structure of amorphous and thermally treated Fe-B-Si alloys

    International Nuclear Information System (INIS)

    Raicheff, R.; Zaprianova, V.; Petrova, E.

    2003-01-01

    The corrosion behaviour of magnetic amorphous alloys Fe 78 B 13 Si 9 , Fe 81 B 13 Si 4 C 2 and Fe 67 Co 18 Bi 4 S 1 obtained by rapid quenching from the melts are investigated in a model corrosive environment of 1N H 2 SO 4 . The structure of the alloys, is, characterized by DTA, SEM, TEM, X-ray and electron diffraction techniques. The dissolution kinetics of the,alloys is studied using gravimetric and electrochemical polarization measurements. It is established that the corrosion rate of the amorphous Fe 67 Co 18 Bt 4 S 1 alloy is up to 50 times lower than that of Fe 78 Bi 3 Si 9 alloy and the addition of cobalt leads to a considerable reduction of the rates of both partial corrosion reactions, while the addition of carbon results only in a moderate decrease (2-3 times) of the corrosion rate. It is also shown that the crystallization of the amorphous Fe 78 B 13 Si 9 alloy (at 700 o C for 3 h) leads to formation of multiphase structure consisting of crystalline phases α-Fe and Fe 3 (B,Si). After crystallization an increase of the rate of both hydrogen evolution and anodic dissolution reactions is observed which results in a considerable (an order of magnitude) increase of the corrosion rate of the alloy. (Original)

  7. Gravimetric and conductometric studies of the sedimentation kinetics in aqueous dispersions of kaoline

    International Nuclear Information System (INIS)

    Bulavyin, L.A.; Khrapatij, S.V.; Koval'chuk, V.Yi.; Klepko, V.V.; Lebovka, M.Yi.

    2006-01-01

    Using gravimetric and conductometric methods, the sedimentation kinetics in aqueous suspensions of Alekseev kaoline has been studied for pH value range from 4 to 10. It has been found that pH increasing leads to the decreasing of mean radii of flocks linearly. We found that sedimentation kinetics for intermediate pH values can be described by scaling equations that crossover time defined transition from a gravitational mechanism of deposition to the diffusion one

  8. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application

    Directory of Open Access Journals (Sweden)

    Alberto Ortiz

    2016-12-01

    Full Text Available Vessel maintenance requires periodic visual inspection of the hull in order to detect typical defective situations of steel structures such as, among others, coating breakdown and corrosion. These inspections are typically performed by well-trained surveyors at great cost because of the need for providing access means (e.g., scaffolding and/or cherry pickers that allow the inspector to be at arm’s reach from the structure under inspection. This paper describes a defect detection approach comprising a micro-aerial vehicle which is used to collect images from the surfaces under inspection, particularly focusing on remote areas where the surveyor has no visual access, and a coating breakdown/corrosion detector based on a three-layer feed-forward artificial neural network. As it is discussed in the paper, the success of the inspection process depends not only on the defect detection software but also on a number of assistance functions provided by the control architecture of the aerial platform, whose aim is to improve picture quality. Both aspects of the work are described along the different sections of the paper, as well as the classification performance attained.

  9. Development of an approach to correcting MicroPEM baseline drift.

    Science.gov (United States)

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed

  10. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  11. Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid

    Directory of Open Access Journals (Sweden)

    K.R. Ansari

    2016-12-01

    Full Text Available This paper deals with the N80 steel corrosion protection study in 15% HCl which was carried by three quinoline derivatives namely 3-acetyl-1-(4-methylbenzylideneamino quinolin-2-one (AQ-1, 3-acetyl-1-(4 hydroxy benzylideneamino quinolin-2-one (AQ-2, 3-acetyl-1-(3-nitrobenzylideneamino quinolin-2(1H-one (AQ-3 using gravimetric, electrochemical, and quantum chemical studies. Tafel polarization showed that AQs are mixed type inhibitors but dominantly affect cathodic reaction more. The observed results reveal that AQ-1 is the best inhibitor. All the three inhibitors were found to obey the Langmuir adsorption isotherm. Scanning electron microscopy (SEM micrographs supports the protection of the N80 steel by AQs. Quantum chemical study reveals that the inhibitors have a tendency to get protonated and this protonated form has greater tendency to get adsorbed onto the N80 steel surface.

  12. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    Silva Munoz, L. de

    2007-12-01

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  13. Positive aspects issued from bio-corrosion studies: from hydrogen production to biofuel cells

    International Nuclear Information System (INIS)

    De Silva Munoz, Leonardo

    2007-01-01

    Microbially influenced corrosion or bio-corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio-corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio films could play a major role in steel bio-corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild ph conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase / glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author) [fr

  14. Experimental study of micro dimple fabrication based on laser shock processing

    Science.gov (United States)

    Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang

    2013-06-01

    Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.

  15. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    Science.gov (United States)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  16. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks

    International Nuclear Information System (INIS)

    Rios, Francisco Javier; Fuzikawa, Kazuo; Alves, James Vieira; Neves, Jose Marques Correia

    2003-01-01

    A detailed fluid inclusion study of host rocks, is of fundamental importance in the selection of geologically suitable areas for high level nuclear waste repository constructions (HLRW). The LIFM-CDTN is enabled to develop studies that confirm: the presence or not, of corrosive fluid in minerals from host rocks of the repository and the possible presence of micro fractures (and fluid leakage) when these rocks are submitted to high temperatures. These fluid geochemistry studies, with permeability determinations by means of pressurized air injection must be carried out in rocks hosting nuclear waste. Micro fracture determination is of vital importance since many naturally corrosive solutions, present in the mineral rocks, could flow out through these plans affecting the walls of the repository. (author)

  17. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  18. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  19. Evaluation of corrosiveness grade of the main pipeline system within the machine-room of the Cen Juragua

    International Nuclear Information System (INIS)

    Camacho C, J.; Corvo P, F.

    1998-01-01

    It is realized a study of the corrosion process and the products formed over the carbon steel in different points of the machine-room of the Electronuclear plant of Juragua (Cuba) particularly in the pipelines considering the specific characteristics of corrosion under roof which has been less studied. The determination of corrosiveness grade was carried out by gravimetric methods (lost and gain weight) in the different coats of the machine-room not existing a correlation between them in according to results with those ones obtained by Infrared Spectroscopy, in which there is not a correlation between the band intensities (lepidocrocite/ goethite) and the corrosion; however both explain different parts of corrosive process. Also it is realized the corrosion products analysis by chemical methods and by Atomic Absorption Spectrometry, obtaining the concentration of the major anions and cations of importance for the corrosion, not existing a meaning correlation between them and the corrosion velocity by what it was determined the absorption isotherms, obtaining as result a microporous structure in the formed oxides which was capable to retain and to absorb water and pollutants which could be this the main cause of corrosion. By analyzing the high concentration of iron and the low concentration of the remainder anions and cations it is possible to make the traditional chemical washes which are less expensive and greater effectiveness. All the obtained results are very important to assure the conditions of the pipelines systems installed at the presence of Government and Foreign organizations which are interested for the protection and conservation measures in the pipelines system. (Author)

  20. Long-term corrosion studies

    International Nuclear Information System (INIS)

    Gdowski, G.

    1998-01-01

    The scope of this activity is to assess the long-term corrosion properties of metallic materials under consideration for fabricating waste package containers. Three classes of metals are to be assessed: corrosion resistant, intermediate corrosion resistant, and corrosion allowance. Corrosion properties to be evaluated are general, pitting and crevice corrosion, stress-corrosion cracking, and galvanic corrosion. The performance of these materials will be investigated under conditions that are considered relevant to the potential emplacement site. Testing in four aqueous solutions, and vapor phases above them, and at two temperatures are planned for this activity. (The environmental conditions, test metals, and matrix are described in detail in Section 3.0.) The purpose and objective of this activity is to obtain the kinetic and mechanistic information on degradation of metallic alloys currently being considered for waste package containers. This information will be used to provide assistance to (1) waste package design (metal barrier selection) (E-20-90 to E-20-92), (2) waste package performance assessment activities (SIP-PA-2), (3) model development (E-20-75 to E-20-89). and (4) repository license application

  1. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  2. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    Science.gov (United States)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  3. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    Science.gov (United States)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  4. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  5. The Effect of Friction Stir Welding on Corrosion Behavior of Ti-6Al-4V

    Science.gov (United States)

    Nasresfahani, Ali Reza; Soltanipur, Abdol Reza; Farmanesh, Khosro; Ghasemi, Ali

    2017-09-01

    Fusion welding can deteriorate corrosion behavior of Ti-6Al-4V alloy. However, the use of friction stir welding leads to a more appropriate corrosion resistance. In this study, the corrosion resistance of welded zones of Ti-6Al-4V alloy using friction stir welding technique is evaluated. For these purposes, the study of structural characteristics using SEM and FESEM equipped with EDS micro-analyses was conducted. Micro-hardness test was also employed to estimate the hardness of welded zones. Corrosion behavior was investigated by a potentiostat instrument. SEM micrographs, EDS and XRD analyses confirmed non-uniformity of chemical composition within the welded zones. The results reveal that the stir zone contains typical alpha and prior beta phases. Nevertheless, thermomechanical zone included equiaxed and bimodal lamellae structure. Furthermore, the presence of different types of phases and microstructure in the thermomechanical zone led to reduced corrosion resistance. The corresponding values of corrosion current density in the stir zone, thermomechanical zone and base metal were 0.048, 0.55 and 0.032 µA, respectively. Corresponding corrosion potential for these zones was estimated as -207, -110 and -157 mV. Evidently, the results show that corrosion resistance of thermomechanical zone is less than that of the stir zone and both zones have lower value than the base metal.

  6. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2011-01-01

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: → DLC thin films were deposited on Si substrates via dc magnetron sputtering. → Some DLC films were doped with N and/or Pt/Ru. → The film corrosion behavior was studied in a Hank solution with polarization test. → The PtRu-DLC film showed the highest corrosion potential among the films studied.

  7. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  8. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.

    Science.gov (United States)

    Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C

    2004-11-01

    Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.

  9. Open site tests on corrosion of carbon steel containers for radioactive waste forms

    International Nuclear Information System (INIS)

    Barinov, A.S.; Ojovan, M.I.; Ojovan, N.V.; Startceva, I.V.; Chujkova, G.N.

    1999-01-01

    Testing of waste containers under open field conditions is a component part of the research program that is being carried out at SIA Radon for more than 20 years to understand the long-term behavior of radioactive waste forms and waste packages. This paper presents the preliminary results of these ongoing studies. The authors used a typical NPP operational waste, containing 137 Cs, 134 Cs, and 60 Co as the dominant radioactive constituents. Bituminized and vitrified waste samples with 30--50 wt.% waste loading were prepared. Combined effects of climatic factors on corrosion behavior of carbon steel containers were estimated using gravimetric and chemical analyses. The observations suggest that uniform corrosion of containers prevails under open field conditions. The upper limits for the lifetime of containers were derived from calculations based on the model of atmospheric steel corrosion. Estimated lifetime values range from 300 to 600 years for carbon steel containers with the wall thickness of 2 mm containing vitrified waste, and from 450 to 500 years for containers with the wall thickness of 2.5 mm that were used for bituminized waste. However, following the most conservative method, pitting corrosion may cause container integrity failure after 60 to 90 years of exposure

  10. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, P.G.; Souza, J.R. de

    1991-01-01

    A gravimetric method for zirconium determination in refractories is described. X-ray fluorescence analysis is also employed in this experiment and considerations about interfering elements are presented. (M.V.M.)

  11. Corrosion Control of Alloy 690 by Shot Peening and Electropolishing under Simulated Primary Water Condition of PWRs

    Directory of Open Access Journals (Sweden)

    Kyung Mo Kim

    2015-01-01

    Full Text Available This work clarifies the effect of surface modifications on the corrosion rate of Alloy 690, a nickel-based alloy for steam generator tubes, under the simulated test conditions of the primary water chemistry in nuclear power plants. The surface stress was modified by the shot peening and electropolishing methods. The shot peening treatment was applied using ceramic beads with different intensities by varying the air pressure and projection angle. The corrosion rate was evaluated by gravimetric analysis and the surface was analyzed by scanning electron microscopy (SEM. The corrosion rate of Alloy 690 was evaluated from the influence of the stress state on the metal surface. Based on the observation of the surface after the corrosion test, the oxide composition and its structure were affected by the surface modifications. The corrosion behavior of Alloy 690 was distinguished by the shot peening intensity on the surface, and additional electropolishing was effective at reducing the dissolution of nickel ions from the metal surface.

  12. Smeared crack modelling approach for corrosion-induced concrete damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik

    2017-01-01

    In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....

  13. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Merino, S.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2005-01-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al 2 O 3 . 3H 2 O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration

  14. Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp)

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Carboneras, M. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01

    The influence of silicon carbide (SiCp) proportion and matrix composition on four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) immersed in 1-3.5 wt% NaCl at 22 deg C was investigated by potentiodynamic polarization. The kinetics of the corrosion process was studied on the basis of gravimetric measurements. The nature of corrosion products was analysed by scanning electron microscopy (SEM) and low angle X-ray diffraction (XRD). The corrosion damage in Al/SiCp composites was caused by pitting attack and by nucleation and growth of Al{sub 2}O{sub 3} . 3H{sub 2}O on the material surface. The main attack nucleation sites were the interface region between the matrix and the reinforcement particles. The corrosion process was influenced more by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement and saline concentration.

  15. Reduction Of Gravimetric Data Using An Integrated Computer ...

    African Journals Online (AJOL)

    The rigour of gravimetric data collection, and the non-availability of comprehensive data reduction software that takes care of local peculiarities, have always constituted hindrance to the application of the gravity method of geophysical studies. However, in recent time, the importance of the gravity method in mineral ...

  16. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: superamphiphobicity and enhanced corrosion resistance

    Science.gov (United States)

    Li, Xuewu; Shi, Tian; Liu, Cong; Zhang, Qiaoxin; Huang, Xingjiu

    2016-10-01

    Aluminum alloys are vulnerable to penetrating and peeling failures in seawater and preparing a barrier coating to isolate the substrate from corrosive medium is an effective anticorrosion method. Inspired by the lotus leaves effect, a wetting alloy surface with enhanced anticorrosion behavior has been prepared via etch, deposition, and low-surface-energy modification. Results indicate that excellent superamphiphobicity has been achieved after the modification of the constructed hierarchical labyrinth-like microstructures and dendritic nanostructures. The as-prepared surface is also found with good chemical stability and mechanical durability. Furthermore, superior anticorrosion behaviors of the resultant samples in seawater are investigated by electrochemical measurements. Due to trapped air in micro/nanostructures, the newly presented solid-air-liquid contacting interface can help to resist the seawater penetration by greatly reducing the interface interaction between corrosive ions and the superamphiphobic surface. Finally, an optimized two-layer perceptron artificial neural network is set up to model and predict the cause-and-effect relationship between preparation conditions and the anticorrosion parameters. This work provides a great potential to extend the applications of aluminum alloys especially in marine engineering fields.

  17. Corrosion of aluminum components and remedial measures

    International Nuclear Information System (INIS)

    Sheikh, S.T.; Khalique, A.; Malik, F.A.

    2006-01-01

    Aluminum has versatile physical properties, mechanical strength, corrosion resistance, and is used in special applications like aerospace, automobiles and other strategic industries. The outdoor exposed structural components of aluminum have very good corrosion resistance due to the thick oxide layer (0.2 -0.4 micro). This study involves the corrosion of aluminum based components, though aluminum is protected by an oxide layer but due to extreme weather and environmental conditions the oxide layer was damaged. The corroded product was removed, pits or cavities formed due to the material removal were filled with epoxy resins and acrylic-based compounds containing fibreglass as reinforcement. Optimum results were obtained with epoxy resins incorporated with 5% glass fibers. The inner surface of the components was provided further protection with a cellulose nitrate compound. (author)

  18. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  19. Current status of studies on nodular corrosion

    International Nuclear Information System (INIS)

    Yasuda, Takayoshi; Kawasaki, Satoru; Echigoya, Hironori; Kinoshita, Yutaka; Kubota, Hiroyuki; Konishi, Takao; Yamanaka, Tuneyasu.

    1993-01-01

    The studies on nodular corrosion formed on the outer surface of BWR fuel cladding tubes were reviewed. Main factors affecting the corrosion behavior were material and environmental conditions and combined effect. The effects of such material conditions as fabrication process, alloy elements, texture and surface treatment and environmental factors as neutron irradiation, thermo-hydrodynamic, water chemistry, purity of the coolant and contact with foreign metals on the corrosion phenomena were surveyed. Out-of-reactor corrosion test methods and models for the corrosion mechanism were also reviewed. Suppression of the accumulated annealing temperature during tube reduction process improved the nodular corrosion resistance of Zircaloys. Improved resistance for the nodular corrosion was reported for the unirradiated Zircaloys with some additives. Detailed irradiation test under the BWR conditions is needed to confirm the trend. Concerning the environmental factors, boiling on the cladding surface due to heat flux reduces the nodular corrosion susceptibility, while oxidizing radical generated from dissolved oxygen accelerates the corrosion. Concerning corrosion mechanisms, importance of such phenomena as the depleted zone of alloying elements in zirconium matrix, reduction of H + to H 2 in oxide layer, electrochemical property of precipitates, crystallographic anisotropy of oxidation rates were revealed. (author) 59 refs

  20. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  1. Corrosion process studies in a nuclear waste container

    International Nuclear Information System (INIS)

    Guasp, Ruben A.; Lanzani, Liliana A.; Coronel, Pascual; Bruzzoni, Pablo; Semino, Carlos J.

    1999-01-01

    Latest results on corrosion behavior studies on high activity nuclear waste container are reported. Corrosion evaluation on lead base alloys and modeling to predict carbon steel external container cover generalized corrosion, are the main issues of these studies. (author)

  2. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium.

    Science.gov (United States)

    Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan

    2017-12-15

    Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker.

    Science.gov (United States)

    Whittamore, Jonathan M; Genz, Janet; Grosell, Martin; Wilson, Rod W

    2016-04-01

    The gut sac is a long-standing, widely used in vitro preparation for studying solute and water transport, and calculation of these fluxes requires an accurate assessment of volume. This is commonly determined gravimetrically by measuring the change in mass over time. While convenient this likely under-estimates actual net water flux (Jv) due to tissue edema. We evaluated whether the popular in vivo volume marker [(14)C]-PEG 4000, offers a more representative measure of Jvin vitro. We directly compared these two methods in five teleost species (toadfish, flounder, rainbow trout, killifish and tilapia). Net fluid absorption by the toadfish intestine based on PEG was significantly higher, by almost 4-fold, compared to gravimetric measurements, compatible with the latter under-estimating Jv. Despite this, PEG proved inconsistent for all of the other species frequently resulting in calculation of net secretion, in contrast to absorption seen gravimetrically. Such poor parallelism could not be explained by the absorption of [(14)C]-PEG (typically gravimetric method therefore remains the most reliable measure of Jv and we urge caution in the use of PEG as a volume marker. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of MAO Treatment on the Galvanic Corrosion Between Aluminum Alloy and 316L Steel

    Science.gov (United States)

    Yang, Yuanhang; Gu, Yanhong; Zhang, Lei; Jiao, Xiangdong; Che, Juntie

    2017-12-01

    To slow down the galvanic corrosion of aluminum alloy and 316L stainless steel in subsea water, a micro-arc oxidation (MAO) coating was prepared on the surface of the Al alloy, and no treatment was performed on the surface of the 316L. The surface morphology of MAO-coated Al alloy was evaluated using a scanning electron microscope (SEM) before and after corrosion. A micro-hardness tester was used to measure the micro-hardness. Corrosion behaviors were evaluated by open-circuit potential (OCP), potentiodynamic polarization (PDP) and electrode impedance spectroscopy (EIS) tests in a 3.5 g/L NaCl solution. The results of PDP testing show that the corrosion potential of the MAO-coated galvanic pair was more positive than that of the uncoated galvanic pair and that the corrosion current density was smaller than that of the uncoated galvanic pair. EIS results show that the impedance of the galvanic pair increased after MAO coating. SEM images show that the corrosion damage of the uncoated Al alloy was more severe than that of the MAO-coated one, and the post-corrosion images of the surface of the 316L connected with MAO-coated Al alloy were more compact than those of the 316L connected with uncoated Al alloy. A physical model was developed to discuss the influence of MAO treatment on the galvanic corrosion process and corrosion mechanism.

  5. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, C.G.; Souza, J.R.

    1991-01-01

    The zirconium determination in refractories is described, consisting in two separation methods for eliminating the interferences. The formatted product is calcined at 1100 0 C and determined gravimetrically as Zr P z 07. (author)

  6. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  7. Corrosion and Fatigue of Aluminum Alloys: Chemistry, Micro-Mechanics and Reliability

    National Research Council Canada - National Science Library

    Wei, Robert

    1997-01-01

    Lehigh University undertook a multidisciplinary program of research to develop a basic mechanistic understanding of localized corrosion and corrosion fatigue crack nucleation and growth in aluminum...

  8. Gravimetric and titrimetric methods of analysis

    International Nuclear Information System (INIS)

    Rives, R.D.; Bruks, R.R.

    1983-01-01

    Gravimetric and titrimetric methods of analysis are considered. Methods of complexometric titration are mentioned, as well as methods of increasing sensitivity in titrimetry. Gravimetry and titrimetry are applied during analysis for traces of geological materials

  9. Interpretation of Gravimetric and Aeromagnetic Data of the Tecoripa Chart in Southeast Sonora, Mexico.

    Science.gov (United States)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2015-12-01

    The Tecoripa chart H12-D64 is located southeast of the state of Sonora, México, south of Arizona. The geology is represented by sedimentary rocks of the Ordovician and Triassic, volcanic rocks of the Upper Cretaceous and Tertiary, intrusive rocks from the Upper Cretaceous- Tertiary and sedimentary rocks of the Cenozoic. In this paper a gravimetric study was conducted to determine the configuration and depth of the basement and to develop a structural model of the subsurface. For this purpose a consistent gravimetric survey in 3 profiles was conducted. To complement this study, gravimetric data obtained by INEGI (96 gravimetric stations spaced every 4000 m) that correspond to a regional survey was also used. The two sets of data were corrected and processed with the WinGLink software. The profiles were then modeled using the Talwani method. 4 Profiles corresponding to the gravimetric survey and 5 data profiles from INEGI were modeled. Aeromagnetic data from the total field of Tecoripa chart were also processed. The digital information was integrated and processed by generating a data grid. Processes applied to data consisted of reduction to the pole, regional-residual separation and upward continuations. In general, the obtained structural models show intrusive bodies associated with well-defined high gravimetric and magnetic and low gravimetric and magnetic are associated with basins and sedimentary rocks. The obtained geological models show the basement represented by volcanic rocks of the Tarahumara Formation from the Upper Cretaceous which are in contact with sedimentary rocks from the Barranca Group from Upper Cretaceous and limestones from the Middle Ordovician. Both volcanic and sedimentary rocks are intruded by granodiorite- granite with ages of the Tertiary-Oligocene. Based on the superficial geology as well as in the configuration of the basement and the obtained structural model the existence of faults with NW-SE orientation that originate Horst and

  10. A gravimetric simplified method for nucleated marrow cell counting using an injection needle.

    Science.gov (United States)

    Saitoh, Toshiki; Fang, Liu; Matsumoto, Kiyoshi

    2005-08-01

    A simplified gravimetric marrow cell counting method for rats is proposed for a regular screening method. After fresh bone marrow was aspirated by an injection needle, the marrow cells were suspended in carbonate buffered saline. The nucleated marrow cell count (NMC) was measured by an automated multi-blood cell analyzer. When this gravimetric method was applied to rats, the NMC of the left and right femurs had essentially identical values due to careful handling. The NMC at 4 to 10 weeks of age in male and female Crj:CD(SD)IGS rats was 2.72 to 1.96 and 2.75 to 1.98 (x10(6) counts/mg), respectively. More useful information for evaluation could be obtained by using this gravimetric method in addition to myelogram examination. However, some difficulties with this method include low NMC due to blood contamination and variation of NMC due to handling. Therefore, the utility of this gravimetric method for screening will be clarified by the accumulation of the data on myelotoxicity studies with this method.

  11. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W.; Liu, E., E-mail: MEJLiu@ntu.edu.sg

    2011-10-10

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: {yields} DLC thin films were deposited on Si substrates via dc magnetron sputtering. {yields} Some DLC films were doped with N and/or Pt/Ru. {yields} The film corrosion behavior was studied in a Hank solution with polarization test. {yields} The PtRu-DLC film showed the highest corrosion potential among the films studied.

  12. Aqueous corrosion study on U-Zr alloy

    International Nuclear Information System (INIS)

    Pal, Titas; Venkatesan, V.; Kumar, Pradeep; Khan, K.B.; Kumar, Arun

    2009-01-01

    In low power or research reactor, U-Zr alloy is a potential candidate for dispersion fuel. Moreover, Zirconium has a low thermal-neutron cross section and uranium alloyed with Zr has excellent corrosion resistance and dimensional stability during thermal cycling. In the present study aqueous corrosion behavior of U-Zr alloy samples was studied in autoclave at 200 deg C temperature. Corrosion rate was determined from weight loss with time. (author)

  13. Durability of bare and anodised aluminium in atmosphere of very different corrosivities. II Anodised aluminium; Durabilidad del aluminio desnudo y anodizado en atmosfera de muy diferentes corrosividades. II. Aluminio anodizado

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, V.; Escudero, E.; Gonzalez, J. A.; Otero, E.; Morcillo, M.

    2004-07-01

    The behaviour of three anodic films with thicknesses of approximately 7, 17 and 28 {mu}m is studied in atmospheric exposure at 11 natural testing stations with salinity levels ranging between 2.1 and 684 mg Cl''- m''-2 d''-1. To evaluate the results, use was made of gravimetric techniques, electrochemical impedance spectroscopy (EIS), EDX microanalysis, standard quality control tests, optical microscopy and, occasionally, electron microscopy. It is shown that anodising with correct sealing is an appropriate solution for preventing localised corrosion of aluminium and conserving its appearance, even in atmospheres of high corrosivity, provided that an ill-defined minimum thickness threshold is passed. The 7 {mu}m anodic films suffer corrosion after the second annual cycle in the most aggressive environments. Corrosion, when it occurs, is localised in the form of pitting or filiform corrosion. (Author) 23 refs.

  14. Fundamental approaches to predicting stress corrosion: 'Quantitative micro-nano' (QMN) approach to predicting stress corrosion cracking in water cooled nuclear plants

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2010-01-01

    This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.

  15. Corrosion and Fatigue of Aluminum Alloys: Chemistry, Micro-Mechanics and Reliability

    National Research Council Canada - National Science Library

    Wei, Robert

    1998-01-01

    ... No. F49620-96-1-0245 to continue to develop a basic mechanistic understanding of the material degradation processes of localized corrosion and corrosion fatigue crack nucleation and growth in aluminum...

  16. Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    J. Pacheco-Martínez

    2015-11-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.

  17. Corrosion of chromium, nickel, titanium and steels in solutions of sodium and ammonium thiosulfates

    International Nuclear Information System (INIS)

    Grebenshchikova, S.V.; Kochergin, V.P.; Doronina, I.V.

    1983-01-01

    Results of gravimetric determinatiion of average rate of chromium, nickel, titatnium and steels 12Kh18N10T and VSt.3 corrosion rate in solutions 50 mass.% (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 in the air and nitrogen atmosphere at 333 K have been generalized. Anodic polarization curves are recorded and stationary potentials of metals and steels under the conditions are measured. It is shown that in (NH 4 ) 2 S 2 O 3 solution the rate of metal and steels corrosion is higher than in Na 2 S 2 O 3 solution indepenent of the nature of gaseous medium contacting with solution. In the series Ni → VSt.3 → 12Kh18N10T → VT1 → chromium in (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 solutions at 333 K corrosion resistance increases. Chromium, titanium and chromium-nickel steel 12Kh18N10T possess a high corrosion resistance

  18. Effect of surface stress states on the corrosion behavior of alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Mo; Shim, Hee Sang; Seo, Myung Ji; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The test environment simulated the primary water chemistry in PWRs. Dissolved oxygen (DO), dissolved hydrogen (DH), pH and conductivity were monitored at room temperature using sensors manufactured by Orbisphere and Mettler Toledo. The temperature and pressure were maintained at 330 .deg. C and 150 bars during the corrosion test. The condition of the test solution was lithium (LiOH) 2 ppm and boron (H3BO4) 1,200 ppm, DH 35 cc/kg (STP) and less than 5 ppb DO. The flow rate of the loop system was 3.8 L/hour. Corrosion tests were conducted for 500 hours. The corrosion release rate was evaluated by a gravimetric analysis method using a two-step alkaline permanganate-ammonium citrate (AP/AC) descaling process. Compressive residual stress is induced by shot peening treatment but its value reveals some different trend between the shot peening intensity on the surface of Alloy 690 TT. A higher shot peening intensity causes a reduction in the corrosion rate and it is considered that the compressive residual stress beneath the surface layer suppresses the metal ion transfer in an alloy matrix.

  19. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  20. The use of Euphorbia falcata extract as eco-friendly corrosion inhibitor of carbon steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    El Bribri, A.; Tabyaoui, M.; Tabyaoui, B.; El Attari, H.; Bentiss, F.

    2013-01-01

    Euphorbia falcata L. extract (EFE) was investigated as eco-friendly corrosion inhibitor of carbon steel in 1 M HCl using gravimetric, ac impedance, polarization and scanning electron microscopy (SEM) techniques. The experimental results show that EFE is good corrosion inhibitor and the protection efficiency is increased with the EEF concentration. The results obtained from weight loss and ac impedance studies were in reasonable agreement. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. Polarization curves indicated that EFE is a mixed inhibitor. The corrosion inhibition was assumed to occur via adsorption of EFE molecules on the metal surface. The adsorption of the E. falcata extract was well described by the Langmuir adsorption isotherm. The calculated ΔG ads o value showed that the corrosion inhibition of the carbon steel in 1 M HCl is mainly controlled by a physisorption process. - Graphical abstract: Display Omitted - Highlights: • EFE is a good eco-friendly inhibitor for the corrosion of carbon steel in 1 M HCl. • EFE acts as mixed-type inhibitor in 1 M HCl medium. • Weight loss, ac impedance and polarization methods are in reasonable agreement. • The adsorption of EFE is well described by the Langmuir adsorption isotherm

  1. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  2. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  3. Enhanced corrosion resistance of A3xx.x/SiCp composites in chloride media by La surface treatments

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.; Carboneras, M.

    2006-01-01

    The influence of silicon carbide particles (SiCp) proportion and matrix composition of aluminium metal matrix composites (A3xx.x/SiCp) modified by lanthanum-based conversion or electrolysis coating was evaluated in 3.5 wt% NaCl aerated solution. The intermetallic compounds were preferentially covered by lanthanum-based conversion coatings obtained by immersion in 50 deg. C solution of La(III) salt, and the intermetallic compounds, SiCp and aluminium matrix were covered by lanthanum electrolysis treatment. The corrosion process was studied on the basis of gravimetric tests and electrochemical impedance spectroscopy (EIS) during immersion in 3.5 wt% NaCl aerated solution. The composition of both La coating and corrosion products was analyzed before and after accelerated testing, by scanning electron microscopy (SEM), atomic force microscopy (AFM), low-angle X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to determine the influence of surface microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiCp reinforcement. Both lanthanum treated surfaces presented better behaviour to chloride solution corrosion than original composite surfaces without treatment; however, electrolysis afforded a higher degree of protection than the conversion treatment because the coating was more extensive

  4. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  5. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  6. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  7. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  8. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  9. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  10. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  11. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-01-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  12. Corrosion characteristics of Hastelloy N alloy after He+ ion irradiation

    International Nuclear Information System (INIS)

    Lin Jianbo; Yu Xiaohan; Li Aiguo; He Shangming; Cao Xingzhong; Wang Baoyi; Li Zhuoxin

    2014-01-01

    With the goal of understanding the invalidation problem of irradiated Hastelloy N alloy under the condition of intense irradiation and severe corrosion, the corrosion behavior of the alloy after He + ion irradiation was investigated in molten fluoride salt at 700 °C for 500 h. The virgin samples were irradiated by 4.5 MeV He + ions at room temperature. First, the virgin and irradiated samples were studied using positron annihilation lifetime spectroscopy (PALS) to analyze the influence of irradiation dose on the vacancies. The PALS results showed that He + ion irradiation changed the size and concentration of the vacancies which seriously affected the corrosion resistance of the alloy. Second, the corroded samples were analyzed using synchrotron radiation micro-focused X-ray fluorescence, which indicated that the corrosion was mainly due to the dealloying of alloying element Cr in the matrix. Results from weight-loss measurement showed that the corrosion generally correlated with the irradiation dose of the alloy. (author)

  13. Gravimetric and profilometric measurements of the ablation rates of photosensitive polymers at different wavelengths

    International Nuclear Information System (INIS)

    Dumont, Th.; Bischofberger, R.; Lippert, T.; Wokaun, A.

    2005-01-01

    The ablation rates of two polyimides (PMDA and DurimidTM) and one triazene polymer were studied by gravimetric (quartz microbalance) and profilometric (profilometer) methods at irradiation wavelengths of 193, 248 and 308 nm. The ablation rates determined by the two methods are discussed in the context of the absorption behavior of the materials. Furthermore, the consistence of the two experimental methods is discussed for the ablation rates of DurimidTM and the triazene polymer. The gravimetric measurements revealed a good correlation between the ablation rate and the absorption properties of the examined materials. The comparison of the gravimetric and the profilometric measurements suggest a significant mass removal, e.g. by formation of gaseous products, prior to the detection of changes in the surface morphology

  14. Inspection of Buildings in Rio de Janeiro-Brazil: Proving the greater tendency of corrosion at the base of reinforced concrete columns using potential corrosion technique

    OpenAIRE

    Marcelo Henrique Farias de Medeiros

    2013-01-01

    Monitoring the corrosion of steel embedded in concrete is a way to assess the degradation of civil structures. A technique used for this is the measurement of corrosion potential, which includes the use of a reference electrode, connected to a high input impedance voltmeter. There are many factors influencing the measurement of corrosion potential, such as: degree of concrete moisture content, the oxygen access, existence of micro fissures, chloride penetration, carbonation and concrete cover...

  15. Evaluation of the Synergistic Effect of Erosion-Corrosion on AISI 4330 Steel in Saline-Sand Multiphase Flow by Electrochemical and Gravimetric Techniques

    Directory of Open Access Journals (Sweden)

    Dario Yesid Peña Ballesteros

    2016-01-01

    Full Text Available The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.

  16. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria)

    2010-01-15

    Ketoconazole (KCZ) has been evaluated as a corrosion inhibitor for mild steel in aerated 0.1 M H{sub 2}SO{sub 4} by gravimetric method. The effect of KCZ on the corrosion rate was determined at various temperatures and concentrations. The inhibition efficiency increases with increase in inhibitor concentration but decrease with rise in temperature. Adsorption followed the Langmuir isotherm with negative values of {delta}G{sub ads}{sup 0}, suggesting a stable and a spontaneous inhibition process. Quantum chemical approach was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of ketoconazole.

  17. Moessbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

    International Nuclear Information System (INIS)

    Garcia, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A.; Cook, D. C.

    2003-01-01

    We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1x10 -2 M and 1x10 -1 M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Moessbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl - ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

  18. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  19. Gravimetric gas determinations for volume calibration

    International Nuclear Information System (INIS)

    Gibbs, P.W.

    1991-01-01

    Gravimetric measurements of gases is one of the methods available for calibrating gas volumes. By inputting a known quantity of gas and measuring the resulting pressure and temperature, the system volume can be calculated using gas law principles. Historically, this method has been less accurate due to the difficulty in the mass determination. This difficulty comes from several sources. Two examples are the large tare weight of the gas container relative to the weight of gas and the external volume of the gas container relative to the standards. The application of a gravimetric gas determination to tank volume calibrations at the savannah River Site is discussed. Mass determinations on a 25,00 gram gas container were such that a 1500 gram quantity of gas was routinely determined to within ±0.2 gram at the 99% confidence level. In this paper the weighting design and the methods used to address the difficulties of the mass determination are detailed

  20. Pitting corrosion of copper. Further model studies

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    The work presented in this report is a continuation and expansion of a previous study. The aim of the work is to provide background information about pitting corrosion of copper for a safety analysis of copper canisters for final deposition of radioactive waste. A mathematical model for the propagation of corrosion pits is used to estimate the conditions required for stationary propagation of a localised anodic corrosion process. The model uses equilibrium data for copper and its corrosion products and parameters for the aqueous mass transport of dissolved species. In the present work we have, in the model, used a more extensive set of aqueous and solid compounds and equilibrium data from a different source. The potential dependence of pitting in waters with different compositions is studied in greater detail. More waters have been studied and single parameter variations in the composition of the water have been studied over wider ranges of concentration. The conclusions drawn in the previous study are not contradicted by the present results. However, the combined effect of potential and water composition on the possibility of pitting corrosion is more complex than was realised. In the previous study we found what seemed to be a continuous aggravation of a pitting situation by increasing potentials. The present results indicate that pitting corrosion can take place only over a certain potential range and that there is an upper potential limit for pitting as well as a lower. A sensitivity analysis indicates that the model gives meaningful predictions of the minimum pitting potential also when relatively large errors in the input parameters are allowed for

  1. Corrosion Studies of Wrought and Cast NASA-23 Alloy

    Science.gov (United States)

    Danford, M. D.

    1997-01-01

    Corrosion studies were carried out for wrought and cast NASA-23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistant to corrosion.

  2. Comparison of Potentiometric and Gravimetric Methods for Determination of O/U Ratio

    International Nuclear Information System (INIS)

    Farida; Windaryati, L; Putro Kasino, P

    1998-01-01

    Comparison of determination O/U ratio by using potentiometric and gravimetric methods has been done. Those methods are simple, economical and having high precision and accuracy. Determination O/U ratio for UO 2 powder using potentiometric is carried out by adopting the davies-gray method. This technique is based on the redox reaction of uranium species such as U(IV) and U(VI). In gravimetric method,the UO 2 power as a sample is calcined at temperature of 900 C, and the weight of the sample is measured after calcination process. The t-student test show that there are no different result significantly between those methods. However, for low concentration in the sample the potentiometric method has a highed precision and accuracy compare to the gravimetric method. O/U ratio obtained is 2.00768 ± 0,00170 for potentiometric method 2.01089 ± 0,02395 for gravimetric method

  3. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    International Nuclear Information System (INIS)

    Shi, Wei; Dong, Ze Hua; Kong, De Jie; Guo, Xing Peng

    2013-01-01

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part in cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps

  4. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Dong, Ze Hua, E-mail: zehua.dong@gmail.com; Kong, De Jie; Guo, Xing Peng

    2013-06-15

    Multi-electrode technique named as wire beam electrode (WBE) was used to study pitting corrosion of rebar under concrete cover. When WBE embedded mortar sample was immersed in NaCl solution, uneven distributions of galvanic current and open circuit potential (OCP) on the WBE were observed due to the initiation of pitting corrosion. The following oxygen depletion in mortar facilitated the negative shift of the OCP and the smoothing of the current and potential distributions. Wetting–drying cycle experiments showed that corrosion products instead of oxygen in wet mortar specimen sustained the propagation of pitting corrosion due to Fe (III) taking part in cathodic depolarization during oxygen-deficient wet period, which was confirmed by micro-Raman spectroscopy. In addition, new pitting corrosion occurred mainly near the corrosion products, leading to preferentially horizontal propagation of rust layer on the WBE. A localized corrosion factor was further presented to quantify the localised corrosion based on galvanic current maps.

  5. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    Directory of Open Access Journals (Sweden)

    Shola Elijah Adeniji

    2018-05-01

    Full Text Available Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the temperature was increased. Corrosion inhibition by the extract of Dialium guineense leaves is carried out by adsorption mechanism with the kinetics of corrosion following the pseudo first order reaction with high correlation. Thermodynamic consideration revealed that adsorption of the ethanol extract of Dialium guineense leaves on mild steel surface is an exothermic and spontaneous process that fitted the Langmuir adsorption isotherm. The values of activation energy and Gibb’s free energy were found within the range of limits expected for the mechanism of physical adsorption.

  6. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  7. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  8. Corrosion of metal iron in contact with anoxic clay at 90 °C: Characterization of the corrosion products after two years of interaction

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Bataillon, Christian; Brucker, Florence; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy; Chorro, Matthieu

    2014-01-01

    Highlights: • Generalized, heterogeneous corrosion is observed. • The corrosion interface is made of several layers with distinct mineralogy. • Magnetite, chukanovite, Fe-phyllosilicate, ankerite are identified from metal to clay. • The estimated corrosion damage (15 μm in two years) supports surface passivation. • The corrosion products contain only half of oxidized Fe. - Abstract: Chemical and mineralogical properties of solids formed upon free corrosion of two iron probes (one massive iron rod, and one model overpack made by two pipes covering the ends of a glass rod) in saturated clay rock (Callovo-Oxfordian formation, East of Paris Basin, France) at 90 °C over two years were investigated by microscopic and spectroscopic techniques (X-ray tomography, scanning electron microscopy coupled with energy-dispersive X-ray analysis, Raman microspectroscopy, micro-X-ray diffraction, and micro-X-ray Absorption Fine Structure spectroscopy). The corrosion rate of the massive rod was monitored in situ by electrochemical impedance spectrometry, and found to decrease from about 90 μm/year during the first month of reaction, to less than 1 μm/year after two years. X-ray tomography revealed the presence of several fractures suggesting the presence of preferential flow and diffusion pathways along the iron samples. Microscopic observations revealed similar corrosion interfaces for both samples. Corrosion heterogeneously affected the interface, with damaged thickness from ∼0 to 80 μm. In extensively damaged areas, an inner discontinuous layer of magnetite in contact with metal, an intermediate chukanovite (Fe 2 CO 3 (OH) 2 ) layer (only when magnetite is present, and only for the overpack), and an outer layer of poorly ordered Fe phyllosilicate were observed. In areas with little damage, only the Fe-silicate solids are observed. The clay transformation layer is predominantly made of ankerite ((Fe,Ca,Mg)CO 3 ) forming a massive unit near the trace of the original

  9. Studying the causes for corrosive destruction of water conduits

    Energy Technology Data Exchange (ETDEWEB)

    Azamatova, F I; Kulinichev, G P; Porubov, I S

    1979-01-01

    Pipes from different oil and gas production administrations were selected for X-ray and metallographic studies of the cause of corrosive destruction. The chemical composition and mechanical properties of the pipe material are presented in tables. The phase composition of the corrosion products was studied by X-rays. The complex structure of the layer made up of the corrosion products was taken into consideration. The studies were conducted in an X-ray diffraction chamber. The obtained results are presented in a table. The metallographic studies showed that a significant corrosive damage of the materials of water conduits occurs as a result of the development of local corrosion processes, caused by the substantive heterogeneity of the structure of the metal, related to the nonuniform distribution of the pearlite because of carbon liquidation.

  10. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  11. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  12. Technical note: Comparison of metal-on-metal hip simulator wear measured by gravimetric, CMM and optical profiling methods

    Science.gov (United States)

    Alberts, L. Russell; Martinez-Nogues, Vanesa; Baker Cook, Richard; Maul, Christian; Bills, Paul; Racasan, R.; Stolz, Martin; Wood, Robert J. K.

    2018-03-01

    Simulation of wear in artificial joint implants is critical for evaluating implant designs and materials. Traditional protocols employ the gravimetric method to determine the loss of material by measuring the weight of the implant components before and after various test intervals and after the completed test. However, the gravimetric method cannot identify the location, area coverage or maximum depth of the wear and it has difficulties with proportionally small weight changes in relatively heavy implants. In this study, we compare the gravimetric method with two geometric surface methods; an optical light method (RedLux) and a coordinate measuring method (CMM). We tested ten Adept hips in a simulator for 2 million cycles (MC). Gravimetric and optical methods were performed at 0.33, 0.66, 1.00, 1.33 and 2 MC. CMM measurements were done before and after the test. A high correlation was found between the gravimetric and optical methods for both heads (R 2  =  0.997) and for cups (R 2  =  0.96). Both geometric methods (optical and CMM) measured more volume loss than the gravimetric method (for the heads, p  =  0.004 (optical) and p  =  0.08 (CMM); for the cups p  =  0.01 (optical) and p  =  0.003 (CMM)). Two cups recorded negative wear at 2 MC by the gravimetric method but none did by either the optical method or by CMM. The geometric methods were prone to confounding factors such as surface deformation and the gravimetric method could be confounded by protein absorption and backside wear. Both of the geometric methods were able to show the location, area covered and depth of the wear on the bearing surfaces, and track their changes during the test run; providing significant advantages to solely using the gravimetric method.

  13. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  14. Investigations on the micro-scale surface interactions at the tool and workpiece interface in micro-manufacturing of bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Peker, Mevlut Fatih

    Micro-forming studies have been more attractive in recent years because of miniaturization trend. One of the promising metal forming processes, micro-stamping, provides durability, strength, surface finish, and low cost for metal products. Hence, it is considered a prominent method for fabricating bipolar plates (BPP) with micro-channel arrays on large metallic surfaces to be used in Proton Exchange Membrane Fuel Cells (PEMFC). Major concerns in micro-stamping of high volume BPPs are surface interactions between micro-stamping dies and blank metal plates, and tribological changes. These concerns play a critical role in determining the surface quality, channel formation, and dimensional precision of bipolar plates. The surface quality of BPP is highly dependent on the micro-stamping die surface, and process conditions due to large ratios of surface area to volume (size effect) that cause an increased level of friction and wear issues at the contact interface. Due to the high volume and fast production rates, BPP surface characteristics such as surface roughness, hardness, and stiffness may change because of repeated interactions between tool (micro-forming die) and workpiece (sheet blank of interest). Since the surface characteristics of BPPs have a strong effect on corrosion and contact resistance of bipolar plates, and consequently overall fuel cell performance, evolution of surface characteristics at the tool and workpiece should be monitored, controlled, and kept in acceptable ranges throughout the long production cycles to maintain the surface quality. Compared to macro-forming operations, tribological changes in micro-forming process are bigger challenges due to their dominance and criticality. Therefore, tribological size effect should be considered for better understanding of tribological changes in micro-scale. The integrity of process simulation to the experiments, on the other hand, is essential. This study describes an approach that aims to investigate

  15. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  16. Decomposition of Copper (II) Sulfate Pentahydrate: A Sequential Gravimetric Analysis.

    Science.gov (United States)

    Harris, Arlo D.; Kalbus, Lee H.

    1979-01-01

    Describes an improved experiment of the thermal dehydration of copper (II) sulfate pentahydrate. The improvements described here are control of the temperature environment and a quantitative study of the decomposition reaction to a thermally stable oxide. Data will suffice to show sequential gravimetric analysis. (Author/SA)

  17. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    Science.gov (United States)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  18. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  19. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    Science.gov (United States)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  20. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    Almeida, S.H. de.

    1987-01-01

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.) [pt

  1. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  2. Investigation on synergism of composite additives for zinc corrosion inhibition in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hebing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Huang Qiming; Liang Man; Lv Dongsheng; Xu Mengqing; Li Hong [Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China); Li Weishan, E-mail: liwsh@scnu.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), South China Normal University, Guangzhou 510006 (China)

    2011-07-15

    Highlights: {yields} An kind of environmentally benign organic composite additives is used firstly. {yields} The corrosion of zinc is inhibited used the organic compound as additive. {yields} The rate performance of the battery used the organic compound as additive is improved. {yields} The synergism of composite additives for zinc corrosion inhibition is investigated. - Abstract: The synergism of imidazole (IMZ) and poly(ethylene glycol) 600 (PEG) for zinc corrosion inhibition in 3 mol L{sup -1} KOH solution was investigated using a combination of electrochemical and gravimetric methods, and the surface morphology of the zinc was observed by scanning electron microscopy. It is found that there is a synergistic effect between IMZ and PEG for the zinc corrosion inhibition. The difference in molecular structure, ring for IMZ and chain for PEG, and in binding atoms with zinc, nitrogen in IMZ and oxygen in PEG, contributes to this synergistic effect. IMZ inhibits zinc corrosion by mainly depressing the anodic reaction, whereas PEG by depressing the cathodic reaction. The storage performance of the zinc-manganese dioxide batteries using IMZ and/or PEG as inhibitors was determined by discharge test, with a comparison of the battery using mercury as the inhibitor. The battery containing 0.05% IMZ + 0.05% PEG exhibits better performance than the mercury-containing battery, especially when discharged at high rate.

  3. Task E container corrosion studies: Annual report

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was put initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  4. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  5. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  6. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite

    International Nuclear Information System (INIS)

    Ganjaee Sari, M.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S.

    2015-01-01

    Highlights: • Nanoclay particles were modified with polyester-amide hyperbranched polymer. • Epoxy/clay nanocomposites were prepared using modified clay particles. • Surface modification enhanced the clay particles exfoliation properties. • Surface modified clay particles enhanced corrosion resistance of the epoxy coating. - Abstract: Surface modification of nanoclay particles was carried out by various amounts of polyester-amide hyperbranched polymer (HBP). Thermal gravimetric analysis and X-ray diffraction analysis were performed to estimate the efficiency of the HPB grafting on the clay particles. Epoxy/clay nanocomposites were prepared by addition of 1 wt.% unmodified and modified clays. The corrosion protection properties of the nanocomposites were evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that surface modification of the clay particles by HBP caused significant enhancement of the epoxy coating corrosion resistance especially when the ‘polymer/clay’ ratios were 10/1 and 5/1

  7. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al

    International Nuclear Information System (INIS)

    Liu, Yanjie; Wang, Zhenyao; Ke, Wei

    2014-01-01

    Highlights: •Corrosion products layer is only formed in coastal atmosphere. •In coastal atmosphere, rate controlling step is diffusion process. •In rural atmosphere, rate controlling step is charge transfer process. •Pitting area increases greatly in coastal site, but slightly in rural site. -- Abstract: Effects of native oxide and corrosion products on atmospheric corrosion of aluminium in rural and coastal sites were studied by electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP) and scanning electron microscope (SEM) techniques after outdoor exposure. In the rural atmosphere, only the compact, adhesive native oxide layer exists, and the rate controlling step is diffusion process, while in the coastal atmosphere, another loose, inadhesive corrosion products layer exists, and a charge transfer process controls the corrosion process. The pitting area in the coastal atmosphere increases over time more obviously than that in the rural atmosphere

  8. Three-dimensional analysis of the microstructure and bio-corrosion of Mg–Zn and Mg–Zn–Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Chiu, Y.L.; Jones, I.P.

    2016-02-15

    The effects of the morphology and the distribution of secondary phases on the bio-corrosion properties of magnesium (Mg) alloys are significant. Focused Ion Beam (FIB) tomography and Micro X-Ray computed tomography (Micro-CT) have been used to characterise the morphology and distribution of (α-Mg + MgZn) and (α-Mg + Ca{sub 2} + Mg{sub 6} + Zn{sub 3}) eutectic phase mixtures in as-cast Mg–3Zn and Mg–3Zn–0.3Ca alloys, respectively. There were two different 3D distributions: (i) an interconnected network and (ii) individual spheres. The tomography informed our understanding of the relationship between the distribution of secondary phases and the development of localized corrosion in magnesium alloys. - Highlights: • Multi-scale tomography was used to characterise the morphology and distribution of secondary phases in Mg alloys. • The development of localized corrosion was investigated using tomography. • An improved understanding of the microstructure and corrosion was achieved using Micro-CT tomography.

  9. Three-dimensional analysis of the microstructure and bio-corrosion of Mg–Zn and Mg–Zn–Ca alloys

    International Nuclear Information System (INIS)

    Lu, Y.; Chiu, Y.L.; Jones, I.P.

    2016-01-01

    The effects of the morphology and the distribution of secondary phases on the bio-corrosion properties of magnesium (Mg) alloys are significant. Focused Ion Beam (FIB) tomography and Micro X-Ray computed tomography (Micro-CT) have been used to characterise the morphology and distribution of (α-Mg + MgZn) and (α-Mg + Ca 2 + Mg 6 + Zn 3 ) eutectic phase mixtures in as-cast Mg–3Zn and Mg–3Zn–0.3Ca alloys, respectively. There were two different 3D distributions: (i) an interconnected network and (ii) individual spheres. The tomography informed our understanding of the relationship between the distribution of secondary phases and the development of localized corrosion in magnesium alloys. - Highlights: • Multi-scale tomography was used to characterise the morphology and distribution of secondary phases in Mg alloys. • The development of localized corrosion was investigated using tomography. • An improved understanding of the microstructure and corrosion was achieved using Micro-CT tomography.

  10. Gravimetric method for the determination of diclofenac in pharmaceutical preparations.

    Science.gov (United States)

    Tubino, Matthieu; De Souza, Rafael L

    2005-01-01

    A gravimetric method for the determination of diclofenac in pharmaceutical preparations was developed. Diclofenac is precipitated from aqueous solution with copper(II) acetate in pH 5.3 (acetic acid/acetate buffer). Sample aliquots had approximately the same quantity of the drug content in tablets (50 mg) or in ampules (75 mg). The observed standard deviation was about +/- 2 mg; therefore, the relative standard deviation (RSD) was approximately 4% for tablet and 3% for ampule preparations. The results were compared with those obtained with the liquid chromatography method recommended in the United States Pharmacopoeia using the statistical Student's t-test. Complete agreement was observed. It is possible to obtain more precise results using higher aliquots, for example 200 mg, in which case the RSD falls to 1%. This gravimetric method, contrary to what is expected for this kind of procedure, is relatively fast and simple to perform. The main advantage is the absolute character of the gravimetric analysis.

  11. Corrosion Behavior of Welded Joints for Cargo Oil Tanks of Crude Oil Carrier

    Institute of Scientific and Technical Information of China (English)

    Jin-shan WEI; Yan-chang QI; Zhi-ling TIAN; Yun PENG

    2016-01-01

    E32 grade corrosion resistant steel was welded with welding wires with three different S contents.The mi-crostructure,mechanical properties,inclusions,and corrosion behavior of welded joint were investigated.The joint coupon corrosion test and potentiodynamic polarization test were carried out under the simulated corrosion environ-ment of the inner bottom plates of cargo oil tanks.The pitting initiation and propagation mechanism of the weld metal were studied by scanning electron microscopy and infinite focus.The results indicated that the microstructures of three kinds of weld metals are all composed of acicular ferrite,ferrite side-plate and proeutectoid ferrite.The micro-structure of heat-affected zone is composed predominantly of bainite.Joint welded with low S filler wire has good me-chanical properties.S can decrease free corrosion potential and increase the corrosion tendency.The pitting initiation is oxide inclusion or sulfide-oxide inclusion complex.S can induce the formation of occluded area and promote the corrosion propagation.The chemical compositions of weld metal is similar to base metal,which can limit the galvanic corrosion between weld metal and base metal,and avoid formation of corrosion step.

  12. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen-Saarivirta, E., E-mail: elina.huttunen-saarivirta@vtt.fi [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Rajala, P. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Bomberg, M. [VTT Technical Research Centre of Finland, Geobiotechnology, Tietotie 2, FI-02044 VTT (Finland); Carpén, L. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland)

    2017-02-28

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu{sub 2}S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu{sub 2}S film. • Under abiotic conditions, Cu{sub 2}O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu{sub 2}S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu{sub 2}O

  13. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    International Nuclear Information System (INIS)

    Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.

    2017-01-01

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu_2S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu_2S film. • Under abiotic conditions, Cu_2O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu_2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu_2O. Furthermore, in the absence of

  14. Corrosion of orthodontic brackets in different spices: in vitro study.

    Science.gov (United States)

    Chaturvedi, T P

    2014-01-01

    Moist environment in the mouth varies and causes variable amounts of corrosion of dental materials. This is of concern particularly when metallic implants, metallic fillings, orthodontic appliances are placed in the hostile electrolytic environment in the human mouth. Components of diet rich in salt and spices are important factors influencing the corrosion of metallic appliances placed in the oral cavity. To study in vitro corrosion of orthodontic metallic brackets immersed in solutions of salt and spices in artificial saliva. Orthodontic brackets were used for corrosion studies in artificial saliva, salt, and spices using electrochemical technique and surface analysis. Electrochemical studies using different parameters were done in solutions of artificial saliva containing salt and spices. Photomicrographs from the optical microscope were also obtained. RESULTS of corrosion studies have clearly demonstrated that certain spices such as turmeric and coriander are effective in reducing corrosion, whereas salt and red chili have been found to enhance it. Surface analysis of small pits present on the surface of the as-received bracket will initiate corrosion which leads to more pitting.

  15. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Chang, Jean-Heng [Dental Department, Cheng Hsin General Hospital, Taipei, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2013-01-01

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) possesses good corrosion resistance and biocompatibility. This study aimed to improve the corrosion resistance and biocompatibility of titanium (Ti) by coating it with an amorphous Ta{sub 2}O{sub 5} surface layer. An amorphous Ta{sub 2}O{sub 5} layer was prepared on the Ti surface using a simple hydrolysis–condensation process at room temperature. The surface characteristics of the test specimens were analyzed using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction, field emission scanning electron microscopy, and contact angle measurements. The corrosion resistance of the test specimens was evaluated from the potentiodynamic polarization curves and ion release measurements in simulated blood plasma (SBP). The biocompatibility of the test specimens was evaluated in terms of the protein (albumin) adsorption, cell adhesion, and cell growth of human bone marrow mesenchymal stem cells (hBMSCs). The amorphous Ta{sub 2}O{sub 5} layer with a porous micro-/nano-scale topography, which was deposited on the Ti surface using a simple hydrolysis–condensation process, increased the corrosion resistance (i.e., increased the corrosion potential and decreased the anodic current and ion release) of the Ti in the SBP and improved the surface wettability, albumin adsorption, and cell adhesion. We conclude that the presence of an amorphous Ta{sub 2}O{sub 5} layer on the Ti surface increased the corrosion resistance and biocompatibility of Ti. - Highlights: ► Amorphous Ta{sub 2}O{sub 5} layer was coated on Ti using simple hydrolysis–condensation process. ► Ta{sub 2}O{sub 5} surface layer showed a micro-/nano-scale porous topography. ► Ta{sub 2}O{sub 5} layer enhanced wettability and corrosion resistance of Ti. ► Ta{sub 2}O{sub 5} layer enhanced protein adsorption, cell adhesion, and cell proliferation of Ti.

  16. Effect of La surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Merino, S.; Viejo, F.; Coy, A.E.

    2006-01-01

    The influence of the SiC p proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC p . The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC p reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive

  17. Marjoram Extract as Corrosion Inhibitor for Dissolution of Zinc in 1.0 M HCl

    Directory of Open Access Journals (Sweden)

    M. Sobhi

    2013-01-01

    Full Text Available In this study, water marjoram (Origanum marjorana L. extract was evaluated as corrosion inhibitor for zinc in 1.0 M HCl solution. The polarization measurements showed that this inhibitor is acting as mixed inhibitors for both anodic and cathodic reactions. The results showed that the inhibition efficiency was increased by increasing the inhibitor doses and reached the maximum at 500 ppm. The adsorption of marjoram extract on zinc surface was found to obey Langmuir type isotherm. The efficiency obtained from the impedance measurements was in good agreement with those obtained from the gravimetrical, thermometric, and polarization techniques which prove the validity of these tolls in the measurements of the tested inhibitor.

  18. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil

    International Nuclear Information System (INIS)

    Neff, D.

    2003-11-01

    In the context of the French nuclear waste storage, a multi-barriers disposal is envisaged. Wastes could be put in metallic overpacks disposed in a clay soil. As these overpacks could be made of low carbon steel, it is important to understand the corrosion behaviour of this material in soil during period of several centuries. Indeed, it is necessary to consolidate the empirical data by a phenomenological approach. This includes laboratory experiments and modelling of the phenomenon which have to be validated and completed by the study of archaeological artefacts. This was the aim of this PhD-work. To this purpose, an analytical protocol has been elaborated: about forty archaeological artefacts coming from five dated sites (2. to 16. centuries) have been studied on cross section in order to observe on the same sample all the constituents of the system: metallic substrate/corrosion products/environment. The corrosion products are divided into two zones: the Dense Product Layer (DPL) in contact with the metal, and the Transformed Medium (TM) which are the corrosion products formed around soil minerals (quartz grains). The metallic substrate has been studied by the classical methods of materials science (optical and scanning electron microscope, energy and wavelength dispersive spectroscopies). It has been verified that despite their heterogeneity of structure and composition, they are all hypo-eutectoids steels that can contain phosphorous until 0.5 wt%. The corrosion products have been analysed by local structural analytical methods as micro-diffraction under synchrotron radiation (μXRD) and Raman micro-spectroscopy. These two complementary techniques and also the elemental composition analysis conducted to the characterisation of the corrosion forms. On the majority of the samples coming from four sites, the DPL are constituted by goethite including marbles of magnetite/maghemite. On the artefacts from the fifth site, a particular corrosion form has been identified

  19. Study on the corrosion assessment of overpack welds-III (Joint research)

    International Nuclear Information System (INIS)

    Mitsui, Hiroyuki; Takahashi, Rieko; Otsuki, Akiyoshi; Asano, Hidekazu; Taniguchi, Naoki; Yui, Mikazu

    2006-12-01

    There is some possibility that the corrosion resistance of overpack welds is different from that of base metal due to the differences of material properties. In this study, corrosion behavior of welded joint for carbon steel was compared with base metal using the specimens taken from welded joint model fabricated by TIG, MAG and EBW respectively. The corrosion tests were performed for following four items. Passivation behavior and corrosion type. Propagation of general corrosion, pitting corrosion and crevice corrosion under aerobic condition. Stress corrosion cracking susceptibility. Propagation of general corrosion and hydrogen embrittlement under anaerobic condition. The results of these corrosion tests indicated that the corrosion resistance of welded metal by TIG and MAG was inferior to base metal for general corrosion, pitting corrosion and crevice corrosion. It was implied that the filler materials used for welding affected the corrosion resistance. No deterioration of corrosion resistance was observed in any corrosion modes for EBW, which does not need filler material. The susceptibility to stress corrosion cracking of welded metal and heat affected zone was lower than that of base metal. (author)

  20. Bio-corrosion for underground disposal of radioactive waste; Biocorrosion en conditions de stockage geologique de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M.; Esnault, L. [CEA, DEN/DTN/SMTM/LMTE, 13108 St Paul lez Durance, (France); Esnault, L. [ECOGEOSAFE, Technopole environnement Arbois-Mediterranee, avenue Louis Philibert, 13545 Aix-en-Provence Cedex, (France); Feron, D. [CEA, DEN/DANS/DPC, 91191 Gif-sur-Yvette, (France)

    2011-07-01

    The safety disposal of high level nuclear waste (HLNW) is the major breakthrough allowing socially acceptable development of nuclear energy over the coming decades. The French concept for geological disposal of HLNW is based on a multi-barrier system made by metallic containers confined in natural clay. The main alteration parameter is water arriving on waste after the corrosion of metallic components. The anoxic aqueous corrosion phenomena are studied in order to evaluate the confinement capacity of metallic barriers. The discover of active micro-organisms in deep clayey environments raises the question of the impact of micro-organisms on corrosion parameters due to processes such as 'biologically induced corrosion'. Despite of extreme conditions in deep nuclear geological disposal (redox conditions, high pressure and temperature, irradiation), bacterial activity will adapt and survive in these environments. Anoxic corrosion of nuclear waste containers and radiolysis will produce H{sub 2}, which represents a new energetic source for bacterial development, especially in this environment that contains a low amount of biodegradable organic matter. Besides, the formation of Fe(III)-bearing minerals such as magnetite (Fe{sub 3}O{sub 4}) as corrosion products will provide electron acceptors favouring the development of bacteria. Bio-corrosion studies of nuclear waste disposal need to investigate the activity of hydrogenotrophic bacteria able to reduce iron oxides (passivation layer) or sulfates (iron reducing bacteria and sulfate reducing bacteria) in order to evaluate their impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level nuclear waste containment. (authors)

  1. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  2. A detailed gravimetric geoid from North America to Eurasia

    Science.gov (United States)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid of the United States, North Atlantic, and Eurasia, which was computed from a combination of satellite derived and surface gravity data, is presented. The precision of this detailed geoid is + or - 2 to + or - 3 m in the continents but may be in the range of 5 to 7 m in those areas where data is sparse. Comparisons of the detailed gravimetric geoid with results of Rapp, Fischer, and Rice for the United States, Bomford in Europe, and Heiskanen and Fischer in India are presented. Comparisons are also presented with geoid heights from satellite solutions for geocentric station coordinates in North America, the Caribbean, and Europe.

  3. Gravimetric determination of beryllium in the presence of transition metals

    International Nuclear Information System (INIS)

    Morozova, S.S.; Nikitina, L.V.; Dyatlova, N.M.; Serebryakova, G.V.; Vol'nyagina, A.N.

    1976-01-01

    A new organic reagent, nitrolotrimethylphosphonic acid (H 6 L), is proposed for gravimetric determination of beryllium. This complexone forms with Be hardly soluble complexes in a wide pH range. The separated complex has a composition Be 5 (HL) 2 x10H 2 O. To elucidate the possibility of determining Be in the presence of transition metals, often accompanying beryllium in alloys, interaction of cations of these metals with H 6 L at different pH has been studied potentiometrically. It has been established that at pH=1.1 in the presence of masking reagent (diethylentriaminopentacetic acid) Be can be determined when zinc, copper, chromium, cobalt, nickel, iron, manganese and cadmium are present. Gravimetric method of determining Be with the help of H 6 L has been developed. The weight form is obtained by drying the precipitate which reduces considerably the time of analysis and the error of determination

  4. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. CORROSION INHIBITIVE PROPERTIES OF EXTRACT OF JATROPHA CURCAS LEAVES ON MILD STEEL IN HYDROCHLORIC ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    J. Odusote

    2016-09-01

    Full Text Available Jatropha curcas leaves extract was tested as a green corrosion inhibitor for mild steel in aqueous hydrochloric acid solution using gravimetric and thermometric techniques. The results reveal that the inhibition efficiency vary with concentration of the leaf extract and the time of immersion. Maximum inhibition efficiency was found to be 95.92% in 2M HCl with 0.5 g/l concentration of the extract in gravimetric method, while 87.04% was obtained in thermometric method. The inhibiting effect was attributed to the presence of alkaloids, flavonoids, saponins, tannins and phenol in the extract. The adsorption processes of the Jatropha curcas leaves extract onto the mild steel is consistent with the assumptions of Langmuir isotherm model and also found to be spontaneous. From the results, a physical adsorption mechanism is proposed for the adsorption of Jatropha curcas leaves extract onto mild steel surface.

  6. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  7. Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetone

    DEFF Research Database (Denmark)

    Mølgaard, Mathias Johannes Grøndahl; Laustsen, Milan; Thygesen, Ida Lysgaard

    2017-01-01

    The detection of phenylacetone is of interest as it is a common precursor for the synthesis of (meth)amphetamine. Resonant gravimetric sensors can be used to detect the mass and hereby the concentration of a gas while colorimetric arrays typically have an exceptional selectivity to the target...... analyte if the right colorimetric dyes are chosen. We present a sensor system consisting of a Capacitive Micromachined Ultrasonic Transducer (CMUT) and a colorimetric array for detection of phenylacetone. The CMUT is used as a resonant gravimetric gas sensor where the resonance frequency shift due to mass...

  8. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  9. Failure Analysis of a Nickel-Plated Electronic Connector Due to Salt-Induced Corrosion (ENGE 2014).

    Science.gov (United States)

    Lee, Na-Ri; Choi, Hyoung-Seuk; Choi, Duck-Kyun

    2015-10-01

    When electronic connectors in mobile devices are miniaturized, the thickness of plating decreases. However, this thin plating is expected to decrease the life of the connector due to problems with corrosion. In this study, salt spray aging tests were performed on miniaturized nickel-plated stainless steel electronic connectors to observe failure mechanisms in realistic environments. The tests were performed three times using a 5% NaCl solution in an atmosphere of 45 °C; each test included several cycles where one cycle was one 24-h period consisting of 8 h of salt spray and 16 h without salt spray. The nickel-plating layers were periodically observed by electron probe X-ray micro-analyzer, wavelength dispersive spectroscopy, and field-emission scanning electron microscopy to analyze and identify the corrosion mechanism. We found that the primary failure mode of the nickel plating is blistering and delamination. The corrosion mechanism is typically a chain reaction of several corrosion mechanisms: pitting corrosion --> stress corrosion cracking --> hydrogen-induced cracking --> blistering and delamination. Finally, we discuss countermeasures to prevent corrosion of the nickel layer based on the corrosion mechanisms identified in this study.

  10. Gravimetric Analysis of Uranium in Yellow Cake

    International Nuclear Information System (INIS)

    Srinuttrakul, Wannee; Jantha, Suwat

    2007-08-01

    Full text: The gravimetric analysis of uranium in yellow cake is composed of several stages. The analysis takes a long time, which is the disadvantage of this method. However, this gravimetric method provides accurate result for determining the major content of sample. Uranium is the main composition of yellow cake, while Thorium, rare earths and other elements are minor and trace elements. In this work, anion exchange resin was used to separate uranium from other elements to yield highly pure uranium suitable for precipitation. This pure uranium was burnt to U3O8, a form that is stable enough to be weighed. From the optimal condition, the recovery of U3O8 after separating uranium from rare earths and iron is 99.85 ± 0.21%. The application of anion exchange separation was used to analyze uranium in yellow cake obtained from monazite digestion process. It was found that U3O8 in yellow cake is 78.85 ± 2.03%

  11. A micro flow cytometry system for study of marine phytoplankton from costal waters of Hong Kong

    KAUST Repository

    Yunyang Ling,

    2010-01-01

    Although conventional flow cytometers (CFCs) have been widely used for study of marine biology, most CFCs are too bulky to be used for field study in ocean and have corrosion problem due to salty samples. A new computer-controlled micro flow cytometer (MFC) system has been successfully developed using MEMS technology. We demonstrate that this new MFC can analyze mixture of two species of marine phytoplankton: Chlorella autotrophica and Rhodomonas. The results from our MFC are consistent with those from digital fluorescence microscopy. ©2010 IEEE.

  12. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  13. Study of New Thiazole Based Pyridine Derivatives as Potential Corrosion Inhibitors for Mild Steel: Theoretical and Experimental Approach

    Directory of Open Access Journals (Sweden)

    T. K. Chaitra

    2016-01-01

    Full Text Available Three new thiazole based pyridine derivatives 5-(4-methoxy-phenyl-thiazole-2-carboxylic acid pyridin-2-ylmethylene-hydrazide (2-MTPH, 5-(4-methoxy-phenyl-thiazole-2-carboxylic acid pyridin-3-ylmethylene-hydrazide (3-MTPH, and 5-(4-methoxy-phenyl-thiazole-2-carboxylic acid pyridin-4-ylmethylene-hydrazide (4-MTPH were synthesized and characterized. Corrosion inhibition performance of the prepared compounds on mild steel in 0.5 M HCl was studied using gravimetric, potentiodynamic polarisation, and electrochemical impedance techniques. Inhibition efficiency has direct relation with concentration and inverse relation with temperature. Thermodynamic parameters for dissolution and adsorption process were evaluated. Polarisation study reveals that compounds act as both anodic and cathodic inhibitors with emphasis on the former. Impedance study shows that decrease in charge transfer resistance is responsible for effective protection of steel surface by inhibitors. The film formed on the mild steel was investigated using FTIR, SEM, and EDX spectroscopy. Quantum chemical parameters like EHOMO, ELUMO, ΔE, hardness, softness, and ionisation potential were calculated. Higher value of EHOMO and lower value of ΔE indicate the better inhibition efficiency of the compounds. Lower ionisation potential of inhibitors indicates higher reactivity and lower chemical stability.

  14. Glove corrosive liquid immersion and permeability study

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1977-01-01

    The Occupational Safety and Health Administration's requirement for protective equipment for personnel working with chemical hazards resulted in a study of gloves used in work with corrosive liquids. Gloves of different materials and weights were tested using ASTM methods, in various corrosive liquids. Results show the best material for gloves used for different lengths of time in the liquids

  15. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  16. Stationary potentials and corrosion of metals and steels in sodium and potassium chloride eutectic melts saturated with hydrogen chloride

    International Nuclear Information System (INIS)

    Belov, V.N.; Ershova, T.K.; Kochergin, V.P.

    1978-01-01

    Stationary potentials have been measured at 850 deg C and corrosion rates found gravimetrically for a number of metals and steels in the eutectic NaCl-KCl melt saturated with HCl. Periodic shifts of the stationary potentials towards positive values have been established in the Ti-V-Cr-Fe-Ni, Cu-Zr-Nb-Mo, Ag-Ta-W-Pt systems, with the corrosion rate of metals decreasing in them. The stationary potentials are shown to shift towards positive values in the series: st.08 KP, st.3, Kh17N2, Kh22N6T, Kh13NChG9, 1Kh18N10T, Kh17N13M2T, OKh17N16M3T, Kh23N18, Kh25N16G7, Kh23N28M3D3T, with corrosive resistance in this series increasing

  17. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    Science.gov (United States)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  18. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  19. Effect of La surface treatments on corrosion resistance of A3xx.x/SiC{sub p} composites in salt fog

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)]. E-mail: anpardo@quim.ucm.es; Merino, M.C. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Arrabal, R. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain); Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain); Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040 Madrid (Spain)

    2006-02-15

    The influence of the SiC{sub p} proportion and the matrix concentration of four aluminium metal matrix composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) modified by lanthanum-based conversion or electrolysis coating was evaluated in neutral salt fog according to ASTM B 117. Lanthanum-based conversion coatings were obtained by immersion in 50 deg. C solution of La(III) salt and lanthanum electrolysis treatments were performed in ethylene glycol mono-butyl ether solution. These treatments preferentially covered cathodic areas such as intermetallic compounds, Si eutectic and SiC{sub p}. The kinetic of the corrosion process was studied on the basis of gravimetric tests. Both coating microstructure and nature of corrosion products were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDS) and low angle X-ray diffraction (XRD) before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The corrosion process was more influenced by the concentration of alloy elements in the matrix than by the proportion of SiC{sub p} reinforcement. Both conversion and electrolysis surface treatments improved the behaviour to salt fog corrosion in comparison with original composites without treatment. Additionally, electrolysis provided a higher degree of protection than the conversion treatment because the coating was more extensive.

  20. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  1. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  2. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  3. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  4. Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis

    OpenAIRE

    Hongjuan Yu; Jinyun Guo; Jiulong Li; Dapeng Mu; Qiaoli Kong

    2015-01-01

    Zero drift and solid Earth tide corrections to static relative gravimetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and...

  5. Preliminary Simulation of the Corrosion Rate of Archaeological Glass

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    In this study, we make use of a micro-continuum modeling approach (the Kinetic-Microscopic-Continuum Model or K{micro}C model) to capture the spatial distribution and identity of reaction products developing over time as a result of the archaeological glass corrosion, while also matching the time scales of alteration where possible. Since the glass blocks sat on the Mediterranean seafloor for 1800 years, the physical and chemical boundary conditions are largely constant. We focus on a fracture within the glass block identified by Verney-Carron et al. (2008) and simulate it as a 1D system, with a fixed concentration (Dirichlet) boundary corresponding to the interior of the fracture.

  6. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    International Nuclear Information System (INIS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-01-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  7. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiya, E-mail: flying850612@126.com; Tian, Yimei, E-mail: ymtian_2000@126.com; Wan, Jianmei, E-mail: 563926510@qq.com; Zhao, Peng, E-mail: zhpeng@tju.edu.cn

    2015-12-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  8. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    International Nuclear Information System (INIS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.

    2014-01-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscopy (SEM). The results showed that the micro-nano nickel film was well-crystallized and exhibited pine cone-like microstructure with nano-cone arrays randomly dispersed on each micro-protrusion. The wettability of the micro-nano nickel film varied from super-hydrophilicity (water contact angle 5.3°) to super-hydrophobicity (water contact angle 155.7°) by exposing the surface in air at room temperature. The corrosion resistance of the super-hydrophobic film was estimated by electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The potentiodynamic curves revealed that the corrosion rate of superhydrophobic surface was only 0.16% of the bare copper substrate. Moreover, EIS measurements and appropriate equivalent circuit models revealed that the corrosion resistance of nickel films considerably improved with an increase in the hydrophobicity. The superhydrophobic surface also exhibited an excellent long-term durability in neutral 3.5 wt.% NaCl solution.

  9. 40 CFR 1065.290 - PM gravimetric balance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM gravimetric balance. 1065.290... balance. (a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing. (b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of...

  10. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    Science.gov (United States)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  11. Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: Experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Herrag, L.; Hammouti, B.; Elkadiri, S.; Aouniti, A. [Laboratoire de Chimie Appliquee et Environnement, LCAE-URAC18, Faculte des Sciences, Universite Mohammed Premier, B.P. 717, M-6000 Oujda (Morocco); Jama, C. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR-CNRS 8516, Universite des Sciences et Technologies de Lille, Batiment C5, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, F., E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-09-15

    New diamine derivatives, namely 2-[{l_brace}2-[bis-(2-hydroxyethyl)amino]ethyl{r_brace}(2-hydroxyethyl)amino]ethanol (DAME) and 2-[{l_brace}2-[bis-(2-hydroxyethyl)amino]ethyl{r_brace}(2-hydroxyethyl)amino]propanol (DAMP) were synthesised and their inhibitive action against the corrosion of mild steel in 1 M HCl solution were investigated at 308 K. The detailed study of DAME is given using gravimetric measurements and polarization curves method. Results show that DAME is a good inhibitor and inhibition efficiency reaches 91.7% at 10{sup -3} M. Tafel polarization study revealed that DAME acts as a mixed-type inhibitor. The inhibitor adsorption process in mild steel/DAME/hydrochloric acid system was studied at different temperatures (308-353 K) by means of weight loss measurements. The adsorption of DAME on steel surface obeyed Langmuir's adsorption isotherm. The kinetic and thermodynamic parameters for mild steel corrosion and inhibitor adsorption, respectively, were determined and discussed. The comparative study of inhibitive performance of the two diamine derivatives revealed that DAME is more effective than DAMP. Quantitative Structure-Activity Relationship (QSAR) approach has been conducted in attempt to correlate the corrosion inhibition properties of these diamine derivatives with their calculated quantum chemical parameters.

  12. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  13. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    Science.gov (United States)

    Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.

    2016-03-01

    Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.

  14. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sieradzki, Karl [Arizona State Univ., Mesa, AZ (United States); Aiello, Ashlee [Arizona State Univ., Mesa, AZ (United States); McCue, Ian [Arizona State Univ., Mesa, AZ (United States)

    2017-12-15

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosion behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  15. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  16. The possibility for formation of macro-cell corrosion in a liquid with low electrical conductivity

    International Nuclear Information System (INIS)

    Matsumura, M.

    2011-01-01

    The possibility of electrochemical corrosion of carbon steel at the rate of 3.25 x 10 -5 A/cm 2 in water was examined under the conditions present during an accidental pipe rupture at the Mihama nuclear power plant: liquid conductivity, 7.5 μS/cm; dissolved oxygen concentration, 5 ppb or less; pH 8.6∝9.3; ferrous ion concentration, 20 ppb or less; temperature, 142 C. The corrosion rate of iron in a micro-cell with a dissolved oxygen reduction cathode was estimated to be only 1/400 of the preceding rate. On the other hand, that in a micro-cell with a hydrogen ion reduction cathode was estimated to be as high as 1/10 of the preceding rate, that is, 3.25 x 10 -6 A/cm 2 . Two important factors may have influenced the corrosion rate: the remarkable wall thinning, which must have been the direct cause of the rupture of the pipe, was located close to, and downstream from, an orifice; and, the water temperature was in the range at which carbon steel makes a transition from the active to the passive state. Taking these facts into consideration, it appears possible that micro-cells with different corrosion rates might be generated and integrated into a macro-cell, where the iron dissolution rate might be accelerated to as much as 10 times that of the micro-cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Quantification of in vitro wear of a synthetic meniscus implant using gravimetric and micro-CT measurements.

    Science.gov (United States)

    Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran

    2015-09-01

    A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  19. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Tan, Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Badve, Aditya [Business and Biology, The University of North Carolina at Chapel Hill, NC 27514 (United States); Dong, Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Park, Chanhee; Kim, Cheol Sang [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States)

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products.

  20. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    International Nuclear Information System (INIS)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products

  1. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  2. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    International Nuclear Information System (INIS)

    Walkowicz, J; Zavaleyev, V; Dobruchowska, E; Murzynski, D; Donkov, N; Zykova, A; Safonov, V; Yakovin, S

    2016-01-01

    Ceramic oxide ZrO 2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO 2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates. (paper)

  3. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, A., E-mail: andrea.ulrich@empa.ch [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Ott, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); EPFL-Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Tournier-Fillon, A. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Homazava, N. [Laboratory for Analytical Chemistry, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Swiss Centre for Applied Ecotoxicology, Eawag/EPFL, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schmutz, P. [Laboratory for Corrosion and Material Integrity, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)

    2011-07-15

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  4. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    International Nuclear Information System (INIS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-01-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  5. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    Science.gov (United States)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  6. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  7. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  8. Crustal thickness of Antarctica estimated using data from gravimetric satellites

    Science.gov (United States)

    Llubes, Muriel; Seoane, Lucia; Bruinsma, Sean; Rémy, Frédérique

    2018-04-01

    Computing a better crustal thickness model is still a necessary improvement in Antarctica. In this remote continent where almost all the bedrock is covered by the ice sheet, seismic investigations do not reach a sufficient spatial resolution for geological and geophysical purposes. Here, we present a global map of Antarctic crustal thickness computed from space gravity observations. The DIR5 gravity field model, built from GOCE and GRACE gravimetric data, is inverted with the Parker-Oldenburg iterative algorithm. The BEDMAP products are used to estimate the gravity effect of the ice and the rocky surface. Our result is compared to crustal thickness calculated from seismological studies and the CRUST1.0 and AN1 models. Although the CRUST1.0 model shows a very good agreement with ours, its spatial resolution is larger than the one we obtain with gravimetric data. Finally, we compute a model in which the crust-mantle density contrast is adjusted to fit the Moho depth from the CRUST1.0 model. In East Antarctica, the resulting density contrast clearly shows higher values than in West Antarctica.

  9. Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Juzeliunas, Eimutis [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)], E-mail: ejuzel@ktl.mii.lt; Ramanauskas, Rimantas; Lugauskas, Albinas; Leinartas, Konstantinas; Samuleviciene, Meilute; Sudavicius, Aloyzas; Juskenas, Remigijus [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)

    2007-11-15

    Aspergillus niger. Tiegh., a filamentous ascomycete fungus, was isolated from the metal samples exposed to marine, rural and urban sites in Lithuania. Al and Zn samples were subjected to two-year influence of A. niger under laboratory conditions in humid atmosphere. Electrochemical impedance spectroscopy (EIS) ascertained microbially influenced corrosion acceleration (MICA) of Zn and inhibition (MICI) of Al. EIS data indicated a two-layer structure of corrosion products on Zn. The microorganisms reduced the thickness of the inner layer, whose passivating capacity was much higher when compared to that of the outer layer. An increase in aluminium oxide layer resistance but decrease in the layer thickness implied that MICI affected primarily the sites of localized corrosion of Al (pores, micro-cracks, etc.). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicated that bioproducts (i.e. organic acids) did not form crystalline phases with corrosion products of zinc. The study suggested a hypothesis that microorganisms could be used as corrosion protectors instead of toxic chemicals, application of which tends to be increasingly restricted.

  10. Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger

    International Nuclear Information System (INIS)

    Juzeliunas, Eimutis; Ramanauskas, Rimantas; Lugauskas, Albinas; Leinartas, Konstantinas; Samuleviciene, Meilute; Sudavicius, Aloyzas; Juskenas, Remigijus

    2007-01-01

    Aspergillus niger. Tiegh., a filamentous ascomycete fungus, was isolated from the metal samples exposed to marine, rural and urban sites in Lithuania. Al and Zn samples were subjected to two-year influence of A. niger under laboratory conditions in humid atmosphere. Electrochemical impedance spectroscopy (EIS) ascertained microbially influenced corrosion acceleration (MICA) of Zn and inhibition (MICI) of Al. EIS data indicated a two-layer structure of corrosion products on Zn. The microorganisms reduced the thickness of the inner layer, whose passivating capacity was much higher when compared to that of the outer layer. An increase in aluminium oxide layer resistance but decrease in the layer thickness implied that MICI affected primarily the sites of localized corrosion of Al (pores, micro-cracks, etc.). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicated that bioproducts (i.e. organic acids) did not form crystalline phases with corrosion products of zinc. The study suggested a hypothesis that microorganisms could be used as corrosion protectors instead of toxic chemicals, application of which tends to be increasingly restricted

  11. A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

    Science.gov (United States)

    Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.

    2018-04-01

    Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

  12. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  14. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    Science.gov (United States)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results

  15. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    drying for 5 days. The corrosion tests used in this investigation were gravimetric and electrochemical tests. The results showed satisfactory corrosion performance for all kinds of protection measures. However, the performance depended on the type of protection used. The best performance was obtained with tannin containing epoxy coated steel, followed by the steel treated by immersion in tannin containing solutions and finally by the addition of tannin (Black Wattle) or lignin to the mortar. All the protection measures evaluated in this study are economically viable and environmentally friendly and can therefore be considered for protecting reinforcement steels against corrosion. (author)

  16. Mycotoxin metrology: Gravimetric production of zearalenone calibration solution

    Science.gov (United States)

    Rego, E. C. P.; Simon, M. E.; Li, Xiuqin; Li, Xiaomin; Daireaux, A.; Choteau, T.; Westwood, S.; Josephs, R. D.; Wielgosz, R. I.; Cunha, V. S.

    2018-03-01

    Food safety is a major concern for countries developing metrology and quality assurance systems, including the contamination of food and feed by mycotoxins. To improve the mycotoxin analysis and ensure the metrological traceability, CRM of calibration solution should be used. The production of certified mycotoxin solutions is a major challenge due to the limited amount of standard for conducting a proper purity study and due to the cost of standards. The CBKT project was started at BIPM and Inmetro produced gravimetrically one batch of zearelenone in acetronitrile (14.708 ± 0.016 μg/g, k=2) and conducted homogeneity, stability and value assignment studies.

  17. The study on corrosion resistance of decorative satin nickel plating

    Directory of Open Access Journals (Sweden)

    LU Wenya

    2012-10-01

    Full Text Available This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the plating becomes rough,and the corrosion resistance is followed by decrease.

  18. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  19. Study on Corrosion of Materials by Fluoric Acid and Silicofluoric Acid

    International Nuclear Information System (INIS)

    Park, Kun You; Kwon, Yeong Soo; Kuk, Myung Ho; Kim, Myun Sup

    1986-01-01

    The corrosion properties of 304 Stainless steel, Cupro-nickel, NiCrMo alloy in hydrofluoric acid and silicofluoric acid has been studied. The corrosion resistance of NiCrMo alloy and Cupro-nickel in hydrofluoric acid or mixed acid of hydrofluoric and sulfuric acid is excellent. Because of lower corrosion resistance of 304 Stainless steel, it would not be used for these corrosion resistant materials. The corrosion activation energy of 304 Stainless steel, Cupro-nickel and NiCrMo alloy in 40% HF solution are 42.7, 58.9 and 89.7 kJ/mol, respectively. By these values, it is assumed that the corrosion rate determining step is the chemical reaction on surface of metals. In the plastics, Teflon and polychloro tetrafluoroethylene are most excellent for corrosion resistance in hydrofluoric acid

  20. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  1. Experimental Study of Removing Surface Corrosion Products from Archaeological Iron Objects and Alternating Iron Corrosion Products by Nd:YAG Laser Cleaning System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Youn; Cho, Nam Chul [Kongju National University, Daejeon (Korea, Republic of); Lee, Jong Myoung [IMT co. Ltd, Suwon (Korea, Republic of); Yu, Jae Eun [National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of)

    2012-05-15

    The corrosion product of archaeological iron objects is supposed to be removed because it causes re-corrosion. So far it is removed by scapel and sand blaster but they depend on the skill and experience of a conservator and the glass-dust of the sand blaster is harmful to humans. Therefore this study applies a laser cleaning system which is used in various industrial cleaning processes, to remove corrosion product from archaeological iron objects. In addition, this work studies the alternation of corrosion product after laser irradiation, which evaluates the reliability of the laser cleaning system. Optical microscopy, SEM-EDS, XRD, Raman have been used to observe and analyse the surface of the objects. The results show the capacity of laser cleaning some corrosion product, but blackening appears with increasing pulses and laser energy, and some corrosion products, goethite and hematite, are partially altered to magnetite. These problems, blackening and alternation of corrosion product, should be solved by further studies which find the optimal laser irradiation condition and use a wetting agent.

  2. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Science.gov (United States)

    Chen, Honghao; Cartmell, Samuel; Wang, Qiang; Lozano, Terence; Deng, Z. Daniel; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-01

    The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

  3. The influence of introduced micro-organisms on corrosion of repository construction materials

    International Nuclear Information System (INIS)

    West, J.M.

    1985-01-01

    The work described in this report forms part of a wider project on the role of geomicrobiology in radioactive waste containment. This has established the presence of microbes in relevant geological formations including several groups of significance to waste containment. Microbial groups demonstrated have included those which could influence deterioration of repository structural materials, eg. sulphate reducing bacteria (SRB). This report describes work carried out to assess this role. More specifically the objectives of this phase of the project are: identification of suitable microbial isolates; to ascertain the growth characteristics of the isolates; to develop and construct experimental cells for use in corrosion rate tests; and to conduct preliminary short term experiments in static conditions designed to assess corrosion rates of mild steel in an ideal growth environment for SRB. Using information gained from these experiments to initiate long term corrosion experiments of steel in an SRB inoculated bentonite simulating near-field conditions in a backfill/canister system. (author)

  4. In vitro corrosion of pure magnesium and AZ91 alloy?the influence of thin electrolyte layer thickness

    OpenAIRE

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 all...

  5. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  6. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  7. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  8. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  9. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  10. Study of corrosion in aluminium using neutron radiography technique

    International Nuclear Information System (INIS)

    Islam, M.N.; Alam, M.K.; Saklayen, M.A.; Ahsan, M.H.; Islam, S.M.A.; Zaman, M.A.

    2000-01-01

    Neutron radiography technique has been adopted for detection of corrosion in aluminium by filling artificially made holes on aluminium slab with Al(OH) 3 . The contrast between the optical densities of corrosion products and aluminium slab was assessed from the densitometric measurements. Variation of optical density difference with sample thickness has also been studied. The results confirm that approximately 0.039 mm thick corrosion products having diameter 10 mm can easily be detected in 2 cm thick aluminium slab. The linear attenuation coefficient of Al(OH) 3 has been obtained as 0.9447. From the present investigation it is confirmed that film neutron radiography (NR) technique is helpful for investigation of Al(OH) 3 type corrosion product in aluminium. (author)

  11. Risk Based Corrosion Studies at SRS

    International Nuclear Information System (INIS)

    Hoffman, E.

    2010-01-01

    TYPE I and II (ASTM 285-B) - Experienced stress corrosion cracking (SCC), 2 have been closed; 22 scheduled for closure by 2017, and No active leak sites today. TYPE III (ASTM A516-70 and A537 Class I) - Post-fabrication relief of weld residual stresses, Improved resistance to SCC and brittle fracture, No leakage history, and Receives new waste. The objectives are to utilize statistical methods to reduce conservatism in current chemistry control program; and express nitrite inhibitor limits in terms of pitting risk on waste tank steel. Conclusions are: (1) A statistically designed experimental study has been undertaken to improve the effectiveness of the minimum nitrite concentrations to inhibit pitting corrosion; (2) Mixture/amount model supports that pitting depends on the ratio of aggressive to inhibitive anions, as well as the concentration of each species; (3) Secondary aggressive species, Cl - and SO 4 2- , significantly effect the corrosion response; and (4) Results support the reduction of the chemistry control nitrite inhibitor concentrations in the regime of 0.8-1.0 M nitrate.

  12. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  13. Task E container corrosion studies: Annual report. Revision 1

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Doremus, L.A.; Topping, J.B.; Duncan, D.R.

    1994-06-01

    The Pacific Northwest Laboratory is conducting the Solid Waste Technology Support Program (SWTSP) for Westinghouse Hanford Company (WHC). Task E is the Container Corrosion Study Portion of the SWTSP that will perform testing to provide defensible data on the corrosion of low-carbon steel, as used in drums to contain chemical and radioactive wastes at the Hanford Site. A second objective of Task E is to provide and test practical alternative materials that have higher corrosion resistance than low-carbon steel. The scope of work for fiscal year (FY) 1993 included initial testing of mild steel specimens buried in Hanford soils or exposed to atmospheric corrosion in metal storage sheds. During FY 1993, progress was made in three areas of Task E. First, exposure of test materials began at the Soil Corrosion Test Site where low-carbon steel specimens were placed in the soil in five test shafts at depths of 9 m (30 ft). Second, the corrosion measurement of low-carbon steel in the soil of two solid waste trenches continued. The total exposure time is ∼ 500 days. Third, an atmospheric corrosion test of low-carbon steel was initiated in a metal shed (Building 2401-W) in the 200 West Area. This annual report describes the Task E efforts and provides a current status

  14. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  15. Validation of phenol red versus gravimetric method for water reabsorption correction and study of gender differences in Doluisio's absorption technique.

    Science.gov (United States)

    Tuğcu-Demiröz, Fatmanur; Gonzalez-Alvarez, Isabel; Gonzalez-Alvarez, Marta; Bermejo, Marival

    2014-10-01

    The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment

    International Nuclear Information System (INIS)

    Zou, Shiwen; Li, Xiaogang; Dong, Chaofang; Ding, Kangkang; Xiao, Kui

    2013-01-01

    Highlights: •The electrochemical migration, whisker formation, and corrosion behavior of PCB under wet H 2 S environment were observed and studied systematically. •The process of electrochemical migration of solder joints is explained. •The corrosion mechanism of PCB interconnectors induced by micro pores under wet H 2 S environment is discussed, and the corrosion reaction model is proposed. -- Abstract: Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board (PCB) under wet H 2 S environment were analyzed by environment scanning electron microscope (ESEM), Energy dispersive X-ray spectroscopy (EDS) with mapping and element phase cluster (EPC) techniques, Raman Spectrum analysis and electrochemical impedance spectroscopy (EIS) technology. The results showed that nonuniform corrosion behavior occurred on PCB surfaces under 1 ppm wet H 2 S at 40 °C; whiskers formed on the inner sidewall of via-holes with a growth rate of 1.2 Å/s; numerous corrosion products migrated through the pore of plated gold layer, which broke off the protective layer. The corrosion rate was accelerated according to the big-cathode-small-anode model

  17. Corrosion in waste-fired boilers: A thermodynamic study

    DEFF Research Database (Denmark)

    Becidan, Michael; Sørum, Lars; Frandsen, Flemming

    2009-01-01

    A twofold study using thermodynamic equilibrium calculations was carried out to study corrosion in MSW incinerators. Corrosion was associated with the amount of alkalis and trace metals gaseous chlorides. Firstly, a two-level factorial experimental design combined with a data analysis were used...... to determine the main and interaction effects for various alkalis and trace metals gaseous chlorides responses. The factors studied were Na, K, S and Cl concentrations. The results provided a picture of the controlling parameters and insight about the processes taking place. Secondly, the efficiency of two...

  18. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  19. [Study on corrosion resistance of three non-noble porcelain alloys].

    Science.gov (United States)

    Wu, Zhikai; Xu, Sheng; Li, Wei; Teng, Jin; Li, Ning

    2011-10-01

    To study the electrochemical corrosion behavior of Co-Cr, Ni-Cr and Ni-Cr-Be based porcelain alloys in NaCl solution. Five samples of each alloy were made respectively, electric polarization curve of each alloy was obtained using potentiodynamic polarization technique. Self-corrosion potential (E(corr)), self-corrosion current density (I(corr), passive region and transpassivation potential were tested. Microstructure and constituent was examined using scanning electron microscopy and energy dispersive spectroscopy. Co-Cr alloy possessed the most desirable corrosion resistance because of its integrated, homogeneous and compact passive film. The poor compactness of Ni-Cr alloy's passive film decreased its corrosion resistance. Ni-Cr-Be alloy exhibited the worst corrosion resistance due to the Cr and Mo depleted Ni-Be eutectic phases in the alloy. Taking biological security into consideration, it is necessary to avoid the application of porcelain alloys with Be element. Co-Cr alloy with better biocompatibility possesses much broader prospect in the field of dental restoration.

  20. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    International Nuclear Information System (INIS)

    Wang, Qin-Ying; Zhang, Yang-Fei; Bai, Shu-Lin; Liu, Zong-De

    2013-01-01

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo 6 Ni 6 C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating

  1. FEBEX Project Post-mortem Analysis: Corrosion Study

    International Nuclear Information System (INIS)

    Madina, V.; Azkarate, I.

    2004-01-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  2. FEBEX Project Post-mortem Analysis: Corrosion Study

    Energy Technology Data Exchange (ETDEWEB)

    Madina, V.; Azkarate, I.

    2004-07-01

    The partial dismantling of the FEBEX in situ test was carried out during de summer of 2002, following 5 years of continuous heating. The operation included the demolition of the concrete plug and the removal of the section of the test corresponding to the first heater. A large number of samples from all types of materials have been taken during the dismantling for subsequent analysis. Part of the samples collected were devoted to the analysis of the corrosion processes occurred during the first operational phase of the test. These samples comprised corrosion coupons from different metals installed for that purpose, sensors retrieved during the dismantling that were found severely corroded and bentonite in contact with those sensors. In addition, a corrosion study was performed on the heater extracted and on one section of liner surrounding it. All the analyses were carried out by the Fundacion INASMET (Spain). This report describes, in detail the studies carried out the different materials and the obtained results, as well as the drawn conclusions. (Author)

  3. An X-ray diffraction study of corrosion products from low carbon steel

    International Nuclear Information System (INIS)

    Morales, A. L.

    2003-01-01

    It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO 4 ''2-=10''-4 M+Cl=1.5x 10''-3 M). It was also found that large magnetic content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. it is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for log-term corrosion lepidocrite and goethite dominates if the corrosion rates is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration. (Author) 15 refs

  4. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  5. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  6. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  7. Quartz analysis in gravimetric sampling

    International Nuclear Information System (INIS)

    Rex, D.A.

    1990-01-01

    An overview of the methods employed in the assessment of quartz exposure is provided. The principles and some of the problems associated with each method is discussed. The methods reviewed include wet chemical methods, X-ray diffraction and infrared absorption of which the latter two methods are deemed appropriate for analysing quartz on personal gravimetric collected samples. The implications of combining area samples collected over a six month period, and performing only a single quartz analysis rather than separate analyses, are considered. Finally, various options open to mines with regard to their involvement with quartz analysis are also briefly discussed. 35 refs., 6 figs., 1 tab

  8. Study of corrosive-erosive wear behaviour of Al6061/albite composites

    International Nuclear Information System (INIS)

    Sharma, S.C.; Krishna, M.; Murthy, H.N. Narasimha; Tarachandra, R.; Satyamoorthy, M.; Bhattacharyya, D.

    2006-01-01

    This investigation analyses the influence of dispersed alumina particles on the wear behaviour of the Al/albite composites in a corrosive environment. The composites were prepared by modified pressure die-casting technique. The corrosive-erosive wear experiments were carried out on a proprietary corrosion-erosion wear tester to study the wear characteristics of the composites. The slurry was made up of water and alumina (size: 90-150 μm, proportion: 0-30 wt.%), while H 2 SO 4 (0.01, 0.1 and 1N) was added to create the corrosive conditions. Experiments were arranged to test the relationships among the corrosive-erosive wear rate, concentrations of H 2 SO 4 and alumina in the slurry, weight percent of albite in the composite, erosion speed and distance. Wear rate varies marginally at low speeds but sharply increases at higher speeds. The corrosive wear rate logarithmically increased with the increasing concentration of the corrosive medium. The effect of abrasive particles and corrosion medium on the wear behaviour of the composite is explained experimentally, theoretically and using scanning electron microscopy

  9. Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves

    Science.gov (United States)

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M.; Katz, Joanne; Zeger, Scott L.; Checkley, William; Curriero, Frank C.; Breysse, Patrick N.

    2014-01-01

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward. PMID:24950062

  10. Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves.

    Science.gov (United States)

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M; Katz, Joanne; Zeger, Scott L; Checkley, William; Curriero, Frank C; Breysse, Patrick N

    2014-06-19

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.

  11. Crustal thickness of Antarctica estimated using data from gravimetric satellites

    Directory of Open Access Journals (Sweden)

    M. Llubes

    2018-04-01

    Full Text Available Computing a better crustal thickness model is still a necessary improvement in Antarctica. In this remote continent where almost all the bedrock is covered by the ice sheet, seismic investigations do not reach a sufficient spatial resolution for geological and geophysical purposes. Here, we present a global map of Antarctic crustal thickness computed from space gravity observations. The DIR5 gravity field model, built from GOCE and GRACE gravimetric data, is inverted with the Parker–Oldenburg iterative algorithm. The BEDMAP products are used to estimate the gravity effect of the ice and the rocky surface. Our result is compared to crustal thickness calculated from seismological studies and the CRUST1.0 and AN1 models. Although the CRUST1.0 model shows a very good agreement with ours, its spatial resolution is larger than the one we obtain with gravimetric data. Finally, we compute a model in which the crust–mantle density contrast is adjusted to fit the Moho depth from the CRUST1.0 model. In East Antarctica, the resulting density contrast clearly shows higher values than in West Antarctica.

  12. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  13. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    WINTEC

    Department of PG Studies and Research in Chemistry, School of Chemical Sciences, Kuvempu University, ... cations and is mainly used for the corrosion protection of ... provide a greater resistance to corrosion, but when exposed to humid ...

  14. Mechanical properties of layers of corrosion products at steel / concrete interface

    International Nuclear Information System (INIS)

    Dehoux, Anita

    2012-01-01

    To take account of the development of corrosion products layers in residual lifetime calculations of reinforced concrete structures requires a good knowledge of the mechanical properties of these products. Our study aims to determine the mechanical properties of layers of corrosion products. The approach consists of an identification of the microstructure properties complemented by homogenization calculations to calculate a mesoscopic behavior in linear elasticity of layers of corrosion products. The study includes a series of experimental campaigns at the microscopic scale. Vickers micro indentation tests analyzed by a Gaussian mixture model approach allowed the acquisition of hardness and elastic moduli at the microscale. An identification of the microstructure products is performed by Raman microspectrometry. The microstructure's characterization brings valuable information for homogenization calculations. The first approach has consisted of calculations of random media homogenization by self-consistent and generalized self-consistent schemes. In the second approach, effective modulus calculations were performed using numerical microstructures resulting from 2D images taken with an optical microscope. The corpus is composed of samples of different ages and origins, their microstructures were compared. (author) [fr

  15. Pitting corrosion of copper. An equilibrium - mass transport study

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases

  16. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  17. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  18. New Insights in the Long-Term Atmospheric Corrosion Mechanisms of Low Alloy Steel Reinforcements of Cultural Heritage Buildings

    Directory of Open Access Journals (Sweden)

    Marie Bouchar

    2017-06-01

    Full Text Available Reinforcing clamps made of low alloy steel from the Metz cathedral and corroded outdoors during 500 years were studied by OM, FESEM/EDS, and micro-Raman spectroscopy. The corrosion product layer is constituted of a dual structure. The outer layer is mainly constituted of goethite and lepidocrocite embedding exogenous elements such as Ca and P. The inner layer is mainly constituted of ferrihydrite. The behaviour of the inner layer under conditions simulating the wetting stage of the RH wet/dry atmospheric corrosion cycle was observed by in situ micro-Raman spectroscopy. The disappearance of ferrihydrite near the metal/oxide interface strongly suggests a mechanism of reductive dissolution caused by the oxidation of the metallic substrate and was observed for the first time in situ on an archaeological system.

  19. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  20. ELECTROCHEMICAL CORROSION STUDY VIA LINEAR POLARIZATION IN PEAS CAN

    Directory of Open Access Journals (Sweden)

    I. M. Costa

    2016-09-01

    Full Text Available The aim of this work is to study the corrosion of tinplate can for peas. Firstly, the characterization of canning solution was made. The values of pH, conductivity, Brix, viscosity, density and content of Fe were, respectively, 5.88; 32.6 mS/cm; 6.6%; 3,42cP; 1.026 g/ml; 12.05 mg/kg. The corrosion rate in the cans was determined by linear polarization technique. The electrodes with and without varnish were analyzed in the first and fifth day of the experiment for the 3 parts of the can. The corrosion rate increased significantly when the coating was removed and the body showed a higher corrosion rate, reaching 1.7 mm/year in the absence of varnish. The microstructure of the samples was evaluated by scanning electron microscopy (SEM coupled with energy dispersive spectroscopy (EDS. The increase of iron on the surface, evidenced by energy dispersive spectroscopy (EDS may have contributed to the corrosion in the samples without varnish.

  1. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  2. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  3. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  4. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  5. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  6. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  7. Study by acoustic emission and electrochemical methods of the corrosion and the protection of the copper-zinc alloy (60/40) in neutral and alkaline media

    International Nuclear Information System (INIS)

    Assouli, B.

    2002-12-01

    The aim of this work is to study and characterize, by electrochemical methods and acoustic emission, the corrosion and the protection of the copper-zinc alloy (60/40) having a metallographic structure αβ'. The electrochemical measurements, in neutral, chlorinated or alkaline medium have allowed, to study the corrosion resistance of the copper-zinc and to show that the corrosion of this alloy, in the used media, is determined by a diffusional mechanism. The observations to the optical and scanning electron microscopes and the EDX analyzes have confirmed that this corrosion phenomenon is mainly due to the selective dissolution of the β' phase. The acoustic emission has shown, during this corrosion, the presence of two emissive sources whose initiation has been attributed to the relaxation of the micro- and macro- residual stresses of the α phase. These stresses have been characterized by X-ray diffraction and the salvoes emitted during the relaxation of these stresses have been discriminated by the characteristic frequencies and by the barycenter of their spectral density. The protection of this alloy has been carried out by the 2-mercapto-benzimidazole (MBI). This last compound has been tested both as inhibitor added directly in the corrosive medium and/or as polymer film previously deposited by an electrochemical way (p-MBI). The MBI is very efficient for an inhibition in a chlorinated alkaline medium. It is an interphase inhibitor. The p-MBI is efficient too in a neutral chlorinated medium and is moreover non pollutant for the environment. (O.M.)

  8. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  9. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  10. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  11. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 μm. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to

  12. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  13. Potentiality Studies of Stainless Steel 304 Material for Production of Medical Equipment using Micro Electrical Discharge Machining (micro-EDM) Analysis and Modeling

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    Stainless steel 304 (SS304) is a material widely used for production of medical equipment mainly because of its anti-corrosive properties. It has excellent mechanical properties, strength and reliability because of which it is one of the best materials for fabrication of medical devices. This paper...... and process parameters were developed. Grey relational analysis was used to optimize the micro-EDM quality characteristics, and the highest grey relational grade (GRG) of 0.8021 was obtained at a voltage of 100 V and a capacitance of 0.4 μF....

  14. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy

    Science.gov (United States)

    Jin, Tao; Kong, Fan-mei; Bai, Rui-qin; Zhang, Ru-liang

    2016-12-01

    In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller Δ G and the more stable configuration.

  15. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  16. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  17. Corrosion and impedance studies on magnesium alloy in oxalate solution

    International Nuclear Information System (INIS)

    Fekry, A.M.; Tammam, Riham H.

    2011-01-01

    Highlights: → Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na 2 C 2 O 4 containing different additives as Br - , Cl - or Silicate. → The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. → For the other added ions Br - or Cl - , the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br - , Cl - or SiO 3 2- ) on the electrochemical behavior of magnesium alloy in 0.1 M Na 2 C 2 O 4 solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br - or Cl - , the corrosion rate is higher than the blank.

  18. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    Science.gov (United States)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  19. Ontario Hydro studies on copper corrosion under waste disposal conditions

    International Nuclear Information System (INIS)

    Lam, K.W.

    1990-01-01

    The corrosion rate of copper is generally greater in aerated solutions containing sulphide; also, in the presence of sulphide there is the fear that pitting may occur. Experiments have been carried out to study the corrosion of copper in deaerated groundwater/bentonite slurries with and without added sulphide for exposure periods from two months to one year. The groundwater contains 6500 ppm of chloride and 1000 ppm of sulphate. Tests were also performed in the presence of a 150 rad/h radiation field. In deaerated slurries at 75C the corrosion rate is less than 2 μm/a. With one addition of 10 mg/l sulphide, the rate increases by a factor of ten. With daily sulphide additions to deaerated solutions the corrosion rate initially falls but then rises and stabilizes after 15 days. In aerated solutions the corrosion increases over the first 25 days and then stabilizes. The corrosion rate of copper reached a steady value in 15 to 30 days. Rates are higher in aerated solutions, but the effect of adding sulphide is not so marked in aerated solutions as in unaerated solutions. The highest corrosion rate, less than 150 μm/a, was observed in aerated slurries saturated with sulphide. For deaerated solutions in the absence of sulphide the corrosion rate increases with temperature, but in aerated solutions the rate decreases. For solutions containing added sulphide the influence of temperature is negligible. The effect of a radiation field may be beneficial; in the presence of a radiation field the corrosion rate is less than 20 μm/a. After descaling the coupons showed a high density of irregularly shaped pits both in the presence and absence of sulphide, resulting from intergranular attack. The pitting factor for the highest corrosion rate is around 15

  20. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  1. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Zhou, Qulan; Li, Na; Liu, Zhuhan; Liu, Taisheng

    2016-01-01

    Highlights: • Hot corrosion tests of TP347HFG under different stresses were conducted. • The corrosion resistance was strengthened by the exertion of tensile stresses. • External stresses promoted faster formation of the protective Cr_2O_3 layer. • Specimens under critical stress 40 MPa condition present the best resistance. - Abstract: Hot corrosion experiments of alloy TP347HFG under different stresses were conducted. Corroded specimens were examined by means of corrosion products, morphology and compositional changes in corrosion scales. The corrosion behavior was strongly associated with the formation of oxides layers. The corrosion resistance was strengthened by the external stress. It seemed that the exertion of stresses caused many micro cracks and defects, which acted as faster and easier diffusion paths for Cr atoms to diffuse to the surface, and thus, promote faster formation of the protective Cr_2O_3 oxide layer. Critical stress 40 MPa was found, specimens under which present the best resistance.

  2. Influence of coating defects on the corrosion behavior of cold sprayed refractory metals

    International Nuclear Information System (INIS)

    Kumar, S.; Rao, A. Arjuna

    2017-01-01

    Highlights: • Long duration immersion tests reveal inhomogeneous weight losses. • The weight loss for different coatings are well corroborated with the coating defects. • Chemical and micro structural analysis elucidates the reason behind the in homogeneous performance of different type of cold sprayed coatings. • In cold sprayed titanium, formation of oxide along the inter-splat boundary hinders the aggressive attack of the medium. - Abstract: The defects in the cold sprayed coatings are critical in the case of corrosion performances of the coatings in aggressive conditions. To understand the influence of coating defects on corrosion, immersion tests have been carried out in HF solution for the cold sprayed and heat treated Titanium, Tantalum and Niobium coatings. Long duration immersion tests reveal inhomogeneous weight losses of the samples prepared at different heat treatment conditions. The weight loss for different coatings has been well corroborated with the coating defects and microstructures. Chemical and micro structural analysis elucidates the reason behind the inhomogeneous performance of different type of cold sprayed coatings in corrosion medium. In the case of cold sprayed titanium, formation of stable oxide along the inter-splat boundary hinders the aggressive attack of the corrosion medium which is not so in other cases.

  3. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  4. Facile fabrication of core-shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications

    Science.gov (United States)

    Jeeva Jothi, K.; Palanivelu, K.

    2014-01-01

    In this work, we have developed a facile and inexpensive method to fabricate anti-corrosive and hydrophobic surface with hierarchical micro and nano structures. We demonstrate for the first time the use of praseodymium oxide doped zinc oxide (Pr6O11-ZnO) nanocomposites loaded in a hybrid sol-gel (SiOx/ZrOx) layer, to effectively protect the underlying steel substrate from corrosion attack. The influence of Pr6O11-ZnO gives the surprising aspects based on active anti-corrosion and hydrophobic coatings. The spherical SiO2 particles have been successfully coated with Pr6O11-ZnO layer through sol-gel process. The resulted SiO2@Pr6O11-ZnO core-shell was characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Photoelectron Spectroscopy (XPS). The barrier properties of the intact coatings were assessed by Electrochemical Impedance Spectroscopy (EIS). The fabrication of SiO2@Pr6O11-ZnO shows dual properties of hydrophobic and anti-corrosion micro/nanostructured sol-gel coatings follows a single/simple step coating procedure. This study has led to a better understanding factor influencing the anti-corrosion performance with embedded nanocomposites. These developments are particularly for silane network@ Pr6O11-ZnO for self-healing and self-cleaning behavior which can be designed for new protective coating system.

  5. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys.

    Science.gov (United States)

    Yin, Ping; Li, Nian Feng; Lei, Ting; Liu, Lin; Ouyang, Chun

    2013-06-01

    Zn and Ca were selected as alloying elements to develop an Mg-Zn-Ca alloy system for biomedical application due to their good biocompatibility. The effects of Ca on the microstructure, mechanical and corrosion properties as well as the biocompatibility of the as-cast Mg-Zn-Ca alloys were studied. Results indicate that the microstructure of Mg-Zn-Ca alloys typically consists of primary α-Mg matrix and Ca₂Mg₆Zn₃/Mg₂Ca intermetallic phase mainly distributed along grain boundary. The yield strength of Mg-Zn-Ca alloy increased slightly with the increase of Ca content, whilst its tensile strength increased at first and then decreased. Corrosion tests in the simulated body fluid revealed that the addition of Ca is detrimental to corrosion resistance due to the micro-galvanic corrosion acceleration. In vitro hemolysis and cytotoxicity assessment disclose that Mg-5Zn-1.0Ca alloy has suitable biocompatibility.

  6. Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, E. [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany); Kaya, A.A. [Mugla University, Engineering Faculty, Metallurgy and Materials Engineering Department, Mugla (Turkey); Kaya, R.A. [MedicalPark Hospital, Kueltuer Sok No:1, 34160 Bahcelievler, Istanbul (Turkey); Beckmann, F. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str.1, D - 21502 Geesthacht (Germany); Witte, F., E-mail: witte.frank@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany)

    2011-12-15

    The corrosion of biodegradable materials is a crucial issue in implant development. Among other materials, magnesium and magnesium based alloys are one of the most promising candidates. Since the corrosion of biodegradable materials depends on different physiological parameters like pH or ion concentrations, the corrosion might be different in different biological environments. To investigate this issue, we produced screws from magnesium alloy AZ31 and implanted them into the hip bone of 14 sheep. After 3 and 6 months, the screws were explanted and analyzed with synchrotron-radiation based micro-computed tomography and hard tissue histology. We found considerable differences in the corrosion behavior of the magnesium screws with respect to its original tissue location. However, we could detect a normal immunological tissue response.

  7. Micro-chemical and micro-structural investigation of archaeological bronze weapons from the Ayanis fortress (lake Van, Eastern Anatolia, Turkey)

    Science.gov (United States)

    Faraldi, F.; Çilingirǒglu, A.; Angelini, E.; Riccucci, C.; De Caro, T.; Batmaz, A.; Mezzi, A.; Caschera, D.; Cortese, B.

    2013-12-01

    Bronze weapons (VII cen BC) found during the archaeological excavation of the Ayanis fortress (lake Van, eastern Anatolia, Turkey) are investigated in order to determine their chemical composition and metallurgical features as well as to identify the micro-chemical and micro-structural nature of the corrosion products grown during long-term burial. Small fragments were sampled from the artefacts and analysed by means of the combined use of optical microscopy (OM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the bronze artefacts have been manufactured by using alloys with a controlled and refined chemical composition demonstrating the high level metallurgical competence and skill of the Urartian craftsmen and artists. Furthermore, the micro-structural and metallurgical investigations evidence the presence of equiaxed grains in the matrix, indicating that the artefact were produced by repeated cycles of mechanical shaping and thermal annealing treatments to restore the alloy ductility. From the degradation point of view, the results show the structures and the chemical composition of the stratified corrosion layers (i.e. the patina) where the copper or tin depletion phenomenon is commonly observed with the surface enrichment of some elements coming from the burial soil, mainly Cl, which is related to the high concentration of chlorides in the Ayanis soil. The results reveal also that another source of degradation is the inter-granular corrosion phenomenon likely increased by the metallurgical features of the alloys caused by the high temperature manufacturing process that induces crystallisation and segregation phenomena along the grain boundaries.

  8. Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations

    OpenAIRE

    Breytenbach, I J; Bosch, P J A

    2011-01-01

    The article discusses the nature of the gravimetric survey as applied and used in dolomite stability investigations on areas underlain by the Chuniespoort Group in South Africa. A short discussion is given on the gravimetric survey procedure along with its uses and alternative methods. Finally, two case studies illustrate the application of the method on a high-density survey grid spacing in comparison with three-dimensional geological modelling based on the lithology and karst weathering hor...

  9. Studies of corrosion resistance of Japanese steels in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Ono, Hiroshi; Kitano, Teruaki; Ono, Mikinori

    2003-01-01

    Liquid lead-bismuth has attractive characteristics as a coolant in future fast reactors and Accelerator Driven Sub-critical Systems (ADS) applications. The corrosion behavior of structural materials in lead-bismuth eutectic is one of key problems in developing nuclear power plants and installations using lead-bismuth coolant. Our experiences with heat exchangers using liquid lead-bismuth and the results of corrosion tests of Japanese steels are reported in this paper. A series of corrosion tests was carried out in collaboration with the Institute of Physics and Power Engineering (IPPE). Test specimens of various Japanese steels were exposed in a non-isothermal forced circulation loop. The influence of maximum temperature and oxygen content in lead bismuth were chosen for study as the primary causes of corrosion in Japanese steels. After the corrosion tests, corrosion behavior was analyzed by visual inspection, measurement of weight loss and metallurgical examination of the microstructure of the corroded zone. The corrosion mechanism in liquid lead bismuth is discussed on the basis of the metallurgical examination of the corroded zone. (author)

  10. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Directory of Open Access Journals (Sweden)

    Mario E. Gimenez

    2009-01-01

    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  11. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Sh. Khandanjou

    Full Text Available In the present paper our aim is to investigate the effect of the spray time of the aluminium coated layers on the microstructure and corrosion behaviour. For this purpose we use the self-generated atmospheric plasma spray system for coating of aluminium on the carbon steel substrate. The different thicknesses of coating are created. To evaluate this effect we use the several analyses such as X-ray diffraction, scanning electron microscope, Micro hardness analysis by Vickers method, Adhesion strength analysis and electrochemical polarization test. The results are very interesting and show that due to low porosity, thicker layers are more homogeneous. The nanoparticles are observed in the thicker layers. The micro hardness tests show that the thicker layers have the better micro hardness value. Next, the adhesion strength tests illustrate that the highest adhesion strength are for longer spray times. On the other hand, the corrosion resistance behaviour of the coating is investigated by electrochemical polarization test. It is shown that the corrosion resistance increases by increasing the thickness due to low percentage of porosity. Keywords: Plasma spray, Thickness, Aluminium, Micro hardness, Corrosion resistance

  12. Spectrophotometric, potentiometric, and gravimetric determination of lanthanides with peri-dihydroxynaphthindenone

    International Nuclear Information System (INIS)

    Hassan, S.S.M.; Mahmoud, W.H.

    1982-01-01

    Sensitive and reasonably selective methods are described for the spectrophotometric, potentiometric, and gravimetric determination of lanthanides using peri-dihydroxynaphthindenone as a novel chromogenic and precipitating reagent. The reagent forms a stable 1:2 (metal:reagent) type of complex with light lanthanides at pH 2-7 in 1:1 ethanol-water mixture. Low metal concentrations ( 4 L mol -1 cm -1 ) which obey Beer's law. Quantitative precipitation of the complexes from metal solutions of concentrations > 100 μg/mL permits both gravimetric quantitation by igniting the precipitates to the metal oxides and potentiometric titration of the excess reagent. Results with an average recovery of 98% (standard deviation 0.7%) are obtainable for 0.1 μg to 200 mg of all light lanthanides. Many foreign ions naturally occurring or frequently associated with lanthanides do not interfere or can be tolerated

  13. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  14. Preliminary study on the corrosion behavior of carbon steel in Horonobe groundwater environment

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kogawa, Noritaka; Maeda, Kazuto

    2006-08-01

    It is necessary to understand the corrosion behavior of candidate overpack materials to plan the in-situ engineered barrier test at underground laboratory constructing at Horonobe and to design the overpacks suitable to Horonobe environment. The preliminary corrosion tests of carbon steel which is a candidate material for overpacks were carried out using artificial groundwater and actual groundwater sampled at Horonobe. As the results of anodic polarization experiments, the anodic polarization curves of carbon steel in buffer material were active dissolution type, and the corrosion type of carbon steel in Horonobe groundwater environment was expected to be general corrosion. The results of immersion test under air equilibrium condition showed that the degrees of corrosion localization were not exceeded the data obtained in previous studies. The trend of corrosion rates in buffer material under anaerobic condition were similar to the data obtained in previous studies. Based on the experimental results, it was confirmed that the corrosion assessment model and assumed corrosion rate in second progress report (H12 report) can be applied to the assessment for Horonobe groundwater condition. (author)

  15. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    International Nuclear Information System (INIS)

    Martin, F.A.; Cousty, J.; Masson, J-L.; Bataillon, C.

    2004-01-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO 2 , we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm 2 . Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  16. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.A. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Cousty, J.; Masson, J-L. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Bataillon, C. [CEA de Saclay, DEN/DPC/LECA, 91191 Gif-sur-Yvette cedex (France)

    2004-07-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO{sub 2}, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 {mu}m{sup 2}. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  17. COMPARATIVE STUDY OF THE INHIBITIVE ACTION BETWEEN THE BITTER ORANGE LEAF EXTRACT AND ITS CHEMICAL CONSTITUENT LINALOOL ON THE MILD STEEL CORROSION IN HCL SOLUTION

    Directory of Open Access Journals (Sweden)

    Ashraf M. Abdel-Gaber

    Full Text Available Bitter orange, Citrus Aurantium (CA, extract and one of its chemical constituents, Linalool, have been evaluated as a corrosion inhibitor for mild steel in 0.5 mol L-1 hydrochloric acid (HCl solution using potentiodynamic polarization, electrochemical impedance, Fourier transform infrared spectroscopy (FTIR, and atomic force spectroscopy (AFM techniques. Functional groups of CA and Linalool were identified by FTIR spectroscopy. The Potentiodynamic polarization and electrochemical impedance studies showed that CA and Linalool act as mixed type inhibitors. The activation parameters showed that the corrosion inhibition takes place by spontaneous physical adsorption on the mild steel surface. Thermodynamic-kinetic model and Flory-Huggins isotherms were used to investigate the adsorption characteristics of CA and Linalool. The surface morphologies of mild steel specimens were studied using AFM, in which the surface roughness of the metal specimens on a micro scale was characterized.

  18. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  19. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  20. Study on corrosion products from ear piercing studs

    International Nuclear Information System (INIS)

    Rogero, Sizue O.; Costa, Isolda; Saiki, Mitiko

    2000-01-01

    In this work instrumental neutron activation analysis was applied to analyse elemental composition of commercial gold coated ear piercing substrate and metals present in their corrosion products. The cytotoxic effect was also verified in these corrosion product extracts, probably, due to the lixiviation of Ni present in high quantity in their substrates. The analysis of gold coated ear piercing surfaces by scanning electron microscopy before and after the corrosion test showed coating defects and the occurrence of corrosion process. (author)

  1. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  2. Corrosion and impedance studies on magnesium alloy in oxalate solution

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M., E-mail: hham4@hotmail.com [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt); Tammam, Riham H. [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt)

    2011-06-15

    Highlights: > Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na{sub 2}C{sub 2}O{sub 4} containing different additives as Br{sup -}, Cl{sup -} or Silicate. > The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. > For the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br{sup -}, Cl{sup -} or SiO{sub 3}{sup 2-}) on the electrochemical behavior of magnesium alloy in 0.1 M Na{sub 2}C{sub 2}O{sub 4} solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank.

  3. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers

    International Nuclear Information System (INIS)

    Smailos, E.; Fiehn, B.; Gago, J.A.; Azkarate, I.

    1994-03-01

    In previous corrosion studies, carbon steels and the alloy Ti 99.8-Pd were identified as promising materials for heat-generating nuclear waste containers acting as a radionuclide barrier in a rock-salt repository. To characterize the long-term corrosion behaviour of these materials in more detail, a research programme including laboratory-scale and in-situ corrosion studies has been undertaken jointly by KfK and ENRESA/INASMET. In the period under review, gamma irradiation corrosion studies of up to about 6 months at 10 Gy/h and stress corrosion cracking studies at slow strain rates (10 -4 -10 -7 s -1 ) were performed on three preselected carbon steels in disposal relevant brines (NaCl-rich, MgCl 2 -rich) at 90 C and 150 C (TStE 355, TStE 460, 15 MnNi 6.3). Moreover, results were obtained from long-term in-situ corrosion studies (maximum test duration 9 years) conducted on carbon steel, Ti 99.8-Pd, Hastelloy C4, Ni-resist D4, and Si-cast iron in boreholes in the Asse salt mine. (orig./MM) [de

  4. Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method

    International Nuclear Information System (INIS)

    Sapienza, Alessio; Santamaria, Salvatore; Frazzica, Andrea; Freni, Angelo; Aristov, Yuri I.

    2014-01-01

    Highlights: • We have carried out a dynamic study of adsorbers. • Activity performed by new gravimetric version of the Large Temperature Jump method. • The kinetics measurements have been carried out under real operating conditions. • Results can support the design of adsorbers for adsorption cooling systems. - Abstract: This paper presents a new experimental setup devoted to measure the ad-/desorption kinetics of an Ad-HEX (adsorbent + heat exchanger) under typical boundary conditions of an Adsorption Heat Transformer (AHT) as well as the results of the first test campaign carried out. The experimental apparatus can be considered as a gravimetric version of the known Large Temperature Jump method. In fact, the dynamic evolution of the uptake during the isobaric ad-/desorption stages is directly measured by a weighing system suitable to work in the range of 5–600 g of sample mass (adsorbent + HEX) with the accuracy ±0.1 g and the time response shorter than 0.1 s The experimental campaign was conducted on an Ad-HEX composed of granules of a commercial SAPO-34 adsorbent placed on a flat type aluminum HEX, under operating conditions reproducing two different thermodynamic cycles (T h = 90 °C, T e = 10 °C, T c = 30 and 35 °C), typical for adsorption air conditioning. The influence of the grain size (ranging from 0.350 to 2.5 mm) on the adsorption dynamics both in monolayer and multilayer configurations at variable and constant “heat transfer surface/adsorbent mass” ratios (S/m) was studied. The results showed that, for the Ad-HEX configurations tested, the adsorption dynamics can be properly described by a modified Linear Driving Force approach by the use of a single temperature-invariant characteristic time τ. The invariance of the specific cooling power was revealed when the S/m ratio was kept constant (S/m = 1.23 m 2 /kg). This ratio is found to be a useful parameter for both assessment of the dynamic perfection and optimization of various Ad

  5. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  6. Accuracy criteria recommended for the certification of gravimetric coal-mine-dust samplers

    International Nuclear Information System (INIS)

    Bowman, J.D.; Bartley, D.L.; Breuer, G.M.; Doemeny, L.J.; Murdock, D.J.

    1984-07-01

    Procedures for testing bias and precision of gravimetric coal-mine-dust sampling units are reviewed. Performance criteria for NIOSH certification of personal coal-mine dust samplers are considered. The NIOSH criterion is an accuracy of 25% at the 95% confidence interval. Size distributions of coal-mine-dust are discussed. Methods for determining size distributions are described. Sampling and sizing methods are considered. Cyclone parameter estimation is discussed. Bias computations for general sampling units are noted. Recommended procedures for evaluating bias and precision of gravimetric coal mine dust personal samplers are given. The authors conclude that when cyclones are operated at lower rates, the NIOSH accuracy criteria can be met

  7. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the

  8. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the galvanic current could be decreased by a Cr

  9. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sun, J.Q.; Zhang, R.Y.; Liu, Z.P.; Lu, G.H.

    2007-01-01

    The purpose of this study is to determine the thermal reliability and corrosion of the Al-34%Mg-6%Zn alloy as a latent heat energy storage material with respect to various numbers of thermal cycles. The differential scanning calorimeter (DSC) analysis technique was applied to the alloy after 0, 50, 500 and 1000 melting/solidification cycles in order to measure the melting temperatures and the latent heats of fusion of the alloy. The containment materials were stainless steel (SS304L), carbon steel (steel C20) in the corrosion tests. The DSC results indicated that the change in melting temperature for the alloy was in the range of 3.06-5.3 K, and the latent heat of fusion decreased 10.98% after 1000 thermal cycles. The results show that the investigated Al-34%Mg-6%Zn alloy has a good thermal reliability as a latent heat energy storage material with respect to thermal cycling for thermal energy storage applications in the long term in view of the small changes in the latent heat of fusion and melting temperature. Gravimetric analysis as mass loss (mg/cm 2 ), corrosion rate (mg/day) and a microscopic or metallographic investigation were performed for corrosion tests and showed that SS304L may be considered a more suitable alloy than C20 in long term thermal storage applications

  10. [Experimental study on the corrosion behavior of a type of oral near β-type titanium alloys modified with double glow plasma nitriding].

    Science.gov (United States)

    Wen, Ke; Li, Fenglan

    2015-12-01

    To study the electrochemical corrosion performance of a type of biomedical materials near beta titanium alloy(Ti-3Zr-2Sn-3Mo-25Nb, TLM) in artificial saliva before and after nitride changing, and to provide clinical basis for clinical application of titanium alloy TLM. The double glow plasma alloying technology was used to nitride the surface of titanium alloy TLM. The surface properties of the modified layer were observed and tested by optical microscope, scanning electron microscope, glow discharge spectrum analyzer, X-ray diffraction and micro hardness tester. Then, electrochemical measurement system was used to test and compare titanium alloy TLM's electrochemical corrosion in artificial saliva before and after its surface change. Finally, the surface morphology of the original titanium alloy and the modified layer was compared by scanning electron microscope. By the technology of double glow plasma nitriding, the surface of the titanium alloy TLM had been successfully nitrided with a modified layer of 4-5 µm in thickness, uniform and compact. Its main compositions were Ti and Ti(2)N. The Microhardness of modified layer also had been improved from (236.8 ± 5.4) to (871.8 ± 5.2) HV. The self-corrosion potential in electrochemical corrosion tests had been increased from -0.559 V to -0.540 V, while the self- corrosion current density had been reduced from 2.091 × 10(-7) A/cm(2) to 7.188 × 10(-8) A/cm(2). Besides, alternating-current impedance(AC Impedance) had also been increased. With the scanning electron microscope, it's obvious that the diameter of corrosion holes on modified layer were approximately 10 µm. As to the diameter and number of corrosion holes on modified layer, they had been decreased comparing with the original titanium alloy. The type of near beta titanium alloy TLM can construct a nitriding modified layer on its surface. Meanwhile, the performance of its anti- corrosion in artificial saliva has been improved, comparing to the original

  11. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    Science.gov (United States)

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods.

  12. Effect of working pressure on corrosion behavior of nitrogen doped diamond-like carbon thin films deposited by DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon thin films were deposited on highly conductive p-silicon(100) substrates using a DC magnetron sputtering deposition system by varying working pressure in the deposition chamber. The bonding structure, adhesion strength, surface roughness and corrosion behavior of the films were investigated by using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, micro-scratch test, atomic force microscopy and potentiodynamic polarization test. A 0.6 M NaCl electrolytic solution was used for the corrosion tests. The optimum corrosion resistance of the films was found at a working pressure of 7 mTorr at which a good balance between the kinetics of the sputtered ions and the surface mobility of the adatoms promoted a microstructure of the films with fewer porosities.

  13. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-03-15

    Research highlights: {yields} Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. {yields} The graphitization of the films increased with increased film thickness. {yields} The wear resistance of the films increased though their adhesion strength decreased. {yields} The corrosion potentials of the films shifted to more negative values. {yields} However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp{sup 2} bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  14. Investigation of structure, adhesion strength, wear performance and corrosion behavior of platinum/ruthenium/nitrogen doped diamond-like carbon thin films with respect to film thickness

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2011-01-01

    Research highlights: → Sputtered PtRuN-DLC thin films were fabricated with different film thicknesses. → The graphitization of the films increased with increased film thickness. → The wear resistance of the films increased though their adhesion strength decreased. → The corrosion potentials of the films shifted to more negative values. → However, the corrosion currents of the films decreased. - Abstract: In this study, the corrosion performance of platinum/ruthenium/nitrogen doped diamond-like carbon (PtRuN-DLC) thin films deposited on p-Si substrates using a DC magnetron sputtering deposition system in a 0.1 M NaCl solution was investigated using potentiodynamic polarization test in terms of film thickness. The effect of the film thickness on the chemical composition, bonding structure, surface morphology, adhesion strength and wear resistance of the PtRuN-DLC films was studied using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM), micro-scratch test and ball-on-disc tribotest, respectively. It was found that the wear resistance of the PtRuN-DLC films apparently increased with increased film thickness though the adhesion strength of the films decreased. The corrosion results revealed that the increased concentration of sp 2 bonds in the PtRuN-DLC films with increased film thickness shifted the corrosion potentials of the films to more negative values but the decreased porosity density in the films significantly decreased the corrosion currents of the films.

  15. Quantitative measures of corrosion and prevention: application to corrosion in agriculture

    NARCIS (Netherlands)

    Schouten, J.C.; Gellings, P.J.

    1987-01-01

    The corrosion protection factor (c.p.f.) and the corrosion condition (c.c.) are simple instruments for the study and evaluation of the contribution and efficiency of several methods of corrosion prevention and control. The application of c.p.f. and c.c. to corrosion and prevention in agriculture in

  16. Case studies of corrosion of mixed waste and transuranic waste drums

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1993-01-01

    This paper presents three case studies of corrosion of waste drums at the Los Alamos National Laboratory (LANL). Corrosion was not anticipated by the waste generators, but occurred because of subtle chemical or physical mechanisms. In one case, drums of a cemented transuranic (TRU) sludge experienced general and pitting corrosion. In the second instance, a chemical from a commercial paint stripper migrated from its primary containment drums to chemically attack overpack drums made of mild carbon steel. In the third case, drums of mixed low level waste (MLLW) soil corroded drum packaging even though the waste appeared to be dry when it was placed in the drums. These case studies are jointly discussed as ''lessons learned'' to enhance awareness of subtle mechanisms that can contribute to the corrosion of radioactive waste drums during interim storage

  17. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Lu, Y; Bradshaw, A R; Chiu, Y L; Jones, I P

    2015-03-01

    The bio-corrosion behaviour of Mg-3Zn-0.3Ca (wt.%) alloy in simulated body fluid (SBF) at 37°C has been investigated using immersion testing and electrochemical measurements. Heat treatment has been used to alter the grain size and secondary phase volume fraction; the effects of these on the bio-corrosion behaviour of the alloy were then determined. The as-cast sample has the highest bio-corrosion rate due to micro-galvanic corrosion between the eutectic product (Mg+Ca2Mg6Zn3) and the surrounding magnesium matrix. The bio-corrosion resistance of the alloy can be improved by heat treatment. The volume fraction of secondary phases and grain size are both key factors controlling the bio-corrosion rate of the alloy. The bio-corrosion rate increases with volume fraction of secondary phase. When this is lower than 0.8%, the dependence of bio-corrosion rate becomes noticeable: large grains corrode more quickly. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A study on corrosive behavior of spring steel by shot-peening process

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2004-01-01

    In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal

  19. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.J., E-mail: tjpan@cczu.edu.cn [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Chen, Y.; Zhang, B. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Hu, J. [School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovolatic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Material Surface Technology, Changzhou 213164 (China); Li, C. [Light Industry College of Liaoning University, Shenyang 110036 (China)

    2016-04-30

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  20. Corrosion behavior of niobium coated 304 stainless steel in acid solution

    International Nuclear Information System (INIS)

    Pan, T.J.; Chen, Y.; Zhang, B.; Hu, J.; Li, C.

    2016-01-01

    Highlights: • The Nb coating produced by HEMAA offers good protection for 304SS in acid solution. • The coating increases corrosion potential and induces decrease of corrosion rate. • The protection of coating is ascribed to the stability of Nb in acid solution. - Abstract: The niobium coating is fabricated on the surface of AISI Type 304 stainless steel (304SS) by using a high energy micro arc alloying technique in order to improvecorrosion resistance of the steel against acidic environments. The electrochemical corrosion resistance of the niobium coating in 0.7 M sulfuric acid solutions is evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization and the open circuit potential versus time. Electrochemical measurements indicate that the niobium coating increases the free corrosion potential of the substrate by 110 mV and a reduction in the corrosion rate by two orders of magnitude compared to the substrate alone. The niobium coating maintains large impedance and effectively offers good protection for the substrate during the long-term exposure tests, which is mainly ascribed to the niobium coating acting inhibiting permeation of corrosive species. Finally, the corresponding electrochemical impedance models are proposed to elucidate the corrosion resistance behavior of the niobium coating in acid solutions.

  1. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  2. Studies on plant extracts as corrosion inhibitors for mild steel in air saturated water

    International Nuclear Information System (INIS)

    Mohamad Daud; Abdul Razak Daud; Zainal Abidin Sidi

    1988-01-01

    The effectiveness in inhibiting corrosion by garlic, soya bean, and tobacco extracts and their combinations in air saturated water at ambient temperature were studied by using electrochemical corrosion test. The range of inhibitor concentration studied was from 0.1 to 1.0 g/l. The variations of corrosion potential and corrosion current density was recorded and the results showed that the extracts have inhibitive properties in the corrosion of mild stee. The effectiveness of the inhibitors is in the following order: extract mixture > tobacco > garlic > soya bean extracts. (author)

  3. Studies of corrosion morphologies by use of experiments and computer models

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Terje

    1997-12-31

    CO{sub 2} corrosion of carbon steel is frequently encountered in the oil industry. This thesis studies the morphology of corroded metals and the dynamical evolution of corrosion attacks, especially pits and general corroded fronts, experimentally and by computerized simulation. Two experimental systems of carbon steel in CO{sub 2} bearing waters and aluminium in chloride containing electrolytes were used. Fractal geometry was used in analysing the corrosion patterns and found to be a fruitful technique. The position of the corroding fronts was obtained by destructive methods as well as non-destructive ones. To study fragile corrosion product layers or the corrosion process in situ, a grazing angle lighting technique was developed and found superior to other techniques. A computer model was developed that uses Monte Carlo technique to simulate the generation of localized pits and more general corroded front morphologies. A three-dimensional model and two versions of a two-dimensional model were developed. The three-dimensional model was used to provide incremental data of corroded volume and depth as a function of the simulation time. 185 refs., 97 figs., 16 tabs.

  4. Simulation of corrosion product activity in ion- exchanger of PWR under acceleration of corrosion and flow rate perturbations

    International Nuclear Information System (INIS)

    Mirza, N.M.; Mirza, S.M.; Rafique, M.

    2005-01-01

    In this paper computer code developed earlier by the authors (CPAIR-P) has been employed to compute corrosion product activity in PWRs for flow rate perturbations. The values of radioactivity in ion exchanger of Pressurized Water Reactor (PWR) under normal and flow rate perturbation conditions have been calculated. For linearly accelerating corrosion rates, activity saturates for removal rate of 600 cm/sup 3// s in primary coolant of PWR. A higher removal rate of 750 cm/sup 3// s was selected for which the saturation value is sufficiently low (0. 28 micro Ci/cm/sup 3/). Simulation results shows that the Fe/sup 59/ Na/sup 24/, Mo/sup 99/, Mn/sup 56/ reaches saturation values with in about 700 hours of reactor operation. However, Co/sup 58/ and Co/sup 60/ keep on accumulating and do not saturate with in 2000 hours of these simulation time. When flow rate is decreased by 10% of rated flow rate after 500 hours of reactor operation, a dip in activity is seen, which reaches to the value of 0.00138 micro Ci cm/sup -3/ then again it begins to rise and reaches saturation value of 0.00147 cm/sup 3//s. (author)

  5. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  6. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    Directory of Open Access Journals (Sweden)

    Olufunmilayo O. Joseph

    2016-06-01

    Full Text Available In this study, micro-alloyed steel (MAS material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE environment and its degradation mechanism in the presence of sodium chloride (NaCl was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness.

  7. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  8. Gravimetric determination of the iodine number of carbon black

    International Nuclear Information System (INIS)

    Murphy, L.J. Jr.

    1991-01-01

    This paper discusses a gravimetric method for the determination of the iodine adsorption number of carbon black. It comprises determining the concentration of an accurately weighed iodine blank solution by adding a standardized titrant to the iodine solution until a titration endpoint is reached and determining the concentration of the iodine solution by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, accurately weighing an amount of carbon black and adding an appropriate amount of an accurately weighed portion of the iodine solution, equilibrating the carbon black-iodine solution mixture, adding the standardized titrant to an accurately weighed portion of the supernatant from the carbon black-iodine mixture until a titration endpoint is reached and determining the concentration of the supernatant by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, wherein the titration endpoint of the supernatant is obtained using an indicating and a reference electrode, and calculating the iodine adsorption number of the carbon black based on the gravimetrically determined concentration of the titrant, the iodine solution, and the supernatant

  9. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    International Nuclear Information System (INIS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-01-01

    Highlights: • An organic/inorganic hybrid green corrosion inhibitive pigment was synthesized and characterized. • Chemical structure and morphology of the hybrid complex were characterized. • Zinc acetate/Urtica Dioica showed effective inhibition action in saline solution on carbon steel. • The synergistic effect between Zn 2+ cations and inhibitive compounds existed in U.D resulted in protective film deposition on the steel surface. - Abstract: This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV–vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn 2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  10. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Naderi, Reza [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh@aut.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2017-02-28

    Highlights: • An organic/inorganic hybrid green corrosion inhibitive pigment was synthesized and characterized. • Chemical structure and morphology of the hybrid complex were characterized. • Zinc acetate/Urtica Dioica showed effective inhibition action in saline solution on carbon steel. • The synergistic effect between Zn{sup 2+} cations and inhibitive compounds existed in U.D resulted in protective film deposition on the steel surface. - Abstract: This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV–vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn{sup 2+} and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  11. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated

  12. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  13. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  14. Determination of uranium in uranyl nitrate solutions of nuclear grade quality - Gravimetric method

    International Nuclear Information System (INIS)

    1990-01-01

    This international Standard specifies a precise and accurate gravimetric method for determining the uranium content in uranyl nitrate product solutions of nuclear grade quality at concentrations above 100 g/l of uranium. Non-volatile impurities influence the accuracy of the method. Uranyl nitrate is converted into uranium octoxide (U 3 O 8 ) by ignition in air to constant mass at 900 deg. C ± 10 deg. C. Calculation of the uranium content in the sample using a gravimetric conversion factor which depends on the isotopic composition of the uranium. The isotopic composition is determined by mass spectrometry

  15. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    Science.gov (United States)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  16. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  17. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil; Apport des analogues archeologiques a l'estimation des vitesses moyennes et a l'etude des mecanismes de corrosion a tres long terme des aciers non allies dans les sols

    Energy Technology Data Exchange (ETDEWEB)

    Neff, D

    2003-11-15

    In the context of the French nuclear waste storage, a multi-barriers disposal is envisaged. Wastes could be put in metallic overpacks disposed in a clay soil. As these overpacks could be made of low carbon steel, it is important to understand the corrosion behaviour of this material in soil during period of several centuries. Indeed, it is necessary to consolidate the empirical data by a phenomenological approach. This includes laboratory experiments and modelling of the phenomenon which have to be validated and completed by the study of archaeological artefacts. This was the aim of this PhD-work. To this purpose, an analytical protocol has been elaborated: about forty archaeological artefacts coming from five dated sites (2. to 16. centuries) have been studied on cross section in order to observe on the same sample all the constituents of the system: metallic substrate/corrosion products/environment. The corrosion products are divided into two zones: the Dense Product Layer (DPL) in contact with the metal, and the Transformed Medium (TM) which are the corrosion products formed around soil minerals (quartz grains). The metallic substrate has been studied by the classical methods of materials science (optical and scanning electron microscope, energy and wavelength dispersive spectroscopies). It has been verified that despite their heterogeneity of structure and composition, they are all hypo-eutectoids steels that can contain phosphorous until 0.5 wt%. The corrosion products have been analysed by local structural analytical methods as micro-diffraction under synchrotron radiation ({mu}XRD) and Raman micro-spectroscopy. These two complementary techniques and also the elemental composition analysis conducted to the characterisation of the corrosion forms. On the majority of the samples coming from four sites, the DPL are constituted by goethite including marbles of magnetite/maghemite. On the artefacts from the fifth site, a particular corrosion form has been

  18. The present and future on surface analysis for corrosion study

    International Nuclear Information System (INIS)

    Ohtsuka, Toshiaki

    2015-01-01

    Surface analysis for corrosion study was reviewed. For the study, the in-situ analysis was desired to describe the real feature. Light i.e., electromagnetic wave from gamma rays to infrared light has been used for the in-situ measurement of the corroded surface, although various ideas should be introduced for the study. For the application of the electromagnetic waves, a suitable window material and a suitable distance between the window and specimen surface depending on the properties of the wave must be selected. Electron spectroscopy including X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) is not applicable for the in-situ study and, however, it is very available for the corrosion study from the following points; elemental analysis, state analysis of the element, and microscopic analysis. In future, the tip enhance Raman scattering (TERS) for which the scanning probe microscopy (SPM) is combined with the surface enhanced Raman scattering (SERS) may be useful for the in-situ corrosion study. (author)

  19. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  20. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  1. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  2. Corrosion behavior of duplex polyaniline/epoxy coating on mild steel in 3% NaCl

    Directory of Open Access Journals (Sweden)

    Gvozdenović Milica M.

    2005-01-01

    Full Text Available The corrosion behavior and thermal stability of epoxy coatings electrodeposited on mild steel and on mild steel with electrochemically deposited polyaniline (PANI film were investigated by electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The aim of the paper was to present new findings on the corrosion protection of mild steel by a duplex PANI/-epoxy coating in 3% NaCI solution and to determine the effect of thin PANI film on the protective properties of the coating. PANI film was deposited electrochemically on mild steel from an aqueous solution of 0.5 mol dm"3 sodium benzoate and 0.1 mol dm"3 aniline at a constant current density of 1.5 mA cm"2. Non-pigmented epoxy coatings on mild steel and on mild steel with PANI film were obtained by cathodic electrode position at constant voltage and stirring conditions. The resin concentration in the electrode position bath was 10 wt.% solid dispersion in water at pH 5.7. The applied voltage was 250 V, the temperature 26°C and the deposition time 3 min. It was shown that thin PANI film could be used to modify the surface of mild steel prior to epoxy coating deposition, due to the increased corrosion protection of a duplex PANI/epoxy coating comparing to an epoxy coating on mild steel in 3% NaCl solution.

  3. In-Plant Corrosion Study of Steels in Distillery Effluent Treatment Plant

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2015-05-01

    The present study deals with corrosion and performance of steels observed in an effluent treatment plant (ETP) of a distillery. For this purpose, the metal coupons were exposed in primary (untreated effluent) and secondary tank (anaerobic treatment effluent) of the ETP. The extent of attack has been correlated with the composition of the effluent with the help of laboratory immersion and electrochemical tests. Untreated distillery effluent found to be more corrosive than the anaerobic-treated effluents and is assigned due to chloride, phosphate, calcium, nitrate, and nitrite ions, which enhances corrosivity at acidic pH. Mild steel showed highest uniform and localized corrosion followed by stainless steels 304L and 316L and lowest in case of duplex 2205.

  4. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  5. Modified method for zirconium or hafnium gravimetric determination with glycolic acid derivatives

    International Nuclear Information System (INIS)

    Barbieri, R.S.; Rocha, J.C.; Terra, V.R.; Marques Neto, A.

    1989-01-01

    The conditions for gravimetric determination of zirconium or hafnium by glicolic acid derivatives were studied by thermogravimetric analysis. The method utilized shown that after precipitation, washing and drying of precipitates at 150 0 C, the resulting solid was weighed in the form of [M{RCH(OH)COO} 4 ] (M = Zr,Hf;R = C 6 H 5 , β-C 10 H 7 ,p-BrC 6 H 4 ). (author) [pt

  6. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  7. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  8. Review: Results of studying atmospheric corrosion in Vietnam 1995–2005

    Directory of Open Access Journals (Sweden)

    Le Thi Hong Lien, Pham Thy San and Hoang Lam Hong

    2007-01-01

    Full Text Available Vietnam is situated in the wet tropical zone; thus, atmospheric conditions are characterized by high temperatures and a long time of wetness (TOW. In addition, the salt air coming in from the sea causes a high chloride concentration in coastal areas. Furthermore, Vietnam is a developing country, which means that air pollution is increasing with the development of industry. These factors result in significant damage to materials by atmospheric corrosion. In this report, the results of a recent study on the corrosion of carbon steel and zinc-galvanized steel at 6–8 testing sites in Vietnam over 10 recent years (1995–2005 are focused on as well as the effects of environmental factors on atmospheric corrosion. The results showed that the corrosion of carbon steel is dominated by TOW, whereas zinc-galvanized-steel corrosion strongly depends on the chloride ion concentration in the air. The corrosion losses of both carbon- and zinc-galvanized steel fit the power model well with high correlation coefficients. In addition, the characteristics of the Vietnamese climate are introduced in the form of distribution maps of temperature (T, relative humidity (RH, total rainfall and TOW. A relationship between TOW, T and RH was found that enabled the calculation of TOW from T and RH data, which are available at meteorological stations. Finally, atmospheric corrosivity is determined on the basis of data on TOW, Cl− and SO2 concentrations, and the carbon steel corrosion rate. It is shown that in Vietnam, TOW is so long that the corrosion rate of carbon steel is in the C3 category; nevertheless, Cl− and SO2 concentrations in the atmosphere are not high.

  9. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  10. Review of current research and understanding of irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nelson, J.L.; Andresen, P.L.

    1992-01-01

    Concerns for irradiation-assisted stress corrosion cracking (IASCC) of reactor internals are increasing, especially for components that are not readily replaceable. Both laboratory and field data show that intergranular stress corrosion cracking of stainless steels and nickel-base alloys can result from long term exposure to the high energy neutron and gamma radiation that exists in the core of light water reactors (LWR's). Radiation affects cracking susceptibility via changes in material micro-chemistry (radiation induced segregation, or RIS), water chemistry (radiolysis) and material properties/stress (e.g., radiation induced creep and hardening). Based on many common dependencies, e.g., to solution purity, corrosion potential, crevicing and stress, IASCC falls within the continuum of environmental cracking phenomenon in high temperature water

  11. WASTE PACKAGE CORROSION STUDIES USING SMALL MOCKUP EXPERIMENTS

    International Nuclear Information System (INIS)

    B.E. Anderson; K.B. Helean; C.R. Bryan; P.V. Brady; R.C. Ewing

    2005-01-01

    The corrosion of spent nuclear fuel and subsequent mobilization of radionuclides is of great concern in a geologic repository, particularly if conditions are oxidizing. Corroding A516 steel may offset these transport processes within the proposed waste packages at the Yucca Mountain Repository (YMR) by retaining radionuclides, creating locally reducing conditions, and reducing porosity. Ferrous iron, Fe 2+ , has been shown to reduce UO 2 2+ to UO 2(s) [1], and some ferrous iron-bearing ion-exchange materials adsorb radionuclides and heavy metals [2]. Of particular interest is magnetite, a potential corrosion product that has been shown to remove TcO 4 - from solution [3]. Furthermore, if Fe 2+ minerals, rather than fully oxidized minerals such as goethite, are produced during corrosion, then locally reducing conditions may be present. High electron availability leads to the reduction and subsequent immobilization of problematic dissolved species such as TcO 4 - , NpO 2 + , and UO 2 2+ and can also inhibit corrosion of spent nuclear fuel. Finally, because the molar volume of iron material increases during corrosion due to oxygen and water incorporation, pore space may be significantly reduced over long time periods. The more water is occluded, the bulkier the corrosion products, and the less porosity is available for water and radionuclide transport. The focus of this paper is on the nature of Yucca Mountain waste package steel corrosion products and their effects on local redox state, radionuclide transport, and porosity

  12. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  13. Magnetometric and gravimetric surveys in fault detection over Acambay System

    Science.gov (United States)

    García-Serrano, A.; Sanchez-Gonzalez, J.; Cifuentes-Nava, G.

    2013-05-01

    In commemoration of the centennial of the Acambay intraplate earthquake of November 19th 1912, we carry out gravimetric and magnetometric surveys to define the structure of faults caused by this event. The study area is located approximately 11 km south of Acambay, in the Acambay-Tixmadeje fault system, where we performed two magnetometric surveys, the first consisting of 17 lines with a spacing of 35m between lines and 5m between stations, and the second with a total of 12 lines with the same spacing, both NW. In addition to these two lines we performed gravimetric profiles located in the central part of each magnetometric survey, with a spacing of 25m between stations, in order to correlate the results of both techniques, the lengths of such profiles were of 600m and 550m respectively. This work describes the data processing including directional derivatives, analytical signal and inversion, by means of which we obtain results of magnetic variations and anomaly traits highly correlated with those faults. It is of great importance to characterize these faults given the large population growth in the area and settlement houses on them, which involves a high risk in the security of the population, considering that these are active faults and cannot be discard earthquakes associated with them, so it is necessary for the authorities and people have relevant information to these problem.

  14. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    Science.gov (United States)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  15. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  16. Precise and efficient evaluation of gravimetric quantities at arbitrarily scattered points in space

    Science.gov (United States)

    Ivanov, Kamen G.; Pavlis, Nikolaos K.; Petrushev, Pencho

    2017-12-01

    Gravimetric quantities are commonly represented in terms of high degree surface or solid spherical harmonics. After EGM2008, such expansions routinely extend to spherical harmonic degree 2190, which makes the computation of gravimetric quantities at a large number of arbitrarily scattered points in space using harmonic synthesis, a very computationally demanding process. We present here the development of an algorithm and its associated software for the efficient and precise evaluation of gravimetric quantities, represented in high degree solid spherical harmonics, at arbitrarily scattered points in the space exterior to the surface of the Earth. The new algorithm is based on representation of the quantities of interest in solid ellipsoidal harmonics and application of the tensor product trigonometric needlets. A FORTRAN implementation of this algorithm has been developed and extensively tested. The capabilities of the code are demonstrated using as examples the disturbing potential T, height anomaly ζ , gravity anomaly Δ g , gravity disturbance δ g , north-south deflection of the vertical ξ , east-west deflection of the vertical η , and the second radial derivative T_{rr} of the disturbing potential. After a pre-computational step that takes between 1 and 2 h per quantity, the current version of the software is capable of computing on a standard PC each of these quantities in the range from the surface of the Earth up to 544 km above that surface at speeds between 20,000 and 40,000 point evaluations per second, depending on the gravimetric quantity being evaluated, while the relative error does not exceed 10^{-6} and the memory (RAM) use is 9.3 GB.

  17. Some technical details concerning a new method of gravimetric-seismic inversion

    DEFF Research Database (Denmark)

    Strykowski, Gabriel

    1999-01-01

    In this paper a number of technical details related to a new method of gravimetric-seismic inversion, which is still under development, are explained. Although the present contribution aims on providing general statements on how to formulate and solve complex gravimetric-seismic modeling; problems......, the inspiration comes from the practical modeling problems in the area of Jutland peninsula (Denmark). More specifically, the methodological aspects of the proposed inversion method are illustrated on a problem of 3D modeling of the intra crustal intrusion associated with the Silkeborg Gravity High. The existing...... refraction seismic profile locates the source of the anomaly in depths 10 km - 18 km. In an earlier publication, (Strykowski, 1998), and for the same test area, a method of complex geological stripping is described. The present contribution is a continuation of this paper in the direction of inversion...

  18. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications

    International Nuclear Information System (INIS)

    Madhan Kumar, A.; Kwon, Sun Hwan; Jung, Hwa Chul; Shin, Kwang Seon

    2015-01-01

    Plasma Electrolytic Oxidation (PEO) coatings are known to be one of the most appropriate method for corrosion protection of magnesium (Mg) alloy. The improvement of PEO coatings and the optimization of their surface aspects are of major importance. In this current work, the influence of dual PEO coating on strip-cast AZ31 Mg alloy substrate has been evaluated with the aim of improving the surface and corrosion protection aspects. For this purpose, AZ31 Mg substrates are subjected to single and dual PEO processing in silicate and phosphate electrolyte under similar condition. Scanning electron microscopy (SEM) analysis confirmed that the number of pores in PEO coating processed in silicate electrolyte is higher than others. X-ray diffraction analysis of PEO coatings showed that the surface coating is mainly comprised of Mg 2 SiO 4 , Mg 3 (PO 4 ) 2 and MgO with different quantity based on PEO processing. Compared with the AZ31 Mg, the corrosion potential (E corr ) of both type PEO coatings was positively shifted about 250–400 mV and the corrosion current density (i corr ) was lowered by 3-4 orders of magnitude as result of adequate corrosion protection to the Mg alloy in 3.5% NaCl solution. All of the observation obviously showed that the dual PEO coating provides better corrosion protection performance than their respective single due to its synergistic beneficial effect. - Highlights: • Influence of dual PEO coating on AZ31 Mg alloy substrate was evaluated. • XRD confirmed formation of thin MgO inner, Mg 3 (PO 4 ) 2 and Mg 2 SiO 4 outer layer. • SEM results showed uniform coating with no cracks and relatively less micro pores. • Micro hardness of dual PEO coatings is higher than single PEO coatings. • Dual coating provides superior corrosion performance due to its synergistic effect

  19. Electrochemical construction of micro–nano spongelike structure on titanium substrate for enhancing corrosion resistance and bioactivity

    International Nuclear Information System (INIS)

    Jiang, Pinliang; Lin, Longxiang; Zhang, Fan; Dong, Xiang; Ren, Lei; Lin, Changjian

    2013-01-01

    Highlights: • A hierarchical micro–nano spongelike TiO 2 layer was constructed on Ti substrate. • The micro–nano TiO 2 surface presented good corrosion resistance. • Excellent biomineration ability was observed on such micro–nano TiO 2 layer. • Superior MG63 cell viability was discerned on the micro–nano structured surface. -- Abstract: Surface structures of medical implants generally play a crucial role in tissue growth and healing while implanted into a living body. The surface design and modification of implants can effectively promote its biocompatibility and integration ability. In this study, a hierarchically superhydrophilic structure on titanium surface with a nano-spongelike titania layer on the micro-roughened titanium surface was constructed through dual acid etching and electrochemical treatments. It is shown that the structure of micro/nano-spongelike TiO 2 provides not only better corrosion resistance and less oxygen vacancies, but also much higher ability of biomineralization after immersion in simulated body fluid (SBF) for 14 days. It is evident, by the cell culture for the different samples, that the micro–nano spongelike structured surface on Ti significantly promotes human osteoblast-like MG63 cell attachment and proliferation. All evaluations of electrochemical behavior and biological responses in this study indicate that the micro/nano-spongelike structure on Ti surface is of excellent chemical stability, bioactivity as well as biocompatibility for biomedical implant applications

  20. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases

    International Nuclear Information System (INIS)

    Tan, Yong-Jun; Liu, Tie; Aung, Naing Naing

    2006-01-01

    The wire beam electrode (WBE) and the scanning reference electrode technique (SRET) have been applied in a novel combination to measure, for the first time, electrochemical parameters simultaneously from both the metallic and electrolytic phases of a corroding metal surface. The objective of this work is to demonstrate the application of this combined WBE-SRET method in obtaining unique information on localised corrosion mechanism, by investigating typical corrosion processes occurring over a mild steel WBE surface exposed to the classic Evans solution. The WBE method was used to map current and potential distributions in the metallic phase, and the SRET was used to map current or potential distribution in the electrolytic phase. It has been found that the combined WBE-SRET method is able to gain useful information on macro-cell electrochemical corrosion processes that involve macro-scale separation of anodes and cathodes. In such macro-cell corrosion systems, maps measured using WBE and SRET were found to correlate with each other and both methods were able to detect the locations of anodic sites. However the movement of the scanning probe during SRET measurements was found to affect the SRET detection of cathodic sites. In micro-cell corrosion systems where the separation of anodic and cathodic sites were less distinct, SRET measurement was found to be insensitive in detecting anodic and cathodic sites, while the WBE method was still able to produce results that correlated well with observed corrosion behaviour. Results obtained from this work suggest that the WBE-SRET method is applicable for understanding the initiation, propagation and electrochemical behaviour of localised corrosion anodes and cathodes, and also their dependence on externally controllable variables, such as solution pH changes and the existence of surface coatings

  1. Corrosion products study of alcohol by Mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Velazquez, R.; Gil de Larre, M.

    1995-01-01

    Simulated corrosion essays in alcohol is presented and corrosion products of storage tanks (CAPASA) were analyzed. The analysis by Mossbauer absortion and transmission spectroscopy shows the formation of hematite substratum in the rust of the storage tanks of carburetant and burning alcohol. In the sample of corrosion with strong rum shows the formation of lepidocrocite and with destilled water besides of lepidocrocite, magnetite (Fe3 O4) is detected

  2. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study.

    Science.gov (United States)

    McCleary, Barry V; DeVries, Jonathan W; Rader, Jeanne I; Cohen, Gerald; Prosky, Leon; Mugford, David C; Champ, Martine; Okuma, Kazuhiro

    2010-01-01

    A method for the determination of total dietary fiber (TDF), as defined by the CODEX Alimentarius, was validated in foods. Based upon the principles of AOAC Official Methods 985.29, 991.43, 2001.03, and 2002.02, the method quantitates high- and low-molecular-weight dietary fiber (HMWDF and LMWDF, respectively). In 2007, McCleary described a method of extended enzymatic digestion at 37 degrees C to simulate human intestinal digestion followed by gravimetric isolation and quantitation of HMWDF and the use of LC to quantitate low-molecular-weight soluble dietary fiber (LMWSDF). The method thus quantitates the complete range of dietary fiber components from resistant starch (by utilizing the digestion conditions of AOAC Method 2002.02) to digestion resistant oligosaccharides (by incorporating the deionization and LC procedures of AOAC Method 2001.03). The method was evaluated through an AOAC collaborative study. Eighteen laboratories participated with 16 laboratories returning valid assay data for 16 test portions (eight blind duplicates) consisting of samples with a range of traditional dietary fiber, resistant starch, and nondigestible oligosaccharides. The dietary fiber content of the eight test pairs ranged from 11.57 to 47.83%. Digestion of samples under the conditions of AOAC Method 2002.02 followed by the isolation and gravimetric procedures of AOAC Methods 985.29 and 991.43 results in quantitation of HMWDF. The filtrate from the quantitation of HMWDF is concentrated, deionized, concentrated again, and analyzed by LC to determine the LMWSDF, i.e., all nondigestible oligosaccharides of degree of polymerization > or =3. TDF is calculated as the sum of HMWDF and LMWSDF. Repeatability standard deviations (Sr) ranged from 0.41 to 1.43, and reproducibility standard deviations (S(R)) ranged from 1.18 to 5.44. These results are comparable to other official dietary fiber methods, and the method is recommended for adoption as Official First Action.

  3. Corrosion Study Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  4. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    of microbial clusters and the increase production of the EPS by bacteria (Fang et al., 2002). This study was conducted to test the corrosive activity of Citrobacter freundii, Proteus mirabilis and Klebsiella planticola on carbon steel coupons and the influence of a toxic metal Cr(III) found in polluted marine environment) on these bacteria and the EPS production of the biofilm formed on carbon steel by appropriate in vitro experiments. (authors)

  5. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks; Repositorios para rejeitos radioativos de alto nivel (RANR) no Brasil: a importancia de estudos geoquimicos (microtermometricos) e de migracao de fluidos em rochas potenciamente hospedeiras

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Francisco Javier; Fuzikawa, Kazuo; Alves, James Vieira; Neves, Jose Marques Correia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Inclusoes Fluidas e Metalogenese]. E-mail: javier@cdtn.br

    2003-04-15

    A detailed fluid inclusion study of host rocks, is of fundamental importance in the selection of geologically suitable areas for high level nuclear waste repository constructions (HLRW). The LIFM-CDTN is enabled to develop studies that confirm: the presence or not, of corrosive fluid in minerals from host rocks of the repository and the possible presence of micro fractures (and fluid leakage) when these rocks are submitted to high temperatures. These fluid geochemistry studies, with permeability determinations by means of pressurized air injection must be carried out in rocks hosting nuclear waste. Micro fracture determination is of vital importance since many naturally corrosive solutions, present in the mineral rocks, could flow out through these plans affecting the walls of the repository. (author)

  6. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  7. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Science.gov (United States)

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  8. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique

    Directory of Open Access Journals (Sweden)

    Yunze Xu

    2016-09-01

    Full Text Available In this paper, a new kind of carbon steel (CS and stainless steel (SS galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER method and zero resistance ammeter (ZRA technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.

  9. Precision gravimetric survey at the conditions of urban agglomerations

    Science.gov (United States)

    Sokolova, Tatiana; Lygin, Ivan; Fadeev, Alexander

    2014-05-01

    Large cities growth and aging lead to the irreversible negative changes of underground. The study of these changes at the urban area mainly based on the shallow methods of Geophysics, which extensive usage restricted by technogenic noise. Among others, precision gravimetry is allocated as method with good resistance to the urban noises. The main the objects of urban gravimetric survey are the soil decompaction, leaded to the rocks strength violation and the karst formation. Their gravity effects are too small, therefore investigation requires the modern high-precision equipment and special methods of measurements. The Gravimetry division of Lomonosov Moscow State University examin of modern precision gravimeters Scintrex CG-5 Autograv since 2006. The main performance characteristics of over 20 precision gravimeters were examined in various operational modes. Stationary mode. Long-term gravimetric measurements were carried at a base station. It shows that records obtained differ by high-frequency and mid-frequency (period 5 - 12 hours) components. The high-frequency component, determined as a standard deviation of measurement, characterizes the level of the system sensitivity to external noise and varies for different devices from 2 to 5-7 μGals. Midrange component, which closely meet to the rest of nonlinearity gravimeter drifts, is partially compensated by the equipment. This factor is very important in the case of gravimetric monitoring or observations, when midrange anomalies are the target ones. For the examined gravimeters, amplitudes' deviations, associated with this parameter may reach 10 μGals. Various transportation modes - were performed by walking (softest mode), lift (vertical overload), vehicle (horizontal overloads), boat (vertical plus horizontal overloads) and helicopter. The survey quality was compared by the variance of the measurement results and internal convergence of series. The measurement results variance (from ±2 to ±4 μGals) and its

  10. Corrosion failure due to flux residues in an electronic add-on device

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    of the electrochemical behavior metallic materials (alloys) used in the switch and risk of electrochemical migration (ECM) between the switch components in presence of flux residues was also carried out. Investigations included potentiodynamic polarization measurements on the switch electrodes using a micro......-electrochemical technique, in situ ECM studies, and scanning electron microscopy (SEM). Failure of the switches was found to be either due to the flux residue acting as an nsulating layer or as a corrosion accelerator causing ECM....

  11. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  12. Inhibition study of additives towards the corrosion of ferrous metal in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Sazzad, B.S.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2016-01-01

    Highlights: • TBA doped biodiesel exhibits fairly good corrosion inhibition efficiency. • TBA forms nitrogen-containing layer on metal surface and protects the corrosion. • Materials exposed to TBA doped biodiesel show less surface roughness. - Abstract: Some efforts have already been given by other researchers to characterize the corrosion behavior of different metals in biodiesel. However, there is very limited information on its remedial measure. Therefore, this study investigates the effects of tert-butylamine (TBA), benzotriazole (BTA), butylate-dhydroxytoluene (BHT), and pyrogallol (PY) on the corrosion of cast iron (CI) and low carbon steel (LCS) through an immersion test in palm biodiesel (B100) at 300 K. Result shows that TBA-doped biodiesel exhibits fairly good corrosion-inhibiting properties for materials exposed to B100. Inhibition efficiency of TBA is found to be 86.54% and 86.71% for CI and LCS, respectively which is far better than other tested additives in this study. The high inhibition efficiency could be attributed to the dominant physical adsorption of N-containing compound which creates a protective layer over the metal surface and prevents corrosion.

  13. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  14. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    International Nuclear Information System (INIS)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs

  15. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  16. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment,

  17. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  18. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  19. Preparation of ceramic-corrosion-cell fillers and application for cyclohexanone industry wastewater treatment in electrobath reactor

    International Nuclear Information System (INIS)

    Wu, Suqing; Qi, Yuanfeng; Gao, Yue; Xu, Yunyun; Gao, Fan; Yu, Huan; Lu, Yue; Yue, Qinyan; Li, Jinze

    2011-01-01

    Highlights: ► Dried sewage sludge and scrap iron used as raw materials for sintering ceramics. ► The new media ceramics used as fillers in electrobath of micro-electrolysis. ► Modified micro-electrolysis used in cyclohexanone industry wastewater treatment. ► This modified micro-electrolysis could avoid failure of the electrobath reactor. - Abstract: As new media, ceramic-corrosion-cell fillers (Cathode Ceramic-corrosion-cell Fillers – CCF, and Anode Ceramic-corrosion-cell Fillers – ACF) employed in electrobath were investigated for cyclohexanone industry wastewater treatment. 60.0 wt% of dried sewage sludge and 40.0 wt% of clay, 40.0 wt% of scrap iron and 60.0 wt% of clay were utilized as raw materials for the preparation of raw CCF and ACF, respectively. The raw CCF and ACF were respectively sintered at 400 °C for 20 min in anoxic conditions. The physical properties (bulk density, grain density and water absorption), structural and morphological characters and toxic metal leaching contents were tested. The influences of pH, hydraulic retention time (HRT) and the media height on removal of COD Cr and cyclohexanone were studied. The results showed that the bulk density and grain density of CCF and ACF were 869.0 kg m −3 and 936.3 kg m −3 , 1245.0 kg m −3 and 1420.0 kg m −3 , respectively. The contents of toxic metal (Cu, Zn, Cd, Pb, Cr, Ba, Ni and As) were all below the detection limit. When pH of 3–4, HRT of 6 h and the media height of 60 cm were applied, about 90% of COD cr and cyclohexanone were removed.

  20. What can be done about corrosion in submersible pumps?

    Energy Technology Data Exchange (ETDEWEB)

    Minett, S.

    2000-09-01

    Useful advice and a survey of materials and techniques which can help counter corrosion risks in submersible pumps are provided. The greatest risk of corrosion is caused by sea water, hydrochloric acid, certain types of solvents, hydrogen sulphide, liquids with a high copper content, bases with a high pH value and certain liquids containing a mixture of acids. Counteractive strategies suggested include using a corrosion resistant material such as stainless steel, or other resistant coatings and materials for particular components that are exposed to high corrosion risks. Most submersible pumps are made of cast iron which should present no corrosion problems in normal domestic use. In mining and construction applications aluminum submersibles are common, which is resistant to a pH value of about 8. The use of stainless steel is recommended as the main material in submersible pumps when used for pumping acidic liquids, and when purity of the liquid pumped is of prime consideration. Coatings and anodes on conventional cast iron pumps are a less expensive and more flexible alternative against salt water corrosion. Among coatings epoxy coating is the most widely used. Zinc anodes are used in conjunction with epoxy coatings, which by setting up a micro current by contact with the cast iron prevent corrosion of areas of the cast iron that may be exposed as a result of post-production scratching. By being sacrificially corroded, the zinc anodes thus significantly extend the life of a coated pump. Impressed current from an external power source, is an effective, but more expensive alternative to the implanted anode method. Using resistant materials such as nitrile rubber, fluoro-carbon rubber, corrosion resistant cemented carbide, or chlorinated rubber for various components (rotating shaft seals, rubber 'O' rings, cable sheathing, etc) are other alternatives that may be depending on the application and the degree of exposure.

  1. Study on the hot corrosion behavior of a cast Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Guo, J.T.; Zhang, J.; Yuan, C.; Zhou, L.Z.; Hu, Z.Q. [Chinese Academy of Sciences, Shenyang (China). Inst. of Metal Research

    2010-07-01

    Hot corrosion behavior of Nickel-base cast superalloy K447 in 90% Na{sub 2}SO{sub 4} + 10% NaCl melting salt at 850 C and 900 C was studied. The hot corrosion kinetic of the alloy follows parabolic rate law under the experimental conditions. The external layer is mainly Cr{sub 2}O{sub 3} scale which is protective to the alloy, the intermediate layer is the Ti-rich phase, and the internal layer is mainly the international oxides and sulfides. With increased corrosion time and temperature, the oxide scales are gradually dissolved in the molten salt and then precipitate as a thick and non-protective scale. Chlorides cause the formation of volatile species, which makes the oxide scale disintegrate and break off. The corrosion kinetics and morphology examinations tend to support the basic dissolution model for hot corrosion mechanisms. (orig.)

  2. Uncertainty associated with assessing semen volume: are volumetric and gravimetric methods that different?

    Science.gov (United States)

    Woodward, Bryan; Gossen, Nicole; Meadows, Jessica; Tomlinson, Mathew

    2016-12-01

    The World Health Organization laboratory manual for the examination of human semen suggests that an indirect measurement of semen volume by weighing (gravimetric method) is more accurate than a direct measure using a serological pipette. A series of experiments were performed to determine the level of discrepancy between the two methods using pipettes and a balance which had been calibrated to a traceable standard. The median weights of 1.0ml and 5.0ml of semen were 1.03 g (range 1.02-1.05 g) and 5.11 g (range 4.95-5.16 g), respectively, suggesting a density for semen between 1.03g and 1.04 g/ml. When the containers were re-weighed after the removal of 5.0 ml semen using a serological pipette, the mean residual loss was 0.12 ml (120 μl) or 0.12 g (median 100 μl, range 70-300 μl). Direct comparison of the volumetric and gravimetric methods in a total of 40 samples showed a mean difference of 0.25ml (median 0.32 ± 0.67ml) representing an error of 8.5%. Residual semen left in the container by weight was on average 0.11 g (median 0.10 g, range 0.05-0.19 g). Assuming a density of 1 g/ml then the average error between volumetric and gravimetric methods was approximately 8% (p gravimetric measurement of semen volume. Laboratories may therefore prefer to provide in-house quality assurance data in order to be satisfied that 'estimating' semen volume is 'fit for purpose' as opposed to assuming a lower uncertainty associated with the WHO recommended method.

  3. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guenbour, Abdellah [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)]. E-mail: guenbour@fsr.ac.ma; Hajji, Mohamed-Adil [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Jallouli, El Miloudi [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Bachir, Ali Ben [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)

    2006-12-30

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P{sub 2}O{sub 5} has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content.

  4. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    International Nuclear Information System (INIS)

    Guenbour, Abdellah; Hajji, Mohamed-Adil; Jallouli, El Miloudi; Bachir, Ali Ben

    2006-01-01

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P 2 O 5 has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content

  5. Monte Carlo simulation taking account of surface crack effect for stress corrosion cracking in a stainless steel SUS 304

    International Nuclear Information System (INIS)

    Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi

    2008-01-01

    Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)

  6. Comparison of Metal-on-Metal Hip Simulator Wear Measured by Gravimetric, CMM and Optical Profiling Methods

    OpenAIRE

    Alberts, Larry Russell; Martinez-Nogues, Vanesa; Cook, Richard; Maul, Christian; Bills, Paul J.; Racasan, Radu; Stolz, Martin; Wood, Robert J. K.

    2018-01-01

    Simulation of wear in artificial joint implants is critical for evaluating implant designs and materials. Traditional protocols employ the gravimetric method to determine the loss of material by measuring the weight of the implant components before and after various test intervals and after the completed test. However, the gravimetric method cannot identify the location, area coverage or maximum depth of the wear and it has difficulties with proportionally small weight changes in relatively h...

  7. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  8. Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M.; Pokorny, P.; Stoulil, J. [University of Chemistry and Technology, Prague (Czech Republic)

    2017-04-15

    Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

  9. Corrosion-fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass

    International Nuclear Information System (INIS)

    Horton Jr, Joe A.; Morrison, M.L.; Buchanan, R.A.; Liaw, Peter K.; Green, B.A.; Wang, G.Y.

    2007-01-01

    The purpose of this study was to characterize the stress-life behavior of the Vitreloy 105 BMG alloy in the four-point bending configuration in a 0.6 M. NaCl electrolyte. At high stress amplitudes, the corrosion-fatigue life was similar to the fatigue lives observed in air. The environment became increasingly detrimental with decreases in stress, and the corrosion-fatigue endurance limit decreased to about 50 MPa, an 88% decrease relative to testing in air. Similar to the tests conducted in air, oxide particles were found on the fracture surfaces but did not appear to significantly affect the corrosion-fatigue lives. However, wear and the resultant corrosion at the outer loading pins resulted in crack initiation in most of the samples. Thus, these results are considered conservative estimates of the corrosion-fatigue behavior of this BMG alloy. Monitoring of the samples and the open-circuit potentials revealed that the onset of significant crack growth occurred at an average of 92% of the total fatigue life. The mechanism of corrosion-fatigue degradation was found to be anodic dissolution

  10. Inhibitive action of alkaloids and non alkaloid fractions of the ...

    African Journals Online (AJOL)

    The corrosion inhibition of mild steel in 2.0 MHCl solution by non-alkaloidal and alkaloidal fractions of the extracts of Phyllanthus amarus (NAEPA and AEPA respectively) was studied using gravimetric and gasometric techniques at 303 and 323 K. The results revealed that the extracts functioned as good corrosion inhibitors.

  11. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Barchiche, C.-E.; Rocca, E.; Juers, C.; Hazan, J.; Steinmetz, J.

    2007-01-01

    Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na 3 PO 4 .12 H 2 O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau

  12. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  13. Corrosion of beryllium

    International Nuclear Information System (INIS)

    Mueller, J.J.; Adolphson, D.R.

    1987-01-01

    The corrosion behavior of beryllium in aqueous and elevated-temperature oxidizing environments has been extensively studied for early-intended use of beryllium in nuclear reactors and in jet and rocket propulsion systems. Since that time, beryllium has been used as a structural material in les corrosive environments. Its primary applications include gyro systems, mirror and reentry vehicle structures, and aircraft brakes. Only a small amount of information has been published that is directly related to the evaluation of beryllium for service in the less severe or normal atmospheric environments associated with these applications. Despite the lack of published data on the corrosion of beryllium in atmospheric environments, much can be deduced about its corrosion behavior from studies of aqueous corrosion and the experiences of fabricators and users in applying, handling, processing, storing, and shipping beryllium components. The methods of corrosion protection implemented to resist water and high-temperature gaseous environments provide useful information on methods that can be applied to protect beryllium for service in future long-term structural applications

  14. Study of API 5L X70 steel corrosion processes when in contact with some Brazilian soils; Estudo dos processos de corrosao de acos API 5L X70 em contato com alguns dos solos do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Sergio Luis de

    2007-07-01

    Pipelines, fuel storage tanks and other metallic structures are in permanent contact and exposed to different types of soils, of horizons or layers, or of soil aggressiveness. This interaction may cause expressive damages to the environment and to the planned work. Contamination may occur due to leakage of stored products, splitting during transportation, accidents caused by pipelines without extensive maintenance. The result of these accidents could be, among others, some financial losses. In order to recognize the dynamic interactions between metallic surfaces and the environment it is crucial to have preventive actions and to develop better-applied materials. API steel 5L X70 has been used in structures of low and high pressure with high mechanical strength and corrosion and, even so, it is susceptible to etching corrosion since it is in contact with different environments from mangrove regions to industrial environments. The present case evaluated the role of 5L X70 API steel in contact with different soil horizons representative of the Brazilian soil. This investigation correlated chemical species with solute ions in soil solution, secondary and primary phase minerals besides physical and chemical characteristics as pH, electric conductivity, total dissolved solids, among others, to the results of corrosion resistance and ways of corrosion. The evaluation was carried out using x-ray diffractometry, scanning electron microscopy, total reflection x-ray fluorescence, fuel injection flow besides texture and gravimetric analyses to soil characterization and mineralogy, identification of corrosion products, soil solution analyses, evaluation of tested materials and classification of ways and types of corrosion. This was an attempt to integrate the data to a better understanding of the process involving reagents and products. The results showed that different soil horizons such as different types of analyzed soils produce specific etching in metallic structures

  15. Corrosion cast study of the canine hepatic veins.

    Science.gov (United States)

    Uršič, M; Vrecl, M; Fazarinc, G

    2014-11-01

    This study presents a detailed description of the distribution, diameters and drainage patterns of hepatic veins on the basis of the corrosion cast analysis in 18 dogs. We classified the hepatic veins in three main groups: the right hepatic veins of the caudate process and right lateral liver lobe, the middle hepatic veins of the right medial and quadrate lobes and the left hepatic veins of both left liver lobes and the papillary process. The corrosion cast study showed that the number of the veins in the Nomina Anatomica Veterinaria and most anatomical textbooks is underestimated. The number of various-sized hepatic veins of the right liver division ranged from 3 to 5 and included 1 to 4 veins from the caudate process and 2 to 4 veins from the right lateral liver lobe. Generally, in all corrosion casts, one middle-sized vein from the right part of the right medial lobe, which emptied separately in the caudal vena cava, was established. The other vein was a large-sized vein from the remainder of the central division, which frequently joined the common left hepatic vein from the left liver lobes. The common left hepatic vein was the largest of all the aforementioned hepatic veins.

  16. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liu, E., E-mail: MEJLiu@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-07-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 {sup o}C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp{sup 3}-bonded cross-link structure that was significantly affected by the substrate temperature.

  17. Effect of substrate temperature on corrosion performance of nitrogen doped amorphous carbon thin films in NaCl solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2009-01-01

    Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 o C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp 3 -bonded cross-link structure that was significantly affected by the substrate temperature.

  18. Study of the corrosion fatigue resistance of steel grades for automotive suspension springs

    Energy Technology Data Exchange (ETDEWEB)

    Mougin, J. [Ascometal CREAS, BP70045, F-57301 Hagondange Cedex (France); Mostacchi, A. [Ascometal Developpement, BP17, F-38570 Le Cheylas (France); Hersart, Y. [Allevard Rejna Autosuspensions CRDT, 201 Rue de Sin-le-Noble, BP629, F-59506 Douai Cedex (France)

    2004-07-01

    In order to reduce the total weight of vehicles for ecological and economical reasons, the car makers use down-sizing for several components of the cars. Concerning helical suspension springs, the size of the bar diameter and the number of spring coils are decreased, leading to an increase of the stress level applied on the spring. In this respect, steels with high mechanical properties are required, to achieve a good fatigue resistance of the springs. The corrosion resistance is also important for this application. Indeed, during service, the protective coating applied on the springs can be scratched by gravels, and bare underlying metal can be put in contact with the atmosphere, including humidity, drops of rain but also de-icing salts. Generally speaking, an increase of mechanical properties decreases the corrosion fatigue resistance of the steels. In this respect, a compromise needs to be found, that is why the study of corrosion fatigue resistance is very important. In order to study the corrosion fatigue resistance of spring steels, an original device and test procedure have been set up. Torsional fatigue on specimens is used to simulate the stress applied on each spring coil. The stress levels are chosen to be representative of the actual inservice loads. The specimens are shot-peened and coated in a same way as the actual springs. Scratching of the painting is performed, giving rise to small areas of bare metal. Three types of tests are performed: fatigue in air (taken as the reference level), fatigue on specimens which have been corroded previously (test similar to the spring-makers practice) and coupled corrosion fatigue. The mechanisms involved in corrosion fatigue have been studied. For all the specimens, crack initiated on corrosion pits. For the specimens corroded prior fatigue testing, the corrosion pits can be quite severe. In this case, these pits act as a surface defect which increases locally the stress concentration and accelerates the crack

  19. Modern techniques for studying biofilm-influenced corrosion

    International Nuclear Information System (INIS)

    Beech, I.B.

    1998-01-01

    In natural and made-made environments the presence of biofilms on surfaces of metals and their alloys influences electrochemistry at the biofilm/substratum interface, enhancing or inhibiting corrosion reactions. Due to the complexity of the biocorrosion phenomenon a range of techniques is commonly employed to study mechanisms involved. In addition to traditional methods of corrosion investigation such as electrochemical measurements and light and scanning electron microscopy observations coupled with energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD). Modern techniques of surface science proved to be very useful in elucidating biofilm/metal interactions. Recent applications of Environmental Scanning Electron Microscopy (ESEM), Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to biocorrosion studies allowed better understanding of the biologically influenced metal deterioration process. The scope and promise of these latter techniques will be discussed and their use illustrated on practical examples. (Author)

  20. A Moessbauer spectroscopic study of corrosion related reactions in the iron-hydrogen fluoride-water-oxygen system

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1989-03-01

    The results of a study of a number of corrosion related reactions in the Fe-HF-H 2 O-O2 system are presented. The primary techniques used were transmission and conversion electron Moessbauer spectroscopy. Conversion electron Moessbauer spectra were recorded at very low γ-photon glancing angles and at normal incidence. Depth profiles of surface layers were obtained by recording spectra at different glancing angles. The initial product which forms when an iron surface is exposed to the vapour of azeotropic hydrofluoric acid was identified as FeF 25 ·47H 2 O. With increasing film thickness, a product, identified as non-stoichiometric Fe 2 F 5 ·7H 2 O, was shown to occur. A thermodynamic analysis of the system is presented which shows FeF 3 ·3H 2 O to be the most stable compound under the experimental conditions used, and suggests a stepwise reaction sequence in which FeF 2 ·4H 2 O forms first, followed by Fe 2 F 5 ·7H 2 O and finally FeF 3 ·3H 2 O. Results obtained in a gravimetric study reveal the rate of reaction of metallic iron with the azeotropic vapour to be controlled by the rate of diffusion of the gaseous species through the product layer. In the case of the reactions with the vapour of higher dilutions of aqueous HF, the chemical reaction between the iron substrate and the gaseous species is rate controlling. 86 refs., 61 figs., 14 tabs