WorldWideScience

Sample records for micro-dose transdermal estradiol

  1. Estradiol Transdermal Patch

    Science.gov (United States)

    ... menopause (change of life; the end of monthly menstrual periods). Transdermal estradiol is also used to prevent ... patch. Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  2. TRANSDERMAL PERMEABILITY OF ESTRADIOL THROUGH THE HUMAN SKIN OF DIFFERENT BODY REGIONS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    CHENGuo-Shen; GONGSai-Jun; DUJie; MARun-Zhen; ZHOURong-Rong; LIULiang-Chu

    1989-01-01

    Transdermal permeability of estradiol was carried out by using Valia-Chien double compartment permeation cells for the following regions of intact skin and skin without stratum corncum: chest, abdomen, hip, upper arm, thigh and back. The estradiol permeation rates and accumulative amounts within 72h in vitro were examined by HPLC. The results showed that the permeation rates of intact skin from different regions of the body

  3. Low dose transdermal estradiol induces breast density and heterogeneity changes comparable to those of raloxifene

    DEFF Research Database (Denmark)

    Nielsen, Mads; Raundahl, Jakob; Pettersen, Paola

    2009-01-01

    Objective: To investigate whether transdermal low dose estradiol treatment induces changes in mammographic density or heterogeneity compared to raloxifene. Secondarily, if these changes relate to changes in bone formation/resorption markers, and if these findings indicate elevation of breast canc...

  4. The role of transdermal estrogen sprays and estradiol topical emulsion in the management of menopause-associated vasomotor symptoms

    Directory of Open Access Journals (Sweden)

    Amy M Egras

    2010-05-01

    Full Text Available Amy M Egras, Elena M UmlandJefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USAAbstract: Vasomotor symptoms (VMS are among the most bothersome complaints of postmenopausal women. To date, the most widely studied and effective treatment for VMS is hormone replacement therapy, consisting of estrogen (in women without a uterus or estrogen plus progestin (in women with a uterus. Traditionally, oral estrogens have been used for treatment. However, over the years, additional estrogen formulations have been developed including transdermal patches; vaginal rings, creams, and tablets; and injectable preparations. Two newer formulations are transdermal estrogen spray and estradiol topical emulsion. This review evaluates the current literature assessing the use of these two newer formulations for the treatment of VMS associated with menopause.Keywords: menopause, vasomotor symptoms, transdermal estrogen spray, estradiol topical emulsion

  5. In Vitro Drug Transfer Due to Drug Retention in Human Epidermis Pretreated with Application of Marketed Estradiol Transdermal Systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A

    2017-08-01

    Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P  0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.

  6. Estradiol-induced alopecia in five dogs after contact with a transdermal gel used for the treatment of postmenopausal symptoms in women.

    Science.gov (United States)

    Wiener, Dominique J; Rüfenacht, Silvia; Koch, Hans J; Mauldin, Elizabeth A; Mayer, Ursula; Welle, Monika M

    2015-10-01

    Noninflammatory alopecia is a frequent problem in dogs. Estrogen-induced alopecia is well described in dogs, with estrogen producing testicular tumors and canine female hyperestrogenism. To increase awareness that extensive alopecia in dogs can be caused by exposure to estradiol gel used by owners to treat their postmenopausal symptoms. Skin biopsies from five dogs with extensive alopecia were examined. Owners were asked for a thorough case history, including possible exposure to an estradiol gel. Complete blood work and serum chemistry panel analysis were performed to investigate possible underlying causes. Formalin-fixed skin biopsy samples were obtained from lesional skin and histopathology was performed. All owners confirmed the use of a transdermal estradiol gel and close contact with the affected dogs before development of alopecia. Histopathologic examination showed a similar picture in all five dogs. Most hair follicles were predominantly either in kenogen or telogen and hair follicle infundibula showed mild to moderate dilation. Hair regrowth was present in all five dogs after the exposure to the estradiol gel was stopped or minimized. Blood work and serum chemistry panel were within normal limits in all cases. One dog had elevated estradiol concentrations, whereas in another dog estradiol concentrations were within normal limits. Alopecia can occur after contact with a transdermal gel used as treatment for postmenopausal symptoms in women. Estradiol gel used by female owners therefore represents a possible cause for noninflammatory alopecia in dogs. Estradiol concentrations are not necessarily elevated in affected dogs. © 2015 ESVD and ACVD.

  7. Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems.

    Science.gov (United States)

    Yang, Yang; Manda, Prashanth; Pavurala, Naresh; Khan, Mansoor A; Krishnaiah, Yellela S R

    2015-07-28

    The objective of this study was to develop a level A in vitro-in vivo correlation (IVIVC) for drug-in-adhesive (DIA) type estradiol transdermal drug delivery systems (TDDS). In vitro drug permeation studies across human skin were carried out to obtain the percent of estradiol permeation from marketed products. The in vivo time versus plasma concentration data of three estradiol TDDS at drug loadings of 2.0, 3.8 and 7.6mg (delivery rates of 25, 50 and 100μg/day, respectively) was deconvoluted using Wagner-Nelson method to obtain percent of in vivo drug absorption in postmenopausal women. The IVIVC between the in vitro percent of drug permeation (X) and in vivo percent of drug absorption (Y) for these three estradiol TDDS was constructed using GastroPlus® software. There was a high correlation (R(2)=1.0) with a polynomial regression of Y=-0.227X(2)+0.331X-0.001. These three estradiol TDDS were used for internal validation whereas another two products of the same formulation design (with delivery rates of 60 and 100μg/day) were used for external validation. The predicted estradiol serum concentrations (convoluted from in vitro skin permeation data) were compared with the observed serum concentrations for the respective products. The developed IVIVC model passed both the internal and external validations as the prediction errors (%PE) for Cmax and AUC were less than 15%. When another marketed estradiol TDDS with a delivery rate of 100μg/day but with a slight variation in formulation design was chosen, it did not pass external validation indicating the product-specific nature of IVIVC model. Results suggest that the IVIVC model developed in this study can be used to successfully predict the in vivo performance of the same estradiol TDDS with in vivo delivery rates ranging from 25 to 100μg/day. Published by Elsevier B.V.

  8. Fertilizer micro-dosing

    International Development Research Centre (IDRC) Digital Library (Canada)

    Localized application of small quantities of fertilizer (micro-dosing), combined with improved planting pits for rainwater harvesting, has generated greater profits and food security for women farmers in the Sahel. • Women are 25% more likely to use combined applications, and have expanded areas of food crops (cowpea,.

  9. A prospective randomized comparative study of the effects of intranasal and transdermal 17 β-estradiol on postmenopausal symptoms and vaginal cytology

    Directory of Open Access Journals (Sweden)

    Odabasi A

    2007-01-01

    Full Text Available Context: Investigating the adverse effects of oral hormone replacement therapy (HRT, the clinical effectiveness of alternative combinations and route of administrations. Aim: To compare the effects of intranasal and transdermal 17β-estradiol combined with vaginal progesterone on vasomotor symptoms and vaginal cytology. Settings and Design: A 12-week, prospective, randomized comparative study was conducted between July 2005 and September 2006. Materials and Methods: Eighty postmenopausal women aged between 42-57 years, who had scores of ≥1.7 on the menopause rating scale-I (MRS-I items "1-6", were randomly assigned to receive intranasal (300 µg/day, n =40 or transdermal (50 µg/day, n =40 17β-estradiol continuously. All patients also received a vaginal progesterone gel twice weekly. Vasomotor symptoms were evaluated at weeks 0, 4, 8 and 12. Vaginal maturation index (VMI was evaluated at weeks 0 and 12 of the study. Statistical Analyses: The Mann-Whitney U and the Wilcoxon tests were used. P < 0.05 was regarded as significant. Results: Thirty-two women in the intranasal and 29 women in the transdermal group completed the study. The total score of the MRS, the sum-scores of Factor 1 "HOT FLUSHES" and Factor 2 "PSYCHE" significantly decreased in both groups at week 4. Factor 3 "ATROPHY" scores significantly decreased only in the transdermal group at week 12. The VMI showed no changes within and between the two groups at the end of the study. Conclusion: Intranasal and transdermal 17β-estradiol combined with vaginal progesterone gel as a continuous HRT caused a similar decrease in vasomotor symptoms but did not have any significant effect on VMI after 12 weeks of treatment in this study population.

  10. A dose-finding, cross-over study to evaluate the effect of a Nestorone®/Estradiol transdermal gel delivery on ovulation suppression in normal ovulating women.

    Science.gov (United States)

    Brache, Vivian; Merkatz, Ruth; Kumar, Narender; Jesam, Cristian; Sussman, Heather; Hoskin, Elena; Roberts, Kevin; Alami, Mohcine; Taylor, Deshawn; Jorge, Aidelis; Croxatto, Horacio; Lorange, Ellen; Mishell, Daniel R; Sitruk-Ware, Regine

    2015-10-01

    This study aims to determine the lowest effective of three Nestorone (NES)/estradiol (E2) transdermal gel doses to ensure ovulation suppression in 90-95% of cycles. This was a randomized, open-label, three-treatment-period cross-over study to evaluate the effects of NES/E2 transdermal gel on ovulation inhibition, suppression of follicular growth and pharmacokinetic parameters. The doses were low (1.5 mg NES/0.5 mg E2), medium (3.0 mg NES/1.0 mg E2) and high (4.5 mg NES/1.5 mg E2). Participants applied gel daily to a fixed area on the abdomen for 21 consecutive days. They were interviewed regarding their experiences using the gel. Eighteen participants were randomized; 16 completed the study. Median NES C(max) values for low, medium and high dose groups at day 21 were 318.6 pmol/L, 783.0 pmol/L and 1063.8 pmol/L, respectively. Median maximum follicular diameter was higher with the lowest dose with 16.2 mm versus 10.0 and 10.4 mm with the medium and high doses, respectively. Among adherent participants, ovulation was inhibited in all dose groups, except for one participant in the medium dose (6.7%) that had luteal activity and an ultrasound image suggestive of a luteinized unruptured follicle. There were few reports of unscheduled bleeding, with more episodes reported for the lower dose. Adverse events were mild, and no skin irritation was reported from gel application. While all three doses blocked ovulation effectively and were evaluated as safe and acceptable, the medium dose was considered the lowest effective dose based on a more adequate suppression of follicular development. Further development of this novel contraceptive delivering NES and E2 is warranted and has potential for improved safety compared to ethinyl-estradiol-based methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pharmacokinetics of continuous once-a-week combination 17β-Estradiol/Low- or high-dose levonorgestrel transdermal delivery systems in postmenopausal women.

    Science.gov (United States)

    Karara, Adel H; Harrison, Lester I; Melikian, Armen P; Poola, Nagaraju; Morrison, Dennis; Bourg, Dale; Bourg, Linda; Zurth, Christian

    2014-05-01

    Two open-label, randomized, two-period, crossover studies were performed to determine the safety, delivery rates, and pharmacokinetic properties of a combination estradiol (E2)/levonorgestrel (LNG) transdermal delivery system (TDS). Study 1 enrolled 24 postmenopausal women who received a single TDS containing 4.4 mg E2 and 1.39 mg of LNG (E2/LNG Low) or E2 0.050 mg/24 hours TDS and 0.090 mg LNG oral tablet. Study 2 enrolled 44 postmenopausal women who received either E2/LNG Low or TDS containing 4.4 mg E2 and 2.75 mg LNG (E2/LNG High) weekly for a period of 4 weeks. E2, estrone (E1), LNG, and sex hormone-binding globulin (SHBG) serum concentrations were determined. Overall, both E2/LNG TDS were well tolerated and had excellent adhesion properties. The average daily delivery for E2/LNG Low was 0.045 mg for E2 and 0.0132 mg for LNG. Following weekly delivery of E2/LNG Low or High for 4 weeks, the combination of E2 with two different strengths of LNG did not alter the pharmacokinetic profile of E2. SHBG, total cholesterol, and triglycerides concentrations significantly decreased compared to baseline. Both E2/LNG Low and High TDSs were well tolerated and provided continuous drug delivery over 7 days supporting the benefits of the transdermal route of administration in optimally delivering hormonal therapy. © 2014, The American College of Clinical Pharmacology.

  12. Effect of microdose transdermal 17beta-estradiol compared with raloxifene in the prevention of bone loss in healthy postmenopausal women: a 2-year, randomized, double-blind trial.

    Science.gov (United States)

    Schaefers, Matthias; Muysers, Christoph; Alexandersen, Peter; Christiansen, Claus

    2009-01-01

    Declining estrogen levels after menopause result in bone loss and increased fracture risk. This study investigated whether transdermal microdose 17beta-estradiol (E2) has efficacy and safety comparable to those of raloxifene, a selective estrogen-receptor modulator approved for the prevention and treatment of postmenopausal osteoporosis. This study involved a multicenter, randomized, double-blind, active-controlled, noninferiority trial in 500 osteopenic postmenopausal women comparing transdermal microdose E2 (0.014 mg/d) versus oral raloxifene (60 mg/d), administered for 2 years. Percent change from baseline in bone mineral density at the lumbar spine was measured after 2 years of treatment. Secondary endpoints included proportion of women with no loss of bone mineral density in lumbar spine, change in bone mineral density at hip, biochemical markers of bone turnover, and safety parameters. In the per protocol set, lumbar spine bone mineral density increased by 2.4% (95% CI, 1.9-2.9) with microdose E2 versus 3.0% (95% CI, 2.5-3.5) with raloxifene after 2 years; 77.3% of E2 recipients and 80.5% of those taking raloxifene had no bone loss in the lumbar spine. Both treatments were well tolerated. Most women (99% in the E2 group and 100% in the raloxifene group) showed no histological evidence of endometrial stimulation after 2 years. Mean dense area in breast mammograms was 19.8% in the E2 group versus 19.0% in the raloxifene group after 2 years. Transdermal microdose E2 was similarly effective as raloxifene in preventing bone loss at the lumbar spine. Both treatments were well tolerated, with no clinically significant effect on endometrium or breast density.

  13. Micro-dosing for early biokinetic studies in humans

    International Nuclear Information System (INIS)

    Stenstroem, K.; Sydoff, M.; Mattsson, S.

    2010-01-01

    Micro-dosing is a new concept in drug development that-if implemented in the pharmaceutical industry-would mean that new drugs can be tested earlier in humans than done today. The human micro-dosing concept-or 'Phase 0'-may offer improved candidate selection, reduced failure rates in the drug development line and a reduction in the use of laboratory animals in early drug development, factors which will help to speed up drug development and also reduce the costs. Micro-dosing utilises sub-pharmacological amounts of the substance to open opportunities for early studies in man. Three technologies are used for micro-dosing: accelerator mass spectrometry (AMS), positron emission tomography and liquid chromatography-tandem mass spectrometry. This paper focuses on the principle of AMS and discusses the current status of micro-dosing with AMS. (authors)

  14. Transdermal granisetron.

    Science.gov (United States)

    Duggan, Sean T; Curran, Monique P

    2009-01-01

    Granisetron is a highly selective serotonin 5-HT(3) receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. The transdermal granisetron system delivers continuous granisetron (3.1 mg/day) into the systemic circulation (via passive diffusion) for up to 7 days. In a large phase III trial in cancer patients receiving multi-day (3-5 days) moderately or highly emetogenic chemotherapy, transdermal granisetron applied 24-48 hours prior to chemotherapy and remaining in place for 7 days was noninferior to oral granisetron 2 mg once daily administered for 3-5 days 1 hour prior to chemotherapy. Efficacy was assessed according to the proportion of patients achieving complete response (no vomiting and/or retching, no more than mild nausea, no rescue medication) from the first day, until 24 hours after the start of the last day, of administration of the chemotherapy regimen. In a phase II trial in patients with cancer receiving single-day, moderately-emetogenic chemotherapy, transdermal granisetron applied at least 24 hours prior to chemotherapy and removed after 5 days was as effective as a single oral dose of granisetron 2 mg in achieving total control (no nausea, no vomiting/retching, no use of rescue medication and no study withdrawal) during the delayed (24-120 hours; primary endpoint) period after chemotherapy. Transdermal granisetron was generally well tolerated in clinical trials, with few adverse events being treatment related.

  15. Ethinyl Estradiol and Norelgestromin Transdermal Patch

    Science.gov (United States)

    ... time.Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient. ... the uterus, cervix, or vagina; vaginal bleeding between menstrual periods; hepatitis (swelling of the liver); yellowing of ...

  16. Fertilizer micro-dosing: a profitable innovation for Sahelian women ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-06

    Jun 6, 2016 ... The localized application of small quantities of fertilizer (micro-dosing), combined with improved planting pits for rainwater harvesting, has generated greater profits and food security for women farmers in the Sahel. Women have taken to the new methods developed by West African and Canadian ...

  17. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  18. Granisetron Transdermal Patch

    Science.gov (United States)

    Granisetron transdermal patches are used to prevent nausea and vomiting caused by chemotherapy. Granisetron is in a class of medications called 5HT3 ... Granisetron transdermal comes as a patch to apply to the skin. It is usually applied 24 to ...

  19. Follicular synchronization using transdermal estradiol patch and GnRH antagonists in the luteal phase; does it increase oocyte yield in poor responders to gonadotropin stimulation for in vitro fertilization (IVF)? A comparative study with microdose flare-up protocol.

    Science.gov (United States)

    Ata, Baris; Zeng, Xing; Son, Weon Y; Holzer, Hananel; Tan, Seang L

    2011-11-01

    The aim of this retrospective study was to compare the oocyte yield with the luteal estradiol patch (LPA) - GnRH antagonist and microdose (MD) flare-up protocols in anticipated poor responders. Fifty-seven women who underwent IVF treatment following stimulation with LPA or MD protocols at McGill Reproductive Centre were matched for age and markers of ovarian reserve. Numbers of oocytes collected (6 vs 7), mature oocytes collected (5 vs 5), and oocyte maturation rates (72% vs 74%) were similar. The numbers of good quality embryos available (2 vs 1) and embryos transferred (3 vs 3) were likewise similar. Embryo implantation rate of 16.7% and clinical pregnancy rate of 38.9% achieved in the LPA group were almost 50% higher than the corresponding figures at 10.3% and 22.2% in the MD group; however, the differences were not statistically significant (p > 0.05 for all comparisons). Although the results do not suggest an increased oocyte yield or follicular synchronization with the LPA protocol, the observed trend toward higher embryo implantation and clinical pregnancy rates requires further research.

  20. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  1. Alghedon Fentanyl Transdermal System.

    Science.gov (United States)

    Romualdi, Patrizia; Santi, Patrizia; Candeletti, Sanzio

    2017-04-01

    The efficacy of transdermal fentanyl for cancer pain and chronic non-cancer pain (chronic lower back pain, rheumatoid arthritis, osteoarthritis, neuropathic pain) is well established. Several formulations of fentanyl transdermal systems have been developed to improve the drug delivery and prevent misuse of the active principle. The addition of a rate controlling membrane to the matrix system represented an important advance. The design and functional features of Alghedon patch are compared with other approved generic fentanyl transdermal systems, emphasizing the distinctiveness of Alghedon patch. Alghedon patch has no liquid component in the finished product, therefore no leakage of active ingredient from the system can occur. A rate-controlling membrane provides controlled release of the active substance from the matrix reservoir, ensuring that fentanyl delivery and entry into the microcirculation is not solely controlled by the skin's permeability to this active substance. Alghedon patch contains part of the drug (approximately 15%) in the skin-contact adhesive: this innovative solution allows to overcome a typical drawback of transdermal patches, i.e. the long lag-time before the drug appears in plasma after the first administration, and provides rapid analgesia during the first hours of administration. Alghedon Fentanyl Transdermal System employs materials commonly used in other transdermal applications and having established safety profiles. For each strength level, the fentanyl content - and, thus, the resulting residual fentanyl remaining in the patch after use - is at the lowest end of the range used in commercially available fentanyl patches, minimizing the potential for abuse and misuse.

  2. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  3. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  4. Blood Test: Estradiol

    Science.gov (United States)

    ... the bloodstream. Estradiol plays an important role in sexual development: It's the most important form of the hormone ... while low levels may indicate a delay in sexual development. Estradiol levels also give important information on the ...

  5. Transdermal testosterone replacement therapy in men

    Directory of Open Access Journals (Sweden)

    Ullah MI

    2014-01-01

    Full Text Available M Iftekhar Ullah,1 Daniel M Riche,1,2 Christian A Koch1,31Department of Medicine, University of Mississippi Medical Center, 2Department of Pharmacy Practice, The University of Mississippi, 3GV (Sonny Montgomery VA Medical Center, Jackson, MS, USAAbstract: Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule.Keywords: hypogonadism, transdermal, testosterone, sexual function, testosterone replacement therapy, estradiol

  6. Perspectives on Transdermal Electroporation

    Science.gov (United States)

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  7. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Marco Antonio Botelho

    2014-02-01

    Full Text Available OBJECTIVE: To determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10% combined with estriol (0.1% + estradiol (0.25% for relieving postmenopausal symptoms. METHODS: A total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. RESULTS: An improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05 after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04±4.9 to 57.12±4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. CONCLUSION: The nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women.

  8. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    International Nuclear Information System (INIS)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan; Almeida, Jackson Guedes; Quintans Junior, Lucindo

    2014-01-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  9. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan, E-mail: marcobotelho@pq.cnpq.br [Universidade Potiguar, Natal, RN (Brazil). Lab. de Nanotecnologia; Fechine, Pierre [Universidade Federal do Ceara (GQMAT/UFCE), Fortaleza, CE (Brazil). Dept. de Quimica Analitica. Grupo Avancado de Biomateriais em Quimica; Queiroz, Danilo Caldas de [Instituto Federal de Ciencia e Tecnologia (IFCT), Fortaleza, CE (Brazil). Lab. de Biotecnologia; Ruela, Ronaldo [Instituto de Biotecnologia Aplicada (INBIOS), Fortaleza, CE (Brazil); Almeida, Jackson Guedes [Universidade Federal do Vale de Sao Francisco (UNIVALE), Petrolina, PE (Brazil). Fac. de Ciencias Farmaceuticas; Quintans Junior, Lucindo [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Dept. de Fisiologia

    2014-06-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  10. Efficacy of biorhythmic transdermal combined hormone treatment in relieving climacteric symptoms: a pilot study

    Directory of Open Access Journals (Sweden)

    B Formby

    2011-02-01

    Full Text Available B Formby, F SchmidtThe Rasmus Institute for Medical Research, Program in Reproductive Endocrinology, Santa Barbara, CA, USAObjective: To evaluate the efficacy of a combination of bioidentical combined 17β-estradiol and progesterone transdermal delivery system (lipophilic emulsion-type base to relieve climacteric symptoms. The hormonal replacement was given during a period of 6 months at four different cyclic doses to mimic the normal ovary secretory pattern.Design: An open, randomized, comparative, between-patient trial conducted over 6 months in 29 menopausal women with climacteric symptoms assessed with the Kupperman index at baseline and during treatments. Saliva and serum values of 17β-estradiol and progesterone were quantitated before treatment and after 3 and 6 months. Pharmacokinetic data following transdermal administration of 17β-estradiol (0.3 mg, daily and progesterone (100 mg, daily were calculated from saliva levels using high-performance liquid chromatography analysis.Results: Improvement in climacteric symptoms was reported in 93% of women evaluated before and after 3 and 6 months of treatment. Values of saliva 17β-estradiol increased after 6 months from 0.6 ± 0.3 pg/mL to 14.1 ± 3.3 pg/mL, and the values of serum 17β-estradiol increased from 3.3 ± 2.8 pg/mL to 80.6 ± 21.9 pg/mL. Of responders, 88% characterized symptom relief as complete. No adverse health-related events were attributed to the bioidentical hormone therapy. Time to maximum saliva concentrations (Tmax, in all experimental cases, was observed after 6 hours. Baseline values were reached within 24 hours, indicating a diurnal rhythm of 17β-estradiol seen in normally cyclic women over the 24-hour period, ie, its daily biological rhythm.Conclusion: Percutaneous absorption of 17β-estradiol, as well as the absorption of progesterone, was associated with relief of climacteric symptoms. The cyclical transdermal delivery of combined bioidentical hormones may be

  11. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  12. Transdermal hyoscine induced unilateral mydriasis.

    LENUS (Irish Health Repository)

    Hannon, Breffni

    2012-03-20

    The authors present a case of unilateral mydriasis in a teenager prescribed transdermal hyoscine hydrobromide (scopolamine) for chemotherapy induced nausea and vomiting. The authors discuss the ocular side-effects associated with this particular drug and delivery system and the potential use of transdermal hyoscine as an antiemetic agent in this group.

  13. The antiaging activity and cerebral protection of rapamycin at micro-doses.

    Science.gov (United States)

    Qi, Haiyan; Su, Feng-Yun; Wan, Shan; Chen, Yongjie; Cheng, Yan-Qiong; Liu, Ai-Jun

    2014-11-01

    The immunosuppressant drug rapamycin was reported to have an antiaging activity, which was attributed to the TORC1 inhibition that inhibits cell proliferation and increases autophagy. However, rapamycin also exhibits a number of harmful adverse effects. Whether rapamycin can be developed into an antiaging agent remains unclear. We demonstrated that rapamycin at micro-doses (below the TORC1 inhibiting concentration) exhibits a cell-protective activity: (1) It protects cultured neurons against neurotoxin MPP(+) and H2O2. (2) It increases survival time of neuron in culture. (3) It maintains the nonproliferative state of cultured senescent human fibroblasts and prevents cell death induced by telomere dysfunction. (4) In animal models, it decreased the cerebral infarct sizes induced by acute ischemia and dramatically extended the life span of stroke prone spontaneously hypertensive rats (SHR-SPs). We propose that rapamycin at micro-dose can be developed into an antiaging agent with a novel mechanism. © 2014 John Wiley & Sons Ltd.

  14. New insights for identification of doping with recombinant human erythropoietin micro-doses after high hydration

    DEFF Research Database (Denmark)

    Martin, L.; Ashenden, M; Bejder, Jacob

    2016-01-01

    To minimize the chances of being caught after doping with recombinant human erythropoietins (rhEPO), athletes have turned to new practices using micro-doses and excess fluid ingestion to accelerate elimination and decrease the probability of detection. Our objective was to test the sensitivity...... subjects. After an injection in the evening, urine and plasma samples were collected the following morning. Half of the subjects then drank a bolus of water and new samples were collected 80 min later. Interestingly, rhEPO was detected in 100% of the samples even after water ingestion. A second similar...

  15. Micro-dose hCG as luteal phase support without exogenous progesterone administration

    DEFF Research Database (Denmark)

    Andersen, C Yding; Fischer, R; Giorgione, V

    2016-01-01

    RHa trigger to induce ovulation showed that exogenous progesterone administration without hCG supplementation was insufficient to obtain satisfactory pregnancy rates. This has prompted development of alternative strategies for LPS. Augmenting the local endogenous production of progesterone by the multiple......For the last two decades, exogenous progesterone administration has been used as luteal phase support (LPS) in connection with controlled ovarian stimulation combined with use of the human chorionic gonadotropin (hCG) trigger for the final maturation of follicles. The introduction of the Gn...... corpora lutea has been one focus with emphasis on one hand to avoid development of ovarian hyper-stimulation syndrome and, on the other hand, to provide adequate levels of progesterone to sustain implantation. The present study evaluates the use of micro-dose hCG for LPS support and examines the potential...

  16. Estradiol blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003711.htm Estradiol blood test To use the sharing features on this page, ... of estrogens. How the Test is Performed A blood sample is needed . How to Prepare for the Test Your health care provider may tell you to ...

  17. Efficacy and safety of a transdermal contraceptive system.

    Science.gov (United States)

    Smallwood, G H; Meador, M L; Lenihan, J P; Shangold, G A; Fisher, A C; Creasy, G W

    2001-11-01

    To evaluate the efficacy, cycle control, compliance, and safety of a transdermal contraceptive system that delivers norelgestromin 150 microg and ethinyl estradiol 20 microg daily. In this open-label, 73-center study, 1672 healthy, ovulatory, sexually active women received ORTHO EVRA/EVRA for six (n = 1171) or 13 cycles (n = 501). The treatment regimen for each cycle was three consecutive 7-day patches (21 days) followed by 1 patch-free week. The overall and method-failure probabilities of pregnancy through 13 cycles were 0.7% and 0.4%, respectively. The incidence of breakthrough bleeding was low throughout the study. Perfect compliance (21 consecutive days of dosing, followed by a 7-day drug-free interval; no patch could be worn for more than 7 days) was achieved in 90% of subject cycles; only 1.9% of patches detached completely. Adverse events were typical of hormonal contraception, and most were mild-to-moderate in severity and not treatment limiting. The most common adverse events resulting in discontinuation were application site reactions (1.9%), nausea (1.8%), emotional lability (1.5%), headache (1.1%), and breast discomfort (1.0%). The transdermal contraceptive patch provides effective contraception and cycle control, and is well tolerated. The weekly change schedule for the contraceptive patch is associated with excellent compliance and wearability characteristics.

  18. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  19. Systemic delivery of atropine sulfate by the MicroDose Dry-Powder Inhaler.

    Science.gov (United States)

    Corcoran, T E; Venkataramanan, R; Hoffman, R M; George, M P; Petrov, A; Richards, T; Zhang, S; Choi, J; Gao, Y Y; Oakum, C D; Cook, R O; Donahoe, M

    2013-02-01

    Inhaled atropine is being developed as a systemic and pulmonary treatment for the extended recovery period after chemical weapons exposure. We performed a pharmacokinetics study comparing inhaled atropine delivery using the MicroDose Therapeutx Dry Powder Inhaler (DPIA) with intramuscular (IM) atropine delivery via auto-injector (AUTO). The MicroDose DPIA utilizes a novel piezoelectric system to aerosolize drug and excipient from a foil dosing blister. Subjects inhaled a 1.95-mg atropine sulfate dose from the dry powder inhaler on one study day [5 doses × 0.4 mg per dose (nominal) delivered over 12 min] and received a 2-mg IM injection via the AtroPen® auto-injector on another. Pharmacokinetics, pharmacodynamic response, and safety were studied for 12 hr. A total of 17 subjects were enrolled. All subjects completed IM dosing. One subject did not perform inhaled delivery due to a skin reaction from the IM dose. Pharmacokinetic results were as follows: area under the curve concentration, DPIA=20.1±5.8, AUTO=23.7±4.9 ng hr/mL (means±SD); maximum concentration reached, DPIA=7.7±3.5, AUTO=11.0±3.8 ng/mL; time to reach maximum concentration, DPIA=0.25±0.47, AUTO=0.19±0.23 hr. Pharmacodynamic results were as follows: maximum increase in heart rate, DPIA=18±12, AUTO=23±13 beats/min; average change in 1-sec forced expiratory volume at 30 min, DPIA=0.16±0.22 L, AUTO=0.11±0.29 L. The relative bioavailability for DPIA was 87% (based on output dose). Two subjects demonstrated allergic responses: one to the first dose (AUTO), which was mild and transient, and one to the second dose (DPIA), which was moderate in severity, required treatment with oral and intravenous (IV) diphenhydramine and IV steroids, and lasted more than 7 days. Dry powder inhalation is a highly bioavailable route for attaining rapid and consistent systemic concentrations of atropine.

  20. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  1. Effects of oral and transdermal estrogen on IGF1, IGFBP3, IGFBP1, serum lipids, and glucose in patients with hypopituitarism during GH treatment: a randomized study.

    Science.gov (United States)

    Isotton, Ana Lúcia; Wender, Maria Celeste Osorio; Casagrande, Alessandra; Rollin, Guilherme; Czepielewski, Mauro Antônio

    2012-02-01

    To evaluate the effects of oral estradiol and transdermal 17β-estradiol on serum concentrations of IGF1 and its binding proteins in women with hypopituitarism. Prospective, comparative study. Eleven patients with hypopituitarism were randomly allocated to receive 2 mg oral estradiol (n=6) or 50 μg/day of transdermal 17β-estradiol (n=5) for 3 months. The oral estrogen group showed a significant reduction in IGF1 levels (mean: 42.7%±41.4, P=0.046); no difference was observed in the transdermal estrogen group. There was a significant increase in IGFBP1 levels (mean: 170.2%±230.9, P=0.028) in the oral group, but not in the transdermal group. There was no significant difference within either group in terms of median IGFBP3 levels. In relation to lipid profiles, there was a significant increase in mean high-density lipoprotein cholesterol levels in the oral group after 3 months of treatment, (27.8±9.3, P=0.003). We found no differences in the anthropometric measurements, blood pressure, heart rate, glucose, insulin, C-peptide, or the homeostasis model assessment index after treatment. Our preliminary data indicate that different estrogen administration routes can influence IGF1 and IGFBP1 levels. These findings in patients with hypopituitarism have an impact on their response to treatment with GH, since patients receiving oral estrogen require increased GH dosage. These results suggest that oral estrogens may reduce the beneficial effects of GH replacement on fat and protein metabolism, body composition, and quality of life.

  2. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  3. Microdose transdermal estrogen therapy for relief of vulvovaginal symptoms in postmenopausal women.

    Science.gov (United States)

    Bachmann, Gloria A; Schaefers, Matthias; Uddin, Alkaz; Utian, Wulf H

    2009-01-01

    The aim of this study was to investigate the effectiveness of microdose transdermal 17beta-estradiol (E2) therapy in postmenopausal women with moderate to severe vulvovaginal symptoms. This report is based on a subset of 121 women who reported most bothersome moderate or severe vulvovaginal symptoms at baseline, from a previous randomized, double-blind, placebo-controlled, multicenter study of 425 healthy, symptomatic, postmenopausal women. Recruits had experienced at least 7 moderate or severe hot flushes daily for at least 1 week or at least 50 moderate or severe hot flushes per week for at least 1 week. Effects on coprimary efficacy variables have been reported previously. Participants received low-dose transdermal E2 plus levonorgestrel (n = 43; nominal delivery 0.023 mg/d E2/0.0075 mg/d levonorgestrel), microdose E2 (n = 42; nominal delivery 0.014 mg/d), or placebo (n = 36) for 12 weeks. Secondary efficacy variables reported herein include mean change from baseline in vaginal pH and vaginal maturation index, the proportion of women with symptoms of vulvar and vaginal atrophy at baseline and week 12, and the proportion of women with moderate-to-severe symptoms of vulvar and vaginal atrophy. Microdose transdermal E2 treatment was associated with a consistent benefit versus placebo in women with vulvovaginal atrophy. There was a statistically significant difference between both E2 versus placebo for changes in vaginal pH and vaginal maturation index. Microdose transdermal E2 offers a useful addition to the therapeutic armamentarium for postmenopausal women in whom vulvovaginal symptoms are particularly troublesome.

  4. A Transdermal Measurement Platform Based on Microfluidics

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2017-01-01

    Full Text Available The Franz diffusion cell is one of the most widely used devices to evaluate transdermal drug delivery. However, this static and nonflowing system has some limitations, such as a relatively large solution volume and skin area and the development of gas bubbles during sampling. To overcome these disadvantages, this study provides a proof of concept for miniaturizing models of transdermal delivery by using a microfluidic chip combined with a diffusion cell. The proposed diffusion microchip system requires only 80 μL of sample solution and provides flow circulation. Two model compounds, Coomassie Brilliant Blue G-250 and potassium ferricyanide, were successfully tested for transdermal delivery experiments. The diffusion rate is high for a high sample concentration or a large membrane pore size. The developed diffusion microchip system, which is feasible, can be applied for transdermal measurement in the future.

  5. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  6. Transdermal patches: history, development and pharmacology

    Science.gov (United States)

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  7. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  8. Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Morel, Baptiste; Moueddeb, Sonia; Blondiaux, Eleonore; Richard, Stephen; Bachy, Manon; Vialle, Raphael; Ducou Le Pointe, Hubert

    2018-05-01

    The aim of this study was to compare the radiation dose, image quality and 3D spine parameter measurements of EOS low-dose and micro-dose protocols for in-brace adolescent idiopathic scoliosis (AIS) patients. We prospectively included 25 consecutive patients (20 females, 5 males) followed for AIS and undergoing brace treatment. The mean age was 12 years (SD 2 years, range 8-15 years). For each patient, in-brace biplanar EOS radiographs were acquired in a standing position using both the conventional low-dose and micro-dose protocols. Dose area product (DAP) was systematically recorded. Diagnostic image quality was qualitatively assessed by two radiologists for visibility of anatomical structures. The reliability of 3D spine modeling between two operators was quantitatively evaluated for the most clinically relevant 3D radiological parameters using intraclass correlation coefficient (ICC). The mean DAP for the posteroanterior and lateral acquisitions was 300 ± 134 and 433 ± 181 mGy cm 2 for the low-dose radiographs, and 41 ± 19 and 81 ± 39 mGy cm 2 for micro-dose radiographs. Image quality was lower with the micro-dose protocol. The agreement was "good" to "very good" for all measured clinical parameters when comparing the low-dose and micro-dose protocols (ICC > 0.73). The micro-dose protocol substantially reduced the delivered dose (by a factor of 5-7 compared to the low-dose protocol) in braced children with AIS. Although image quality was reduced, the micro-dose protocol proved to be adapted to radiological follow-up, with adequate image quality and reliable clinical measurements. These slides can be retrieved under Electronic Supplementary Material.

  9. Challenges and opportunities in dermal/transdermal delivery

    OpenAIRE

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin i...

  10. Transfer of estradiol to human milk. [Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, S.; Nygren, K.G.; Johansson, E.D.B.

    1978-11-15

    A radioimmunoassay for the measurement of estradiol in human milk is evaluated. The detection limit was found to be 25 pg of estradiol per milliliter of milk. In milk samples collected from four lactating women during three to four months and from one pregnant and lactating woman, the concentration of estradiol was found to be below the detection limit of the assay. When six lactating women were given vaginal suppositories containing 50 or 100 mg of estradiol, it was possible to estimate the estradiol concentration in milk. A ratio of transfer of estradiol from plasma to milk during physiologic conditions is calculated to be less than 100 : 10.

  11. Transfer of estradiol to human milk

    International Nuclear Information System (INIS)

    Nilsson, S.; Nygren, K.G.; Johansson, E.D.B.

    1978-01-01

    A radioimmunoassay for the measurement of estradiol in human milk is evaluated. The detection limit was found to be 25 pg of estradiol per milliliter of milk. In milk samples collected from four lactating women during three to four months and from one pregnant and lactating woman, the concentration of estradiol was found to be below the detection limit of the assay. When six lactating women were given vaginal suppositories containing 50 or 100 mg of estradiol, it was possible to estimate the estradiol concentration in milk. A ratio of transfer of estradiol from plasma to milk during physiologic conditions is calculated to be less than 100 : 10

  12. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  13. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  14. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  15. Synthesis of 123I-16 iodo estradiol

    International Nuclear Information System (INIS)

    Therain, F.; Gros, J.; Souchu, A.

    1982-01-01

    16α iodo estradiol has been demonstrated to have as good an affinity as estradiol for estrogen-receptors and, labeled with iodine 123, may provide a good scanning agent fot visualisation of tissues containing estrogen-repectors, especially mammary tumors. 123 I-16α iodo estradiol has been synthesized by an halogen exchange of 16ν bromo estradiol according to the procedure described by Hochberg for 125 I-16α iodo estradiol labeling. Radiochemical yields are much lower than with iodine 125 (1 to 30%) and extremely variable. Specific activity range from 1,000 to 2,000 Ci/mmole [fr

  16. A clinical study of transdermal contraceptive patch in Thai adolescence women.

    Science.gov (United States)

    Piyasirisilp, Rachatapon; Taneepanichskul, Surasak

    2008-02-01

    To study cycle control, compliance and safety of a transdermal contraceptive patch in adolescent Thai women. Fifty-eight healthy women were assigned to receive 3 cycles of contraceptive patch (ethinyl estradiol 20 microg and norelgestromin 150 microg/day). All participants aged 16-20 years were invited to participate from the family planning clinic at King Chulalongkorn Memorial Hospital. Data were collected on adverse effects, perceived advantages and disadvantages, body weight, blood pressure, patch detachments and compliance. Data were analyzed using mean, percentage and student's t-test. The participants' average age was 19.4 years, height 158.8 cm, weight 51.8 kg, BMI 20.8 Kg/m2. The most location of patch application was the abdomen and the most adverse event was breast tenderness (31.0%) followed by application site reaction, nausea vomiting and headache respectively. The breast symptom was mild in severity. The participants reported decrease in dysmenorrhea and shorter duration of bleeding. There were no significant changes in body weight and blood pressure. The improvement of their facial acne was reported. There were no pregnancies during use and the adhesion of the contraceptive patch is excellent. Partial patch detachment was reported in only 6.9%. No completed patch detachment was found. The present study found an overall positive impression of a new transdermal contraceptive patch. The good compliance and few side effects were demonstrated. The adhesive patch contraceptive was excellent.

  17. Safety, efficacy and patient acceptability of the combined estrogen and progestin transdermal contraceptive patch: a review

    Directory of Open Access Journals (Sweden)

    Alessandra Graziottin

    2008-11-01

    Full Text Available Alessandra GraziottinCenter of Gynecology and Medical Sexology, H San Raffaele Resnati, Via Santa Croce 10/a, 20123 Milano, ItalyAbstract: The worldwide introduction of the first, unique patch for hormonal contraception (ethinyl estradiol/norelgestromin, EE/NGMN patch was widely recognized as a significant event in the development of drug delivery systems. This innovation offers a number of advantages over the oral route, and extensive clinical trials have proved its safety, efficacy, effectiveness, and tolerability. The weekly administration and ease of use/simplicity of the EE/NGMN patch contribute to its acceptability, and help to resolve the two main problems of non-adherence, namely early discontinuation and inconsistent use. The patch offers additional benefits to adolescents (improvement of dysmenorrhea and acne, adults (improvement in emotional and physical well-being, premenstrual syndrome, and menstrual irregularities, and perimenopausal women (correction of hormonal imbalance, modulation of premenopausal symptoms, thus providing high satisfaction rates (in nearly 90% of users. Since its introduction, the transdermal contraceptive patch has proved to be a useful choice for women who seek a convenient formulation which is easy to use, with additional, non-contraceptive tailored benefits for all the ages.Keywords: transdermal, hormonal contraceptive, patient satisfaction, patient adherence

  18. Levonorgestrel and 17beta-estradiol given transdermally for the prevention of postmenopausal osteoporosis

    DEFF Research Database (Denmark)

    Warming, L; Ravn, Pernille; Christiansen, C

    2005-01-01

    -related effect of levonorgestrel was found. Vaginal bleeding/spotting decreased from 48 to 25% of the HRT-treated women during the study period. Skin tolerance was good in 84% of the women with no difference between the study groups. No incidences of endometrial hyperplasia, uterine or mammary cancer occurred...

  19. Challenges and opportunities in dermal/transdermal delivery

    Science.gov (United States)

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs. PMID:21132122

  20. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  1. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  2. Multiscale modeling of transdermal drug delivery

    Science.gov (United States)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  3. Transdermal microneedles for drug delivery applications

    International Nuclear Information System (INIS)

    Teo, Ai Ling; Shearwood, Christopher; Ng, Kian Chye; Lu Jia; Moochhala, Shabbir

    2006-01-01

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area

  4. Transdermal microneedles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Ai Ling [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Shearwood, Christopher [School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Kian Chye [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Lu Jia [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore)]. E-mail: mshabbir@dso.org.sg

    2006-07-25

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area.

  5. Transdermal drug delivery: approaches and significance

    OpenAIRE

    Murthy, SATHYANARAYANA

    2012-01-01

    S Narasimha MurthyDepartment of Pharmaceutics, The University of Mississippi, USATransdermal drug delivery systems deliver drugs through the skin as an alternative to oral, intravascular, subcutaneous, and transmucosal routes. Potential advantages of transdermal delivery include, but are not limited to, elimination of first-pass metabolism, steady delivery/blood levels, better patient compliance, reduced systemic drug interactions, possible dose intervention, avoidance of medically assisted d...

  6. Current advances in the fabrication of microneedles for transdermal delivery

    NARCIS (Netherlands)

    Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, Pradeep; Toit, Du L.C.; Modi, G.; Pillay, V.

    2014-01-01

    The transdermal route is an excellent site for drug delivery due to the avoidance of gastric degradation and hepatic metabolism, in addition to easy accessibility. Although offering numerous attractive advantages, many available transdermal systems are not able to deliver drugs and other compounds

  7. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  8. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent

    DEFF Research Database (Denmark)

    Kress, Hans G; Boss, Hildegard; Delvin, Thomas

    2010-01-01

    AIM: The pharmacokinetic profiles of the two commercially available transdermal fentanyl patches Matrifen (100 microg/h) and Durogesic DTrans (100 microg/h), used to manage severe chronic pain, were compared regarding their systemic exposure, rate of absorption, and safety. METHODS: Transdermal m...

  9. In vitro human skin permeation of endoxifen: potential for local transdermal therapy for primary prevention and carcinoma in situ of the breast

    Directory of Open Access Journals (Sweden)

    Lee O

    2011-07-01

    Full Text Available Oukseub Lee1, David Ivancic1, Robert T Chatterton Jr2, Alfred W Rademaker3, Seema A Khan11Department of Surgery, 2Department of Obstetrics/Gynecology, 3Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USAPurpose: Oral tamoxifen, a triphenylethylene (TPE, is useful for breast cancer prevention, but its adverse effects limit acceptance by women. Tamoxifen efficacy is related to its major metabolites 4-hydroxytamoxifen (4-OHT and N-desmethyl-4-hydroxytamoxifen (endoxifen [ENX]. Transdermal delivery of these to the breast may avert the toxicity of oral tamoxifen while maintaining efficacy. We evaluated the relative efficiency of skin permeation of 4-OHT and ENX in vitro, and tested oleic acid (OA as a permeation-enhancer.Methods: 4-OHT, ENX, and estradiol (E2 (0.2 mg/mL of 0.5 µCi 3H/mg were dissolved in 60% ethanol-phosphate buffer, ±OA (0.1%–5%. Permeation through EpiDermTM (Matek Corp, Ashland, MA and split-thickness human skin was calculated based on the amount of the agents recovered from the receiver fluid and skin using liquid scintillation counting over 24 hours.Results: In the EpiDerm model, the absorption of 4-OHT and ENX was 10%–11%; total penetration (TP was 26%–29% at 24 hours and was decreased by OA. In normal human skin, the absorption of 4-OHT and ENX was 0.3%; TP was 2%–4% at 24 hours. The addition of 1% OA improved the permeation of ENX significantly more than that of 4-OHT (P < 0.004; further titration of OA at 0.25%–0.5% further improved the permeation of ENX to a level similar to that of estradiol.Conclusion: The addition of OA to ENX results in a favorable rapid delivery equivalent to that of estradiol, a widely used transdermal hormone. The transdermal delivery of ENX to the breast should be further developed in preclinical and clinical studies.Keywords: endoxifen, breast cancer prevention, human skin, transdermal, oleic acid

  10. Estradiol RIA kit in clinical practice

    International Nuclear Information System (INIS)

    Friedrich, W.; Lisse, K.; Bienert, R.; Flentje, H.; Koerner, H.; Wilken, T.; Akademie der Wissenschaften der DDR, Berlin-Buch. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1985-01-01

    First clinical experience with a estradiol RIA kit developed in the Central Institute for Isotope- and Radiation Research is reported. The kit was used for the daily control of estradiol level in patients, which were treated within the program for in vitro fertilization and embryo transfer. The time of incubation could be shortened by means of a double antibody technique and by use of a precipitation mixture to 2 h. The intraassay variation is 9.2%, the interassay variation is 15.1%, the recovery rate is 94%. The sensitivity of the test (B 0 -3SD) is about 120 pmol/l. The estradiol RIA kit satisfies clinical requirements. (author)

  11. Assessment of two-dimensional (2D) and three-dimensional (3D) lower limb measurements in adults: Comparison of micro-dose and low-dose biplanar radiographs

    International Nuclear Information System (INIS)

    Rosskopf, Andrea B.; Pfirrmann, Christian W.A.; Buck, Florian M.

    2016-01-01

    To evaluate reliability of 2D and 3D lower limb measurements in adults using micro-dose compared to low-dose biplanar radiographs(BPR). One hundred patients (mean 54.9 years) were examined twice using micro-dose and low-dose BPR. Length and mechanical axis of lower limbs were measured on the antero-posterior(ap) micro-dose and low-dose images by two independent readers. Femoral and tibial torsions of 50 patients were measured by two independent readers using reconstructed 3D-models based on the micro-dose and low-dose BPR. Intermethod and interreader agreements were calculated using descriptive statistics, intraclass-correlation-coefficient(ICC), and Bland-Altman analysis. Mean interreader-differences on micro-dose were 0.3 cm(range 0-1.0)/ 0.7 (0-2.9) for limb length/axis and 0.4 cm (0-1.0)/0.8 (0-3.3) on low-dose BPR. Mean intermethod-difference was 0.04 cm ± 0.2/0.04 ± 0.6 for limb length/axis. Interreader-ICC for limb length/axis was 0.999/0.991 on micro-dose and 0.999/0.987 on low-dose BPR. Interreader-ICC for micro-dose was 0.879/0.826 for femoral/tibial torsion, for low-dose BPR was 0.924/0.909. Mean interreader-differences on micro-dose/low-dose BPR were 3 (0-13 )/2 (0 -12 ) for femoral and 4 (0-18 )/3 (0 -10 ) for tibial torsion. Mean intermethod-difference was -0.1 ± 5.0/-0.4 ± 2.9 for femoral/tibial torsion. Mean dose-area-product was significantly lower (9.9 times;p < 0.001) for micro-dose BPR. 2D-and 3D-measurements of lower limbs based on micro-dose BPR are reliable and provide a 10-times lower radiation dose. (orig.)

  12. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  13. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Modified Transdermal Technologies: Breaking the Barriers of Drug ...

    African Journals Online (AJOL)

    In-depth analysis, formulation approaches, applications, advantages and disadvantages of these newer technologies are discussed. Keywords: Transdermal drug delivery, microneedles, macroflux, iontophoresis, ultrasound, powderject, skin abrasion. > Tropical Journal of Pharmaceutical Research Vol. 6 (1) 2007: pp. 633- ...

  15. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    inflammation drastically affect the quality of life after SCI. ... inhibitors may reduce spinal cord ischemic injury. [11]. Various .... Healthy male Wistar rats (200-250 g) were used ..... Guy RH. Transdermal science and technology an update.

  16. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    OpenAIRE

    Varadi, Gyula; Zhu, Zhen; G. Carter, Stephen

    2015-01-01

    We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-...

  17. Rotigotine transdermal patch for the treatment of Parkinson's Disease.

    Science.gov (United States)

    Perez-Lloret, Santiago; Rey, María Verónica; Ratti, Pietro Lucca; Rascol, Olivier

    2013-02-01

    Rotigotine, a non-ergot dopamine agonist, has been developed as a novel transdermal formulation. The rotigotine transdermal patch has received EMEA marketing authorization for the treatment of adult patients with early or advanced Parkinson's disease (PD) or with moderate to severe restless legs syndrome (RLS). FDA originally granted a marketing authorization for early PD, which was later suspended, and is now studying the authorization for RLS. The aim of this review is to review the pharmacokinetics, pharmacodynamics as well as the clinical efficacy and tolerability of the rotigotine transdermal patch in PD. Source material was identified using a PubMed search for the term 'rotigotine' and PD. Articles published up to January 2011 or abstract submitted to most relevant international neurology congresses were reviewed. The rotigotine transdermal patch is efficacious for the treatment of PD. Tolerability profile appears to be well within the range of that observed with other non-ergot dopamine agonists in PD. Application-site reactions were the most frequent adverse event, and they were considered mild to moderate in the majority of cases. The rotigotine transdermal patch offers a safe and efficacious alternative for the treatment of PD. Further studies should focus on the possibility that continuous dopamine stimulation by means of the transdermal patch has any influence on levodopa-related motor complications. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  18. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  19. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  20. [Comparative study on transdermal osmosis in vitro of Aconitum brachypodium liniment, gel and patcher].

    Science.gov (United States)

    Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi

    2007-02-01

    To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.

  1. Effect of oral and transdermal hormone therapy on hyaluronic acid in women with and without a history of intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Tuomikoski, Pauliina; Aittomäki, Kristiina; Mikkola, Tomi S; Ropponen, Anne; Ylikorkala, Olavi

    2008-04-01

    Intrahepatic cholestasis of pregnancy predisposes women to liver disorders years after affected pregnancy. We compared the basal levels and responses of hyaluronic acid, a marker of liver fibrosis, and liver transaminases to postmenopausal hormone therapy in women with (n = 20) and without (n = 20) a history of intrahepatic cholestasis of pregnancy. This was a randomized, double-blind, placebo-controlled, crossover trial. Basal levels of hyaluronic acid were similar in both groups. Two weeks of oral estradiol 2.0 mg/day led to significant but similar (10.9% to 15.4%) rises in hyaluronic acid in both groups. Increasing the dose of oral estradiol to 4.0 mg/day resulted in normalization of the levels, whereas the addition of medroxyprogesterone acetate led to falls (11.0% to 10.7 %) in hyaluronic acid. Transdermal estradiol 50 microg led to a rise (3.2 %) in hyaluronic acid only in the control group. Other liver markers were normal at baseline and during hormone therapy. Normal basal levels and/or normal responses of hyaluronic acid and other liver markers to hormone therapy in women with previous intrahepatic cholestasis suggest that this therapy does not predispose these women to liver diseases.

  2. Inhibition of Estradiol Synthesis Impairs Fear Extinction in Male Rats

    Science.gov (United States)

    Graham, Bronwyn M.; Milad, Mohammed R.

    2014-01-01

    Emerging research has demonstrated that the sex hormone estradiol regulates fear extinction in female rodents and women. Estradiol may also regulate fear extinction in males, given its role in synaptic plasticity in both sexes. Here we report that inhibition of estradiol synthesis during extinction training, via the aromatase inhibitor fadrozole,…

  3. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  4. Effect of components (polymer, plasticizer and solvent as a variable in fabrication of diclofenac transdermal patch

    Directory of Open Access Journals (Sweden)

    Chetna Modi

    2012-01-01

    Full Text Available Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  5. Ethinyl Estradiol and Etonogestrel Vaginal Ring

    Science.gov (United States)

    ... or infection of the vagina white or yellow vaginal discharge vaginal bleeding or spotting when it is not time ... Follow your doctor's directions for examining your breasts; report any lumps ... and ethinyl estradiol vaginal ring.Do not let anyone else use your ...

  6. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  7. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2015-06-01

    Full Text Available Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use.

  8. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  9. Transdermal delivery of diclofenac using microemulsions.

    Science.gov (United States)

    Kweon, Jang-Hoon; Chi, Sang-Cheol; Park, Eun-Seok

    2004-03-01

    A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol:ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

  10. Transdermal testosterone replacement therapy in men

    Science.gov (United States)

    Ullah, M Iftekhar; Riche, Daniel M; Koch, Christian A

    2014-01-01

    Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule. PMID:24470750

  11. Pharmacokinetics of the transdermal delivery of benfotiamine.

    Science.gov (United States)

    Zhu, Zhen; Varadi, Gyula; Carter, Stephen G

    2016-04-01

    Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy. A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h. At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals. This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.

  12. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  13. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of

  14. Transdermal and Topical Drug Administration in the Treatment of Pain

    Directory of Open Access Journals (Sweden)

    Wojciech Leppert

    2018-03-01

    Full Text Available The comprehensive treatment of pain is multidimodal, with pharmacotherapy playing a key role. An effective therapy for pain depends on the intensity and type of pain, the patients’ age, comorbidities, and appropriate choice of analgesic, its dose and route of administration. This review is aimed at presenting current knowledge on analgesics administered by transdermal and topical routes for physicians, nurses, pharmacists, and other health care professionals dealing with patients suffering from pain. Analgesics administered transdermally or topically act through different mechanisms. Opioids administered transdermally are absorbed into vessels located in subcutaneous tissue and, subsequently, are conveyed in the blood to opioid receptors localized in the central and peripheral nervous system. Non–steroidal anti–inflammatory drugs (NSAIDs applied topically render analgesia mainly through a high concentration in the structures of the joint and a provision of local anti–inflammatory effects. Topically administered drugs such as lidocaine and capsaicin in patches, capsaicin in cream, EMLA cream, and creams containing antidepressants (i.e., doxepin, amitriptyline act mainly locally in tissues through receptors and/or ion channels. Transdermal and topical routes offer some advantages over systemic analgesic administration. Analgesics administered topically have a much better profile for adverse effects as they relieve local pain with minimal systemic effects. The transdermal route apart from the above-mentioned advantages and provision of long period of analgesia may be more convenient, especially for patients who are unable to take drugs orally. Topically and transdermally administered opioids are characterised by a lower risk of addiction compared to oral and parenteral routes.

  15. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  16. Transdermal carbamate poisoning – a case of misuse

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Rajbanshi

    2017-01-01

    Full Text Available Acute pesticide poisoning is a common mode of intentional self harm. Oral ingestion is the usual mode of poisoning. However, inhalation, accidental or occupational transdermal exposure leading to acute or chronic poisoning can be the other route of poisoning. It has been seen that the purpose of poising is suicidal intensity in most of the cases. We report an unusual case where the victim had acute pesticide poisoning through transdermal route that was intended for non suicidal purpose. The patient was managed successfully with immediate decontamination and adequate antidote.

  17. Studies on transdermal delivery enhancement of zidovudine.

    Science.gov (United States)

    Takmaz, Evrim Atilay; Inal, Ozge; Baykara, Tamer

    2009-01-01

    The purpose of this study was to investigate physicochemical characteristics and in vitro release of zidovudine from monolithic film of Eudragit RL 100 and ethyl cellulose. Films included 2.5% or 5% (w/w) zidovudine of the dry polymer weight were prepared in various ratios of polymers by solvent evaporation method from methanol/acetone solvent mixture. The release studies were carried out by vertical Franz cells (2.2 cm(2) area, 20 ml receptor fluid). Ex vivo studies were done on Wistar rat skin within the films F6 (Eudragit RL100) and F7 (Eudragit RL100/Ethylcellulose, 1:1) consisting 5% (w/w) zidovudine in comparison with the same amount of free drug. Either iontophoresis (0.1 and 0.5 mA/cm(2) direct currents, Ag/AgCl electrodes) or dimethyl sulfoxide (pretreatment of 1% and 5%, w/w, solutions) were used as enhancers. Films consisting of ethyl cellulose under the ratio of 50% (w/w) gave similar release profiles, and the highest in vitro cumulative released amount was achieved with F6 film which gave the closest results with the free drug. This result could be due to the high swelling capacity and re-crystallization inhibition effect of RL 100 polymer which also influenced the film homogenization. All the films were fitted to Higuchi release kinetics. It was also observed that both 0.5-mA/cm(2) current and 5% (w/w) dimethyl sulfoxide applications significantly increased the cumulative permeated amount of zidovudine after 8 h; however, the flux enhancement ratio was higher for 0.5-mA/cm(2) current application, especially within F6 film. Thus, it was concluded that Eudragit RL100 film (F6) could be further evaluated for the transdermal application of zidovudine.

  18. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  19. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  20. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    Science.gov (United States)

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  1. Plasma Concentrations of Fentanyl Achieved With Transdermal Application in Chickens

    NARCIS (Netherlands)

    Delaski, Kristina M; Gehring, Ronette; Heffron, Brendan T; Negrusz, Adam; Gamble, Kathryn C

    2017-01-01

    Providing appropriate analgesia is an important concern in any species. Fentanyl, a μ-receptor specific opioid, use is common in mammalian species but has been incompletely evaluated for this purpose in avian species. Transdermal fentanyl patches were applied to domestic chickens (n = 10) of varying

  2. Transdermal Physostigmine—Absence of Effect on Topographic Brain Mapping

    Directory of Open Access Journals (Sweden)

    M. Y. Neufeld

    1993-01-01

    Full Text Available Nine patients with primary degenerative dementia (PDD participated in an open trial of transdermal physostigmine (TPh. In order to evaluate the neurophysiologic effects of TPh, EEG data were recorded and compared at baseline and following 2 months of continuous treatment. There was no significant effect of TPh on EEG spectra in patients with PDD.

  3. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol  ® was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  4. Efficacy and transdermal absorption of permethrin in scabies patients

    NARCIS (Netherlands)

    van der Rhee, H.J.; Farquhar, J A; Vermeulen, N P

    1989-01-01

    The clinical efficacy and transdermal absorption of permethrin, a new synthetic insecticide was investigated in ten scabies patients. All patients were successfully treated with one application of a cream, containing 5% permethrin. Apart from mild postscabies dermatitis no side-effects were

  5. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  6. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  7. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride), and ...

  8. Design and Development of a Proniosomal Transdermal Drug ...

    African Journals Online (AJOL)

    Purpose: The aim of the study was to develop a proniosomal carrier system for captopril for the treatment of hypertension that is capable of efficiently delivering entrapped drug over an extended period of time. Method: The potential of proniosomes as a transdermal drug delivery system for captopril was investigated by ...

  9. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  10. Avanafil Liposomes as Transdermal Drug Delivery for Erectile ...

    African Journals Online (AJOL)

    Avanafil is slightly soluble in ethanol, practically insoluble in water ... transdermal permeability and bioavailability for the treatment of .... Table 1 shows that the EE had higher values for the MLVs .... reason is the lower solubility of avanafil at pH.

  11. Circulating Estradiol Regulates Brain-Derived Estradiol via Actions at GnRH Receptors to Impact Memory in Ovariectomized Rats.

    Science.gov (United States)

    Nelson, Britta S; Black, Katelyn L; Daniel, Jill M

    2016-01-01

    Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.

  12. Transdermal delivery of curcumin via microemulsion.

    Science.gov (United States)

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  14. Transdermal granisetron: a guide to its use in preventing nausea and vomiting induced by chemotherapy.

    Science.gov (United States)

    Keating, Gillian M; Duggan, Sean T; Curran, Monique P

    2012-09-01

    Transdermal granisetron (Sancuso®) is effective in the prevention of nausea and vomiting in patients with cancer who are receiving moderately or highly emetogenic chemotherapy for 3-5 days. Transdermal granisetron is noninferior to oral granisetron in this indication, and is generally well tolerated in this indication. Thus, transdermal granisetron provides a convenient option for the prevention of chemotherapy-induced nausea and vomiting, with the potential to improve patient compliance.

  15. Minimization of CYP2D6 Polymorphic Differences and Improved Bioavailability via Transdermal Administration: Latrepirdine Example.

    Science.gov (United States)

    Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian

    2016-08-01

    Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].

  16. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Commercialization of transdermal drug delivery requires technology from many disciplines beyond pharmaceutical sciences, such as polymer chemistry, adhesion sciences, mass transport, web film coating...

  17. A randomized, open-label, crossover study comparing the effects of oral versus transdermal estrogen therapy on serum androgens, thyroid hormones, and adrenal hormones in naturally menopausal women.

    Science.gov (United States)

    Shifren, Jan L; Desindes, Sophie; McIlwain, Marilyn; Doros, Gheorghe; Mazer, Norman A

    2007-01-01

    To compare the changes induced by oral versus transdermal estrogen therapy on the total and free serum concentrations of testosterone (T), thyroxine (T4), and cortisol (C) and the concentrations of their serum binding globulins sex hormone-binding globulin, thyroxine-binding globulin, and cortisol-binding globulin in naturally menopausal women. Randomized, open-label, crossover. Interventions included a 6-week withdrawal from previous hormone therapy (baseline), followed in randomized order by 12 weeks of oral conjugated equine estrogens (CEE) (0.625 mg/d) and 12 weeks of transdermal estradiol (TD E2) (0.05 mg/d), with oral micronized progesterone (100 mg/d) given continuously during both transdermal estrogen therapy regimens. Twenty-seven women were enrolled in the study, and 25 completed both treatment periods. The mean(SD) percentage changes from baseline of sex hormone-binding globulin, total T, and free T with oral CEE were +132.1% (74.5%), +16.4% (43.8%), and -32.7% (25.9%), respectively, versus +12.0% (25.1%), +1.2% (43.7%), and +1.0% (45.0%) with TD E2. The mean (SD) percentage changes of thyroxine-binding globulin, total T4, and free T4 with oral CEE were +39.9% (20.1%), +28.4% (29.2%), and -10.4% (22.3%), respectively, versus +0.4% (11.1%), -0.7% (16.5%), and +0.2% (26.6%) with TD E2. The mean (SD) percentage changes of cortisol-binding globulin, total C, and free C with oral CEE were +18.0% (19.5%), +29.2% (46.3%), and +50.4% (126.5%), respectively, versus -2.2% (11.3%), -6.7% (30.8%), and +1.8% (77.1%) with TD E2. Concentrations of all hormones and binding globulins were significantly different (P < or = 0.003) during administration of oral versus transdermal estrogen therapy, except for free T4 and free C. Compared with oral CEE, TD E2 exerts minimal effects on the total and free concentrations of T, T4, and C and their binding proteins.

  18. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    Science.gov (United States)

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  19. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  20. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly

  1. Current advances in transdermal delivery of drugs for Alzheimer's disease

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients. PMID:28706327

  2. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  3. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  4. Current advances in transdermal delivery of drugs for Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.

  5. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17ß-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  6. Endometrial safety of ultra-low-dose estradiol vaginal tablets

    DEFF Research Database (Denmark)

    Simon, James; Nachtigall, Lila; Ulrich, Lian G

    2010-01-01

    To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy.......To evaluate the endometrial hyperplasia and carcinoma rate after 52-week treatment with ultra-low-dose 10-microgram 17β-estradiol vaginal tablets in postmenopausal women with vaginal atrophy....

  7. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    OpenAIRE

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2013-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. ...

  8. Current advances in transdermal delivery of drugs for alzheimer's disease

    OpenAIRE

    Thuy Trang Nguyen; Vo Van Giau; Tuong Kha Vo

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the...

  9. Optimization of transdermal delivery using magainin pore-forming peptide

    OpenAIRE

    Kim, Yeu-Chun; Ludovice, Peter J.; Prausnitz, Mark R.

    2008-01-01

    The skin's outer layer of stratum corneum, which is a thin tissue containing multilamellar lipid bilayers, is the main barrier to drug delivery to the skin. To increase skin permeability, our previous work has shown large enhancement of transdermal permeation using a pore-forming peptide, magainin, which was formulated with N-lauroyl sarcosine (NLS) in 50% ethanol-in-PBS. Mechanistic analysis suggested that magainin and NLS can increase skin permeability by disrupting stratum corneum lipid st...

  10. Relationship between Estradiol and Antioxidant Enzymes Activity of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2009-01-01

    Full Text Available Some evidence suggests the neuroprotection of estrogen provided by the antioxidant activity of this compound. The main objective of this study was to determine the level of estradiol and its correlation with the activity of antioxidant enzymes, total antioxidant status and ferritin from ischemic stroke subjects. The study population consisted of 30 patients with acute ischemic stroke and 30 controls. There was no significant difference between estradiol in stroke and control group. The activity of superoxide dismutase and level of ferritin was higher in stroke compared with control group (<.05, <.001, resp.. There was no significant correlation between estradiol and glutathione peroxidase, glutathione reductase, catalase, total antioxidant status, and ferritin in stroke and control groups. We observed inverse correlation between estradiol with superoxide dismutase in males of stroke patients (=−0.54, =.029. Our results supported that endogenous estradiol of elderly men and women of stroke or control group has no antioxidant activity.

  11. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  12. Evaluation of mesotherapy as a transdermal drug delivery tool.

    Science.gov (United States)

    Kim, S; Kye, J; Lee, M; Park, B

    2016-05-01

    There has been no research about the exact mechanism of transdermal drug delivery during mesotherapy. We aimed to evaluate whether the commercial mesogun can be an appropriate technique for a transdermal drug delivery. We injected blue ink into the polyurethane foam or pig skin with three types of mesotherapy using a commercial mesogun, or local made intradermal injector, or a manual injection of syringe. To assess the internal pressure of the cylinder and drug delivery time, we designed the evaluation setup using a needle tip pressure transducer. All types of injectors induced adequate penetration of blue ink into the polyurethane foam without backflow. In the pig skin, blue ink leaked out rapidly with the backward movement of the needle in the commercial mesogun in contrast to the local made injector or the manual injection of syringe. When the time for backward movement of the syringe approaches 1000 ms, the cylinder pressure of the syringe is saturated at around 25 mmHg which can be translated into the dermal pressure of the pig skin. There should be sufficient time between the insertion and withdrawal of the needle of injector for the adequate transdermal drug delivery and it must be considered for mesotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.

    Science.gov (United States)

    Ventrelli, Letizia; Marsilio Strambini, Lucanos; Barillaro, Giuseppe

    2015-12-09

    A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development and evaluation of transdermal organogels containing nicorandil.

    Science.gov (United States)

    Madan, J R; Sagar, Banode; Chellappan, Dinesh K; Dua, Kamal

    2013-01-01

    The objective of the study was to formulate a transdermal product containing Nicorandil as a model drug, because it has been first drug of choice to treat angina and hypertension. A further objective was to reduce its side effects. The transdermal product was prepared using various synthetic and natural gelling agents such as Carbopol 934p, Carbopol 974p, HPMC K15M and HPMC K100M. Various penetration enhancers were incorporated to enhance the diffusion across the rat skin. A further objective was to formulate organogels and minimize the concentration of penetration enhancer to 50% of the concentration used in gels and yet to achieve the maximum drug release. The prepared formulations were evaluated for their physical appearance, viscosity, spreadability, drug content and freeze thaw cycle. Based on in vitro studies across rat skin and human cadaver skin it was concluded that Nicrorandil transdermal organogel formulation using HPMC K100M with 2% w/w Transcutol-P shows increase in cumulative diffusion of Nicorandil amongst all other formulations.

  15. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  16. Estradiol-induced estrogen receptor-alpha trafficking.

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2009-12-02

    Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.

  17. Estradiol-induced estrogen receptor-α trafficking

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2010-01-01

    Estradiol has rapid actions in the central nervous system, which are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca2+]i) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERα has an extracellular portion. In addition to the full length ERα (apparent M.W. 66 kDa), surface biotinylation labeled an ERα-immunoreactive protein (M.W. ~ 52 kDa) identified by both COOH- and NH2-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 kDa and 52 kDa ERα. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24–48 hr reduced ERα levels, suggesting receptor down-regulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERα-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERα trafficking to and from the membrane. Estradiol-induced [Ca2+]i flux was also significantly increased at the time of peak ERα activation/internalization. These results demonstrate that ERα is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERα are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERα to augment and then terminate membrane-initiated signaling. PMID:19955385

  18. Future of the transdermal drug delivery market--have we barely touched the surface?

    Science.gov (United States)

    Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F

    2016-01-01

    Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.

  19. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    Background: We compared the analgesic efficacy of a transdermal diclofenac patch 100 mg (NuPatch® 100, Zydus Cadila, Ahmedabad, India) and intramuscular diclofenac sodium 75 mg (Voveran®, Novartis, India) for postoperative analgesia, and the associated side-effects of the transdermal diclofenac patch. Method: ...

  20. Transdermal administration of radiolabelled [14C]rotigotine by a patch formulation: A mass balance trial

    NARCIS (Netherlands)

    Cawello, W.; Wolff, H.M.; Meuling, W.J.A.; Horstmann, R.; Braun, M.

    2007-01-01

    Background and objective: The dopamine agonist rotigotine has been formulated in a silicone-based transdermal system for once-daily administration. The objective of the present study was to characterise the mass balance of rotigotine in humans after administration of a single transdermal patch

  1. CONCENTRATION OF ESTRADIOL IN DOGS (BITCHES IN SPRINGTIME

    Directory of Open Access Journals (Sweden)

    Edina Hajdarević

    2013-09-01

    Full Text Available Measuring of estradiol level in the peripheral blood in dog is important for the precise estrus detection. In proestrus, estradiol dominates. In estrus, however, estradiol progressively decreases while progesterone and LH increase, the latter shortly and abruptly. The research of Feldman and Nelson (7 indicates that the beginning of the sexual cycle of the female dog is the result of complex interaction of the environment, general health condition, condition of the ovaries, condition of the uterus, animal age, and some unidentified factors. Estradiol level in the peripheral circulation is starting to rise before the beginning of the proestrus, and during the proestrus the female dog is under the influence of estradiol (4. Our research included 30 female dogs on the territory of Tuzla Municipality, in the springtime. The female dogs were divided in three groups according to the breeding and living conditions: group A (female dogs living in the house environment; group B (female dogs living in the shelter; group C (female stray dogs. For the researched groups, estradiol level varied between 6,265 pg\\ml and 69,734 pg\\ml over the springtime. Of importance is the results can be applied in the evaluation of estrus in the female dogs, and when considering factors crucial for their sustainable reproduction potential.Key words: dogs, estradiol, spring

  2. Involvement of CART in estradiol-induced anorexia.

    Science.gov (United States)

    Dandekar, Manoj P; Nakhate, Kartik T; Kokare, Dadasaheb M; Subhedar, Nishikant K

    2012-01-18

    Since estradiol exercises inhibitory effect on food intake, we wanted to find out if this influence of estradiol is mediated by cocaine- and amphetamine-regulated transcript peptide (CART), a well established anorectic agent in the brain. Ovariectomized (OVX) rats, replaced with estradiol to produce estrous-phase like conditions, showed a significant decrease in food intake as compared with that in OVX controls. Intracerebroventricular (icv) administration of CART (0.5-1 μg/rat) to OVX rats, resulted in a dose-dependent reduction in the food intake. The lower dose (0.25 μg) had no effect, and was considered subeffective. In estradiol replaced OVX rats, CART at subeffective dose, further reduced food intake. However, CART failed to reduce food intake in estradiol replaced OVX rats pretreated with anti-estrogenic agent tamoxifen (3 mg/kg, subcutaneous). Administration of CART antibody (1:500 dilution/rat, i.c.v.) significantly attenuated estradiol-induced anorexia in the OVX rats. While estradiol replacement significantly increased CART-immunoreactivity in the cells/fibers of paraventricular nucleus (PVN) of OVX rats, fibers in the anteroventral periventricular nucleus (AVPV), and cells/fibers in the arcuate nucleus (ARC) showed considerable reduction. These changes were attenuated following concurrent injection of tamoxifen to the estradiol replaced OVX rats. However, CART-immunoreactive cells/fibers in the periventricular area did not respond to any of the treatments. We suggest that estradiol treatment might influence the hypothalamic CART system in a site specific manner. While increased CART activity in the PVN might produce anorexia, reduction of CART in ARC and AVPV might represent a compensatory homeostatic response. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  4. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    Science.gov (United States)

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)transethosomes had a higher EE (85.5±5.2%), and they showed a spherical morphology with a smooth surface when viewed under a transmission electron microscope (TEM). In an in vitro permeation study, the paeonol transethosomes showed an enhanced transdermal flux of 95.7±8.8μg/cm 2 /h and a higher deposition quantity in porcine ear skin compared to the transfersomes. A one-compartment first-order absorption model could be used to describe the pharmacokinetics of paeonol in rats after transdermal administration. The AUC of the paeonol transethosomes was approximately 1.57- and 3.52-fold higher than those of the transfersomes and a saturated solution of paeonol in 35% ethanol, respectively. The results demonstrated that the paeonol transethosomes had a narrow size distribution, high encapsulation efficiency, and long residence in the plasma. This formulation remarkably enhanced the bioavailability of paeonol. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 3D model of amphioxus steroid receptor complexed with estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael E., E-mail: mbaker@ucsd.edu [Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States); Chang, David J. [Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States)

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  7. Iontophoretic transdermal drug delivery: a multi-layered approach.

    Science.gov (United States)

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  8. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  9. Treatment of Severe Cancer Pain by Transdermal Fentanyl

    Directory of Open Access Journals (Sweden)

    Dženita Ljuca

    2010-05-01

    Full Text Available The goal of research was to determine the frequency, intensity, time of occurrence, duration and causes of breakthrough pain (BTP in patients whose carcinoma pain was treated by transdermal fentanyl. (TDF. A prospective study was conducted in a hospice for recumbent patients of the Centre for Palliative Care (hospice University Clinical Centre Tuzla from October 2009 to December 2010. 33 patients in terminal stage of carcinoma, who had been treated by transdermal fentanyl due to their excruciating pain (7-10 mark on numerica! scale with initial dosage of 25 μg as a strong opiate analgesic, were monitored within the time period of 10 days. In the statistics we used the even T - test, the Wilcox test and Mann -Whitney test. The difference was seen to be significant at p < 0,05. Treatment by transdermal fentanyl significantly reduces the intensity of strong carcinoma pain (p < 0.0001, with a frequent requirement for dose increase with bone metastasis. The intensity of BTP is higher compared to the pain experienced upon reception. The frequency and intensity of BTP are significantly reduced already in the second day of treatment by transdermal fentanyl (p = 0,0024. The BTP is most intense in patients with neck and head tumours (9,26 ± 0,66, and most frequent with abdomen and pelvic tumour. The biggest number of BTP (68.3 % occurs within first three days of treatment. BTP most frequently occurs in the evening or at night (between 18:00 and 06:00 h in 62,2 % of the cases, with the duration of usually less than 15 minutes (65,2% of the cases. In 61,6 % cases the occurrence of BTP is related to physical activities or psychosocial incidents, while the cause is undetermined in 38,4 % of examinees.BTP is most frequent within first three days of treatment by TDF. Using the optimal dosage a good control of carcinoma pain is enabled, regardless of the occurrence of bone metastasis, while it also helps reduce the frequency and intensity of BTP.

  10. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  11. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients.

    Science.gov (United States)

    Oosten, Astrid W; Abrantes, João A; Jönsson, Siv; de Bruijn, Peter; Kuip, Evelien J M; Falcão, Amílcar; van der Rijt, Carin C D; Mathijssen, Ron H J

    2016-04-01

    Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h(-1), respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route.

  12. Stimulation of estradiol biosynthesis by tributyltin in rat hippocampal slices.

    Science.gov (United States)

    Munetsuna, Eiji; Hattori, Minoru; Yamazaki, Takeshi

    2014-01-01

    Hippocampal functions are influenced by steroid hormones, such as testosterone and estradiol. It has been demonstrated that hippocampus-derived steroid hormones play important roles in neuronal protection and synapse formation. Our research groups have demonstrated that estradiol is de novo synthesized in the rat hippocampus. However, the mechanism(s) regulating this synthesis remains unclear. It has been reported that tributyltin, an environmental pollutant, binds to the retinoid X receptor (RXR) and modifies estrogen synthesis in human granulosa-like tumor cells. This compound can penetrate the blood brain barrier, and tends to accumulate in the brain. Based on these facts, we hypothesized that tributyltin could influence the hippocampal estradiol synthesis. A concentration of 0.1 μM tributyltin induced an increase in the mRNA content of P450(17α) and P450arom in hippocampal slices, as determined using real-time PCR. The transcript levels of other steroidogenic enzymes and a steroidogenic acute regulatory protein were not affected. The estradiol level in rat hippocampal slices was subsequently determined using a radioimmunoassay. We found that the estradiol synthesis was stimulated by ∼2-fold following a 48-h treatment with 0.1 μM tributyltin, and this was accompanied by transcriptional activation of P450(17α) and P450arom. Tributyltin stimulated de novo hippocampal estradiol synthesis by modifying the transcription of specific steroidogenic enzymes.

  13. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  14. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Rajan Rajabalaya

    2016-08-01

    Full Text Available The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT for the treatment of overactive bladder (OAB. Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE, vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.

  17. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  18. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  19. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole.

    Science.gov (United States)

    Lin, Wen Jen; Duh, Yi Shein

    2016-11-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) for transdermal delivery of acid-labile lansoprazole (LPZ). The drug loading, particle size, zeta potential, thermal behavior and stability of NLCs were evaluated. The particle size of NLCs was in the range of 90-210nm and the zeta potential was -61.9 to +3.2mV dependent of the compositions. Stearylamine (SA) prevented lansoprazole degradation and maintained drug stable in NLCs. The anionic sodium dodecyl sulfate (SDS) adsorbed on the lipid surface and formed complex with cationic SA to prevent NLCs aggregation. The effects of type (e.g., isopropyl myristate (IPM), menthol) and concentration (e.g., 1.25, 2.50, 3.75%w/w) of enhancers on penetration of lansoprazole NLC hydrogels were investigated in vitro using Wistar rat skin. The steady-state flux of lansoprazole NLC hydrogel containing 3.75% IPM was the highest which was enhanced by 2.7 folds as compared to enhancer-free NLC hydrogel. In vivo pharmacokinetics of lansoprazole following transdermal delivery of NLC hydrogel showed that the elimination of drug was significantly reduced and the mean residence time of drug was prominently prolonged as compared to intravenous drug solution (p<0.005). The accumulation of drug in the skin and continuous penetration of drug through the skin accounted for the maintenance of drug concentration for at least 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  1. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    Directory of Open Access Journals (Sweden)

    Gyula Varadi

    2015-01-01

    Full Text Available We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-epithelial layers.  In this proof of concept study in guinea pigs, we found that a single topical application of either a solubilized form of benfotiamine (15 mg or a microcrystalline suspension form (25 mg resulted in considerable increases of the dephosphorylated benfotiamine (S-benzoylthiamine in the skin tissue as well as in significant increases in the thiamine and thiamine phosphate pools compared to control animals.  The presence of a ~8000x increase in thiamine and increases in its phosphorylated derivatives in the epidermis and dermis tissue of the test animals gives a strong indication that the topical treatment with benfotiamine works very well for the desired outcome of producing an intracellular increase of the activating cofactor pool for transketolase enzyme, which is implicated in the pathophysiology of diabetic neuropathy.

  2. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The effect of transdermal nicotine patches on sleep and dreams.

    Science.gov (United States)

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  4. Estradiol increases choice of cocaine over food in male rats.

    Science.gov (United States)

    Bagley, Jared R; Adams, Julia; Bozadjian, Rachel V; Bubalo, Lana; Ploense, Kyle L; Kippin, Tod E

    2017-10-19

    Estradiol modulates the rewarding and reinforcing properties of cocaine in females, including an increase in selection of cocaine over alternative reinforcers. However, the effects of estradiol on male cocaine self-administration behavior are less studied despite equivalent levels of estradiol in the brains of adult males and females, estradiol effects on motivated behaviors in males that share underlying neural substrates with cocaine reinforcement as well as expression of estrogen receptors in the male brain. Therefore, we sought to characterize the effects of estradiol in males on choice between concurrently-available cocaine and food reinforcement as well as responding for cocaine or food in isolation. Male castrated rats (n=46) were treated daily with estradiol benzoate (EB) (5μg/0.1, S.C.) or vehicle (peanut oil) throughout operant acquisition of cocaine (1mg/kg, IV; FI20 sec) and food (3×45mg; FI20 sec) responding, choice during concurrent access and cocaine and food reinforcement under progressive ratio (PR) schedules. EB increased cocaine choice, both in terms of percent of trials on which cocaine was selected and the proportion of rats exhibiting a cocaine preference as well as increased cocaine, but not food, intake under PR. Additionally, within the EB treated group, cocaine-preferring rats exhibited enhanced acquisition of cocaine, but not food, reinforcement whereas no acquisition differences were observed across preferences in the vehicle treated group. These findings demonstrate that estradiol increases cocaine choice in males similarly to what is observed in females. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  6. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    Science.gov (United States)

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  7. Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A

    2014-05-01

    Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make removal of DIA-TDDS difficult from the pouch, and potentially decrease available dose if any drug remains adhered to pouch. There are no compendial or noncompendial methods available for quantification of this critical quality attribute. The objective was to develop a method for quantification of cold flow using stereomicroscopic imaging technique. Cold flow was induced by applying 1 kg force on punched-out samples of marketed estradiol DIA-TDDS (model product) stored at 25°C, 32°C, and 40°C/60% relative humidity (RH) for 1, 2, or 3 days. At the end of testing period, dimensional change in the area of DIA-TDDS samples was measured using image analysis software, and expressed as percent of cold flow. The percent of cold flow significantly decreased (p < 0.001) with increase in size of punched-out DIA-TDDS samples and increased (p < 0.001) with increase in cold flow induction temperature and time. This first ever report suggests that dimensional change in the area of punched-out samples stored at 32°C/60%RH for 2 days applied with 1 kg force could be used for quantification of cold flow in DIA-TDDS. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases.

    Science.gov (United States)

    Ita, Kevin

    2017-06-01

    With the increasing proportion of the global geriatric population, it becomes obvious that neurodegenerative diseases will become more widespread. From an epidemiological standpoint, it is necessary to develop new therapeutic agents for the management of Alzheimer's disease, Parkinson's disease, multiple sclerosis and other neurodegenerative disorders. An important approach in this regard involves the use of the transdermal route. With transdermal drug delivery systems (TDDS), it is possible to modulate the pharmacokinetic profiles of these medications and improve patient compliance. Transdermal drug delivery has also been shown to be useful for drugs with short half-life and low or unpredictable bioavailability. In this review, several transdermal drug delivery enhancement technologies are being discussed in relation to the delivery of medications used for the management of neurodegenerative disorders.

  9. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  10. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends.

    Science.gov (United States)

    Perumal, O; Murthy, S N; Kalia, Y N

    2013-01-01

    Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery. This review briefly discusses the evolution of transdermal therapeutic systems over the years and the potential of newer transdermal technologies to deliver hydrophilic drugs and macromolecules through the skin. © 2013 S. Karger AG, Basel.

  11. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  12. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Advancements in science combined with the need for diverse drug delivery modalities have introduced a variety of transdermal and intradermal products for existing drugs at a fraction of the cost of new drug development...

  13. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  14. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview

    OpenAIRE

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Gra?a

    2017-01-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and ...

  15. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  16. Dydrogesterone does not reverse the cardiovascular benefits of percutaneous estradiol.

    Science.gov (United States)

    Kuba, V M; Teixeira, M A M; Meirelles, R M R; Assumpção, C R L; Costa, O S

    2013-02-01

    To evaluate the influence of dydrogesterone on estimated cardiovascular risk of users of hormone replacement therapy (HRT) (with percutaneous 17β-estradiol in monotherapy and in combination with dydrogesterone) and HRT non-users through the Framingham score tool for a period of 2 years. Framingham scores were calculated from the medical records of patients treated for at least 2 years with 17β-estradiol alone or in combination with dydrogesterone, along with HRT non-users, through the analysis of patient medical records, followed for at least 2 years at Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione. Improvements in lipid profile, glucose and blood pressure levels, which reduced the estimated cardiovascular risk, were observed in the 17β-estradiol group. Similar changes were observed in the users of 17β-estradiol + dydrogesterone, suggesting that this progestogen does not attenuate the effects caused by 17β-estradiol. Both HRT groups showed a reduction in their Framingham score. In contrast to data from other HRT investigations on cardiovascular risk, these formulations proved to be safe, even in the first year of use.

  17. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    Science.gov (United States)

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  18. Pharmacokinetics of 2 Formulations of Transdermal Fentanyl in Cynomolgus Macaques (Macaca fascicularis)

    Science.gov (United States)

    Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J

    2016-01-01

    Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151

  19. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  20. Engineering approaches to transdermal drug delivery: a tribute to contributions of prof. Robert Langer.

    Science.gov (United States)

    Mitragotri, S

    2013-01-01

    Transdermal drug delivery continues to provide an advantageous route of drug administration over injections. While the number of drugs delivered by passive transdermal patches has increased over the years, no macromolecule is currently delivered by the transdermal route. Substantial research efforts have been dedicated by a large number of researchers representing varied disciplines including biology, chemistry, pharmaceutics and engineering to understand, model and overcome the skin's barrier properties. This article focuses on engineering contributions to the field of transdermal drug delivery. The article pays tribute to Prof. Robert Langer, who pioneered the engineering approach towards transdermal drug delivery. Over a period spanning nearly 25 years since his first publication in the field of transdermal drug delivery, Bob Langer has deeply impacted the field by quantitative analysis and innovative engineering. At the same time, he has inspired several generations of engineers by collaborations and mentorship. His scientific insights, innovative technologies, translational efforts and dedicated mentorship have transformed the field. © 2013 S. Karger AG, Basel.

  1. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin.

    Science.gov (United States)

    Avar, Péter; Zrínyi, Zita; Maász, Gábor; Takátsy, Anikó; Lovas, Sándor; G-Tóth, László; Pirger, Zsolt

    2016-06-01

    17β-Estradiol (E2) and 17α-ethinyl estradiol (EE2), which are environmental estrogens, have been determined with LC-MS in freshwater. Their sensitive analysis needs derivatization and therefore is very hard to achieve in multiresidue screening. We analyzed samples from all the large and some small rivers (River Danube, Drava, Mur, Sava, Tisza, and Zala) of the Carpathian Basin and from Lake Balaton. Freshwater was extracted on solid phase and derivatized using dansyl chloride. Separation was performed on a Kinetex XB-C18 column. Detection was achieved with a benchtop orbitrap mass spectrometer using targeted MS analysis for quantification. Limits of quantification were 0.05 ng/L (MS1) and 0.1 ng/L (MS/MS) for E2, and 0.001 ng/L (MS1) and 0.2 ng/L (MS/MS) for EE2. River samples contained n.d.-5.2 ng/L E2 and n.d.-0.68 ng/L EE2. Average levels of E2 and EE2 were 0.61 and 0.084 ng/L, respectively, in rivers, water courses, and Lake Balaton together, but not counting city canal water. EE2 was less abundant, but it was still present in almost all of the samples. In beach water samples from Lake Balaton, we measured 0.076-0.233 E2 and n.d.-0.133 EE2. A relative high amount of EE2 was found in river Zala (0.68 ng/L) and in Hévíz-Páhoki canal (0.52 ng/L), which are both in the catchment area of Lake Balaton (Hungary).

  2. Estradiol stimulation of inositolphospholipid metabolism in human endometrial fibroblasts

    International Nuclear Information System (INIS)

    Iida, K.; Imai, A.; Tamaya, T.

    1989-01-01

    Stimulated inositolphospholipid turnover has been proposed to constitute a signal-transducing mechanism in many cell types. To determine the inositolphospholipid turnover during stimulation by 17 beta-estradiol, the turnover kinetics of phospholipids was investigated in human endometrial fibroblasts. In cells incubated with [ 32 P] phosphate for 1 h, estradiol rapidly and persisitently (for at least 30 min) enhanced the rate of 32 P-labeling of phosphatidic acid (PA). On the other hand, after a lag time of 5 min, 32 P-labeling of phosphatidylinositol (PI) was also increased also. These sequential 32 P-labeling of PA and PI demonstrated that inositolphospholipid turnover was stimulated in fibroblasts exposed to estradiol. The rapid estrogen-stimulated inositolphospholipid turnover may not be through the mechanism associated with classical action of estrogen

  3. Brian Barry: innovative contributions to transdermal and topical drug delivery.

    Science.gov (United States)

    Williams, A C

    2013-01-01

    Brian Barry published over 300 research articles across topics ranging from colloid science, vasoconstriction and the importance of thermodynamics in dermal drug delivery to exploring the structure and organisation of the stratum corneum barrier lipids and numerous strategies for improving topical and transdermal drug delivery, including penetration enhancers, supersaturation, coacervation, eutectic formation and the use of varied liposomes. As research in the area blossomed in the early 1980s, Brian wrote the book that became essential reading for both new and established dermal delivery scientists, explaining the background mathematics and principles through to formulation design. Brian also worked with numerous scientists, as collaborators and students, who have themselves taken his rigorous approach to scientific investigation into their own research groups. This paper can only describe a small fraction of the many significant contributions that Brian made to the field during his 40-year academic career.

  4. Solid‐in‐oil nanodispersions for transdermal drug delivery systems

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho

    2016-01-01

    Abstract Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long‐lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid‐in‐oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user‐friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. PMID:27529824

  5. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    Science.gov (United States)

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  6. Current and future technological advances in transdermal gene delivery.

    Science.gov (United States)

    Chen, Xianfeng

    2017-12-19

    Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Plasma and faecal testosterone and estradiol in chicken

    International Nuclear Information System (INIS)

    Mekchay, S.; Apichartsrungkoon, T.; Pongpiachan, P.

    1996-01-01

    Identification of sex in some kind of fowls can not be done by using their external appearances. Sex steroid hormone levels may be used as an indicator of sexual dimorphism in birds. The objective of this investigation was to measure plasma and faecal testosterone and estradiol concentrations in 8 male and 15 female chickens by using radioimmunoassay (RIA) technique. The relationship between plasma and faecal testosterone, and plasma and faecal estradiol are positively correlated. The correlation coefficients (r 2 ) between plasma and faecal steroids concentration were 0.621 (p<0.05) for testosterone and 0.692 (p<0.05) for estradiol. The average plasma and faecal sex steroid concentrations in male and female chickens were 10.05 ± 1.97 ng/ml and 511.50 ± 95.89 ng/g (for male testosterone), 24.85 ± 1.60 pg/ml and 49.65 ± 6.01 ng/g (for male estradiol), 0.79 ± 0.05 ng/ml and 134.20 ± 14.70 ng/ml (for female testosterone), 129.91 ± 19.30 pg/ml and 334.80 ± 15.62 ng/g (for female estradiol), respectively. Plasma and faecal testosterone and estradiol levels in male and female chickens are significant difference (p<0.01, p<0.01, p<0.001 and p<0.001 respectively). The results of this investigation suggested that plasma or faecal sex steroid concentrations can be used to discriminate sex of chicken which is show the possibility to use the plasma or faecal sex steroids for identification of sex in other bird species

  8. Dissipation of 17β-estradiol in composted poultry litter.

    Science.gov (United States)

    Hakk, Heldur; Sikora, Lawrence

    2011-01-01

    The excreted estrogen rate of all livestock in the United States is estimated at 134 kg d. The influence of manure treatment on the fate of estrogens is critical in deciding the recycling of over 300 million dry tons of livestock produced annually. The effects of two common manure management practices, heated composting and ambient temperature decomposition, on the fate of 17β-estradiol in poultry litter were determined. A mixture of poultry litter, wood chips, and straw was amended with [C]17β-estradiol and allowed to undergo decomposition with a laboratory-scale heated composter (HC) or room temperature incubation (RTI) for 24 d. Radiolabel in the finished products was fractionated into water-extractable, acetone-extractable, nonextractable, and mineralized fractions. Total 17β-estradiol radioactive residues in the HC and RTI ( = 2) treatments were not different ( > 0.05), except that statistically less 17β-estradiol was mineralized to CO during HC than RTI (1.1 vs. 10.0% for HC and RTI, respectively). Estrone was the major degradation product in extracts of HC and RTI treatments as determined by liquid chromatography/mass spectrometry analyses. The nonextractable residues indicated no quantitative differences among the humins between the treatments. An estimated 3% of the fortified estrogenicity remained after HC treatment, and 15% of the fortified estrogenicity remained after RTI treatment. If reduction of water-removable, biologically active 17β-estradiol is the treatment goal, then HC treatment would be slightly preferred over ambient temperature degradation. However, unmanaged, ambient temperature litter piles are less costly and time consuming for food animal producers and result in greater mineralization and similar immobilization of estradiol. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  10. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  11. Efficacy of transdermal nitroglycerine in idiopathic pre-term labour.

    Science.gov (United States)

    Shaikh, Shahida; Shaikh, Abdul Hameed; Akhter, Saleem; Isran, Basma

    2012-01-01

    To determine the efficacy of transdermal Nitroglycerine patch in idiopathic pre-term labour and foetomaternal outcome. This quasi-experimental study was conducted at the Obstetrics Unit-II of Shaikh Zayed Hospital for Women, Chandka Medical College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, from Jan 1 to June 30, 2010. Sixtyfive pregnant women at 28-34 weeks of gestation were recruited after they met the selection criteria based on non-probability consecutive sampling. Initially, 73 patients were selected, but 65 of them completed the treatment, while 8 patients refused to continue. Patients diagnosed with pre-term labour were given glyceryl trinitrate (GTN) 5 mg/12 hours transdermal patch which was applied on the anterior abdominal wall. The second patch of same dose was given after 12 hours. Arrest of labour, prolongation of pregnancy in days or weeks along with side effects of the agent were monitored. Patients were followed till delivery to know the foeto-maternal outcome. Dramatic effects were seen in around 60 (92.3%), of the total patients who had felt relief from premature labour pains within the first hour and only 5 (7.6%) patients could not go beyond 24 hours, as among them 3 (4.61%) had previous uterine scar and 2 (3.07%) developed ruptured membranes after 12 hours of admission and their babies also could not survive. Mean pregnancy prolongation was 15.35 +/- 9.45 days (min: 4 max: 35), so delivery was deferred up to 48 hours, 3 to 7 days and more than 7 days in 4 (6.15%), 6 (9.23%) and 50 (76.92%) respectively. Glyceryl trinitrate, trans dermal patch is effective and safe tocolytic in idiopathic preterm labour. By prolonging pregnancy it improves neonatal outcome.

  12. Modeling of transdermal drug delivery with a microneedle array

    Science.gov (United States)

    Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

    2006-11-01

    Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

  13. Effect of Microneedle Type on Transdermal Permeation of Rizatriptan.

    Science.gov (United States)

    Uppuluri, Chandrateja; Shaik, Ashraf Sultana; Han, Tao; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Nalluri, Buchi N; Das, Diganta B

    2017-07-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s ), thickness (h/L) and surface area (S a /L 2 ) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.

  14. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  15. Estradiol levels in prepubertal boys and girls--analytical challenges

    DEFF Research Database (Denmark)

    Bay, Katrine; Andersson, Anna-Maria; Skakkebaek, Niels E

    2004-01-01

    Increasing evidence points at an important function of low concentrations of estradiol (E2) in prepubertal boys and girls. E2 serum levels in prepubertal children are, however, often immeasurable in conventional E2 assays. This strongly hampers further investigation of the physiological relevance...

  16. Effect of estradiol and oxytocin on ovine cervical relaxation

    African Journals Online (AJOL)

    Yomi

    2012-02-07

    Feb 7, 2012 ... The aim of this study was to examine the effect of estradiol (E2) and oxytocin ... Artificial insemination (AI) is a good way for the use of superior rams in reproduction but the conception rates in ... successful in sheep industry because it is costly, time .... during luteolysis and its abrogation in early pregnancy.

  17. 17 beta-estradiol affects osmoregulation in Fundulus heteroclitus

    NARCIS (Netherlands)

    Mancera, J.M.; Smolenaars, M.; Laiz-Carrion, R.; Rio, M. del; Wendelaar Bonga, S.E.; Flik, G.

    2004-01-01

    The effect of 17beta-estradiol (ED on osmoregulatory performance was examined in the euryhaline killifish, Fundulus heteroclitus. Fish were injected once with 1, 2 and 5 mug g(-1) E-2 and, 6 h after injection, transferred from I ppt seawater (SW) to full strength SW (40 ppt) or from SW to I ppt SW.

  18. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Systemic delivery of β-blockers via transdermal route for hypertension

    Science.gov (United States)

    Ahad, Abdul; Al-Jenoobi, Fahad I.; Al-Mohizea, Abdullah M.; Akhtar, Naseem; Raish, Mohammad; Aqil, Mohd.

    2014-01-01

    Hypertension is the most common cardiovascular disease worldwide. Moreover, management of hypertension requires long-term treatment that may result in poor patient compliance with conventional dosage forms due to greater frequency of drug administration. Although there is availability of a plethora of therapeutically effective antihypertensive molecules, inadequate patient welfare is observed; this arguably presents an opportunity to deliver antihypertensive agents through a different route. Ever since the transdermal drug delivery came into existence, it has offered great advantages including non-invasiveness, prolonged therapeutic effect, reduced side effects, improved bioavailability, better patient compliance and easy termination of drug therapy. Attempts were made to develop the transdermal therapeutic system for various antihypertensive agents, including β-blockers, an important antihypertensive class. β-blockers are potent, highly effective in the management of hypertension and other heart ailments by blocking the effects of normal amounts of adrenaline in the heart and blood vessels. The shortcomings associated with β-blockers such as more frequent dose administration, extensive first pass metabolism and variable bioavailability, make them an ideal candidate for transdermal therapeutic systems. The present article gives a brief view of different β-blockers formulated as transdermal therapeutic system in detail to enhance the bioavailability as well as to improve patient compliance. Constant improvement in this field holds promise for the long-term success in technologically advanced transdermal dosage forms being commercialized sooner rather than later. PMID:26702253

  20. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    Science.gov (United States)

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  1. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure?

    Science.gov (United States)

    Liuzzi, Roberta; Carciati, Antonio; Guido, Stefano; Caserta, Sergio

    2016-03-01

    Interaction of microstructured fluids with skin is ubiquitous in everyday life, from the use of cosmetics, lotions, and drugs, to personal care with detergents or soaps. The formulation of microstructured fluids is crucial for the control of the transdermal transport. In biomedical applications transdermal delivery is an efficient approach, alternative to traditional routes like oral and parenteral administration, for local release of drugs. Poor skin permeability, mainly due to its outer layer, which acts as the first barrier against the entry of external compounds, greatly limits the applicability of transdermal delivery. In this review, we focus on recent studies on the improvement of skin transport efficiency by using microemulsions (ME). Quantitative techniques, which are able to investigate both skin morphology and penetration processes, are also reviewed. ME are increasingly used as transdermal systems due to their low preparation cost, stability and high bioavailability. ME may act as penetration enhancers for many active principles, but ME microstructure should be chosen appropriately considering several factors such as ratio and type of ingredients and physic-chemical properties of the active components. ME microstructure is strongly affected by the flow conditions applied during processing, or during spreading and rubbing onto skin. Although the role played by ME microstructure has been generally recognized, the skin transport mechanisms associated with different ME microstructures are still to be elucidated and further investigations are required to fully exploit the potential of ME in transdermal delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    Directory of Open Access Journals (Sweden)

    S. Ramkanth

    2018-06-01

    Full Text Available The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8 showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax, of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC, and mean residence times (MRT, t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal delivery

  3. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  4. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  5. [Studies on transdermal delivery of ferulic acid through rat skin treated by microneedle arrays].

    Science.gov (United States)

    Yang, Bing; Du, Shou-ying; Bai, Jie; Shang, Ke-xin; Lu, Yang; Li, Peng-yue

    2014-12-01

    In order to investigate the characteristics of transdermal delivery of ferulic acid under the treated of microneedle arrays and the influence on permeability of rat skin capillaries, improved Franz-cells were used in the transdermal delivery experiment with the rat skin of abdominal wall and the length of microneedle arrays, different insertion forces, retention time were studied in the influence of characteristics of transdermal delivery of FA. The amount of FA was determined by HPLC system. Intravenous injection Evans blue and FA was added after microneedle arrays treated. Established inflammation model was built by daubing dimethylbenzene. The amount of Evans blue in the rat skin was read at 590 nm wavelength with a Multiskan Go microplate reader. Compared with passive diffusion group the skin pretreated with microneedle arrays had a remarkable enhancement of FA transport (P Microneedle arrays with different length had a remarkable enhancement of FA transport, but was not related to the increase of the length. The research of FA on the reduce of permeability of rat skin capillaries indicated that the skin pretreated with microneedle arrays could reduce the content of Evans blue in the skins of rat significantly compared with the untreated group. The permeation rate of ferulic acid transdermal delivery had remarkable increase under the treated of microneedle arrays and the length of microneedle arrays ,the retention time so as to the insertion force were important to the transdermal delivery of ferulic acid.

  6. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin

    Directory of Open Access Journals (Sweden)

    Ranjit Kumar Harwansh

    2011-12-01

    Full Text Available The present investigation aims to evaluate an isotropic and thermodynamically stable nanoemulsion formulation for transdermal delivery of glycyrrhizin (GZ, with minimum surfactant and cosurfactant (Smix concentrations that could improve its solubility, permeation enhancement, and stability. Pseudo-ternary phase diagrams were developed and various nanoemulsion formulations were prepared using soyabean oil as oil, Span 80, Brij 35 as a surfactant and isopropyl alcohol as a cosurfactant. Nanoemulsion formulations that passed the thermodynamic stability tests were characterized for pH, viscosity and droplet size using a transmission electron microscopy. The transdermal ability of glycyrrhizin through human cadaver skin was determined using Franz diffusion cells. The in vitro skin permeation profile of the optimized nanoemulsion formulation (NE2 was compared to that of conventional gel. A significant increase in permeability parameters such as steady-state flux (Jss and permeability coefficient (Kp was observed in the optimized nanoemulsion formulation (NE2, which consisted of 1% wt/wt of mono ammonium glycyrrhizinate (MAG, 32.4% Span 80, 3.7% Brij 35, 10% isopropyl alcohol, 46.5% soyabean oil and 6.4% distilled water. No obvious skin irritation was observed for the studied nanoemulsion formulation (NE2 or the gel. The results indicated that nanoemulsions are promising vehicles for transdermal delivery of glycyrrhizin through human cadaver skin, without the use of additional permeation enhancers, because excipients of nanoemulsions act as permeation enhancers themselves.O objetivo da investigação é avaliar uma nanoemulsão isotrópica termodinamicamente estável para a administração transdérmica da glicirrizina (GZ, com concentrações mínimas de tensoativo e co-tensoativo (Smix, que poderiam melhorar a sua solubilidade, a permeação e a estabilidade. Os diagramas pseudo-ternários de fase foram desenvolvidos e diversas nanoemulsões foram

  7. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    Science.gov (United States)

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  8. Iontophoretic and Microneedle Mediated Transdermal Delivery of Glycopyrrolate

    Directory of Open Access Journals (Sweden)

    Meera Gujjar

    2014-12-01

    Full Text Available Purpose: The objective of this study was to investigate the use of iontophoresis, soluble microneedles and their combination for the transdermal delivery of glycopyrrolate. Methods: In vitro permeation was tested using full thickness porcine ear skin mounted onto Franz diffusion cells. Iontophoresis (0.5 mA/cm2 was done for 4 h using Ag/AgCl electrodes. For microneedles, three line array (27 needles/line of maltose microneedles were used to microporate the skin prior to mounting. Pore uniformity was determined by taking fluorescent images of distribution of calcein into pores and processing the images using an image analysis tool, which measured the fluorescent intensity in and around each pore to provide a pore permeability index (PPI. The donor chamber contained 500 µL of a 1 mg/mL solution of glycopyrrolate, and the receptor chamber contained 5 mL of 50 mM NaCl in deionized water. Samples were collected at predetermined time points over a period of 24 h and analyzed by HPLC. Skin irritation testing was performed with a 3D cell culture kit of human skin. MTT assay determined cell viability; viability less than 50% was considered irritant. Results: A control experiment which investigated passive permeation of glycopyrrolate delivered an average cumulative amount of 24.92 ± 1.77 µg/cm2 at 24 h, while microneedle pretreatment increased permeability to 46.54 ± 6.9 µg/cm2. Both iontophoresis (158.53 ± 17.50 µg/cm2 and a combination of iontophoresis and microneedles (182.43 ± 20.06 µg/ cm2 significantly increased delivery compared to passive and microneedles alone. Glycopyrrolate solution was found to be nonirritant with cell viability of 70.4% ± 5.03%. Conclusion: Iontophoresis and a combination of iontophoresis with microneedle pretreatment can be effectively used to enhance the transdermal delivery of glycopyrrolate. Glycopyrrolate was found to be non-irritant to skin.

  9. Application of different 125I tracers in radioimmunoassays of estradiol-17β

    International Nuclear Information System (INIS)

    Bienert, R.; Flentje, H.; Herzmann, H.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1984-01-01

    Some different 125 I-labelled estradiol tracers were produced by direct radioiodizing of estradiol and also of the histamine and tyramine conjugates of estradiol-3-carboxymethylether (E 2 -3-CM) by means of the chloramine-T method. The linkage properties of these tracers were investigated in relation to the 3 H-labelled estradiol opposite to the antisera, which were produced against the cow serum albumin (RSA) conjugates of E 2 -3-CM and estradiol-6-carboxymethyloxime (E 2 -6-CMO). As suitable system for the radioimmunological estradiol determination could be revealed 4- 125 I-iodine estradiol in connection with one antiserum in each case of the radioligand antiserum combinations against E 2 -3-CM-RSA- and E 2 -6-CMO-RSA-conjugate. The double antibody method is used for separation in optimized RIA systems. The first and the second antibody reaction take place simultaneously. (author)

  10. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Science.gov (United States)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  11. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  12. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  13. Transdermal and transbuccal drug delivery systems: enhancement using iontophoretic and chemical approaches.

    Science.gov (United States)

    Hu, Longsheng; Silva, Sérgio M C; Damaj, Bassam B; Martin, Richard; Michniak-Kohn, Bozena B

    2011-12-12

    We investigated the enhancement effect of chemical enhancers and iontophoresis on the in vitro transdermal and transbuccal delivery of lidocaine HCl (LHCl), nicotine hydrogen tartrate (NHT), and diltiazem HCl (DHCl) using porcine skin and buccal tissues. Dodecyl 2-(N,N-dimethylamino) propionate (DDAIP), dodecyl-2-(N,N-dimethylamino) propionate hydrochloride (DDAIP HCl), N-(4-bromobenzoyl)-S,S-dimethyliminosulfurane (Br-iminosulfurane), and azone (laurocapram) were used as chemical enhancers. The study results showed that the application of iontophoresis at either 0.1 mA or 0.3 mA significantly enhanced transdermal and transmucosal delivery of LHCl, NHT and DHCl. It was also demonstrated that iontophoresis had a more pronounced enhancement effect on transdermal delivery than on transbuccal delivery of LHCl, NHT and DHCl. In addition, DDAIP HCl was found to be the most effective enhancer for transbuccal delivery of LHCl and NHT. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system.

    Science.gov (United States)

    Saboktakin, Mohammad Reza; Akhyari, Shahab; Nasirov, Fizuli A

    2014-08-01

    Transdermal drug delivery systems are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. Polymer matrix, drug, permeation enhancers are the main components of transdermal drug delivery systems. The objective of the present study was to develop the modified starch and 1,4-cis polybutadiene nanoparticles as novel polymer matrix system. We have been studied the properties of a novel transdermal drug delivery system with clonidine as drug model. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyan, P.N. E-mail: pramila-kotiyan@uiowa.edu; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  16. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Audra L. Stinchcomb

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual’s needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  17. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  18. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Caroline L. Strasinger

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual's needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  19. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  20. Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach

    Directory of Open Access Journals (Sweden)

    Betül Aktar

    2014-05-01

    Full Text Available The objectives of this study were to develop and to characterize sodium alginate based matrix-type transdermal films of metoclopramide hydrochloride (MTC in order to improve patient compliance to treatment. The suitability of sodium alginate was shown to be a natural film former in terms of the physicochemical, mechanical, and bioadhesive features of the MTC loaded transdermal films. Terpinolene provided the highest drug release among the different terpenes (nerolidol, eucalyptol, dl-limonene, or terpinolene assessed as enhancer. Attenuated Total Reflectance Infrared (ATR-FTIR spectroscopy analysis performed to evaluate the effect of the transdermal films on skin barrier confirmed enhancer induced lipid bilayer disruption in stratum corneum, indicating its permeation enhancement effect.

  1. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    International Nuclear Information System (INIS)

    Kotiyan, P.N.; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B.

    2002-01-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed

  2. The effects of compounded bioidentical transdermal hormone therapy on hemostatic, inflammatory, immune factors; cardiovascular biomarkers; quality-of-life measures; and health outcomes in perimenopausal and postmenopausal women.

    Science.gov (United States)

    Stephenson, Kenna; Neuenschwander, Pierre F; Kurdowska, Anna K

    2013-01-01

    Menopause impacts 25 million women world wide each year, and the World Health Organization estimates 1.2 billion women will be postmenopausal by 2030. Menopause has been associated with symptoms of hot flashes, night sweats, dysphoric mood, sleep disturbance, and conditions of cardiovascular disease, depression, osteoporosis, osteoarthritis, depression, dementia, and frailty. Conventional hormone replacement therapy results in increased thrombotic events, and an increased risk of breast cancer and dementia as evidenced in large prospective clinical trials including Heart and Estrogen/Progestin Replacement Study I and the Women's Health Initiative. A possible mechanism for these adverse events is the unfavorable net effects of conjugated equine estrogens and medroxyprogesterone acetate on the hemostatic balance and inflammatory and immune factors. Physiologic sex steroid therapy with transdermal delivery for peri/postmenopausal women may offer a different risk/benefit profile, yet long-term studies of this treatment model are lacking. The objective of this study was to examine the long-term effects of compounded bioidentical transdermal sex steroid therapy including estriol, estradiol, progesterone, DHEA, and testosterone on cardiovascular biomarkers, hemostatic, inflammatory, immune signaling factors; quality-of-life measures; and health outcomes in peri/postmenopausal women within the context of a hormone restoration model of care. A prospective, cohort, closed-label study received approval from the Human Subjects Committee. Recruitment from outpatient clinics at an academic medical center and the community at large resulted in three hundred women giving signed consent. Seventy-five women who met strict inclusion/exclusion criteria were enrolled. Baseline hormone evaluation was performed along with baseline experimental measures. Following this, women received compounded transdermal bioidentical hormone therapy of BiEst (80%Estriol/20%Estradiol), and

  3. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  4. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  6. Solid-in-oil nanodispersions for transdermal drug delivery systems.

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho; Goto, Masahiro

    2016-11-01

    Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long-lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid-in-oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user-friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Photoinduced disaggregation of TiO₂ nanoparticles enables transdermal penetration.

    Directory of Open Access Journals (Sweden)

    Samuel W Bennett

    Full Text Available Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO(2 aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg(-1 of TiO(2 for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg(-1 for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications.

  8. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  9. Rapidly Dissolving Microneedle Patches for Transdermal Iron Replenishment Therapy.

    Science.gov (United States)

    Maurya, Abhijeet; Nanjappa, Shivakumar H; Honnavar, Swati; Salwa, M; Murthy, S Narasimha

    2018-02-17

    The prevalence of iron deficiency anemia (IDA) is predominant in women and children especially in developing countries. The disorder affects cognitive functions and physical activity. Although oral iron supplementation and parenteral therapy remains the preferred choice of treatment, gastric side effects and risk of iron overload decreases adherence to therapy. Transdermal route is an established approach, which circumvents the side effects associated with conventional therapy. In this project, an attempt was made to investigate the use of rapidly dissolving microneedles loaded with ferric pyrophosphate (FPP) as a potential therapeutic approach for management of IDA. Microneedle array patches were made using the micromolding technique and tested in vitro using rat skin to check the duration required for dissolution/disappearance of needles. The ability of FPP-loaded microneedles to replenish iron was investigated in anemic rats. Rats were fed iron-deficient diet for 5 weeks to induce IDA following which microneedle treatment was initiated. Recovery of rats from anemic state was monitored by measuring hematological and biochemical parameters. Results from in vivo study displayed significant improvements in hemoglobin and serum iron levels after 2-week treatment with FPP-loaded microneedles. The study effectively demonstrated the potential of microneedle-mediated iron replenishment for treatment of IDA. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Opioids Switching with Transdermal Systems in Chronic Cancer Pain

    Directory of Open Access Journals (Sweden)

    Barbarisi M

    2009-05-01

    Full Text Available Abstract Background Due to tolerance development and adverse side effects, chronic pain patients frequently need to be switched to alternative opioid therapy Objective To assess the efficacy and tolerability of an alternative transdermally applied (TDS opioid in patients with chronic cancer pain receiving insufficient analgesia using their present treatment. Methods A total of 32 patients received alternative opioid therapy, 16 were switched from buprenorphine to fentanyl and 16 were switched from fentanyl to buprenorphine. The dosage used was 50% of that indicated in equipotency conversion tables. Pain relief was assessed at weekly intervals for the next 3 weeks Results Pain relief as assessed by VAS, PPI, and PRI significantly improved (p Conclusion Opioid switching at 50% of the calculated equianalgesic dose produced a significant reduction in pain levels and rescue medication. The incidence of side effects decreased and no new side effects were noted. Further studies are required to provide individualized treatment for patients according to their different types of cancer.

  11. Transdermal nitroglycerine enhances postoperative analgesia of intrathecal neostigmine following abdominal hysterectomies

    Directory of Open Access Journals (Sweden)

    Fareed Ahmed

    2010-01-01

    Full Text Available This study was carried out to assess the effect of nitroglycerine (transdermal on intrathecal neostigmine with bupivacaine on postoperative analgesia and note the incidence of adverse effects, if any. After taking informed consent, 120 patients of ASA Grade I and II were systematically randomised into four groups of 30 each. Patients were premedicated with midazolam 0.05 mg/kg intravenously and hydration with Ringer′s lactate solution 10ml/kg preoperatively in the holding room. Group I patients received Intrathecal injection of 15 mg bupivacaine with 1ml of normal saline and transdermal placebo patch. Group II patients received Intrathecal injection of 15 mg bupivacaine with 5 mcg of neostigmine and transdermal placebo patch. Group III patients received Intrathecal injection of 15 mg bupivacaine with 1ml of normal saline with transdermal nitroglycerine patch (5 mg/24 hours. Group IV patients received Intrathecal injection of 15 mg bupivacaine with 5mcg of neostigmine and transdermal nitroglycerine patch (5 mg/24 hours, applied on a non anaesthetised area after 20 minutes. Groups were demographically similar and did not differ in intraoperative characteristics like sensory block, motor block, haemodynamic parameters and SpO 2 . The mean duration of analgesia was 202.17 minutes, 407.20 minutes, 207.53 minutes and 581.63 minutes in control group (I, neostigmine group (II, nitroglycerine group (III and nitroglycerine neostigmine group (IV respectively (P< 0.01. To conclude, our results show that transdermal nitroglycerine itself does not show any analgesic potential but it enhances the analgesic potential of intrathecal neostigmine.

  12. Transdermal rivastigmine: management of cutaneous adverse events and review of the literature.

    Science.gov (United States)

    Greenspoon, Jill; Herrmann, Nathan; Adam, David N

    2011-07-01

    Alzheimer's disease is a chronic neurodegenerative disorder resulting in part from the degeneration of cholinergic neurons in the brain. Rivastigmine, a cholinesterase inhibitor, is commonly used as a treatment for dementia due to its ability to moderate cholinergic neurotransmission; however, treatment with oral rivastigmine can lead to gastrointestinal adverse effects such as nausea and vomiting. Transdermal administration of rivastigmine can minimize these adverse effects by providing continuous delivery of the medication, while maintaining the effectiveness of the oral treatment. While the transdermal form of rivastigmine has been found to have fewer systemic adverse effects compared with the oral form, cutaneous reactions, such as contact dermatitis, can lead to discontinuation of the drug in its transdermal form. Lack of patient compliance with regard to applying the patch to the designated site, applying the patch for the correct length of time or rotating patch application sites increases the risk of cutaneous adverse reactions. This article outlines the diagnosis and management of irritant contact dermatitis and allergic contact dermatitis secondary to transdermal rivastigmine. The large majority of reactions to transdermal patches are of an irritant type, which can be diagnosed clinically by the presence of a pruritic, erythematous, eczematous plaque strictly confined to the borders of the patch. In contrast, an allergic reaction can be differentiated by the presence of vesicles and/or oedema, erythema beyond the boundaries of the transdermal patch and lack of improvement of the lesion 48 hours after removal of the offending treatment. By encouraging the patient to follow a regular rotation schedule for the patch, and using lipid-based emollients for irritant dermatitis and pre- and post-treatment topical corticosteroids for allergic dermatitis, cutaneous reactions can often be alleviated and patients can continue with their medication regimen. Other

  13. Antioxidant protection of LDL by physiological concentrations of 17 beta-estradiol. Requirement for estradiol modification.

    Science.gov (United States)

    Shwaery, G T; Vita, J A; Keaney, J F

    1997-03-18

    Exposure to estrogens reduces the risk for coronary artery disease and associated clinical events; however, the mechanisms responsible for these observations are not clear. Supraphysiological levels of estrogens act as antioxidants in vitro, limiting oxidation of low-density lipoprotein (LDL), an event implicated in atherogenesis. We investigated the conditions under which physiological concentrations of 17 beta-estradiol (E2) inhibit oxidative modification of LDL. Plasma incubated with E2 (0.1 to 100 nmol/L) for 4 hours yielded LDL that demonstrated a dose-related increase in resistance to oxidation by Cu2+ as measured by conjugated diene formation. This effect was dependent on plasma, because incubation of isolated LDL with E2 at these concentrations in buffered saline produced no effect on Cu(2+)-mediated oxidation. Incubation of plasma with E2 had no effect on LDL alpha-tocopherol content or cholesteryl ester hydroperoxide formation during the 4-hour incubation. Plasma incubation with [3H]E2 was associated with dose-dependent association of 3H with LDL. High-performance liquid chromatographic analysis of LDL derived from plasma incubated with [3H]E2 indicated that the majority of the associated species were not detectable as authentic E2 but as nonpolar forms of E2 that were susceptible to base hydrolysis consistent with fatty acid esterification of E2. Plasma-mediated association of E2 and subsequent antioxidant protection was inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), an inhibitor of plasma acyltransferase activity. Exposure of LDL to physiological levels of E2 in a plasma milieu is associated with enhanced resistance to Cu(2+)-mediated oxidation and incorporation of E2 derivatives into LDL. This antioxidant capacity may be another means by which E2 limits coronary artery disease in women.

  14. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Cantwell, Cara T; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P

    2014-01-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  15. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    Science.gov (United States)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  16. Membrane-Initiated Estradiol Signaling Regulating Sexual Receptivity

    Science.gov (United States)

    Micevych, Paul E.; Dewing, Phoebe

    2011-01-01

    Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs) has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES) component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor), and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH). Using both activation of μ-opioid receptors (MOR) in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX-receptor participate in the required MIES. ERα and the STX-receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a) that augment progesterone synthesis in astrocytes and protein kinase C (PKC) in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX-receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum, and dorsal root ganglias. PMID:22649369

  17. Membrane–initiated estradiol signaling regulating sexual receptivity

    Directory of Open Access Journals (Sweden)

    Paul E Micevych

    2011-09-01

    Full Text Available Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor; GPER, and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH. Using both activation of μ-opioid receptors (MOR in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX receptor participate in the required MIES. ERα and the STX receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a that augment progesterone synthesis in astrocytes and protein kinase C (PKC in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum and DRGs.

  18. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  19. Nomegestrol acetate-17b-estradiol for oral contraception

    Directory of Open Access Journals (Sweden)

    Burke A

    2013-06-01

    Full Text Available Anne Burke Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Oral contraceptives remain a popular method of contraception over 50 years after their introduction. While safe and effective for many women, the failure rate of oral contraception is about 8%. Concerns about the risk of venous thromboembolism continue to drive the search for the safest oral contraceptive formulations. The oral contraceptive NOMAC-E2 contains nomegestrol acetate (NOMAC 2.5 mg + 17b-estradiol (E2 1.5 mg. The approved dosing regimen is 24 days of active hormone, followed by a 4-day hormone-free interval. NOMAC is a progestin derived from testosterone, which has high bioavailability, rapid absorption, and a long half-life. Estradiol, though it has a lower bioavailability, has been successfully combined with NOMAC in a monophasic oral contraceptive. Two recently published randomized controlled trials demonstrate that NOMAC-E2 is an effective contraceptive, with a Pearl Index less than one pregnancy per 100 woman-years. The bleeding pattern on NOMAC-E2 is characterized by fewer bleeding/spotting days, shorter withdrawal bleeds, and a higher incidence of amenorrhea than the comparator oral contraceptive containing drospirenone and ethinyl estradiol. The adverse event profile appears to be acceptable. Few severe adverse events were reported in the randomized controlled trials. The most common adverse events were irregular bleeding, acne, and weight gain. Preliminary studies suggest that NOMAC-E2 does not seem to have negative effects on hemostatic and metabolic parameters. While no one oral contraceptive formulation is likely to be the optimum choice for all women, NOMAC-E2 is a formulation with effectiveness comparable with that of other oral contraceptives, and a reassuring safety profile.Keywords: oral contraception, nomegestrol acetate, estradiol

  20. Metabolic clearance and blood production rates of estradiol in hyperthyroidism.

    Science.gov (United States)

    Ridgway, E C; Longcope, C; Maloof, F

    1975-09-01

    The metabolic clearance rate of 17beta-estradiol (MCR2), the plasma levels of 17beta-estradiol (E2)1, sex-steroid binding globulin (SSBG), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in 10 hyperthyroid subjects (7 men and 3 women). The blood production rate of 17beta-estradiol (PB2) was calculated for all subjects. Nine of the 10 hyperthyroid subjects had a decreased MCR2 which returned towards normal in 5 of the 6 subjects restudied following therapy. In all 10 subjects the levels of SSBG were increased when they were hyperthyroid and returned toward normal with therapy. It is concluded that the decrease in MCR2 is largely due to the increased binding of 17beta-estradiol to SSBG. In 7 of the 10 hyperthyroid the plasma E2 concentrations were normal whereas 3 had slightly elevated levels. In 8 of the 10 hyperthyroid the PB2 was within the normal range. Only 2 hyperthyroid subjects had slightly elevated PB2. In the 6 subjects who were restudied after therapy, there was no consistent change in PB2 which remained in the normal range in all cases. It is concluded that the MCR2 is decreased in most subjects with hyperthyroidism in association with an increase of SSBG. Despite this change in MCR2 there is no significant change in PB2. The increase in SSBG levels in hyperthyroidism appears to be a direct effect of the elevation of thyroid hormone activity and is not mediated through estrogen.

  1. Basal and dynamic relationships between implicit power motivation and estradiol in women.

    Science.gov (United States)

    Stanton, Steven J; Schultheiss, Oliver C

    2007-12-01

    This study investigated basal and reciprocal relationships between implicit power motivation (n Power), a preference for having impact and dominance over others, and both salivary estradiol and testosterone in women. 49 participants completed the Picture Story Exercise, a measure of n Power. During a laboratory contest, participants competed in pairs on a cognitive task and contest outcome (win vs. loss) was experimentally varied. Estradiol and testosterone levels were determined in saliva samples collected at baseline and several times post-contest, including 1 day post-contest. n Power was positively associated with basal estradiol concentrations. The positive correlation between n Power and basal estradiol was stronger in single women, women not taking oral contraceptives, or in women with low-CV estradiol samples than in the overall sample of women. Women's estradiol responses to a dominance contest were influenced by the interaction of n Power and contest outcome: estradiol increased in power-motivated winners but decreased in power-motivated losers. For power-motivated winners, elevated levels of estradiol were still present the day after the contest. Lastly, n Power and estradiol did not correlate with self-reported dominance and correlated negatively with self-reported aggression. Self-reported dominance and aggression did not predict estradiol changes as a function of contest outcome. Overall, n Power did not predict basal testosterone levels or testosterone changes as a function of dominance contest outcome.

  2. Maternal fructose intake disturbs ovarian estradiol synthesis in rats.

    Science.gov (United States)

    Munetsuna, Eiji; Yamada, Hiroya; Yamazaki, Mirai; Ando, Yoshitaka; Mizuno, Genki; Ota, Takeru; Hattori, Yuji; Sadamoto, Nao; Suzuki, Koji; Ishikawa, Hiroaki; Hashimoto, Shuji; Ohashi, Koji

    2018-06-01

    Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery.

    Science.gov (United States)

    Shinde, Ujwala A; Modani, Sheela H; Singh, Kavita H

    2018-01-01

    Microemulsion formulation of repaglinide, a BCS class II hypoglycemic agent with limited oral bioavailability, was developed considering its solubility in various oils, surfactants, and cosurfactants. The pseudo-ternary phase diagrams for microemulsion regions were constructed by water titration method at K m 1:1 and characterized for optical birefringence, percentage transmittance, pH, refractive index, globule size, zeta potential, viscosity, drug content, and thermodynamic stability. To enhance the drug permeation and residence time, the optimized microemulsions having mean globule size of 36.15 ± 9.89 nm was gelled with xanthan gum. The developed microemulsion-based gel was characterized for globule size, zeta potential, pH, and drug content. All evaluation parameters upon gelling were found to be satisfactory. Ex vivo permeability study across rat skin demonstrated higher steady-state flux (P microemulsion of repaglinide in comparison to the repaglinide microemulsion gel. At the end of 24 h, the cumulative drug permeation from microemulsion and microemulsion gel was found to be 229.19 ± 24.34 and 180.84 ± 17.40 μg/cm 2 , respectively. The microemulsion formulation showed 12.30-fold increase in flux as compared to drug suspension with highest enhancement ratio (E r ) of 12.36. Whereas microemulsion gel exhibited 10.97-fold increase in flux (with highest E r , 11.78) as compared to repaglinide (RPG) suspension. In vivo efficacy study was performed in normal Sprague-Dawley rats by using oral glucose tolerance test. Results of RPG transdermal microemulsion gel demonstrated remarkable advantage over orally administered RPG by reducing the glucose level in controlled manner. Hence, it could be a new, alternative dosage form for effective therapy of type 2 diabetes mellitus.

  4. Pharmacokinetics and repolarization effects of intravenous and transdermal granisetron.

    Science.gov (United States)

    Mason, Jay W; Selness, Daniel S; Moon, Thomas E; O'Mahony, Bridget; Donachie, Peter; Howell, Julian

    2012-05-15

    The need for greater clarity about the effects of 5-HT(3) receptor antagonists on cardiac repolarization is apparent in the changing product labeling across this therapeutic class. This study assessed the repolarization effects of granisetron, a 5-HT(3) receptor antagonist antiemetic, administered intravenously and by a granisetron transdermal system (GTDS). In a parallel four-arm study, healthy subjects were randomized to receive intravenous granisetron, GTDS, placebo, or oral moxifloxacin (active control). The primary endpoint was difference in change from baseline in mean Fridericia-corrected QT interval (QTcF) between GTDS and placebo (ddQTcF) on days 3 and 5. A total of 240 subjects were enrolled, 60 in each group. Adequate sensitivity for detection of QTc change was shown by a 5.75 ms lower bound of the 90% confidence interval (CI) for moxifloxacin versus placebo at 2 hours postdose on day 3. Day 3 ddQTcF values varied between 0.2 and 1.9 ms for GTDS (maximum upper bound of 90% CI, 6.88 ms), between -1.2 and 1.6 ms for i.v. granisetron (maximum upper bound of 90% CI, 5.86 ms), and between -3.4 and 4.7 ms for moxifloxacin (maximum upper bound of 90% CI, 13.45 ms). Day 5 findings were similar. Pharmacokinetic-ddQTcF modeling showed a minimally positive slope of 0.157 ms/(ng/mL), but a very low correlation (r = 0.090). GTDS was not associated with statistically or clinically significant effects on QTcF or other electrocardiographic variables. This study provides useful clarification on the effect of granisetron delivered by GTDS on cardiac repolarization. ©2012 AACR.

  5. Granisetron transdermal system improves refractory nausea and vomiting in gastroparesis.

    Science.gov (United States)

    Simmons, Kellie; Parkman, Henry P

    2014-06-01

    Symptoms of gastroparesis include nausea and vomiting, which can markedly diminish quality of life. Nausea and vomiting can also make treatment with oral antiemetics problematic. Our aim was to determine whether treatment-resistant nausea and vomiting in patients with gastroparesis improve after granisetron transdermal patch (GTP) therapy. In an open-label pilot study, patients with gastroparesis and symptoms of nausea and vomiting refractory to conventional treatment were treated with GTP. After 2 weeks, patients were asked to assess their therapeutic response using the Clinical Patient Grading Assessment Scale (CPGAS; +7 = completely better; 0 = no change; -7 = very considerably worse). Responders were defined as CPGAS score >0, non-responders as ≤0. Patients (n = 36) were treated with GTP. Of these 36 patients, one patient discontinued treatment due to the GTP not adhering to the skin. Of the remaining 35 patients, 18 improved, 15 remained the same, and two worsened. The average CPGAS score was +1.8 ± 0.4 (SEM) (P < 0.05 vs 0). Of the 18 patients with improvement, the average CPGAS score was +3.7 ± 0.3 (SEM), corresponding to "somewhat" to "moderately better" improvement in nausea/vomiting. Side effects occurred in nine patients: four developed constipation, three patients had skin rash, and two reported headaches. GTP was moderately effective in reducing refractory symptoms of nausea and/or vomiting from gastroparesis in 50% of patients. Mild side effects were reported by 25% of patients. GTP may be an effective treatment for nausea and vomiting in gastroparesis, and further study is warranted.

  6. Transdermal nicotine absorption handling e-cigarette refill liquids.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Transdermal influenza immunization with vaccine-coated microneedle arrays.

    Directory of Open Access Journals (Sweden)

    Dimitrios G Koutsonanos

    Full Text Available Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a novel method for transdermal delivery using metal microneedle arrays (MN coated with inactivated influenza virus to determine whether this route is a simpler and safer approach than the conventional immunization, capable to induce robust immune responses and confer protection against lethal virus challenge.Inactivated A/Aichi/2/68 (H3N2 influenza virus was coated on metal microneedle arrays and applied to mice as a vaccine in the caudal dorsal skin area. Substantial antibody titers with hemagglutination inhibition activity were detected in sera collected two and four weeks after a single vaccine dose. Challenge studies in mice with 5 x LD(50 of mouse adapted Aichi virus demonstrated complete protection. Microneedle vaccination induced a broad spectrum of immune responses including CD4+ and CD8+ responses in the spleen and draining lymph node, a high frequency of antigen-secreting cells in the lung and induction of virus-specific memory B-cells. In addition, the use of MN showed a dose-sparing effect and a strong Th2 bias when compared to an intramuscular (IM reference immunization.The present results show that delivery of inactivated influenza virus through the skin using metal microneedle arrays induced strong humoral and cellular immune responses capable of conferring protection against virus challenge as efficiently as intramuscular immunization, which is the standard vaccination route. In view of the convenience of delivery and the potential for self-administration, vaccine-coated metal microneedles may provide a novel and highly effective immunization method.

  8. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  9. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 3 (2017), s. 640-653 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  10. Use and cardiovascular safety of transdermal and other granisetron preparations in cancer management

    International Nuclear Information System (INIS)

    Mason, Jay W; Moon, Thomas E

    2013-01-01

    5-HT 3 antagonists have been available as oral and intravenous preparations for decades. The availability more recently of transdermal granisetron and the anticipated availability of a subcutaneous granisetron preparation have provided helpful alternatives to patients, and these preparations have been shown to have less potential to prolong QT than other drugs in the class

  11. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel

    Directory of Open Access Journals (Sweden)

    Wen-Yi Wang

    2016-11-01

    Full Text Available A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin’s barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs. Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.

  12. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Inefficacy of high-dose transdermal fentanyl in a patient with neuropathic pain, a case report.

    NARCIS (Netherlands)

    Bleeker, C.P.; Bremer, R.; Dongelmans, D.A.; Dongen, R.T.M. van; Crul, B.J.P.

    2001-01-01

    Pain partially responsive to opioids can lead to rapid escalating dosages due to tolerance development. In this report the case of a 58-year-old female with neuropathic pain using increasing transdermal (TTS) fentanyl dosages to a maximum dose of 3400 microg/h resulting in fentanyl plasma levels of

  14. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients

    NARCIS (Netherlands)

    Oosten, A.W.; Abrantes, J.A.; Jonsson, S.; Bruijn, P. de; Kuip, E.J.M.; Falcao, A.; Rijt, C.C. van der; Mathijssen, R.H.

    2016-01-01

    PURPOSE: Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the

  15. Treatment with subcutaneous and transdermal fentanyl: Results from a population pharmacokinetic study in cancer patients

    NARCIS (Netherlands)

    A.W. Oosten (Astrid); J.A. Abrantes (João A.); S. Jönsson (Siv); P. de Bruijn (Peter); E.J.M. Kuip (Evelien); A. Falcão (Amílcar); C.C.D. van der Rijt (Carin); A.H.J. Mathijssen (Ron)

    2016-01-01

    textabstractPurpose: Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we

  16. Methylphenidate Transdermal System in Adults with Past Stimulant Misuse: An Open-Label Trial

    Science.gov (United States)

    McRae-Clark, Aimee L.; Brady, Kathleen T.; Hartwell, Karen J.; White, Kathleen; Carter, Rickey E.

    2011-01-01

    Objective: This 8-week, open-label trial assessed the efficacy of methylphenidate transdermal system (MTS) in 14 adult individuals diagnosed with ADHD and with a history of stimulant misuse, abuse, or dependence. Method: The primary efficacy endpoint was the Wender-Reimherr Adult ADHD Scale (WRAADS), and secondary efficacy endpoints included the…

  17. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  18. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    2012-01-25

    Jan 25, 2012 ... When the side-effects were compared between the groups using a test of proportions, it was not significant. Discussion. The results of our study suggest that when applied at the beginning of surgery, a transdermal patch of diclofenac is as effective as intramuscular diclofenac in prolonging the requirement ...

  19. Functionalization of Cotton Fabrics with Polycaprolactone Nanoparticles for Transdermal Release of Melatonin

    Directory of Open Access Journals (Sweden)

    Daniele Massella

    2017-12-01

    Full Text Available Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL nanoparticles (NPs by employing flash nanoprecipitation (FNP technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE% and loading capacity (LC%. An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz’s cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker–Lonsdale model.

  20. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: Experimental verification

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Bekö, Gabriel; Koch, Holger M.

    2015-01-01

    of phthalate esters. Objectives: This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods: In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air...

  1. Transdermal Delivery and Cutaneous Targeting of Antivirals using a Penetration Enhancer and Lysolipid Prodrugs

    Czech Academy of Sciences Publication Activity Database

    Diblíková, D.; Kopečná, M.; Školová, B.; Krečmerová, Marcela; Roh, J.; Hrabálek, A.; Vávrová, K.

    2014-01-01

    Roč. 31, č. 4 (2014), s. 1071-1081 ISSN 0724-8741 Grant - others:GA ČR(CZ) GAP207/11/0365 Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonate antivirals * lysolipid prodrug * penetration enhancer * skin absorption * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.420, year: 2014

  2. Novel diffusion cell for in vitro transdermal permeation, compatible with automated dynamic sampling

    NARCIS (Netherlands)

    Bosman, I.J; Lawant, A.L; Avegaart, S.R.; Ensing, K; de Zeeuw, R.A

    The development of a new diffusion cell for in vitro transdermal permeation is described. The so-called Kelder cells were used in combination with the ASPEC system (Automatic Sample Preparation with Extraction Columns), which is designed for the automation of solid-phase extractions (SPE). Instead

  3. Methylphenidate Transdermal System in Adult ADHD and Impact on Emotional and Oppositional Symptoms

    Science.gov (United States)

    Marchant, Barrie K.; Reimherr, Frederick W.; Robison, Reid J.; Olsen, John L.; Kondo, Douglas G.

    2011-01-01

    Objective: This trial evaluated the effect of methylphenidate transdermal system (MTS) on the full spectrum of adult symptoms (attention-disorganization, hyperactivity-impulsivity, emotional dysregulation [ED], and oppositional-defiant disorder [ODD]) found in this disorder. Method: This placebo-controlled, double-blind, flexible-dose, crossover…

  4. Origin of estradiol fatty acid esters in human ovarian follicular fluid.

    Science.gov (United States)

    Pahuja, S L; Kim, A H; Lee, G; Hochberg, R B

    1995-03-01

    The estradiol fatty acid esters are the most potent of the naturally occurring steroidal estrogens. These esters are present predominantly in fat, where they are sequestered until they are hydrolyzed by esterases. Thus they act as a preformed reservoir of estradiol. We have previously shown that ovarian follicular fluid from patients undergoing gonadotropin stimulation contains very high amounts of estradiol fatty acid esters (approximately 10(-7) M). The source of these esters is unknown. They can be formed by esterification of estradiol in the follicular fluid by lecithin:cholesterol acyltransferase (LCAT), or in the ovary by an acyl coenzyme A:acyltransferase. In order to determine which of these enzymatic processes is the source of the estradiol esters in the follicular fluid, we incubated [3H]estradiol with follicular fluid and cells isolated from human ovarian follicular fluid and characterized the fatty acid composition of the [3H]estradiol esters biosynthesized in each. In addition, we characterized the endogenous estradiol fatty acid esters in the follicular fluid and compared them to the biosynthetic esters. The fatty acid composition of the endogenous esters was different than those synthesized by the cellular acyl coenzyme A:acyltransferase, and the same as the esters synthesized by LCAT, demonstrating that the esters are produced in situ in the follicular fluid. Although the role of these estradiol esters in the ovary is not known, given their remarkable estrogenic potency it is highly probable that they have an important physiological role.

  5. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system.

    Science.gov (United States)

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal

    2017-02-01

    The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.

  6. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    Science.gov (United States)

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  7. Transdermal delivery of isoniazid and rifampin in guinea pigs by electro-phonophoresis.

    Science.gov (United States)

    Chen, Suting; Han, Yi; Yu, Daping; Huo, Fengmin; Wang, Fen; Li, Yunxu; Dong, Lingling; Liu, Zhidong; Huang, Hairong

    2017-11-01

    Electro-phonophoresis (EP) has been used as a drug delivery approach in clinical fields. The objective of the present study is to evaluate the skin permeability of isoniazid and rifampin in guinea pigs by EP to provide reference basis for clinical applications of such transdermal delivery system in the treatment of patients with superficial tuberculosis. Isoniazid and rifampin solutions were delivered transdermally with or without EP in health guinea pigs for 0.5 h. Local skin and blood samples were collected serially at 0, 1/2, 1, 2, 4, 6 and 24 h after dosing. Drug concentrations in local skin and blood were evaluated by high-performance liquid chromatography. Isoniazid concentrations in local skin of guinea pigs receiving isoniazid through EP transdermal delivery were significantly higher than in animals receiving only isoniazid with transdermal patch. However, for rifampin, patches alone group presented almost uniform concentration versus time curve with that of EP group, and both groups had concentrations much higher than the therapeutic concentration of the drug over sustainable time. After EP transdermal delivery, the mean peak concentrations of isoniazid and rifampin in skin were 771.0 ± 163.4 μg/mL and 81.2 ± 17.3 μg/mL respectively. Neither isoniazid nor rifampin concentration in blood could be detected (below the lower detection limit of 1 μg/mL) at any time point. The present study showed that application of EP significantly enhanced INH penetration through skin in guinea pigs, while RIF patch alone obtained therapeutic concentration in local skin. Our work suggests several possible medication approaches for efficient treatment of superficial tuberculosis.

  8. Contingency management for alcohol use reduction: a pilot study using a transdermal alcohol sensor.

    Science.gov (United States)

    Barnett, Nancy P; Tidey, Jennifer; Murphy, James G; Swift, Robert; Colby, Suzanne M

    2011-11-01

    Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5 to $17 per day on days when alcohol use was not reported or detected by the SCRAM. Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Contingency Management for Alcohol Use Reduction: A Pilot Study using a Transdermal Alcohol Sensor*

    Science.gov (United States)

    Barnett, Nancy P.; Tidey, Jennifer; Murphy, James G.; Swift, Robert; Colby, Suzanne M.

    2011-01-01

    Background Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. Methods The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5-$17 per day on days when alcohol use was not reported or detected by the SCRAM. Results Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Conclusion Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. PMID:21665385

  10. Therapeutic serum phenobarbital concentrations obtained using chronic transdermal administration of phenobarbital in healthy cats.

    Science.gov (United States)

    Delamaide Gasper, Joy A; Barnes Heller, Heidi L; Robertson, Michelle; Trepanier, Lauren A

    2015-04-01

    Seizures are a common cause of neurologic disease, and phenobarbital (PB) is the most commonly used antiepileptic drug. Chronic oral dosing can be challenging for cat owners, leading to poor compliance. The purpose of this study was to determine if the transdermal administration of PB could achieve serum PB concentrations of between 15 and 45 μg/ml in healthy cats. Nineteen healthy cats were enrolled in three groups. Transdermal PB in pluronic lecithin organogel (PLO) was applied to the pinnae for 14 days at a dosage of 3 mg/kg q12h in group 1 (n = 6 cats) and 9 mg/kg q12h in group 2 (n = 7 cats). Transdermal PB in Lipoderm Activemax was similarly applied at 9 mg/kg q12h for 14 days in group 3 (n = 6 cats). Steady-state serum PB concentrations were measured at trough, and at 2, 4 and 6 h after the morning dose on day 15. In group 1, median concentrations ranged from 6.0-7.5 μg/ml throughout the day (observed range 0-11 μg/ml). Group 2 median concentrations were 26.0 μg/ml (observed range 18.0-37.0 μg/ml). For group 3, median concentrations ranged from 15.0-17.0 μg/ml throughout the day (range 5-29 μg/ml). Side effects were mild. One cat was withdrawn from group 2 owing to ataxia and sedation. These results show therapeutic serum PB concentrations can be achieved in cats following chronic transdermal administration of PB in PLO at a dosage of 9 mg/kg q12h. More individual variation was noted using Lipoderm Activemax. Transdermal administration may be an alternative for cats that are difficult to medicate orally. © ISFM and AAFP 2014.

  11. Effects of 17β-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    The effects of 17β-estradiol, given either alone or with X-radiation, on the induction of malignant transformation were investigated in vitro. Treatment with 10 -6 M 17β-estradiol for 6 weeks, or 10 -5 M 17β-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicated an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation. (author)

  12. Genetic, pathological and physiological determinants of transdermal fentanyl pharmacokinetics in 620 cancer patients of the EPOS study

    DEFF Research Database (Denmark)

    Barratt, Daniel T; Bandak, Benedikte; Klepstad, Pål

    2014-01-01

    This study aimed to investigate whether CYP3A4/5 genetic variants, together with clinical and patient factors, influence serum fentanyl and norfentanyl concentrations and their ratio in cancer pain patients receiving transdermal fentanyl....

  13. In vitro bioactivity of 17alpha-estradiol.

    Science.gov (United States)

    Sievernich, André; Wildt, Ludwig; Lichtenberg-Fraté, Hella

    2004-12-01

    A miniaturised short-term in vitro assay based on the activation of the human estrogen receptor alpha and genetically modified yeast (Saccharomyces cerevisiae) cells was performed to explore the capacity of this system to monitor the bioactivity of estrogenic compounds, particularly 17alpha- and 17beta-estradiol. Together with the human estrogen receptor (hER)-alpha plasmid, the reporter plasmid containing a yeast-optimised version of the green fluorescent protein (yEGFP) linked to three repeats of the cis-acting estrogen hormone-responsive element (ERE) were expressed in a strain being deleted in the pleiotropic drug resistance transporters Pdr5, Snq2 and Yor1, known to facilitate efflux of organic compounds including steroids and chemotherapeutics. Agonists that bind to hER in vitro trigger estrogen receptor-mediated transcriptional activation of the GFP reporter gene monitored by fluorescence emission at 535 nm. The sensitivity of the assay was tested with various 17alpha- and 17beta-estradiol concentrations, yielding a detection limit of 5 pg/ml (0.018 nM) for the agonist 17beta-E2 in solvent and in human charcoal-stripped serum using a S. cerevisiae pdr5, snq2 and yor1 mutant strain. For 17alpha-estradiol only, at approximately 1500 pg/ml a similar fluorescence response compared to 100 pg/ml 17beta-E2 was observed implicating a much weaker potency of this stereoisomer. The specificity of the system was tested by expression of a truncated hER lacking the ligand-binding domain E and by administration of the androgen, 4-androsten 3,17 dione. Both controls did not yield an increase in fluorescence emission. This fluorescence emission assay enables detection of estrogenic biological activity induced by direct agonists, such as 17beta-E2 at concentrations similar to those found in human sera or by estrogen-like chemicals.

  14. Methylation of the chicken vitellogenin gene: influence of estradiol administration.

    Science.gov (United States)

    Meijlink, F C; Philipsen, J N; Gruber, M; Ab, G

    1983-01-01

    The degree of methylation of the chicken vitellogenin gene has been investigated. Upon induction by administration of estradiol to a rooster, methyl groups at specific sites near the 5'-end of the gene are eliminated. The process of demethylation is slower than the activation of the gene. Demethylation is therefore probably not a prerequisite to gene transcription. At least two other sites in the coding region of the gene are methylated in the liver of estrogenized roosters, but not in the liver of a laying hen, where the gene is naturally active. Images PMID:6298743

  15. Analogues of estradiol as potential breast tumor imaging agents

    International Nuclear Information System (INIS)

    Gibson, R.E.; Rzeszotarski, W.J.; Ferriera, N.L.; Jagoda, E.M.; Reba, R.C.; Eckelman, W.C.

    1984-01-01

    The radioiodinated analogue of estradiol, 11β-methoxy-17α-[/sup 125/I]iodovinylestradiol (MIVE/sub 2/), has been shown to be a good candidate for the imaging of estrogen dependent breast tumors. Although there has been no extensive study on the sensitivity of radiotracers of this type, the authors have not observed localization of the radiotracer in metastatic lesions containing less than 20 fmole estrogen receptor/mg protein or in bone metasteses. In order to improve the sensitivity, they have examined several structural analogues of moxestrol (the parent structure for MIVE/sub 2/) for affinity to the ER isolated from immature rat uterus. The 11β-ethyl analogue (EEE/sub 2/) of ethynyl estradiol (EE/sub 2/) exhibits the highest affinity with the 11β-methyl analogue second best. Although the lipophilicity is also very high this compound should not be much more lipophilic than 16-iodoestradiol or MIVE/sub 2/ since the introduction of iodine increases the log P by greater than 1. The distribution of the tritiated derivative of EEE/sub 2/ is under study

  16. An improved method for estradiol-17B radioimmunoassay

    International Nuclear Information System (INIS)

    El-Banna, I.M.; El-Asrag, H.A.; Gamal, M.H.

    1991-01-01

    This work describes an improved radioimmunoassay (RIA) of serum estradiol-17 B (E) using locally generated immuno-chemicals. Estradiol hemisuccinate (E -3-H S) was prepared and conjugated to bovine serum albumin (BSA). The obtained conjugate; E 3-H S: BSA, hadλ max at 280 mu and the steroid BSA molar ratio was 25:1. The immunogen was injected subcutaneously in New Zealand rabbits and large amount of antiserum was harvested with 1 : 10500 antibody titre. The antibody cross reactions with estrone (E ), estriol (E ) and progesterone (P) were determined. Blood samples were collected from cycling Osemi ewes during follicular phase, pregnant ewes near term and daily from a cycling ewe over two consecutive estrous cycles. Serum samples were analysed for E both directly and after diethyl ether extraction (DE). The higher E values were found in the direct assay for pregnant ewes. The direct serum minnature RIA system, described herein, was found to be specific, sensitive, precise and economic.5 fig. 2 tab

  17. Direct radioimmunoassay of 17. beta. -estradiol in ether extracts of bovine

    Energy Technology Data Exchange (ETDEWEB)

    Medina, M.B.

    Anabolic estrogens such as 17..beta..-estradiol or 17..beta..-estradiol benzoate are used to promote growth and increase feed efficiency in food-producing cattle. This paper describes a technique to produce a more specific antibody to 17..beta..-estradiol by intradermal immunization using microquantities of 6-(carboxymethyl)-17..beta..-estradiol oxime bovine serum albumin and the development of a radioimmunoassay (RIA) procedure to measure directly the amounts of 17..beta..-estradiol in ether extracts of bovine serum without using cleanup procedures. Results demonstrated that a specific and sensitive antibody was produced, and a titer of 1:10,000 was used in the RIA procedure. Antibody cross-reactivity with ..beta..-estradiol metabolites and other anabolic estrogens was negligible. The untreated bovine sera showed 0-24 pg of apparent 17..beta..-estradiol/mL, while 0-31 pg/mL total estrogens had been reported in the literature. This assay can measure 5-100 pg in 20-250..mu..L/sample. This method can be used before or immediately after slaughter to monitor the residual amounts of estradiol used in the treatment of cattle.

  18. Direct radioimmunoassay of 17β-estradiol in ether extracts of bovine

    International Nuclear Information System (INIS)

    Medina, M.B.

    1986-01-01

    Anabolic estrogens such as 17β-estradiol or 17β-estradiol benzoate are used to promote growth and increase feed efficiency in food-producing cattle. This paper describes a technique to produce a more specific antibody to 17β-estradiol by intradermal immunization using microquantities of 6-(carboxymethyl)-17β-estradiol oxime bovine serum albumin and the development of a radioimmunoassay (RIA) procedure to measure directly the amounts of 17β-estradiol in ether extracts of bovine serum without using cleanup procedures. Results demonstrated that a specific and sensitive antibody was produced, and a titer of 1:10,000 was used in the RIA procedure. Antibody cross-reactivity with β-estradiol metabolites and other anabolic estrogens was negligible. The untreated bovine sera showed 0-24 pg of apparent 17β-estradiol/mL, while 0-31 pg/mL total estrogens had been reported in the literature. This assay can measure 5-100 pg in 20-250μL/sample. This method can be used before or immediately after slaughter to monitor the residual amounts of estradiol used in the treatment of cattle

  19. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  20. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  1. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  2. Effects of estradiol on radiation-induced apoptosis in immunocytes of mouse

    International Nuclear Information System (INIS)

    Wu Wei; Yang Rujun; Kong Xiantao; Zhang Lingzhen; Li Bolong; Cai Jianming

    2000-01-01

    Objective: To assess the effects of estradiol on 60 Co γ-radiation induced apoptosis of splenic lymphocytes and thymocytes, and surface molecule expression of splenic lymphocytes. Methods: Mice were whole body irradiated with 4.0 Gy γ-rays. By flow cytometry and electrophoretic analysis of DNA, the changes in apoptosis of mouse immunocytes were determined. The splenic lymphocytes were analyzed by flow cytometry with fluorescent monoclonal antibodies. Results: 10 days after administration of estradiol, the characteristic DNA ladder in mice 8h after irradiation was minor than in mice without estradiol administration,indicating that the apoptotic rate reduced on flow cytometry. CD4+ T cells, CD8+ T cells and IgM+ B cells up regulated Fas, CD25 and CD69 expression, but did not so in the estradiol treated mice. Conclusion: Estradiol can block CD25, CD69 and Fas overexpression, thereby inhibiting Fas mediated apoptosis induced by γ-irradiation

  3. Estradiol-promoted accumulation of receptor in nuclei of porcine endometrium cells. Immunogold electron microscopy of resting and estradiol-stimulated cells.

    Science.gov (United States)

    Sierralta, W D; Jakob, F; Thole, H; Engel, P; Jungblut, P W

    1992-01-01

    Endometrium was collected by curettage from castrated pigs, either untreated or exposed to estradiol in vivo by intrauterine injection, and processed for electron microscopy. The resin LR Gold was used for embedding, and sections were floated on droplets of 10 nm diameter gold particles, coated with the immunoglobulin-G1 (IgG1) fraction or its Fab2 fragment of a monospecific polyclonal antiserum raised in goats against the C-terminal half of the estradiol receptor. On average, only one gold particle per microns 2 became attached in the cytoplasmic area of untreated cells, whereas four were found over the nuclear area. These figures rose to 2-3/microns 2 and 15-26/microns 2, respectively, within 10 min after exposure to estradiol. The labeling intensities of nuclei in cell clusters and of coprocessed nuclei released from cells ruptured during curettage were identical in all situations. Nuclear pores were frequently tagged after estradiol treatment. The proportions of tagging densities in nuclei of untreated and estradiol-exposed cells corresponded to those of receptor contents measured in extracts of isolated nuclei by ligand binding. This correlation was not seen for the cytoplasmic compartment of untreated cells, the scarce tagging of which is interpreted by hidden antigenic determinants. Our morphological analyses support the conclusions drawn from biochemical data (Sierralta et al., 1992) of an estradiol-promoted translocation of receptor from the cytoplasm into the nucleus.

  4. Estradiol Synthesis in Gut-Associated Lymphoid Tissue: Leukocyte Regulation by a Sexually Monomorphic System.

    Science.gov (United States)

    Oakley, Oliver R; Kim, Kee Jun; Lin, Po-Ching; Barakat, Radwa; Cacioppo, Joseph A; Li, Zhong; Whitaker, Alexandra; Chung, Kwang Chul; Mei, Wenyan; Ko, CheMyong

    2016-12-01

    17β-estradiol is a potent sex hormone synthesized primarily by gonads in females and males that regulates development and function of the reproductive system. Recent studies show that 17β-estradiol is locally synthesized in nonreproductive tissues and regulates a myriad of events, including local inflammatory responses. In this study, we report that mesenteric lymph nodes (mLNs) and Peyer's patches (Pps) are novel sites of de novo synthesis of 17β-estradiol. These secondary lymphoid organs are located within or close to the gastrointestinal tract, contain leukocytes, and function at the forefront of immune surveillance. 17β-estradiol synthesis was initially identified using a transgenic mouse with red fluorescent protein coexpressed in cells that express aromatase, the enzyme responsible for 17β-estradiol synthesis. Subsequent immunohistochemistry and tissue culture experiments revealed that aromatase expression was localized to high endothelial venules of these lymphoid organs, and these high endothelial venule cells synthesized 17β-estradiol when isolated and cultured in vitro. Both mLNs and Pps contained 17β-estradiol with concentrations that were significantly higher than those of peripheral blood. Furthermore, the total amount of 17β-estradiol in these organs exceeded that of the gonads. Mice lacking either aromatase or estrogen receptor-β had hypertrophic Pps and mLNs with more leukocytes than their wild-type littermates, demonstrating a role for 17β-estradiol in leukocyte regulation. Importantly, we did not observe any sex-dependent differences in aromatase expression, 17β-estradiol content, or steroidogenic capacity in these lymphoid organs.

  5. Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier

    Directory of Open Access Journals (Sweden)

    Natan Roberto de Barros

    2015-01-01

    Full Text Available The aim of this study was to design a compound transdermal patch containing diclofenac potassium (Dic-K using natural rubber latex (NRL biomembrane. The NRL from Hevea brasiliensis is easily manipulated and low cost and presents high mechanical resistance. It is a biocompatible material which can stimulate natural angiogenesis and is capable of adhering cells on its surface. Recent researches have used the NRL for Transdermal Drug Delivery Systems (TDDSs. Dic-K is used for the treatment of rheumatoid arthritis and osteoarthritis and pain relief for postoperative and posttraumatic cases, as well as inflammation and edema. Results showed that the biomembrane can release Dic-K for up to 216 hours. The kinetics of the Dic-K release could be fitted with double exponential function. X-ray diffraction and Fourier Transform Infrared (FTIR spectroscopy show some interaction by hydrogen bound. The results indicated the potential of the compound patch.

  6. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route.

    Science.gov (United States)

    Puri, Ashana; Sivaraman, Arunprasad; Zhang, Wei; Clark, Meredith R; Banga, Ajay K

    2017-01-01

    Constant efforts for HIV prevention using antiretroviral drugs, pre- and postexposure prophylactic agents, and microbicides are being made by researchers. Drug-delivery systems such as oral tablets and coitally dependent vaginal gels are short acting, require daily application, and are associated with user adherence issues, whereas the coitally independent systems such as injectables and biodegradable implants are long acting, lasting several months, during which time the termination of prophylaxis is impractical in case of adverse effects. An effective drug-delivery system to be used for an intermediate duration, if available, would be an attractive alternative option for users in terms of adherence. Transdermal delivery systems, overcoming most of the limitations of the other routes of administration and aiming to provide sustained delivery of drugs through skin, may be explored for HIV prevention. Passive and physical enhancement techniques may be designed strategically to improve the transdermal delivery of HIV preventive agents.

  7. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  8. Acute Intoxication by Transdermal Opium Application in Infants: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Iraj Sedighi

    2012-05-01

    Full Text Available Background: Acute opium intoxication is one of the most common causes of poisoning in children in Iran. Although most cases are accidental, traditional misuse of opium for symptomatic therapy of various childhood diseases also contributes to high rate of opium intoxication in Iran. Cases: Here, we report two cases of opium intoxication in infants resulted from transdermal application of opium on burned skin. To our knowledge this is the first case report of intoxication from transdermal misuse of opium. Conclusion: Health care providers should be aware about signs and symptoms of opium intoxication in children. Opium intoxication should be suspected in each child with history of a recent burn injury that presented with decreased level of consciousness.

  9. Drug profile: transdermal rivastigmine patch in the treatment of Alzheimer disease.

    Science.gov (United States)

    Emre, Murat; Bernabei, Roberto; Blesa, Rafael; Bullock, Roger; Cunha, Luis; Daniëls, Hugo; Dziadulewicz, Edward; Förstl, Hans; Frölich, Lutz; Gabryelewicz, Tomasz; Levin, Oleg; Lindesay, James; Martínez-Lage, Pablo; Monsch, Andreas; Tsolaki, Magda; van Laar, Teus

    2010-08-01

    Cholinesterase inhibitors constitute one of the mainstays of treatment of Alzheimer disease (AD). Gastrointestinal side effects, difficulty accessing therapeutic doses and poor patient compliance have been identified as barriers to effective treatment with these substances. The rivastigmine transdermal patch provides continuous delivery of drug through the skin into the bloodstream, avoiding the fluctuations in plasma concentration associated with oral administration. This pharmacokinetic profile is associated with reduced side effects, resulting in easier access to expected target doses. These benefits, along with other practical advantages of the transdermal patch, may contribute to enhanced patient compliance. Here, we present a review of the current literature on rivastigmine patch, and offer advice based on our own collective clinical experience. Rivastigmine patch provides an efficient option for managing patients with AD, to be considered among the first line therapies for the disease.

  10. Flexible and Stretchable Microneedle Patches with Integrated Rigid Stainless Steel Microneedles for Transdermal Biointerfacing.

    Science.gov (United States)

    Rajabi, Mina; Roxhed, Niclas; Shafagh, Reza Zandi; Haraldson, Tommy; Fischer, Andreas Christin; Wijngaart, Wouter van der; Stemme, Göran; Niklaus, Frank

    2016-01-01

    This paper demonstrates flexible and stretchable microneedle patches that combine soft and flexible base substrates with hard and sharp stainless steel microneedles. An elastomeric polymer base enables conformal contact between the microneedle patch and the complex topography and texture of the underlying skin, while robust and sharp stainless steel microneedles reliably pierce the outer layers of the skin. The flexible microneedle patches have been realized by magnetically assembling short stainless steel microneedles into a flexible polymer supporting base. In our experimental investigation, the microneedle patches were applied to human skin and an excellent adaptation of the patch to the wrinkles and deformations of the skin was verified, while at the same time the microneedles reliably penetrate the surface of the skin. The unobtrusive flexible and stretchable microneedle patches have great potential for transdermal biointerfacing in a variety of emerging applications such as transdermal drug delivery, bioelectric treatments and wearable bio-electronics for health and fitness monitoring.

  11. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    Science.gov (United States)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  12. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  13. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  14. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  15. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  16. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-01-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  17. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  18. Nanoethosomal transdermal delivery of vardenafil for treatment of erectile dysfunction: optimization, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Fahmy UA

    2015-11-01

    Full Text Available Usama A Fahmy Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Vesicular drug delivery systems have recently gained attention as a way of improving dosing accuracy for drugs with poor transdermal permeation. The current study focuses on utilization of the natural biocompatible vesicles to formulate vardenafil nanoethosomes (VRD-NE, for the enhancement of their transdermal permeation and bioavailability. Fifteen formulations were prepared by thin-layer evaporation technique according to Box–Behnken design to optimize formulation variables. The effects of lipid composition, sonication time, and ethanol concentration on particle size and encapsulation efficiency were studied. The diffusion of vardenafil (VRD from the prepared nanoethosomes specified by the design was carried out using automated Franz diffusion cell apparatus. The optimized formula was investigated for in vivo pharmacokinetic parameters compared with oral VRD suspension. Confocal laser scanning microscopy images were used to confirm enhanced diffusion release of VRD in rat skin. The results showed that the optimized formula produced nanoethosomes with an average size of 128 nm and an entrapment efficiency of 76.23%. VRD-NE provided a significant improvement in permeation with an enhancement ratio of 3.05-fold for a film made with optimally formulated VRD-NE compared with a film made with VRD powder. The transdermal bioavailability of VRD from the nanoethosome film was approximately twofold higher than the oral bioavailability from an aqueous suspension. VRD-NE thus provide a promising transdermal drug delivery system. As a result, management of impotence for a longer duration could be achieved with a reduced dosage rate that improves patient tolerability and compliance for the treatment of erectile dysfunction.Keywords: Box–Behnken design, impotence, vesicles, nanoparticles

  19. Preparation and the in vitro evaluation of nanoemulsion system for the transdermal delivery of granisetron hydrochloride.

    Science.gov (United States)

    Zheng, Wen-wu; Zhao, Ling; Wei, Yu-meng; Ye, Yun; Xiao, Shun-han

    2010-08-01

    The objective of this study was to develop and evaluate nanoemulsion system for transdermal delivery of granisetron hydrochloride. Pseudo-ternary phase diagram was constructed to ascertain the concentration range of components of nanoemulsion composed of isopropyl myristate (IPM) as an oil phase, tween 85 as surfactant, ethanol as cosurfactant, water as aqueous phase. The effects of the content of IPM as an oil phase and n-methyl pyrrolidone (NMP) as transdermal enhancer on rat skin permeation of granisetron hydrochloride nanoemulsion were studied in vitro. The results showed that the mean particle size of nanoemulsion ranged from 50.4+/-1.5 to 82.4+/-0.9 nm with homogeneous size distribution. The resulted optimum formulation composed of 2.5% granisetron hydrochloride, 4% IPM, 40% tween 85/ethanol (1 : 1) and 10% NMP showed that the skin permeation rate was the highest (85.39+/-2.90 microg/cm(2)/h) and enhancement of drug permeability was 4.1-fold for transdermal delivery of granisetron hydrochloridein comparison with the control group (20% of tween 85 and 20% of ethanol micelle solution containing 2.5% of granisetron hydrochloride without IPM), and cumulative permeation amount was the highest (891.8+/-2.86 microg/cm(2)) with the shortest lag time (0.11+/-0.02 h) and was stable for at least 12 months. Therefore, the nanoemulsion system developed in this study offers a promising vehicle for the transdermal delivery system of granisetron hydrochloride, which may be as effective as oral or intravenous dosage forms and avoid some difficulties associated with these dosage forms.

  20. Use and cardiovascular safety of transdermal and other granisetron preparations in cancer management

    OpenAIRE

    Mason, Jay W; Moon, Thomas E

    2013-01-01

    Jay W Mason,1 Thomas E Moon2 1School of Medicine, University of Utah, Salt Lake City, UT, 2Tarizona eHealth Services, Inc, Emeryville, CA, USA Abstract: 5-HT3 antagonists have been available as oral and intravenous preparations for decades. The availability more recently of transdermal granisetron and the anticipated availability of a subcutaneous granisetron preparation have provided helpful alternatives to patients, and these preparations have been shown to have less potential to prolong Q...

  1. Enhanced Topical and Transdermal Delivery of Antineoplastic and Antiviral Acyclic Nucleoside Phosphonate cPr-PMEDAP

    Czech Academy of Sciences Publication Activity Database

    Vávrová, K.; Kovaříková, P.; Školová, B.; Líbalová, M.; Roh, J.; Čáp, R.; Holý, Antonín; Hrabálek, A.

    2011-01-01

    Roč. 28, č. 12 (2011), s. 3105-3115 ISSN 0724-8741 R&D Projects: GA MŠk 1M0508 Grant - others:GA ČR(CZ) GAP207/11/0365 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * antivirals * antineoplastics * permeation enhancer * topical skin application * transdermal delivery Subject RIV: CC - Organic Chemistry Impact factor: 4.093, year: 2011

  2. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Tridib [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Goswami, Luna [KIIT School of Biotechnology, KIIT University Campus XI, Patia, Bhubaneswar 751024, Orissa (India); Chattopadhyay, Dipankar [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Bandyopadhyay, Abhijit, E-mail: abpoly@caluniv.ac.in [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2011-08-15

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  3. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    Science.gov (United States)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-08-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  4. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    International Nuclear Information System (INIS)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-01-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  5. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  6. Physical, chemical and biological studies of gelatin/chitosan based transdermal fims with embedded silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sneha Paul

    2015-12-01

    Full Text Available Objective: To study the physical, chemical and biological properties of composite chitosangelatin transdermal film along with silver nanoparticles as binding agent and determine the compatibility of the prepared amalgamation towards wound management. Methods: Transdermal film preparations were done by solvent casting method containing different concentrations of biological synthesized silver nanoparticles. The films were characterized by using scanning electron microscope for their morphology and the determination of silver metal was done by using inductively coupled plasma atomic emission spectroscopy. Then a quantity of silver nanoparticles was further proceeded by physiochemical parameters (weight, thickness, temperature, solubility, absorption, tensile strength, in vitro drug release and skin permeation and biological parameters studies (anti-microbial, cytotoxicity and reactive oxygen species. Results: The film prepared by utilizing 2 g of gelatin and 0.5 g of chitosan exhibited better results. The physiochemical parameters studies revealed higher concentration of silver nanoparticles would give better results. In vitro drug release studies through dialysis and skin permeation showed the release of drug versus time (h. These films had shown excellent inhibition against Streptococcus and Escherichia coli species. Cytotoxicity study by MTT indicated the mild toxicity existed as the concentration of silver nanoparticles increased. Reactive oxygen species generation studies of transdermal film by using 2'7'-dichlorofluorescein diacetate assay demonstrated that the fluorescent cells were found in the higher concentration, which indicated cell damage (reactive oxygen species generated. Conclusions: Based on these observations, in vitro performances against various characteristics of transdermal film, would be utilized as a distinct dressing material and patches accessible in market.

  7. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia Cupana.

    Science.gov (United States)

    Heard, Charles M; Johnson, Sarah; Moss, Gary; Thomas, Chris P

    2006-07-06

    Extracts of guarana (Paullinia cupana) feature as putatively stimulating ingredients in a number of foods, drinks and dietary/herbal supplements. The objective of this work was to investigate in vitro the transdermal delivery of the major pharmacologically active compounds contained in guarana extract. Saturated solutions of guarana were prepared in polyethylene glycol 400 (PEG400), propylene glycol (PG) and H(2)O at 32 degrees C. Guarana extract was also formulated in Duro-tak 2287 transdermal adhesive in a range of concentrations and the diffusional release was determined in addition to adhesive properties. Transdermal delivery across full thickness pig ear skin was investigated in vitro using Franz-type diffusion cells, with reverse-phase HPLC being used for the quantification of the permeation of theobromine (TB), theophylline (TP), (+)-catechin (C) and caffeine (CF). Based upon a combination of release and adhesive property data a patch containing 5.55 mg guarana extract cm(-2) was deemed optimal. The general trend for the delivery of the 4 analytes was: water >5.55 mg cm(-2) patch approximately PG>PEG400. For CF the greatest steady state flux was obtained from the water vehicle: 19 microg cm(-2)h(-1), with approximately 420 microg cm(-2) permeating after 24h. This was some 6x times more than from the drug-in-adhesive patch and 10x greater than PG, a well-known penetration enhancer, and 50x that of the 'regular' excipient PEG400. A water vehicle also provided the greatest delivery of TB (0.45 microg cm(-2) h(-1)), TP (0.022 microg cm(-2) h(-1)), and C (0.10 microg cm(-2) h(-1)). An inverse relationship was noted between lipophilicity and k(p) in each vehicle. The simultaneous transdermal delivery of the major actives of guarana was established, with permeation rates being highly concentration and vehicle dependent.

  8. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization

    Directory of Open Access Journals (Sweden)

    S.K Madishetti

    2010-09-01

    Full Text Available "nBackground and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, which is widely used in the treatment of motion-sickness. The pharmacokinetic parameters make DOM a suitable candidate for transdermal delivery. The purpose of the present investigation was to develop transdermal delivery systems for DOM and to evaluate their physicochemical characteristics, in vitro release an ex vivo permeation through rat abdominal skin and their mechanical properties. "nMethods: Bilayered matrix type transdermal drug delivery systems (TDDS of DOM were prepared by film casting technique using hydroxypropyl methyl cellulose as primary and Eudragit RL 100 as secondary layers. Brij-35 was incorporated as a solubilizer, d-limonene and propylene glycol were employed as permeation enhancer and plasticizer respectively. The prepared TDDS were extensively evaluated for in vitro release, moisture absorption, moisture content, water vapor transmission, ex vivo permeation through rat abdominal skin, mechanical properties and stability studies. The physicochemical interaction between DOM and polymers were investigated by Differential Scanning Calorimetry (DSC and Fourier Transform Infrared Spectroscopy (FTIR. "nResults: All the formulations exhibited satisfactory physicochemical and mechanical characteristics. The optimized formulation F6 showed maximum cumulative percentage of drug release (90.7%, permeation (6806.64 μg in 24 hrs, flux (86.02 μg /hr/cm2 and permeation coefficient of 0.86x10-2 cm/hr. Values of tensile strength (4.34 kg/mm2 and elastic modulus (5.89 kg/cm2 revealed that formulation F6 was strong but not brittle. DSC and FTIR studies showed no evidence of interaction between the drug and polymers. A shelf life of 2 years is predicted for the TDDS. Conclusions: Domperidone bilayered matrix type transdermal therapeutic systems could be prepared with the required flux and suitable mechanical properties.

  9. The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs

    Directory of Open Access Journals (Sweden)

    Julia Nguyen

    2016-11-01

    Full Text Available The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h compared to passive delivery (12.83 ± 6.30 µg/cm2/h. For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h. Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.

  10. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.

    Directory of Open Access Journals (Sweden)

    Esther Shaoul

    Full Text Available Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts, comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max of 30 minutes and C(max 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.

  11. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs

    OpenAIRE

    Banks, Stan L.; Pinninti, Raghotham R.; Gill, Harvinder S.; Paudel, Kalpana S.; Crooks, Peter A.; Brogden, Nicole K.; Prausnitz, Mark R.; Stinchcomb, Audra L.

    2010-01-01

    Controlled-release delivery of 6-β-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. Micro...

  12. The Effect of Transdermal Scopolamine for the Prevention of Postoperative Nausea and Vomiting

    Directory of Open Access Journals (Sweden)

    Maria A. Antor

    2014-04-01

    Full Text Available Postoperative nausea and vomiting is one of the most common and undesirable complaints recorded in as many as 70%-80% of high-risk surgical patients. The current prophylactic therapy recommendations for PONV management stated in the Society of Ambulatory Anesthesia guidelines should start with monotherapy and patients at moderate to high risk, a combination of antiemetic medication should be considered. Consequently, if rescue medication is required, the antiemetic drug chosen should be from a different therapeutic class and administration mode than the drug used for prophylaxis. The guidelines restrict the use of dexamethasone, transdermal scopolamine, aprepitant, and palonosetron as rescue medication 6 hours after surgery. In an effort to find a safer and reliable therapy for postoperative nausea and vomiting, new drugs with antiemetic properties and minimal side effects are needed, and scopolamine may be considered an effective alternative. Scopolamine is a belladonna alkaloid, α-(hydroxymethyl benzene acetic acid 9-methyl-3-oxa-9-azatricyclo non-7-yl ester, acting as a nonselective muscarinic antagonist and producing both peripheral antimuscarinic and central sedative, antiemetic, and amnestic effects. The empirical formula is C17H21NO4 and its structural formula is a tertiary amine L-(2-scopolamine (tropic acid ester with scopine; MW = 303.4. Scopolamine became the first drug commercially available as a transdermal therapeutic system used for extended continuous drug delivery during 72 hours. Clinical trials with transdermal scopolamine have consistently demonstrated its safety and efficacy in postoperative nausea and vomiting. Thus, scopolamine is a promising candidate for the management of postoperative nausea and vomiting in adults as a first line monotherapy or in combination with other drugs. In addition, transdermal scopolamine might be helpful in preventing postoperative discharge nausea and vomiting owing to its long

  13. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  14. Nonaqueous gel for the transdermal delivery of a DTPA penta-ethyl ester prodrug.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Sueda, Katsuhiko; Yang, Yu-Tsai; Pacyniak, Erik K; Kagel, John R; Braun, Brenda A; Zamboni, William C; Mumper, Russell J; Jay, Michael

    2013-04-01

    Diethylenetriamine pentaacetic acid penta-ethyl ester, designated as C2E5, was successfully incorporated into a nonaqueous gel for transdermal delivery. The thermal and rheological properties of a formulation containing 40% C2E5, 20% ethyl cellulose, and 40% Miglyol 840® prepared using the solvent evaporation method demonstrated that the gel had acceptable content uniformity and flow properties. In vitro studies showed that C2E5 was steadily released from the gel at a rate suitable for transdermal delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved significantly higher plasma exposures of several active metabolites compared with neat C2E5 oil at the same dose level. The results suggest that transdermal delivery of a chelator prodrug is an effective radionuclide decorporation strategy by delivering chelators to the circulation with a pharmacokinetic profile that is more consistent with the biokinetic profile of transuranic elements in contaminated individuals.

  15. Formulation Design and Development of a Unani Transdermal Patch for Antiemetic Therapy and Its Pharmaceutical Evaluation

    Directory of Open Access Journals (Sweden)

    Mohd Nauman Saleem

    2016-01-01

    Full Text Available The Transdermal Drug Delivery System (TDDS is one of the novel routes for systemic delivery of drugs through intact skin. A transdermal patch (TP is a medicated patch that is placed on skin for delivery of medication through skin into the blood stream. The aim of present study was to formulate and evaluate a Unani transdermal patch that could be used for antiemetic therapy. The incorporation of Unani ingredients, namely, Khardal (Brassica nigra, Zanjabeel (Zingiber officinale, Podina (Mentha arvensis, and Sirka (Vinegar were envisaged. The TP was prepared by solvent evaporation technique and was evaluated for organoleptic characteristics and other physicochemical properties, such as thickness, weight uniformity, folding endurance, moisture content, drug content, and tolerability and acceptability of patch. The in vitro permeation study of the patch was carried out through Franz diffusion cell using egg shell membrane as barrier membrane. Phosphate buffer pH 7.4 was used as dissolution medium and the temperature was maintained at 37 ± 1°C. The in vitro permeation study of the prepared TP indicated a time dependent increase in drug release throughout the study. The percentage of cumulative drug release was found to be 77.38% in 24 hours. The study shows a new approach to work in Unani pharmaceutics.

  16. Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: in vitro and in vivo evaluation.

    Science.gov (United States)

    El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A

    2014-12-01

    This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.

  17. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  18. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  19. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  20. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Science.gov (United States)

    Luo, Huafei; Zhu, Zhuangzhi; Wu, Yubo; Luo, Jing; Wang, Hao

    2014-01-01

    The objective of the present work was to develop a metered dose transdermal spray (MDTS) formulation for transdermal delivery of dexketoprofen (DE). DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE) content was developed incorporating 7% (w/w, %) DE, 7% (v/v, %) isopropyl myristate (IPM), and 93% (v/v, %) ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE. PMID:24660066

  1. A New Combination of Testosterone and Nestorone Transdermal Gels for Male Hormonal Contraception

    Science.gov (United States)

    Ilani, Niloufar; Roth, Mara Y.; Amory, John K.; Swerdloff, Ronald S.; Dart, Clint; Page, Stephanie T.; Bremner, William J.; Sitruk-Ware, Regine; Kumar, Narender; Blithe, Diana L.

    2012-01-01

    Context: Combinations of testosterone (T) and nestorone (NES; a nonandrogenic progestin) transdermal gels may suppress spermatogenesis and prove appealing to men for contraception. Objective: The objective of the study was to determine the effectiveness of T gel alone or combined with NES gel in suppressing spermatogenesis. Design and Setting: This was a randomized, double-blind, comparator clinical trial conducted at two academic medical centers. Participants: Ninety-nine healthy male volunteers participated in the study. Interventions: Volunteers were randomized to one of three treatment groups applying daily transdermal gels (group 1: T gel 10 g + NES 0 mg/placebo gel; group 2: T gel 10 g + NES gel 8 mg; group 3: T gel 10 g + NES gel 12 mg). Main Outcome Variable: The main outcome variable of the study was the percentage of men whose sperm concentration was suppressed to 1 million/ml or less by 20–24 wk of treatment. Results: Efficacy data analyses were performed on 56 subjects who adhered to the protocol and completed at least 20 wk of treatment. The percentage of men whose sperm concentration was 1 million/ml or less was significantly higher for T + NES 8 mg (89%, P male range throughout the treatment period. Adverse effects were minimal in all groups. Conclusion: A combination of daily NES + T gels suppressed sperm concentration to 1 million/ml or less in 88.5% of men, with minimal adverse effects, and may be further studied as a male transdermal hormonal contraceptive. PMID:22791756

  2. [{sup 11}C]diclofenac sodium: synthesis and PET assessment of transdermal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Debora, E-mail: debora.petroni@ifc.cnr.i [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy); Menichetti, Luca; Sorace, Oreste; Poli, Michela [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy); Vanasia, Massimo [Gienne Pharma, Via Lorenteggio 270/A, 20152 Milan (Italy); Salvadori, Piero A. [CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa (Italy)

    2011-02-15

    The aim of this work was to study the feasibility of using Positron Emission Tomography (PET) imaging as a new tool to detect transdermal penetration of topical drugs in human subjects. The compound used in the study is sodium 2-[(2,6-dichlorophenyl)amino]phenyl]acetate, better known as diclofenac sodium. This molecule belongs to the family of non-steroidal anti-inflammatory drugs and is considered one of the first choices among non-steroidal anti-inflammatory drugs for the treatment of inflammatory diseases; it is widely used and commercially present in a large number of pharmaceutical forms and formulations. {sup 11}C-labeled diclofenac has been synthesized and coformulated, as an internal indicator, with a proprietary preparation based on the use of a sprayer. The radiolabeled preparation was topically administered to healthy volunteers, and PET imaging was used to evaluate transdermal penetration. Results obtained have demonstrated the efficacy of PET and radiolabeled tracers for the evaluation of transdermal penetration of active pharmaceutical ingredients as topical formulations.

  3. [11C]diclofenac sodium: synthesis and PET assessment of transdermal penetration

    International Nuclear Information System (INIS)

    Petroni, Debora; Menichetti, Luca; Sorace, Oreste; Poli, Michela; Vanasia, Massimo; Salvadori, Piero A.

    2011-01-01

    The aim of this work was to study the feasibility of using Positron Emission Tomography (PET) imaging as a new tool to detect transdermal penetration of topical drugs in human subjects. The compound used in the study is sodium 2-[(2,6-dichlorophenyl)amino]phenyl]acetate, better known as diclofenac sodium. This molecule belongs to the family of non-steroidal anti-inflammatory drugs and is considered one of the first choices among non-steroidal anti-inflammatory drugs for the treatment of inflammatory diseases; it is widely used and commercially present in a large number of pharmaceutical forms and formulations. 11 C-labeled diclofenac has been synthesized and coformulated, as an internal indicator, with a proprietary preparation based on the use of a sprayer. The radiolabeled preparation was topically administered to healthy volunteers, and PET imaging was used to evaluate transdermal penetration. Results obtained have demonstrated the efficacy of PET and radiolabeled tracers for the evaluation of transdermal penetration of active pharmaceutical ingredients as topical formulations.

  4. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naren Subbiah

    2017-01-01

    Full Text Available Phospholipid-based deformable nanovesicles (DNVs that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol. AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

  5. Protection against soman and sarin exposure by transdermal physostigmine and scopolamine

    Energy Technology Data Exchange (ETDEWEB)

    Meshulam, Y.; Davidovici, R.; Levy, A.

    1993-05-13

    The purpose of this study was to evaluate the prophylactic efficacy of physostigmine (physo), administered via sustained release (SR) methods, with and without scopolamine, against soman and sarin exposure in guinea-pigs. Transdermal physo pad (3 sq cm/kg; 60-80 ug/sq cm), containing a vehicle based on propionic acid, was applied onto the dorsal back of the animals, 24 hours before exposure to the cholinesterase (ChE) inhibitors. At the time of exposure, physo concentrations in brain and plasma were 3.6 ng/g and 4.1 ng/ml respectively. Brain and whole blood ChE activity were inhibited to 70% and 57% of their original activity. Transdermal physo by itself protected up to 70% of the animals exposed to 1.5 LD(50) of soman or sarin (100% mortality was recorded in the control group). Combining transdermal physo with Scopoderm (by Ciba Geigy Inc.) provided full protection against 1.5 LD(50).

  6. Exposure to Fentanyl After Transdermal Patch Administration for Cancer Pain Management.

    Science.gov (United States)

    Bista, Sudeep R; Haywood, Alison; Hardy, Janet; Norris, Ross; Hennig, Stefanie

    2016-06-01

    This study aimed to describe exposure after fentanyl transdermal patch administration in patients with advanced cancer to quantify variability around the exposure. Patients (n  =  56) with advanced cancer who received transdermal fentanyl (Durogesic®; median dose, 50 μg/h; range, 12-200 μg/h) provided venous blood samples (n  =  163) at various times (0.5-72 hours) during several patch application intervals. Plasma fentanyl concentration was determined (median, 0.9 μg/L; range, 0.04-9.7 μg/L) by high-performance liquid chromatography coupled to tandem mass spectrometry. Pharmacokinetic analysis was performed using nonlinear mixed-effects modeling with NONMEM. A 1-compartment distribution model with first-order absorption and elimination described fentanyl exposure after transdermal patch administration. Fentanyl apparent clearance (between-subject variability [BSV], %) was estimated at 122 L/h/70 kg and 38.5%, respectively. The absorption rate constant was 0.013 h(-1) . Between-occasion variability on apparent clearance was 22.0%, which was lower than BSV, suggesting predictable exposure within the same patient and justifying therapeutic drug monitoring. Except for weight-based dosing, no other patient characteristic could be identified to guide initial fentanyl dose selection in patients with advanced cancer. © 2015, The American College of Clinical Pharmacology.

  7. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma.

    Science.gov (United States)

    Zhou, Wenhu; He, Shiying; Yang, Yijun; Jian, Dan; Chen, Xiang; Ding, Jinsong

    2015-01-01

    The objective of the present study is to formulate and characterize propranolol hydrochloride (PPL · HCl) gel, and to evaluate the efficacy of this formulation in transdermal treatment for superficial infantile hemangioma (IH). The transdermal PPL · HCl gel was prepared by a direct swelling method, which chose hydroxypropyl methylcellulose (HPMC) as the matrix and used terpenes plus alcohols as permeation enhancer. Permeation studies of PPL · HCl were carried out with modified Franz diffusion cells through piglet skin. Our results pointed to that among all studied permeation enhancers, farnesol plus isopropanol was the most effective combination (Q24, 6027.4 ± 563.1 μg/cm(2), ER, 6.8), which was significantly higher than that of control gel (p homemade PPL · HCl oral solution as a control. Clinical studies also confirmed the excellent therapeutic response and few side effects of the PPL · HCl gel. These results suggest that transdermal application of the PPL · HCl gel is an effective and safe formulation in treating superficial IH.

  8. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.

    Science.gov (United States)

    Seong, Keum-Yong; Seo, Min-Soo; Hwang, Dae Youn; O'Cearbhaill, Eoin D; Sreenan, Seamus; Karp, Jeffrey M; Yang, Seung Yun

    2017-11-10

    Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm -2 ) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum.

    Science.gov (United States)

    Guo, Teng; Zhang, Yongtai; Li, Zhe; Zhao, Jihui; Feng, Nianping

    2017-09-12

    A combination method using microneedle (MN) pretreatment and nanostructured lipid carriers (NLCs) was developed to improve the transdermal delivery of therapeutics. The MN treatment of the skin and co-administration of NLCs loaded with total alkaloids isolated from Aconitum sinomontanum (AAS-NLCs) significantly increased the skin permeation of the drugs. Fluorescence imaging confirmed that MNs could provide microchannels penetrating the stratum corneum, and delivery of NLCs through the channels led to their deeper permeation. In vivo studies showed that combination of AAS-NLCs with MNs (AAS-NLCs-MN) in transdermal delivery could improve the bioavailability and maintain stable drug concentrations in the blood. Moreover, AAS-NLCs-MN showed benefits in eliminating paw swelling, decreasing inflammation and pain, and regulating immune function in adjuvant arthritis rats. After administration of AAS-NLCs-MN, no skin irritation was observed in rabbits, and electrocardiograms of rats showed improved arrhythmia. These results indicated that the dual approach combining MN insertion and NLCs has the potential to provide safe transdermal delivery and to improve the therapeutic efficacy through sustained release of AAS.

  10. Preparation and the Biopharmaceutical Evaluation for the Metered Dose Transdermal Spray of Dexketoprofen

    Directory of Open Access Journals (Sweden)

    Wangding Lu

    2014-01-01

    Full Text Available The objective of the present work was to develop a metered dose transdermal spray (MDTS formulation for transdermal delivery of dexketoprofen (DE. DE release from a series of formulations was assessed in vitro. Various qualitative and quantitative parameters like spray pattern, pump seal efficiency test, average weight per metered dose, and dose uniformity were evaluated. The optimized formulation with good skin permeation and an appropriate drug concentration and permeation enhancer (PE content was developed incorporating 7% (w/w, % DE, 7% (v/v, % isopropyl myristate (IPM, and 93% (v/v, % ethanol. In vivo pharmacokinetic study indicated that the optimized formulation showed a more sustainable plasma-concentration profile compared with the Fenli group. The antiinflammatory effect of DE MDTS was evaluated by experiments involving egg-albumin-induced paw edema in rats and xylene-induced ear swelling in mice. Acetic acid-induced abdominal constriction was used to evaluate the anti-nociceptive actions of DE MDTS. Pharmacodynamic studies indicated that the DE MDTS has good anti-inflammatory and anti-nociceptive activities. Besides, skin irritation studies were performed using rat as an animal model. The results obtained show that the MDTS can be a promising and innovative therapeutic system used in transdermal drug delivery for DE.

  11. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.

    Science.gov (United States)

    Banks, Stan L; Pinninti, Raghotham R; Gill, Harvinder S; Paudel, Kalpana S; Crooks, Peter A; Brogden, Nicole K; Prausnitz, Mark R; Stinchcomb, Audra L

    2010-07-01

    Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.

    Science.gov (United States)

    Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin

    2017-11-01

    Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Loneliness depends on salivary estradiol levels in adolescent females.

    Science.gov (United States)

    Fujisawa, Takashi X; Nishitani, Shota; Obara, Tatsuro; Shinohara, Kazuyuki

    2012-01-01

    Loneliness is one of the psychological characteristics in adolescence, during which sex hormones are elevated. The elevation of sex steroid hormones is known to sculpture and remodel neuronal circuits, which cause behavioral characteristics in adolescence. The aim of the present study is to investigate the relationship between loneliness and sex steroid hormones, testosterone (T) and 17β-estradiol (E2). Fifty-eight adolescents (28 boys and 30 girls) participated in this study. The salivary levels of T and E2 were measured by Enzyme-Linked Immunosorbent Assay (ELISA). Loneliness was assessed by the UCLA loneliness scale, which is widely used as a self-administered questionnaire. The results showed that Salivary E2 levels had positive relevance to loneliness in females, whereas there was no relationship in males. Salivary T level was not shown to be relevant with loneliness in either sex group. These findings suggest that E2 has gender specific effects on loneliness in adolescent females.

  14. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women

    Directory of Open Access Journals (Sweden)

    Marcello Maggio

    2015-08-01

    Full Text Available Background. In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2 in a cohort of late post-menopausal women. Methods. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998–2000 by High-Performance Liquid Chromatography. Estradiol and testosterone (T levels were assessed by Radioimmunometry (RIA and testosterone-to-estradiol ratio (T/E2, as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1 and further adjusted for other confounders including Body Mass Index (BMI BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2 were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. Results. After adjustment for age, α-carotene (β ± SE = −0.01 ± 0.004, p = 0.02 and β-carotene (β ± SE = −0.07 ± 0.02, p = 0.0007 were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01. After adjustment for other confounders (Model 2, the inverse relationship between α-carotene (β ± SE = −1.59 ± 0.61, p = 0.01, β-carotene (β ± SE = −0.29

  15. Relationship between Carotenoids, Retinol, and Estradiol Levels in Older Women.

    Science.gov (United States)

    Maggio, Marcello; de Vita, Francesca; Lauretani, Fulvio; Bandinelli, Stefania; Semba, Richard D; Bartali, Benedetta; Cherubini, Antonio; Cappola, Anne R; Ceda, Gian Paolo; Ferrucci, Luigi

    2015-08-05

    In vitro evidence suggests anti-estrogenic properties for retinol and carotenoids, supporting a chemo-preventive role of these phytochemicals in estrogen-dependent cancers. During aging there are significant reductions in retinol and carotenoid concentrations, whereas estradiol levels decline during menopause and progressively increase from the age of 65. We aimed to investigate the hypothesis of a potential relationship between circulating levels of retinol, carotenoids, and estradiol (E2) in a cohort of late post-menopausal women. We examined 512 women ≥ 65 years from the InCHIANTI study. Retinol, α-caroten, β-caroten, β-criptoxantin, lutein, zeaxanthin, and lycopene levels were assayed at enrollment (1998-2000) by High-Performance Liquid Chromatography. Estradiol and testosterone (T) levels were assessed by Radioimmunometry (RIA) and testosterone-to-estradiol ratio (T/E2), as a proxy of aromatase activity, was also calculated. General linear models adjusted for age (Model 1) and further adjusted for other confounders including Body Mass Index (BMI) BMI, smoking, intake of energy, lipids, and vitamin A; C-Reactive Protein, insulin, total cholesterol, liver function, and testosterone (Model 2) were used to investigate the relationship between retinol, carotenoids, and E2 levels. To address the independent relationship between carotenoids and E2 levels, factors significantly associated with E2 in Model 2 were also included in a fully adjusted Model 3. After adjustment for age, α-carotene (β ± SE = -0.01 ± 0.004, p = 0.02) and β-carotene (β ± SE = -0.07 ± 0.02, p = 0.0007) were significantly and inversely associated with E2 levels. α-Carotene was also significantly and positively associated with T/E2 ratio (β ± SE = 0.07 ± 0.03, p = 0.01). After adjustment for other confounders (Model 2), the inverse relationship between α-carotene (β ± SE = -1.59 ± 0.61, p = 0.01), β-carotene (β ± SE = -0.29 ± 0.08, p = 0.0009), and E2 persisted whereas the

  16. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High estradiol levels improve false memory rates and meta-memory in highly schizotypal women.

    Science.gov (United States)

    Hodgetts, Sophie; Hausmann, Markus; Weis, Susanne

    2015-10-30

    Overconfidence in false memories is often found in patients with schizophrenia and healthy participants with high levels of schizotypy, indicating an impairment of meta-cognition within the memory domain. In general, cognitive control is suggested to be modulated by natural fluctuations in oestrogen. However, whether oestrogen exerts beneficial effects on meta-memory has not yet been investigated. The present study sought to provide evidence that high levels of schizotypy are associated with increased false memory rates and overconfidence in false memories, and that these processes may be modulated by natural differences in estradiol levels. Using the Deese-Roediger-McDermott paradigm, it was found that highly schizotypal participants with high estradiol produced significantly fewer false memories than those with low estradiol. No such difference was found within the low schizotypy participants. Highly schizotypal participants with high estradiol were also less confident in their false memories than those with low estradiol; low schizotypy participants with high estradiol were more confident. However, these differences only approached significance. These findings suggest that the beneficial effect of estradiol on memory and meta-memory observed in healthy participants is specific to highly schizotypal individuals and might be related to individual differences in baseline dopaminergic activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The role of histamine in estradiol-induced conditioned consumption reductions.

    Science.gov (United States)

    Hintiryan, Houri; Hayes, Unja L; Chambers, Kathleen C

    2005-01-31

    Conditioned consumption reductions (CCRs) develop toward novel taste stimuli as a consequence of associating those tastes with certain physiological changes. Few studies have focused on the neurochemical basis of this learned behavior. The purpose of these experiments was to reexamine the role of histamine in CCRs elicited by estradiol. Previous studies have suggested that histamine mediates CCRs induced by radiation, centrifugal rotation, and estradiol. However, because the animals were trained in a drug state, but tested in a nondrug state, it is possible that state-dependent learning confounded the results of these studies. The following series of experiments was performed to test this possibility for estradiol-induced CCRs. Implementing our own methodologies in Experiment 1, we demonstrated that an estradiol-induced CCR was blocked by treatment with the histamine 1 receptor blocker, chlorpheniramine maleate, before sucrose consumption during acquisition. In Experiment 2, identical states were maintained during acquisition and extinction by administering chlorpheniramine prior to sucrose exposure during both phases. The results indicated that chlorpheniramine blocked the estradiol-induced CCR. However, circumventing state-dependency in Experiment 3 by administering chlorpheniramine following exposure to sucrose during acquisition augmented the estradiol CCR. Taken together, the results of these experiments suggest that the ability of chlorpheniramine to abolish estradiol-induced CCRs is not due to state-dependency or to the antihistaminergic properties of chlorpheniramine. It is proposed that the results of all of the experiments can be accounted for by the aversive properties of chlorpheniramine.

  19. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  20. Effects of estradiol and FSH on leptin levels in women with suppressed pituitary

    Directory of Open Access Journals (Sweden)

    Geber Selmo

    2012-06-01

    Full Text Available Abstract Background Female fertility depends on adequate nutrition and energy reserves, suggesting a correlation between the metabolic reserve and reproductive capacity. Leptin regulates body weight and energy homeostasis. The aim of this study was to investigate whether estradiol or FSH alone has a direct effect on the production of leptin. Methods A total of 64 patients submitted to controlled ovarian hyperstimulation with recombinant FSH for assisted reproduction and 20 patients using estradiol valerate for endometrial preparation for oocyte donation treatment were included in the study. All patients used GnRH analogues before starting treatment to achieve pituitary suppression. Blood samples for hormonal measurements were collected before starting and after completing the respective treatments. Data were analyzed statistically by the chi-square test, Student’s t-test and Pearson’s correlation test. Results We observed an elevation of serum leptin levels secondary to the increase in estradiol, in the absence of influence of any other ovarian or pituitary hormone. The rising rate of leptin levels was higher in women treated with recombinant FSH, which also had higher levels of estradiol, than in those treated with estradiol valerate. Conclusions This study demonstrates a correlation between serum levels of estradiol and leptin, suggesting that estradiol is an important regulator of leptin production and that its effects can be amplified by its association with FSH.

  1. Effects of estradiol and FSH on leptin levels in women with suppressed pituitary.

    Science.gov (United States)

    Geber, Selmo; Brandão, Augusto H F; Sampaio, Marcos

    2012-06-15

    Female fertility depends on adequate nutrition and energy reserves, suggesting a correlation between the metabolic reserve and reproductive capacity. Leptin regulates body weight and energy homeostasis. The aim of this study was to investigate whether estradiol or FSH alone has a direct effect on the production of leptin. A total of 64 patients submitted to controlled ovarian hyperstimulation with recombinant FSH for assisted reproduction and 20 patients using estradiol valerate for endometrial preparation for oocyte donation treatment were included in the study. All patients used GnRH analogues before starting treatment to achieve pituitary suppression. Blood samples for hormonal measurements were collected before starting and after completing the respective treatments. Data were analyzed statistically by the chi-square test, Student's t-test and Pearson's correlation test. We observed an elevation of serum leptin levels secondary to the increase in estradiol, in the absence of influence of any other ovarian or pituitary hormone. The rising rate of leptin levels was higher in women treated with recombinant FSH, which also had higher levels of estradiol, than in those treated with estradiol valerate. This study demonstrates a correlation between serum levels of estradiol and leptin, suggesting that estradiol is an important regulator of leptin production and that its effects can be amplified by its association with FSH.

  2. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  3. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis.

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D; Parkhitko, Andrey; Morrison, Tasha A; Silverman, Edwin K; Henske, Elizabeth P; Yu, Jane J

    2013-07-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.

  4. Estradiol concentrations and working memory performance in women of reproductive age.

    Science.gov (United States)

    Hampson, Elizabeth; Morley, Erin E

    2013-12-01

    Estrogen has been proposed to exert a regulatory influence on the working memory system via actions in the female prefrontal cortex. Tests of this hypothesis have been limited almost exclusively to postmenopausal women and pharmacological interventions. We explored whether estradiol discernibly influences working memory within the natural range of variation in concentrations characteristic of the menstrual cycle. The performance of healthy women (n=39) not using hormonal contraceptives, and a control group of age- and education-matched men (n=31), was compared on a spatial working memory task. Cognitive testing was done blind to ovarian status. Women were retrospectively classified into low- or high-estradiol groups based on the results of radioimmunoassays of saliva collected immediately before and after the cognitive testing. Women with higher levels of circulating estradiol made significantly fewer errors on the working memory task than women tested under low estradiol. Pearson's correlations showed that the level of salivary estradiol but not progesterone was correlated inversely with the number of working memory errors produced. Women tested at high levels of circulating estradiol tended to be more accurate than men. Superior performance by the high estradiol group was seen on the working memory task but not on two control tasks, indicating selectivity of the effects. Consistent with previous studies of postmenopausal women, higher levels of circulating estradiol were associated with better working memory performance. These results add further support to the hypothesis that the working memory system is modulated by estradiol in women, and show that the effects can be observed under non-pharmacological conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Faslodex Inhibits Estradiol-Induced Extracellular Matrix Dynamics and Lung Metastasis in a Model of Lymphangioleiomyomatosis

    Science.gov (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D.; Parkhitko, Andrey; Morrison, Tasha A.; Silverman, Edwin K.; Henske, Elizabeth P.

    2013-01-01

    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)–2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)–2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM. PMID:23526212

  6. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  7. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    Science.gov (United States)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  8. Pharmacodynamics of transdermal granisetron in women with nausea and vomiting of pregnancy.

    Science.gov (United States)

    Caritis, Steve; Zhao, Yang; Chen, Hui-Jun; Venkataramanan, Raman

    2016-07-01

    Limited options exist for women with nausea and vomiting of pregnancy (NVP) who cannot tolerate oral intake. Transdermal delivery of granisetron, a 5-hydroxytryptamine-3 receptor antagonist, provides an effective alternative for such patients. The objective of this study was to evaluate the pharmacodynamics of granisetron administered intravenously (IV) and as a sustained release transdermal patch in women with NVP. We recruited 16 women with singleton gestation between 12 0/7-18 6/7 weeks who were receiving treatment for NVP and had a Pregnancy Unique Quantification of Emesis and Nausea (PUQE) score of ≥6. All consenting subjects received 1 mg of granisetron as an IV infusion over 5 minutes and blood was obtained prior to the infusion and at 10, 20, 30, and 60 minutes and at 2, 4, 6, 8, 12, and 24 hours after the start of the infusion. After a minimum washout of 48 hours after initiation of IV granisetron, a 52-cm(2) granisetron patch (34.3 mg) was placed on the upper arm of all subjects for 7 days. Blood was drawn prior to patch placement and daily thereafter for 9 days. The subjects were evaluated daily. The PUQE score was obtained from these subjects prior to the IV infusion and daily for 2 days after and again prior to and daily for 9 days after patch placement. Complete data were available in 15 women after IV administration and 13 women after patch placement. One woman stopped participation during the IV infusion while data were not available in 2 additional women after patch placement due to noncompliance. Peak plasma granisetron concentrations after IV and transdermal administration were similar (∼10 ng/mL). Prior to IV administration of granisetron, the PUQE score was 8.6 ± 1.8 (mean ± SD). The PUQE scores were significantly reduced for the ensuing 2 days (P Granisetron significantly improved symptoms of nausea and vomiting as gauged by the PUQE score. After IV infusion the reduction in PUQE score was observed within 1 day. When granisetron was

  9. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application

    Directory of Open Access Journals (Sweden)

    Mahmood S

    2014-09-01

    Full Text Available Syed Mahmood, Muhammad Taher, Uttam Kumar Mandal Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM, Pahang Darul Makmur, Malaysia Abstract: Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a ­homogeneous distribution and low polydispersity index (0.08. They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 µg/cm2/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser

  10. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    Directory of Open Access Journals (Sweden)

    Albert Tuca

    2009-12-01

    Full Text Available Albert TucaPalliative Care Hospital Team, Palliative Care Department, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Barcelona, SpainAbstract: Until now only intravenous and oral formulations of 5HT3 receptor antagonists have been available. Recently a new formulation of a 5HT3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm2, which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7% and headache (<1%; there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high

  11. Use of granisetron transdermal system in the prevention of chemotherapy-induced nausea and vomiting: a review

    International Nuclear Information System (INIS)

    Tuca, Albert

    2009-01-01

    Until now only intravenous and oral formulations of 5HT 3 receptor antagonists have been available. Recently a new formulation of a 5HT 3 receptor antagonist, transdermal granisetron, has been developed, and approved by the FDA. Three phase I studies to evaluate its pharmacokinetic profile have shown that granisetron administered by a transdermal delivery system is absorbed by passive diffusion and maximal concentration is reached 48 hours after patch application. The patch of 52 cm 2 , which contains 34.3 mg of granisetron, releases 3.3 mg of the drug every day and maintains a stable average plasma concentration of 2.2 ng/mL over 6 days, similar to levels obtained with 2 mg of oral granisetron, administered every day during the same period of time. Two randomized as yet unpublished clinical trials (phase II/III) have been conducted to evaluate the antiemetic efficacy of transdermal granisetron in chemotherapy-induced nausea and vomiting, in patients receiving moderately and highly emetogenic chemotherapy, compared with 2 mg of oral granisetron. More than 800 cancer patients were included in the trials. The rate of complete control of acute emesis was 49% for the phase II trial and 60% for the phase III trial. Neither trial showed a statistically significant difference between transdermal and oral granisetron. The control of delayed emesis was observed in 46% of patients, and there were no statistically significant differences between transdermal and oral granisetron. The most common adverse effects in both trials were constipation (<7%) and headache (<1%); there were no statistically significant differences between transdermal and oral granisetron. These data show that transdermal granisetron is effective and safe in controlling acute emesis induced by chemotherapy with both moderate and high emetogenic potential. Efficacy and safety of transdermal granisetron are fully comparable with that of oral granisetron. More clinical trials using regimens of 2 or 3 drugs

  12. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation.

    Science.gov (United States)

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Zhang, Xiaozhe; Xiao, Hongbin

    2015-02-01

    Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.

  13. 17-β-Estradiol Upregulates the Stress Response in Candida albicans: Implications for Microbial Virulence

    OpenAIRE

    C. O’Connor; M. Essmann; B. Larsen

    1998-01-01

    Objective: The influence of 17-β-estradiol on the stress response of Candida albicans was studied.Methods: The survival of clinical isolates of C. albicans treated with 17-β-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDSPAGE.Results: The heat stress response induced by 17-β-estradiol in C. albicans grown at 25 ℃ protected the organisms against the lethal temperature of 48.5 ℃, as shown by viable plate counts. 17-β-estradi...

  14. 17-beta-estradiol upregulates the stress response in Candida albicans: implications for microbial virulence.

    OpenAIRE

    O'Connor, C; Essmann, M; Larsen, B

    1998-01-01

    OBJECTIVE: The influence of 17-beta-estradiol on the stress response of Candida albicans was studied. METHODS: The survival of clinical isolates of C. albicans treated with 17-beta-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDS-PAGE. RESULTS: The heat stress response induced by 17-beta-estradiol in C. albicans grown at 25 degrees C protected the organisms against the lethal temperature of 48.5 degrees C, as shown by viabl...

  15. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  16. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  17. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evidence that 17alpha-estradiol is biologically active in the uterine tissue: Antiuterotonic and antiuterotrophic action

    Directory of Open Access Journals (Sweden)

    Navarrete Erika

    2005-07-01

    Full Text Available Abstract Background 17alpha-Estradiol has been considered as the hormonally inactive isomer of 17beta-estradiol. Recently, nongenomic (smooth muscle relaxation and genomic (light estrogenic activity effects of 17alpha-estradiol have been reported, but no reports have yet determined its possible antiestrogenic activity. Therefore, this study investigated: the nongenomic action of 17alpha-estradiol on uterine contractile activity and its potential agonist-antagonist activity on uterine growth. Methods Uterine rings from rats were isometrically recorded. Different concentrations (0.2–200 microM of 17alpha-estradiol were tested on spontaneous contraction and equimolarly compared with 17beta-estradiol. To examine the mechanism of 17alpha-estradiol action, its effect was studied in presence of beta2-antagonist (propranolol, antiestrogens (tamoxifen and ICI 182,780 or inhibitors of protein synthesis (cycloheximide and transcription (actinomycin D. Moreover, contractions induced by high potassium (KCl solution or calcium in depolarized tissues by KCl-calcium free solution were exposed to 17alpha-estradiol. Collaterally, we performed an uterotrophic assay in adult ovariectomized rats measuring the uterine wet weight. The administration for three days of 0.3 microM/day/Kg 17beta-estradiol was equimolarly compared with the response produced by 17alpha-estradiol. Antiuterotrophic activity was assayed by administration of 0.3 microM/day/Kg 17beta-estradiol and various doses ratios (1:1, 1:3, 1:5, and 1:100 of 17alpha-estradiol. Results The estradiol isomers elicited an immediate relaxation, concentration-dependent and reversible on spontaneous contraction. 17alpha-Estradiol presented lower potency than 17beta-estradiol although it did not antagonize 17beta-estradiol-induced relaxation. Relaxation to 17alpha-estradiol was not inhibited by propranolol, tamoxifen, ICI 182,780, cycloheximide or actinomycin D. The KCl contractions were also sensitive to 17alpha-estradiol

  19. Estradiol to testosterone ratio in metabolic syndrome men aged started 40 years above

    Science.gov (United States)

    Kusuma, R.; Siregar, Y.; Mardianto

    2018-03-01

    Disruption of adipose tissue, an endocrine organ, could turn out into the so-called metabolic syndrome. Aging men with lowering testosterone were related to metabolic syndrome and excessive aromatase activity in adipose tissue would increase estradiol level. This study hypothesized that estradiol to testosterone ratio is increasedin aging, metabolic syndrome men. A total of 52 men were randomly recruited for this study. A blood samplewas drawn before 11.00 AM after 10 hoursof overnight fasting, then aliquot serum kept in -20°C pending the research. Subjects were divided evenly into the metabolic syndrome and nonmetabolicsyndrome group. The hormonal assaywas measured on the day of research. Then examined with student t-test. Estradiol level in metabolic syndrome group was increased, but insignificant differ to the other group. Testosterone level decreased and significantly different between groups. In conclusion, estradiol to testosterone ratio was increased in themetabolic syndrome group but insignificant.

  20. The pathway of estradiol-induced apoptosis in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Rastin, Maryam; Hatef, Mohammad Reza; Tabasi, Nafisseh; Mahmoudi, Mahmoud

    2012-03-01

    Systemic lupus erythematosus (SLE) is a disease with unknown etiology. The pathologic role of sex hormones and apoptosis in SLE has often been discussed. We studied the effects of estradiol in the pathway of induced apoptosis in Iranian SLE patients. T lymphocytes from 35 SLE patients and 20 age-matched controls were isolated and cultured in the presence of 10(-8) M 17-β estradiol. The expression levels of Fas, Fas ligand (FasL), Bcl-2, caspase-8, and caspase-9 mRNAs were determined semiquantitatively in comparison to the expression level of beta actin RNA. Estradiol exposure did not have any significant effects on the expression levels of Fas, Bcl-2, and caspase-9 in SLE patients and controls. However, the expression levels of FasL and caspase-8 were significantly increased in SLE patients, but not in controls. This suggests the probable involvement of extrinsic apoptosis pathway in estradiol-induced apoptosis in SLE.

  1. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    Science.gov (United States)

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  2. Effects of estradiol on worm burden and peripheral leukocytes in Parastrongylus malaysiensis-infected rats.

    Science.gov (United States)

    Kamis, A B; Ahmad, R A; Badrul-Munir, M Z

    1994-01-01

    Gonadectomized male laboratory rats were given 0.06 mg/kg estradiol benzoate daily for 14 days before being inoculated with 50 third-stage larvae of Parastrongylus malaysiensis. Hormone treatment was continued until the rats were killed. The numbers of larvae in the brain and of adult worms in the pulmonary area of the rats were determined every 7 days after the inoculation. It was found that the rats treated daily with estradiol benzoate had significantly and consistently higher numbers of larvae and adult worms as compared with the controls. The number of total leukocytes increased significantly after the rats were infected. The results show that estradiol-treated rats become susceptible to P. malaysiensis infection, which may indicate that the immunosuppressive effects of testosterone observed in earlier studies may partly be caused by estradiol that was peripherally aromatized from testosterone.

  3. Evaluation of the Discriminative Potential of a Novel Biomarker for Estradiol Treatments in Bovine Animals

    NARCIS (Netherlands)

    Regal, P.; Blokland, M.H.; Fente, C.A.; Sterk, S.S.; Cepeda, A.; Ginkel, van L.A.

    2015-01-01

    The endogenous occurrence of natural hormones obstructs the application of classical targeted methods as confirmatory options. In the case of estradiol, the ultimate confirmation of its exogenous administration relies on gas chromatography coupled to combustion/isotope ratio mass spectrometry

  4. Effects of estradiol and FSH on maturation of the testis in the hypogonadal (hpg mouse

    Directory of Open Access Journals (Sweden)

    Mayhew Terry M

    2008-01-01

    Full Text Available Abstract Background The hypogonadal (hpg mouse is widely used as an animal model with which to investigate the endocrine regulation of spermatogenesis. Chronic treatment of these GnRH-deficient mice with estradiol is known to induce testicular maturation and restore qualitatively normal spermatogenesis. The aim of the current studies was to investigate whether these effects of estradiol are direct effects in the testis, or indirect actions via paradoxical stimulation of FSH secretion from the pituitary gland. Methods Initially, Western blot and immunohistochemistry were used to analyse tissues from hpg mice to identify potential sites of action of estradiol. In the main study, hpg mice were treated for 50 days with either an estradiol implant or daily injections of recombinant human FSH, or a combination of both, to determine whether estradiol would have an additive or synergistic effect with FSH on testis development, as assessed by histological analysis and stereological quantification of Leydig, Sertoli and germ cell proliferation. Results Western blot analysis revealed ERα immunoreactive bands of appropriate molecular weight in extracts of testis and pituitary glands from hpg mice, and immunohistochemical studies confirmed ERα in nuclei of anterior pituitary cells and Leydig and peritubular cells in hpg mice. Histological and morphometric analyses revealed that estradiol treatment alone was as effective as FSH in promoting Sertoli cell production and proliferation of the seminiferous epithelium, resulting in the production of elongating spermatids. Combined estradiol and FSH treatment did not produce a greater effect than either treatment alone, though an increased dose of FSH significantly increased seminiferous tubule volume and testis weight and increase Sertoli cell numbers further within the same time frame. In contrast, estradiol caused substantial increases in the wet weight of the seminal vesicles, whereas FSH was without effect on

  5. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    International Nuclear Information System (INIS)

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-01-01

    Highlights: ► Estradiol induced stiffness changes of osteoblasts were quantified using AFM. ► Estradiol causes significant decrease in the stiffness of osteoblasts. ► Decreased stiffness was caused by decreased density of f-actin network. ► Stiffness changes were not associated with mineralized matrix of osteoblasts. ► Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E ∗ ) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with β-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E ∗ . The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E ∗ of osteoblasts significantly decreased by 43–46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness changes of osteoblasts were not associated with changes in the synthesized mineralized matrix of the cells. Thus, a decrease in osteoblast stiffness with estrogen treatment was

  6. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, Padmalosini [Department of Bioengineering, National University of Singapore (Singapore); Lim, Chwee Teck [Department of Bioengineering, National University of Singapore (Singapore); Department of Mechanical Engineering, National University of Singapore (Singapore); Mechanobiology Institute, National University of Singapore (Singapore); Singapore-MIT Alliance for Research and Technology (SMART), National University of Singapore (Singapore); Lee, Taeyong, E-mail: bielt@nus.edu.sg [Department of Bioengineering, National University of Singapore (Singapore)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  7. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    Science.gov (United States)

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  8. Studies on estradiol-2/4-hydroxylase activity in rat brain and liver

    International Nuclear Information System (INIS)

    Theron, C.N.

    1985-03-01

    A sensitive and specific radio-enzymatic assay was used to study estradiol-2/4-hydroxylase activity in rat liver microsomes and in microsomes obtained from 6 discrete brain areas of the rat. Kinetic parameters were determined for these enzyme activities. The effects of different P-450 inhibitors on estradiol-2/4-hydroxylase activity in brain and liver microsomes were also studied. In both organs these enzyme activities were found to be located mainly in the microsomal fraction and were inhibited by the 3 P-450 inhibitors tested. The hepatic estradiol-2/4-hydroxylase activity in adult male rats was significantly higher than that of females, but the enzyme activity in the brain did not exhibit a similar sex difference. Furthermore, estradiol-2/4-hydroxylase activity in rat liver was strongly induced by phenobarbitone treatment, but not in the brain. The phenobarbitone-induced activity in male and female rats exhibited significant kinetic differences. In female rats sexual maturation was associated with significant changes in the apparent Km of estradiol-2/4-hydroxylases in the liver and hypothalamus. Evidence was found that the in vitro estradiol-2/4-hydroxylase activity in rat brain and liver is due to more than one form of microsomal P-450. Kinetic studies showed important differences between the estradiol-2/4-hydroxylase activities in the hippocampus and hypothalamus. Significant differences in estradiol-2/4-hydroxylase activities were observed in the 6 brain areas studied, with the hippocampus showing the highest, and the hypothalamus the lowest activity at all developmental stages in both male and female rats

  9. Estradiol and song affect female zebra finch behavior independent of dopamine in the striatum

    OpenAIRE

    Svec, Lace A.; Lookingland, Keith J.; Wade, Juli

    2009-01-01

    Female songbirds display preferences for certain song characteristics, but the neural and hormonal mechanisms mediating these preferences are not fully clear. The present study sought to further explore the role of estradiol, as well as assess potential roles of dopaminergic systems, on behavioral responses to song. Adult female zebra finches were treated with estradiol and exposed to tutored or untutored song or silence. Behavior was quantified and neurochemistry of the nucleus accumbens and...

  10. 17β-Estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomised female mice.

    Science.gov (United States)

    Mukai, Kanae; Nakajima, Yukari; Urai, Tamae; Komatsu, Emi; Nasruddin; Sugama, Junko; Nakatani, Toshio

    2016-10-01

    This study investigated the effect of 17β-estradiol on wound healing in 40-week ovariectomised female mice. Thirty-six-week-old female mice were divided into three groups: medication with 17β-estradiol after ovariectomy (OVX + 17β-estradiol), ovariectomy (OVX) and sham (SHAM). The mice received two full-thickness wounds, and the OVX + 17β-estradiol group was administered 17β-estradiol at 0·01 g/day until healing. In the OVX + 17β-estradiol group, the ratio of wound area was significantly smaller than those of the OVX and SHAM groups on days 1-3, 5, 6, 8-12 and 9-12, respectively, the numbers of neutrophils and macrophages were significantly smaller than those on days 3 and 7, the ratio of re-epithelialisation was significantly higher than those on days 3 and 11, the ratio of myofibroblasts was significantly higher than those on day 11 and smaller on day 14, and the ratio of collagen fibres was significantly larger than that of the OVX group on days 7-14. We found that 17β-estradiol administration promotes cutaneous wound healing in 40-week female mice by reducing wound area, shortening inflammatory response, and promoting re-epithelialisation, collagen deposition and wound contraction. Our results suggest that cutaneous wound healing that is delayed because of ageing is promoted by exogenous and continuous 17β-estradiol administration. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  11. Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.

    Science.gov (United States)

    Almey, Anne; Arena, Lauren; Oliel, Joshua; Shams, Waqqas M; Hafez, Nada; Mancinelli, Cynthia; Henning, Lukas; Tsanev, Aleks; Brake, Wayne G

    2017-03-01

    There are sex differences associated with schizophrenia, as women exhibit later onset of the disorder, less severe symptomatology, and better response to antipsychotic medications. Estrogens are thought to play a role in these sex differences; estrogens facilitate the effects of antipsychotic medications to reduce the positive symptoms of schizophrenia, but it remains unclear whether estrogens protect against the cognitive symptoms of this disorder. Amphetamine sensitization is used to model some symptoms of schizophrenia in rats, including cognitive deficits like excessive perseveration and slower reversal learning. In this experiment female rats were administered a sensitizing regimen of amphetamine to mimic these cognitive symptoms. They were ovariectomized and administered either low or high estradiol replacement as well as chronic administration of the antipsychotic haloperidol, and were assessed in tests of perseveration and reversal learning. Results of these experiments demonstrated that, in amphetamine-sensitized rats, estradiol alone does not affect perseveration or reversal learning. However, low estradiol facilitates a 0.25mg/day dose of haloperidol to reduce perseveration and improve reversal learning. Combined high estradiol and 0.25mg/day haloperidol has no effect on perseveration or reversal learning, but high estradiol facilitates the effects of 0.13mg/day haloperidol to reduce perseveration and improve reversal learning. Thus, in amphetamine-sensitized female rats, 0.25mg/day haloperidol only improved perseveration and reversal learning when estradiol was low, while 0.13mg/day haloperidol only improved these cognitive processes when estradiol was high. These findings suggest that estradiol facilitates the effects of haloperidol to improve perseveration and reversal learning in a dose-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication.

    Science.gov (United States)

    Rao, Shilpa P; Sikdar, Sujit Kumar

    2007-12-01

    Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control. (c) 2007 Wiley-Liss, Inc.

  13. Modulation of SHBG binding to testosterone and estradiol by sex and morbid obesity.

    Science.gov (United States)

    Grasa, María Del Mar; Gulfo, José; Camps, Núria; Alcalá, Rosa; Monserrat, Laura; Moreno-Navarrete, José María; Ortega, Francisco José; Esteve, Montserrat; Remesar, Xavier; Fernández-López, José Antonio; Fernández-Real, José Manuel; Alemany, Marià

    2017-04-01

    Sex hormone-binding globulin (SHBG) binds and transports testosterone and estradiol in plasma. The possibility that SHBG is a mixture of transporting proteins has been postulated. We analyzed in parallel the effects of obesity status on the levels and binding capacity of circulating SHBG and their relationship with testosterone and estradiol. Anthropometric measures and plasma were obtained from apparently healthy young (i.e. 35 ± 7 years) premenopausal women ( n =  32) and men ( n =  30), with normal weight and obesity (BMI >30 kg/m 2 ). SHBG protein (Western blot), as well as the plasma levels of testosterone, estradiol, cortisol and insulin (ELISA) were measured. Specific binding of estradiol and testosterone to plasma SHBG was analyzed using tritium-labeled hormones. Significant differences in SHBG were observed within the obesity status and gender, with discordant patterns of change in testosterone and estradiol. In men, testosterone occupied most of the binding sites. Estrogen binding was much lower in all subjects. Lower SHBG of morbidly obese (BMI >40 kg/m 2 ) subjects affected testosterone but not estradiol. The ratio of binding sites to SHBG protein levels was constant for testosterone, but not for estradiol. The influence of gender was maximal in morbid obesity, with men showing the highest binding / SHBG ratios. The results reported here are compatible with SHBG being a mixture of at least two functionally different hormone-binding globulins, being affected by obesity and gender and showing different structure, affinities for testosterone and estradiol and also different immunoreactivity. © 2017 European Society of Endocrinology.

  14. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.

    Science.gov (United States)

    Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I

    2016-03-16

    This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt.

    Science.gov (United States)

    Arora, Priyanka; Mukherjee, Biswajit

    2002-09-01

    In this study, matrix-type transdermal patches containing diclofenac diethylamine were prepared using different ratios of polyvinylpyrrolidone (PVP) and ethylcellulose (EC) by solvent evaporation technique. The drug matrix film of PVP and EC was casted on a polyvinylalcohol backing membrane. All the prepared formulations were subjected to physical studies (moisture content, moisture uptake, and flatness), in vitro release studies and in vitro skin permeation studies. In vitro permeation studies were performed across cadaver skin using a modified diffusion cell. Variations in drug release profiles among the formulations studied were observed. Based on a physicochemical and in vitro skin permeation study, formulation PA4 (PVP/EC, 1:2) and PA5 (PVP/EC, 1:5) were chosen for further in vivo experiments. The antiinflammatory effect and a sustaining action of diclofenac diethylamine from the two transdermal patches selected were studied by inducing paw edema in rats with 1% w/v carrageenan solution. When the patches were applied half an hour before the subplantar injection of carrageenan in the hind paw of male Wistar rats, it was observed that formulation PA4 produced 100% inhibition of paw edema in rats 12 h after carrageenan insult, whereas in the case of formulation PA5, 4% mean paw edema was obtained half an hour after the carrageenan injection and the value became 19.23% 12 h after the carrageenan insult. The efficacy of transdermal patches was also compared with the marketed Voveran gel and it was found that PA4 transdermal patches produced a better result as compared with the Voveran gel. Hence, it can be reasonably concluded that diclofenac diethylamine can be formulated into the transdermal matrix type patches to sustain its release characteristics and the polymeric composition (PVP/EC, 1:2) was found to be the best choice for manufacturing transdermal patches of diclofenac diethylamine among the formulations studied. Copyright 2002 Wiley-Liss, Inc.

  16. The lowest-dose, extended-cycle combined oral contraceptive pill with continuous ethinyl estradiol in the United States: a review of the literature on ethinyl estradiol 20 µg/levonorgestrel 100 µg + ethinyl estradiol 10 µg

    Directory of Open Access Journals (Sweden)

    Sheila Krishnan

    2010-08-01

    Full Text Available Sheila Krishnan, Jessica KileyDepartment of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, USAAbstract: Extended-cycle oral contraceptives (OCs are increasing in popularity in the United States. A new extended-cycle OC that contains the lowest doses of ethinyl estradiol (EE and levonorgestrel (LNG + continuous EE throughout the cycle is now available. It provides 84 days of a low-dose, combined active pill containing levonorgestrel 100 µg and ethinyl estradiol 20 µg. Instead of 7 days of placebo following the active pills, the regimen delivers 7 days of ethinyl estradiol 10 µg. Existing studies reveal a similar efficacy and adverse effect profile compared with other extended-regimen OCs. Specifically, the unscheduled bleeding profile is similar to other extended-cycle OCs and improves with the increase in the duration of use. Although lower daily doses of hormonal exposure have potential benefit, to our knowledge, there are no published studies indicating that this specific regimen offers a lower incidence of hormone-related side effects or adverse events. In summary, this new extended-cycle OC provides patients a low-dose, extended-regimen OC option without sacrificing efficacy or tolerability.Keywords: continuous regimen, ethinyl estradiol, extended cycle, oral contraceptive

  17. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  18. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.

    2001-01-01

    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  19. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  20. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.

    Science.gov (United States)

    Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.

  1. Sex, estradiol, and spatial memory in a food-caching corvid.

    Science.gov (United States)

    Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A

    2015-09-01

    Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Comparison of estrus synchronization by controlled internal drug release device (CIDR) and adhesive transdermal progestin patch in postpartum beef cows.

    Science.gov (United States)

    Kajaysri, Jatuporn; Chumchoung, Chaiwat; Wutthiwitthayaphong, Supphathat; Suthikrai, Wanvipa; Sangkamanee, Praphai

    2017-09-15

    Estrous synchronization with progesterone based protocols has been essentially used in cattle industry. Although intravaginal devices have been commonly used, this technique may induce vaginitis. This study aimed at examining the efficiency of novel transdermal progestin patch on follicle development and comparing the progestin patch versus CIDR device on estrous synchronization, complication at treated site and pregnancy in beef cattle. In experiment 1, seven beef cows were treated with an adhesive transdermal progestin patch on the ventral surface of the proximal part of the tail for 7 days. The cows were daily examined the follicular development using ultrasonography starting on Day 0 till 3 days after hormone removal. Experiment 2, forty beef cows were divided into two equal groups (20 cows per group). The cows randomly allocated to received either vaginal insertion of CIDR (n = 20) or treated with an adhesive transdermal progestin patch (n = 20). The levels of plasma progesterone during the experiment and the numbers of standing estrous cows were recorded. Timed artificial inseminated (TAI) was performed at 60 h after CIDR or patch termination. Pregnancy rates were determined at 60 days after TAI. Experiment 1 revealed that the novel transdermal progestin patch could efficiently control follicular growth. All the seven treated cows had dominant follicle upon dermal patch removal indicating the effectiveness of the progestin patch. In experiment 2, the percentages of cows exhibited standing estrus were similar between transdermal patch (72.22%) and CIDR (70.00%). The levels of plasma progesterone during CIDR treatment were significantly higher (4.06 ± 1.65 ng/mL on Day 1 and 3.62 ± 1.60 ng/mL on Day 7) compared with transdermal patch (2.60 ± 1.43 ng/mL on Day 1 and 1.81 ± 1.57 ng/mL on Day 7). Three cows treated with CIDR (15%) developed vaginitis while none of cows had physically dermal reaction at adhesive site. Cows synchronized with

  3. The significance of estradiol metabolites in human corpus luteum physiology.

    Science.gov (United States)

    Devoto, Luigi; Henríquez, Soledad; Kohen, Paulina; Strauss, Jerome F

    2017-07-01

    The human corpus luteum (CL) is a temporary endocrine gland derived from the ovulated follicle. Its formation and limited lifespan is critical for steroid hormone production required to support menstrual cyclicity, endometrial receptivity for successful implantation, and the maintenance of early pregnancy. Endocrine and paracrine-autocrine molecular mechanisms associated with progesterone production throughout the luteal phase are critical for the development, maintenance, regression, and rescue by hCG which sustains CL function into early pregnancy. However, the signaling systems driving the regression of the primate corpus luteum in non-conception cycles are not well understood. Recently, there has been interest in the functional roles of estradiol metabolites (EMs), mostly in estrogen-producing tissues. The human CL produces a number of EMs, and it has been postulated that the EMs acting via paracrine-autocrine pathways affect angiogenesis or LH-mediated events. The present review describes advances in understanding the role of EMs in the functional lifespan and regression of the human CL in non-conception cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Laccase mediated transformation of 17β-estradiol in soil

    International Nuclear Information System (INIS)

    Singh, Rashmi; Cabrera, Miguel L.; Radcliffe, David E.; Zhang, Hao; Huang, Qingguo

    2015-01-01

    It is known that 17β-estradiol (E2) can be transformed by reactions mediated by some oxidoreductases such as laccase in water. Whether or how such reactions can happen in soil is however unknown although they may significantly impact the environmental fate of E2 that is introduced to soil by land application of animal wastes. We herein studied the reaction of E2 in a model soil mediated by laccase, and found that the reaction behaviors differ significantly from those in water partly because of the dramatic difference in laccase stability. We also examined E2 transformation in soil using 14 C-labeling in combination with soil organic matter extraction and size exclusion chromatography, which indicated that applied 14 C radioactivity was preferably bound to humic acids. The study provides useful information for understanding the environmental fate of E2 and for developing a novel soil remediation strategy via enzyme-enhanced humification reactions. - Highlights: • E2 was effectively transformed in soil through reactions mediated by laccase. • The reaction behaviors in soil differ significantly from those in water. • E2 was preferably bound to the humic acids in soil. • Laccase treatment resulted in changes in the structures of the humic acids. - E2 was effectively transformed in soil by preferably binding to the humic acids through reactions mediated by laccase

  5. Estradiol protective role in atherogenesis through LDL structure modification

    International Nuclear Information System (INIS)

    Papi, Massimiliano; Ciasca, Gabriele; Maiorana, Alessandro; Maulucci, Giuseppe; Palmieri, Valentina; De Spirito, Marco; Brunelli, Roberto; Parasassi, Tiziana

    2016-01-01

    Relevant physiological functions are exerted by circulating low density lipoprotein (LDL) as well as eventual pathological processes triggering atherogenesis. Modulation of these functions can well be founded on modifications of LDL structure. Given its large dimension, multicomponent organization and strong interactions between the protein apoB-100 and lipids, determining LDL 3D structure remains a challenge. We propose a novel quantitative physical approach to this complex biological problem. We introduce a three-component model, fitted to small angle x-ray scattering data on LDL maintained in physiological conditions, able to achieve a consistent 3D structure. Unexpected features include three distinct protein domains protruding out of a sphere, quite rough in its surface, where several core lipid areas are exposed. All LDL components are affected by 17- β -estradiol (E2) binding to apoB-100. Mostly one of the three protruding protein domains, dramatically reducing its presence on the surface and with a consequent increase of core lipids’ exposure. This result suggests a structural basis for some E2 protecting roles and LDL physiological modifications. (paper)

  6. Kisspeptin system in ovariectomized mice: Estradiol and progesterone regulation.

    Science.gov (United States)

    Marraudino, Marilena; Martini, Mariangela; Trova, Sara; Farinetti, Alice; Ponti, Giovanna; Gotti, Stefano; Panzica, GianCarlo

    2018-06-01

    The kisspeptin system is clustered in two main groups of cell bodies (the periventricular region, RP3V and the arcuate nucleus, ARC) that send fibers mainly to the GnRH neurons and in a few other locations, including the paraventricular nucleus, PVN. In physiological conditions, gonadal hormones modulate the kisspeptin system with expression changes according to different phases of the estrous cycle: the highest being in estrus phase in RP3V and PVN (positive feedback), and in ARC during the diestrus phase (negative feedback). In this work we wanted to study these hormonal fluctuations during the estrous cycle, investigating the role played by progesterone (P) or estradiol (E 2 ), alone or together, on the kisspeptin system. Gonadectomized CD1 female mice were treated with P, E 2 or both (E 2  + P), following a timing of administration that emulates the different phases of estrous cycle, for two cycles of 4 days. As expected, the two cell groups were differentially affected by E 2 ; the RP3V group was positively influenced by E 2 (alone or with the P), whereas in the ARC the administration of E 2 did not affect the system. However P (alone) induced a rise in the kisspeptin immunoreactivity. All the treatments significantly affected the kisspeptin innervation of the PVN, with regional differences, suggesting that these fibers arrive from both RP3V and ARC nuclei. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effect of oral contraceptives containing estradiol and nomegestrol acetate or ethinyl-estradiol and chlormadinone acetate on primary dysmenorrhea.

    Science.gov (United States)

    Grandi, Giovanni; Napolitano, Antonella; Xholli, Anjeza; Tirelli, Alessandra; Di Carlo, Costantino; Cagnacci, Angelo

    2015-10-01

    To study the three cycles effect on primary dysmenorrhea of the monophasic 24/4 estradiol/nomegestrol acetate (E2/NOMAC) and of the 21/7 ethinyl-estradiol/chlormadinone acetate (EE/CMA) oral contraceptive. The tolerability and the effect of both preparations on metabolism and health-related quality of life were also evaluated. Prospective observational cohort study. Tertiary gynecologic center for pelvic pain. Subjects with primary dysmenorrhea requiring an oral contraceptive, who spontaneously selected either E2/NOMAC (n = 20) or EE/CMA (n = 20). Visual Analogue Scale (VAS) score for dysmenorrhea, Short Form-36 questionnaire for health-related quality of life, lipoproteins and days of menstrual bleeding (withdrawal bleeding during oral contraceptive). Mean age and body mass index (BMI) were similar between the two groups. The final analysis was performed on 34 women, 15 in E2/NOMAC and 19 in EE/CMA group. Compliance with treatment was significantly higher with EE/CMA (100%) than E2/NOMAC (75%) (p = 0.02). Both treatments significantly (p dysmenorrhea, similarly (E2/NOMAC by a mean of 74.7%, EE/CMA by a mean of 78.4%; p = 0.973). Only E2/NOMAC significantly increased SF-36 score (p = 0.001), both in physical (p = 0.001) and mental domains (p = 0.004). The mean number of days of menstrual bleeding was significantly reduced in E2/NOMAC group (from 4.86 ± 1.20 d to 2.64 ± 1.59 d, p = 0.0005 versus baseline, p = 0.007 versus EE/CMA group). BMI did not vary in either group. E2/NOMAC did not change lipoproteins and apoproteins while EE/CMA increased total cholesterol (p = 0.0114), HDL-cholesterol (p = 0.0008), triglycerides (p = 0.002), apoprotein-A1 (Apo-A1; p = 0.0006) and apopoprotein-B (Apo-B; p = 0.008), decreasing LDL/HDL ratio (p = 0.024). Both oral contraceptives reduced similarly primary dysmenorrhea, with E2/NOMAC also reducing withdrawal bleedings and being neutral on lipid metabolism.

  8. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study.

    Science.gov (United States)

    Engen, Deborah J; McAllister, Samantha J; Whipple, Mary O; Cha, Stephen S; Dion, Liza J; Vincent, Ann; Bauer, Brent A; Wahner-Roedler, Dietlind L

    2015-09-01

    Fibromyalgia is a syndrome characterized by chronic pain, fatigue, depression, and sleep disturbances. Its primary cause is unclear. Several studies have reported decreased intracellular magnesium levels in patients with fibromyalgia and have found negative correlation between magnesium levels and fibromyalgia symptoms. To gather preliminary data on whether transdermal magnesium can improve quality of life for women who have fibromyalgia. This is a patient questionnaires and survey in a fibromyalgia clinic at a tertiary medical center. Forty female patients with the diagnosis of fibromyalgia were enrolled. Each participant was provided a spray bottle containing a transdermal magnesium chloride solution and asked to apply 4 sprays per limb twice daily for 4 weeks. Participants were asked to complete the Revised Fibromyalgia Impact Questionnaire, SF-36v2 Health Survey, and a quality-of-life analog scale at baseline, week 2, and week 4. Questionnaire and survey scores, evaluated through intent-to-treat and per-protocol analyses. Twenty-four patients completed the study (mean [SD] age, 57.2 [7.6] years; white, 95%; mean body mass index, 31.3 kg/m2). With intention-to-treat analysis, Revised Fibromyalgia Impact Questionnaire subscale and total scores were significantly improved at week 2 and week 4 (total score, P=0.001). Per-protocol analysis results were similar: all subscales of the Revised Fibromyalgia Impact Questionnaire were significantly improved at week 2 and week 4 (total score, P=0.001). This pilot study suggests that transdermal magnesium chloride applied on upper and lower limbs may be beneficial to patients with fibromyalgia. ClinicalTrials.gov.ldentifier NCT01968772.

  9. Perioperative analgesia with a buprenorphine transdermal patch for hallux valgus surgery: a prospective, randomized, controlled study

    Directory of Open Access Journals (Sweden)

    Xu C

    2018-04-01

    Full Text Available Can Xu, Mingqing Li, Chenggong Wang, Hui Li, Hua Liu Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China Purpose: Hallux valgus surgery often results in significant postoperative pain. Adequate control of pain is essential for patient satisfaction and improves the outcome of the procedure. This study aimed to investigate the perioperative analgesic effect of a buprenorphine transdermal patch in patients who underwent hallux valgus surgery.Patients and methods: A total of 90 patients were randomly divided into the following three groups based on the perioperative analgesic method: flurbiprofen axetil intravenous injection (Group F, oral celecoxib (Group C, and buprenorphine transdermal delivery system (BTDS (Group BTDS. The pain status, degree of satisfaction, adverse effects, and administration of tramadol hydrochloride for uncontrolled pain were recorded on the night before surgery, postoperative day 1, postoperative day 2, and postoperative day 3.Results: The BTDS could effectively control perioperative pain for patients undergoing ­hallux valgus surgery. The analgesic effect of the BTDS was better than that of oral celecoxib. In addition, statistically significant differences were not observed in the visual analog scale (VAS scores, adverse effects, and rescue analgesia between the patients who received the BTDS and the patients who received the flurbiprofen axetil intravenous injection. However, the degree of patient satisfaction of the BTDS group was significantly higher (P<0.05 than that of the other two groups.Conclusion: The BTDS (a preemptive analgesia regimen could exert an analgesic effect during the perioperative period for patients who had received hallux valgus surgery, and this effect is beneficial for sustaining postoperative physiological and psychological states and promoting functional rehabilitation. Keywords: hallux valgus, buprenorphine transdermal

  10. Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Congo Tak-Shing Ching1,2,3, Tzong-Ru Chou1, Tai-Ping Sun1,2, Shiow-Yuan Huang3, Hsiu-Li Shieh21Graduate Institute of Biomedicine and Biomedical Technology; 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan; 3Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan, Republic of ChinaBackground: Cardiovascular and kidney diseases are a global public health problem and impose a huge economic burden on health care services. Homocysteine, an amino acid, is associated with coronary heart disease, while urea is a harmful metabolic substance which can be used to reflect kidney function. Monitoring of these two substances is therefore very important. This in vitro study aimed to determine whether homocysteine is extractable transdermally and noninvasively, and whether homocysteine and urea can be extracted simultaneously by reverse iontophoresis.Methods: A diffusion cell incorporated with porcine skin was used for all experiments with the application of a direct current (dc and four different symmetrical biphasic direct currents (SBdc for 12 minutes via Ag/AgCl electrodes. The dc and the SBdc had a current density of 0.3 mA/cm2.Results: The SBdc has four different phase durations of 15 sec, 30 sec, 60 sec, and 180 sec. It was found that homocysteine can be transdermally extracted by reverse iontophoresis. Simultaneous extraction of homocysteine and urea by reverse iontophoresis is also possible.Conclusion: These results suggest that extraction of homocysteine and urea by SBdc are phase duration-dependent, and the optimum mode for simultaneous homocysteine and urea extraction is the SBdc with the phase duration of 60 sec.Keywords: reverse iontophoresis, homocysteine, urea, monitoring, noninvasive, transdermal

  11. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis.

    Science.gov (United States)

    Amodwala, Sejal; Kumar, Praveen; Thakkar, Hetal P

    2017-06-15

    The long term administration of Meloxicam for the management of arthritis, a chronic disorder, results in gastrointestinal disturbances leading to poor patient compliance. Considering the favorable molecular weight, therapeutic dose, biological half-life and log P value of meloxicam for transdermal delivery, its fast dissolving microneedle patch, with an ability to breach the stratum corneum and efficiently deliver the cargo to deeper skin layers, were developed. Microneedle patch of low molecular weight polyvinyl alcohol and polyvinylpyrrolidone was prepared using Polydimethylsiloxane micromolds. The ratio of polyvinyl alcohol to polyvinyl pyrrolidone and solid content of matrix solution was optimized to achieve maximum needle strength. The optimized batch was extensively evaluated for in vitro dissolution, drug release, stability, ex vivo skin permeation/deposition, histopathology and in vivo pharmacodynamic study. The patch containing 9:1 polyvinyl alcohol to polyvinylpyrrolidone ratio with 50% solid content had shown maximum axial needle fracture force (0.9N) suitable for penetrating the skin. The optimized batch was found to be fast dissolving and released almost 100% drug in 60min following dissolution controlled kinetics. The formulation showed a significant drug deposition within skin (63.37%) and an improved transdermal flux (1.60μg/cm 2 /h) with a 2.58 fold enhancement in permeation as compared to plain drug solution. The formulation showed a comparable anti-inflammatory activity in rats when compared to its existing approved marketed oral tablet. Histopathology and stability evaluations demonstrated acceptable safety and shelf-life of the developed formulation. The successful verification of safety, efficacy and stability of microneedle patch advocated the suitability of the formulation for transdermal use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery

    Directory of Open Access Journals (Sweden)

    Lin HW

    2018-02-01

    Full Text Available Hongwei Lin,1,2 Qingchun Xie,1,2 Xin Huang,1,2 Junfeng Ban,1,2 Bo Wang,1,2 Xing Wei,3 Yanzhong Chen,1,2 Zhufen Lu1,2 1Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 3Guangdong Shennong Chinese Medicine Research Institute, Guangzhou, People’s Republic of China Aim: The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs, to expand the applications of the Chinese herbal medicine, imperatorin (IMP, and increase its transdermal delivery. Methods: In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. Results: The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%, an acceptable particle size (82.4±0.65 nm, high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. Conclusion: The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP. Keywords: ultradeformable liposomes, cationic, imperatorin, skin permeation, transdermal drug delivery

  13. Use and cardiovascular safety of transdermal and other granisetron preparations in cancer management

    Directory of Open Access Journals (Sweden)

    Mason JW

    2013-07-01

    Full Text Available Jay W Mason,1 Thomas E Moon2 1School of Medicine, University of Utah, Salt Lake City, UT, 2Tarizona eHealth Services, Inc, Emeryville, CA, USA Abstract: 5-HT3 antagonists have been available as oral and intravenous preparations for decades. The availability more recently of transdermal granisetron and the anticipated availability of a subcutaneous granisetron preparation have provided helpful alternatives to patients, and these preparations have been shown to have less potential to prolong QT than other drugs in the class. Keywords: chemotherapy-induced nausea, vomiting, granisetron, QT prolongation

  14. In vitro and ex vivo evaluations on transdermal delivery of the HIV inhibitor IQP-0410.

    Directory of Open Access Journals (Sweden)

    Anthony S Ham

    Full Text Available The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w IQP-0410. Composed of 60% (w/w ethyl cellulose and 20% (w/w HPMC, the films contained < 1.2% (w/w of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm(2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS and 0.58 ± 0.03 nM (PBMC. The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants

  15. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization.

    Science.gov (United States)

    Seavey, Matthew M; Mosmann, Tim R

    2009-04-14

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.

  16. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    Science.gov (United States)

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  17. Effects of 17 beta-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    We have investigated the effects of 17 beta-estradiol, given both alone and with X-irradiation, on the induction of malignant transformation in vitro. Treatment with 10(-6)M 17 beta-estradiol for 6 weeks, or 10(-5)M 17 beta-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicate an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation

  18. Effects of 17 beta-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    We have investigated the effects of 17 beta-estradiol, given both alone and with X-irradiation, on the induction of malignant transformation in vitro. Treatment with 10(-6)M 17 beta-estradiol for 6 weeks, or 10(-5)M 17 beta-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicate an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation.

  19. Effect of Endogenous Androgens on 17β-Estradiol-Mediated Protection after Spinal Cord Injury in Male Rats

    OpenAIRE

    Kachadroka, Supatra; Hall, Alicia M.; Niedzielko, Tracy L.; Chongthammakun, Sukumal; Floyd, Candace L.

    2010-01-01

    Several groups have recently shown that 17β-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17β-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17β-estradiol-mediated protection by evaluating a delayed administration over a clinically relevan...

  20. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.F. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Couto-Pereira, N.S. [Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS, Brasil, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Freese, L.; Costa, P.A.; Caletti, G.; Bisognin, K.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Nin, M.S. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Instituto Porto Alegre, Centro Metodista do Sul, Curso de Farmácia, Porto Alegre, RS, Brasil, Curso de Farmácia, Centro Metodista do Sul, Instituto Porto Alegre, Porto Alegre, RS (Brazil); Gomez, R. [Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Farmacologia, Porto Alegre, RS, Brasil, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Barros, H.M.T. [Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Neurociência Comportamental, Porto Alegre, RS, Brasil, Laboratório de Neurociência Comportamental, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2014-05-09

    Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.

  1. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    International Nuclear Information System (INIS)

    Souza, M.F.; Couto-Pereira, N.S.; Freese, L.; Costa, P.A.; Caletti, G.; Bisognin, K.M.; Nin, M.S.; Gomez, R.; Barros, H.M.T.

    2014-01-01

    Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse

  2. Behavioral effects of endogenous or exogenous estradiol and progesterone on cocaine sensitization in female rats

    Directory of Open Access Journals (Sweden)

    M.F. Souza

    2014-06-01

    Full Text Available Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL, estradiol (0.05 mg/mL, progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.

  3. Effects of chronic estradiol treatment on the thyroid gland structure and function of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Elgendy Mohamed S

    2009-08-01

    Full Text Available Abstract Background Estrogen therapy is widely used nowadays in women to treat many postmenopausal symptoms but it may have some undesirable effects due to multiple organs affection. So, the aim of this study was to determine the effects of chronic estradiol treatment on the structure and function of the thyroid gland in ovarictomized rats as a model simulating menopause. Findings Thirty adult female Wistar rats divided into three groups were used in this study; the first group was sham-operated, while the second and third groups were ovariectomized. The first and second groups were injected with olive oil while the third group was injected with estradiol dipropionate daily for three months, after that; hormonal assay for T3, T4, TSH and specimens of the thyroid were taken and processed to be examined by light and electron microscopy. The results of this study revealed that serum levels of T3 and T4 decreased in ovariectomized animals and significantly increased after estradiol treatment, while TSH increased in ovariectomized animals and decreased with estradiol treatment. Histological and morphometric study in ovariectomized group revealed marked accumulation of colloid in follicular lumens with decreased epithelial height in addition to increased connective tissue amount. After estradiol treatment the follicles became smaller in size, having small amount of colloid with increased epithelial height in addition to decreased connective tissue content. Ultrastructural study supported these results in addition to the presence of large amount of intracytoplasmic colloid vesicles after estradiol treatment. Conclusion Low estrogen level may lead to mild thyroidal hypofunction while estradiol treatment may lead to hyperactivity so it should be used very cautiously in the treatment of postmenopausal symptoms to avoid its undesirable stimulatory effect on the thyroid.

  4. Concentrations of 17beta-estradiol in Holstein whole milk.

    Science.gov (United States)

    Pape-Zambito, D A; Magliaro, A L; Kensinger, R S

    2007-07-01

    Some individuals have expressed concern about estrogens in food because of their potential to promote growth of estrogen-sensitive human cancer cells. Researchers have reported concentrations of estrogen in milk but few whole milk samples have been analyzed. Because estrogen associates with the fat phase of milk, the analysis of whole milk is an important consideration. The objectives of this study, therefore, were to quantify 17beta-estradiol (E2) in whole milk from dairy cows and to determine whether E2 concentrations in milk from cows in the second half of pregnancy were greater than that in milk from cows in the first half of pregnancy or in nonpregnant cows. Milk samples and weights were collected during a single morning milking from 206 Holstein cows. Triplicate samples were collected and 2 samples were analyzed for fat, protein, lactose, and somatic cell counts (SCC); 1 sample was homogenized and analyzed for E2. The homogenized whole milk (3 mL) was extracted twice with ethyl acetate and once with methanol. The extract was reconstituted in benzene:methanol (9:1, vol/vol) and run over a Sephadex LH-20 column to separate E2 from cholesterol and estrone before quantification using radioimmunoassay. Cows were classified as not pregnant (NP, n = 138), early pregnant (EP, 1 to 140 d pregnant, n = 47), or midpregnant (MP, 141 to 210 d pregnant, n = 21) at the time of milk sampling based on herd health records. Mean E2 concentration in whole milk was 1.4 +/- 0.2 pg/mL and ranged from nondetectable to 22.9 pg/mL. Milk E2 concentrations averaged 1.3, 0.9, and 3.0 pg/mL for NP, EP, and MP cows, respectively. Milk E2 concentrations for MP cows were greater and differed from those of NP and EP cows. Milk composition was normal for a Holstein herd in that log SCC values and percentages of fat, protein, and lactose averaged 4.9, 3.5, 3.1, and 4.8, respectively. Estradiol concentration was significantly correlated (r = 0.20) with percentage fat in milk. Mean milk yield was

  5. Mechanism of Estradiol-Induced Block of Voltage-Gated K+ Currents in Rat Medial Preoptic Neurons

    Science.gov (United States)

    Druzin, Michael; Malinina, Evgenya; Grimsholm, Ola; Johansson, Staffan

    2011-01-01

    The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K+ channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K+ channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-estradiol rapidly (within seconds) and reversibly reduced the K+ currents, showing an EC50 value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca2+, and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K+ currents, membrane-impermeant forms of estradiol did not reduce the K+ currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the KV-2-channel blocker r-stromatoxin-1. The time course of K+ current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K+, suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K+ channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K+ currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels. PMID:21625454

  6. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  7. Patient-controlled analgesia: therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery.

    Science.gov (United States)

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; Du Toit, Lisa C; Modi, Girish; Luttge, Regina; Pillay, Viness

    2014-02-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially with the confines of needle phobias and associated pain related to traditional injections, and the existing limitations associated with oral drug delivery. Highlighted within is the possibility of further developing transdermal drug delivery for chronic pain treatment using iontophoresis-based microneedle array patches. A concerted effort was made to review critically all available therapies designed for the treatment of chronic pain. The drug delivery systems developed for this purpose and nondrug routes are elaborated on, in a systematic manner. Recent developments and future goals in transdermal delivery as a means to overcome the individual limitations of the aforementioned delivery routes are represented as well. The approval of patch-like devices that contain both the microelectronic-processing mechanism and the active medicament in a small portable device is still awaited by the pharmaceutical industry. This anticipated platform may provide transdermal electro-activated and electro-modulated drug delivery systems a feasible attempt in chronic pain treatment. Iontophoresis has been proven an effective mode used to administer ionized drugs in physiotherapeutic, diagnostic, and dermatological applications and may be an encouraging probability for the development of devices and aids in the treatment of chronic pain. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  9. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  10. Patient-controlled analgesia : therapeutic interventions using transdermal electro-activated and electro-modulated drug delivery

    NARCIS (Netherlands)

    Indermun, S.; Choonara, Y.E.; Kumar, P.; Du Toit, L.C.; Modi, G.; Luttge, R.; Pillay, V.

    2014-01-01

    Chronic pain poses a major concern to modern medicine and is frequently undertreated, causing suffering and disability. Patient-controlled analgesia, although successful, does have limitations. Transdermal delivery is the pivot to which analgesic research in drug delivery has centralized, especially

  11. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation.

    Science.gov (United States)

    Abdel Messih, Hanaa A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2017-06-01

    The aim of the present work is to exclusively optimize and model the effect of phospholipid type either egg phosphatidylcholine (EPC) or soybean phosphatidylcholine (SPC), together with other formulation variables, on the development of nano-ethosomal systems for transdermal delivery of a water-soluble antiemetic drug. Tropisetron HCl (TRO) is available as hard gelatin capsules and IV injections. The transdermal delivery of TRO is considered as a novel alternative route supposing to improve BAV as well as patient convenience. TRO-loaded ethanolic vesicular systems were prepared by hot technique. The effect of formulation variables were optimized through a response surface methodology using 3 × 2 2 -level full factorial design. The concentrations of both PC (A) and ethanol (B) and PC type (C) were the factors, while entrapment efficiency (Y 1 ), vesicle size (Y 2 ), polydispersity index (Y 3 ), and zeta potential (Y 4 ) were the responses. The drug permeation across rat skin from selected formulae was studied. Particle morphology, drug-excipient interactions, and vesicle stability were also investigated. The results proved the critical role of all formulation variables on ethosomal characteristics. The suggested models for all responses showed good predictability. Only the concentration of phospholipid, irrespective to PC type, had a significant effect on the transdermal flux (p transdermal TRO delivery.

  12. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NARCIS (Netherlands)

    Bartle, S J; Thomson, D U; Gehring, R; van der Merwe, B. D.

    2017-01-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas,

  13. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence.

    Science.gov (United States)

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-08-01

    The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.

  15. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    Science.gov (United States)

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  16. Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability.

    Science.gov (United States)

    Said, Mayada; Elsayed, Ibrahim; Aboelwafa, Ahmed A; Elshafeey, Ahmed H

    2017-11-01

    Agomelatine is a new antidepressant having very low oral drug bioavailability less than 5% due to being liable to extensive hepatic 1st pass effect. This study aimed to deliver agomelatine by transdermal route through formulation and optimization of microemulsion gel. Pyramidal screening was performed to select the most suitable ingredients combinations and then, the design expert software was utilized to optimize the microemulsion formulations. The independent variables of the employed mixture design were the percentages of capryol 90 as an oily phase (X 1 ), Cremophor RH40 and Transcutol HP in a ratio of (1:2) as surfactant/cosurfactant mixture 'S mix ' (X 2 ) and water (X 3 ). The dependent variables were globule size, optical clarity, cumulative amount permeated after 1 and 24 h, respectively (Q1 and Q 24 ) and enhancement ratio (ER). The optimized formula was composed of 5% oil, 45% S mix and 50% water. The optimized microemulsion formula was converted into carbopol-based gel to improve its retention on the skin. It enhanced the drug permeation through rat skin with an enhancement ratio of 37.30 when compared to the drug hydrogel. The optimum ME gel formula was found to have significantly higher C max , AUC 0-24 h and AUC 0-∞ than that of the reference agomelatine hydrogel and oral solution. This could reveal the prosperity of the optimized microemulsion gel formula to augment the transdermal bioavailability of agomelatine.

  17. Development of w/o microemulsion for transdermal delivery of iodide ions.

    Science.gov (United States)

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan

    2013-03-01

    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P valuemicroemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  18. Enhanced Transdermal Delivery by Combined Application of Dissolving Microneedle Patch on Serum-Treated Skin.

    Science.gov (United States)

    Kim, Suyong; Dangol, Manita; Kang, Geonwoo; Lahiji, Shayan F; Yang, Huisuk; Jang, Mingyu; Ma, Yonghao; Li, Chengguo; Lee, Sang Gon; Kim, Chang Hyun; Choi, Young Wook; Kim, So Jeong; Ryu, Ja Hyun; Baek, Ji Hwoon; Koh, Jaesuk; Jung, Hyungil

    2017-06-05

    Dissolving microneedle (DMN), a transdermal drug delivery system in which drugs are encapsulated in a biodegradable polymeric microstructure, is designed to dissolve after skin penetration and release the encapsulated drugs into the body. However, because of limited loading capacity of drugs within microsized structures, only a small dosage can be delivered, which is often insufficient for patients. We propose a novel DMN application that combines topical and DMN application simultaneously to improve skin permeation efficiency. Drugs in pretreated topical formulation and encapsulated drugs in DMN patch are delivered into the skin through microchannels created by DMN application, thus greatly increasing the delivered dose. We used 4-n-butylresorcinol to treat human hyperpigmentation and found that sequential application of serum formulation and DMNs was successful. In skin distribution experiments using Alexa Fluor 488 and 568 dyes as model drugs, we confirmed that the pretreated serum formulation was delivered into the skin through microchannels created by the DMNs. In vitro skin permeation and retention experiments confirmed that this novel combined application delivered more 4-n-butylresorcinol into the skin than traditional DMN-only and serum-only applications. Moreover, this combined application showed a higher efficacy in reducing patients' melanin index and hyperpigmented regions compared with the serum-only application. As combined application of DMNs on serum-treated skin can overcome both dose limitations and safety concerns, this novel approach can advance developments in transdermal drug delivery.

  19. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery.

    Science.gov (United States)

    Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao

    2017-06-01

    In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.

  20. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  1. Transdermal therapeutic systems for memantine delivery. Comparison of passive and iontophoretic transport.

    Science.gov (United States)

    Del Río-Sancho, S; Serna-Jiménez, C E; Sebastián-Morelló, M; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Kalia, Y N; Merino, V; López-Castellano, A

    2017-01-30

    Memantine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist used in the treatment of moderate to severe dementia including the symptoms of Alzheimer's disease (AD). It is administered orally but compliance, swallowing problems and the routine use of multiple medications in elderly AD patients means that an alternative route of administration would be of interest. The aim of the present study was to develop memantine hydrochloride occlusive transdermal therapeutic systems (TTS) for passive and iontophoretic delivery across the skin. Polyvinyl pyrrolidone (PVP) and a mixture with polyvinyl alcohol (PVA) were employed as polymeric matrices. The study involved the TTS characterization in addition to quantification of the memantine transport across porcine skin in vitro. The evaluation of the TTS physical properties suggested that systems were made more mechanically resistant by including PVA (6%) or high concentrations of PVP (24%). Moreover, a linear correlation was observed between the concentration of PVP and the bioadhesion of the systems. Drug delivery experiments showed that the highest transdermal flux provided by a passive TTS (PVP 24% w/w limonene) was 8.89±0.81μgcm -2 h -1 whereas the highest iontophoretic transport was 46.4±3.6μgcm -2 h -1 . These innovative TTS would enable two dosage regimens that could lead to therapeutic plasma concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    Science.gov (United States)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.

    2011-02-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  3. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    Science.gov (United States)

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  5. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery.

    Science.gov (United States)

    Lin, Hongwei; Xie, Qingchun; Huang, Xin; Ban, Junfeng; Wang, Bo; Wei, Xing; Chen, Yanzhong; Lu, Zhufen

    2018-01-01

    The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.

  6. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    International Nuclear Information System (INIS)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R; Allen, Mark G

    2011-01-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  7. A New Drug Release Method in Early Development of Transdermal Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Bing Cai

    2012-01-01

    Full Text Available In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2 were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.

  8. Analysis of nifedipine content in transdermal drug delivery system using non-destructive visible spectrophotometry technique

    International Nuclear Information System (INIS)

    Normaizira Hamidi; Normaizira Hamidi; Normaizira Hamidi; Mohd Nasir Taib; Mohd Nasir Taib; Wui, Wong Tin; Wui, Wong Tin

    2008-01-01

    The applicability of visible spectrophotometry technique as a tool to determine the drug content of polymeric film for use as a transdermal drug delivery system was investigated. Hydroxypropylmethycellulose (HPMC) was selected as the matrix polymer and nifedipine as the model drug. Blank and nifedipine-loaded HPMC films were prepared using the solvent evaporation method. The absorbance spectra of these films under the visible wavelengths between 400 and 800 nm were assessed and compared against the drug content values obtained by means of the conventional destructive UV- spectrophotometry technique. The latter required the use of a solvent system which contained methanol, a harmful organic component in pharmaceutical applications. The results indicated that the absorbance values, attributed to nifedipine, at the wavelengths of 545, 585, 638 and 755nm were significantly correlated to the drug content values obtained using the chemical assay method (Pearson correlation value: r = 0.990 and p < 0.01). The visible spectrophotometry technique is potentially suitable for use to determine the nifedipine content of films owing to its nature of characterization of transdermal drug delivery system which does not require sample destruction during the process of measurement. The samples are recoverable from test and analysis of the entire batch of samples is possible without the need of solvents and chemical reagents. (author)

  9. Response to intravenous fentanyl infusion predicts subsequent response to transdermal fentanyl.

    Science.gov (United States)

    Hayashi, Norihito; Kanai, Akifumi; Suzuki, Asaha; Nagahara, Yuki; Okamoto, Hirotsugu

    2016-04-01

    Prediction of the response to transdermal fentanyl (FENtd) before its use for chronic pain is desirable. We tested the hypothesis that the response to intravenous fentanyl infusion (FENiv) can predict the response to FENtd, including the analgesic and adverse effects. The study subjects were 70 consecutive patients with chronic pain. The response to fentanyl at 0.1 mg diluted in 50 ml of physiological saline and infused over 30 min was tested. This was followed by treatment with FENtd (Durotep MT patch 2.1 mg) at a dose of 12.5 µg/h for 2 weeks. Pain intensity before and after FENiv and 2 weeks after FENtd, and the response to treatment, were assessed by the numerical rating scale (NRS), clinical global impression-improvement scale (CGI-I), satisfaction scale (SS), and adverse effects. The NRS score decreased significantly from 7 (4-9) [median (range)] at baseline to 3 (0-8) after FENiv (p 0.04, each). The analgesic and side effects after intravenous fentanyl infusion can be used to predict the response to short-term transdermal treatment with fentanyl.

  10. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration.

    Science.gov (United States)

    Berkó, Szilvia; Szűcs, Kálmán F; Balázs, Boglárka; Csányi, Erzsébet; Varju, Gábor; Sztojkov-Ivanov, Anita; Budai-Szűcs, Mária; Bóta, Judit; Gáspár, Róbert

    2016-01-01

    Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Both intravenously and EP-administered neostigmine (0.2-66.7 μg/kg) increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 μg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice.

  11. Solid Microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride

    Directory of Open Access Journals (Sweden)

    Mylien T. Hoang

    2015-09-01

    Full Text Available The aim of this project was to study the influence of microneedles on transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride across porcine ear skin in vitro. Microchannel visualization studies were carried out and characterization of the microchannel depth was performed using confocal laser scanning microscopy (CLSM to demonstrate microchannel formation following microneedle roller application. We also report, for the first time, the use of TA.XT Plus Texture Analyzer to characterize burst force in pig skin for transdermal drug delivery experiments. This is the force required to rupture pig skin. The mean passive flux of amantadine hydrochloride, determined using a developed LC–MS/MS technique, was 22.38 ± 4.73 µg/cm2/h, while the mean flux following the use of a stainless steel microneedle roller was 49.04 ± 19.77 µg/cm2/h. The mean passive flux of pramipexole dihydrochloride was 134.83 ± 13.66 µg/cm2/h, while the flux following the use of a stainless steel microneedle roller was 134.04 ± 0.98 µg/cm2/h. For both drugs, the difference in flux values following the use of solid stainless steel microneedle roller was not statistically significantly (p > 0.05. Statistical analysis was carried out using the Mann–Whitney Rank sum test.

  12. Liquid crystalline systems containing Vitamin E TPGS for the controlled transdermal nicotine delivery

    Directory of Open Access Journals (Sweden)

    Lívia Neves Borgheti-Cardoso

    Full Text Available ABSTRACT Transdermal nicotine patches have been used in smoking cessation therapy, suggested for the treatment of skin disorders with eosinophilic infiltration and have been found to improve attention performance in patients with Alzheimer's disease and age-associated memory impairment. However, skin irritation with extended patch use is still a problem. The aim of this work was to develop a simple to prepare liquid crystalline system containing vitamin E TPGS that would be able to control nicotine delivery and reduce irritation and sensitization problems. The liquid crystalline phases were macroscopically characterized by visual analysis and examined microscopically under a polarized light microscope. Topical and transdermal delivery of nicotine were investigated in vitro using porcine ear skin mounted on a Franz diffusion cell. Nicotine skin permeation from the developed cubic phase followed zero-order kinetics (r = 0.993 and was significantly enhanced after 12 h when compared to the control formulation (nicotine solution (p < 0.05 (138.86 ± 20.44 and 64.91 ± 4.06 μg/cm2, respectively. Cubic phase was also able to target viable skin layers in comparison to control solution (8.18 ± 1.89 and 2.63 ± 2.51 μg/cm2, respectively. Further studies to evaluate skin sensitization and irritation are now necessary.

  13. A Novel Transdermal Power Transfer Device for the Application of Implantable Microsystems

    Directory of Open Access Journals (Sweden)

    Jing-Quan Liu

    2015-03-01

    Full Text Available This paper presents a transdermal power transfer device for the application of implantable devices or systems. The device mainly consists of plug and socket. The power transfer process can be started after inserting the plug into the socket with an applied potential on the plug. In order to improve the maneuverability and reliability of device during power transfer process, the metal net with mesh structure were added as a part of the socket to serve as intermediate electrical connection layer. The socket was encapsulated by polydimethylsiloxane (PDMS with good biocompatibility and flexibility. Two stainless steel hollow needles placed in the same plane acted as the insertion part of the needle plug, and Parylene C thin films were deposited on needles to serve as insulation layers. At last, the properties of the transdermal power transfer device were tested. The average contact resistance between needle and metal mesh was 0.454 Ω after 50 random insertions, which showed good electrical connection. After NiMH (nickel-metal hydride batteries were recharged for 10 min with current up to 200 mA, the caused resistive heat was less than 0.6 °C, which also demonstrated the low charging temperature and was suitable for charging implantable devices.

  14. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  15. Influence of electrical and chemical factors on transdermal iontophoretic delivery of three diclofenac salts.

    Science.gov (United States)

    Fang, J Y; Wang, R J; Huang, Y B; Wu, P C; Tsai, Y H

    2001-04-01

    The aim of this present study was to investigate the in vitro transdermal iontophoretic delivery of three diclofenac salts--diclofenac sodium (DFS), diclofenac potassium (DFP), and diclofenac diethylammonium (DFD). A series of physicochemical and electrical variables which might affect iontophoretic permeation of diclofenac salts was studied. Application of 0.3 mA/cm2 current density significantly increased the transdermal flux of diclofenac salts as compared to passive transport. The iontophoretic enhancement increased in the order of DFS>DFP>DFD. The permeability coefficient of diclofenac salts all decreased with increasing donor concentration during iontophoresis. The addition of buffer ions and salt ions such as NaCl, KCl, and C4H12ClN reduced the permeation of diclofenac salts due to competition. However, this effect was lesser for DFD than for DFS and DFP. Comparing the various application modes of iontophoresis, the discontinuous on/off mode showed lower but more constant flux than the continuous mode.

  16. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  17. Effect of Asparagus racemosus extract on transdermal delivery of carvedilol: a mechanistic study.

    Science.gov (United States)

    Sapra, Bharti; Jain, Subheet; Tiwary, Ashok K

    2009-01-01

    This study was designed for investigating the effect of Asparagus racemosus (AR) extract and chitosan (CTN) in facilitating the permeation of carvedilol (CDL) across rat epidermis. Transdermal flux of carvedilol through heat-separated rat epidermis was investigated in vitro using vertical Keshary-Chien diffusion cells. Biophysical and microscopic manifestations of epidermis treated with AR extract, CTN, and AR extract-CTN mixture were investigated by using differential scanning calorimetry, transepidermal water loss, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Biochemical estimations of cholesterol, sphingosine, and triglycerides were carried out for treated excised as well as viable rat epidermis. The antihypertensive activity of the patches in comparison with that of oral carvedilol was studied in deoxycorticosterone acetate-induced hypertensive rats. The permeation of carvedilol across excised rat epidermis was significantly higher (p vehicle as compared to propylene glycol/ethanol (7:3) mixture. Epidermis obtained after 12 h treatment of viable rat skin with AR extract-CTN mixture showed significantly higher (p space, disordered lipid structure, and corneocyte detachment as observed in SEM and TEM suggested great potential of AR extract for use as percutaneous permeation enhancer. The developed transdermal patches of CDL containing AR extract-CTN mixture exhibited better performance as compared to oral administration in controlling hypertension in rats.

  18. Determination of two capsaicinoids in analgesic transdermal patches using RP-HPLC and UV spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Kobarfard

    2017-11-01

    Full Text Available Background and objectives: At the present time, a considerable frontier in the administration of therapeutic medications is transdermal drug delivery. Methods: In this study, a rapid, precise, sensitive and selective reversed-phasehigh performance liquid chromatography (RP-HPLC method has been evaluated, developed and validated to separate and quantitate capsaicin and dihydrocapsaicin (main active agents in analgesic dermal patches produced in Iran. Results: After isolation from laminated adhesive patches, capsaicinoids were analyzed on Lichrospher C18 analytical columns with reversed phase, using a mobile phase composition of methanol and distilled water (70:30 v/v and without any buffer (pH=6.5. The flow rate was 1 mL/min and the UV detector was operating at 281 nm. The assay was found to be linear over the range of 0.1-1.0 mg/mL. All validation parameters were within the acceptable range. Conclusion: It seems that the developed method was fairly sensitive and reliable in measuring capsaicinoids in commercially available analgesic transdermal patches in Iran.

  19. Use of rivastigmine transdermal patch in the treatment of Alzheimer's disease.

    Science.gov (United States)

    Winblad, Bengt; Machado, João Carlos

    2008-12-01

    Cholinesterase inhibitors such as rivastigmine and donepezil exhibit a dose-response relationship, with higher doses of the drugs demonstrating greater efficacy. Transdermal patches provide smooth continuous drug delivery, with the potential to offer efficacious levels of drug exposure while avoiding the peaks and troughs associated with side effects. As a small, lipophilic and hydrophilic molecule, rivastigmine (C14H22N2O2) is chemically well-suited to transdermal delivery. The technology underlying the rivastigmine patch allows it to be discreetly small and thin. The target dose 9.5 mg/24 h rivastigmine patch has a diameter of just 3.5 cm and a surface area of 10 cm2. A large randomized controlled trial has demonstrated that the target dose 9.5 mg/24 h rivastigmine patch provided similar efficacy to the highest rivastigmine capsule doses, yet with three times fewer reports of nausea and vomiting. Thus, the rivastigmine patch enables quick and easy access to high dose efficacy. The skin tolerability profile is good, and the patch has demonstrated excellent adhesion. The apparent success of rivastigmine patch, in terms of clinical utility and patient acceptability, suggests that it may mark the next generation of dementia treatment.

  20. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    Science.gov (United States)

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment.

    Science.gov (United States)

    Zhang, Suohui; Qiu, Yuqin; Gao, Yunhua

    2014-02-01

    The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length) in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly-Gln-Pro-Arg [tetrapeptide-3, 456.6 Da], Val-Gly-Val-Ala-Pro-Gly [hexapeptide, 498.6 Da], AC-Glu-Glu-Met-Gln-Arg-Arg-NH2 [acetyl hexapeptide-3, 889 Da] and Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  2. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment

    Directory of Open Access Journals (Sweden)

    Suohui Zhang

    2014-02-01

    Full Text Available The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]. The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  3. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery.

    Science.gov (United States)

    Hwa, Kuo-Yuan; Chang, Vincent H S; Cheng, Yao-Yi; Wang, Yue-Da; Jan, Pey-Shynan; Subramani, Boopathi; Wu, Min-Ju; Wang, Bo-Kai

    2017-09-19

    Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the "all-in-one" fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.

  4. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  5. A Preliminary Study of a Transdermal Radiofrequency Device for Body Slimming.

    Science.gov (United States)

    Key, Douglas J

    2015-11-01

    The use and potential of radiofrequency energy for tissue contracture and body contouring has been established in the literature. Maximum reduction of laxity can be achieved by simultaneously tightening surface tissue and reducing unwanted fat below by the transdermal application of heat to reach and maintain tissue temperature targets within a well-defined range, inducing collagen remodeling in skin as well as apoptosis of fat cells and creating an overall slimming effect. A novel device utilizes transcutaneous monopolar RF for body slimming in this manner, employing a thermistor feedback control mechanism to safely manage energy delivery and tissue temperature. Subjects (n=14) presenting with abdominal laxity were treated up to four times using the transcutaneous monopolar RF device at one or two zones in the abdominal region (at operator's discretion). Non-expert blinded graders rated correction on an arbitrary scale (0=no laxity, 4=maximum laxity) after choosing the order of the before-and-after photo sets. A patient satisfaction survey was also administered. The two graders correctly ordered 10 of 14 photo sets in agreement. Average rated improvement was 0.75 and 0.80 for graders 1 and 2, respectively. Patient survey results revealed average perceived tightening of 2.14 points on a 0 to 4 scale (0=lowest tightening result, 4=highest tightening), and 8 of 14 subjects would recommend treatment to others. Transdermal monopolar RF is a safe and effective modality for non-invasive body slimming.

  6. Patient considerations in the use of transdermal iontophoretic fentanyl for acute postoperative pain

    Directory of Open Access Journals (Sweden)

    Hartrick CT

    2016-04-01

    Full Text Available Craig T Hartrick,1 Cecile R Pestano,1 Li Ding,2 Hassan Danesi,2 James B Jones,2 1Beaumont Health System, Troy, MI, 2The Medicines Company, Parsippany, NJ, USA Abstract: Opioids are commonly used in the management of moderate-to-severe postoperative pain. Patient-controlled analgesic techniques are recognized as preferred administration methods. Previously, research has focused on intravenously administered opioids via a programmable pump. More recently, an iontophoretic transdermal system (ITS, which is patient controlled, has been developed. The focus of this review is on pain management using the fentanyl ITS during the 24–72-hour time period immediately following surgery. Fentanyl ITS offers a needle-free alternative to traditional intravenous (IV patient-controlled analgesia (PCA system that is as effective and safe as IV PCA. This system is easy to use for both patients and nurses. The use of fentanyl ITS is generally associated with a better ease-of-care profile, including a greater ease of mobility, from a patients' perspective when compared with morphine IV PCA. Keywords: patient-controlled analgesia, fentanyl iontophoretic transdermal system, ease of care, mobility, patient perspective, review

  7. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  8. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer.

    Science.gov (United States)

    Osipo, Clodia; Gajdos, Csaba; Liu, Hong; Chen, Bin; Jordan, V Craig

    2003-11-05

    Long-term tamoxifen treatment of breast cancer can result in tamoxifen-stimulated breast cancer, in which estrogen inhibits tumor growth after tamoxifen withdrawal. We investigated the molecular mechanism(s) of estradiol-induced tumor regression by using an in vivo model of tamoxifen-stimulated human breast cancer. Growth of parental estradiol-stimulated MCF-7E2 and long-term tamoxifen-stimulated MCF-7TAMLT xenografts in athymic mice was measured during treatment with vehicle, estradiol, estradiol plus tamoxifen, tamoxifen alone, estradiol plus fulvestrant, or fulvestrant alone. Apoptosis was detected by the terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Protein expression was assessed by western blot analysis. mRNA expression was assessed by real-time reverse transcription-polymerase chain reaction. All statistical tests were two-sided. MCF-7E2 tumor growth was stimulated by estradiol (cross-sectional area at week 13 = 1.06 cm2, 95% confidence interval [CI] = 0.82 to 1.30 cm2; Pestradiol-induced regression to 0.18 cm2 (95% CI = 0.15 to 0.21 cm2; P<.001), and tamoxifen or estradiol plus fulvestrant enhanced tumor growth to 1.00 cm2 (95% CI = 0.88 to 1.22 cm2). Estradiol increased the number of apoptotic cells in tumors by 23% (95% CI = 20% to 26%; P<.001) compared with all other treatments, decreased estrogen receptor alpha(ERalpha) protein expression, increased the expression of Fas mRNA and protein, decreased the expression of HER2/neu mRNA and protein and nuclear factor kappaB (NF-kappaB) protein but did not affect Fas ligand protein expression compared with control. Paradoxically, fulvestrant reversed this effect and stimulated MCF-7TAMLT tumor growth apparently through ERalpha-mediated regulation of Fas, HER2/neu, and NF-kappaB. Physiologic levels of estradiol induced regression of tamoxifen-stimulated breast cancer tumors, apparently by inducing the death receptor Fas and suppressing the antiapoptotic

  9. Use of electroporation and reverse iontophoresis for extraction of transdermal multibiomarkers

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2012-02-01

    Full Text Available Congo Tak-Shing Ching1,2, Lin-Shien Fu3-5, Tai-Ping Sun1, Tzu-Hsiang Hsu1, Kang-Ming Chang21Department of Electrical Engineering, National Chi Nan University, Puli, Nantou County, 2Department of Photonics and Communication Engineering, Asia University, Wufeng, Taichung, 3Department of Pediatrics, National Yang Ming University, Taipei, 4Institute of Technology, National Chi Nan University, Puli, 5Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, TaiwanBackground: Monitoring of biomarkers, like urea, prostate-specific antigen (PSA, and osteopontin, is very important because they are related to kidney disease, prostate cancer, and ovarian cancer, respectively. It is well known that reverse iontophoresis can enhance transdermal extraction of small molecules, and even large molecules if reverse iontophoresis is used together with electroporation. Electroporation is the use of a high-voltage electrical pulse to create nanochannels within the stratum corneum, temporarily and reversibly. Reverse iontophoresis is the use of a small current to facilitate both charged and uncharged molecule transportation across the skin. The objectives of this in vitro study were to determine whether PSA and osteopontin are extractable transdermally and noninvasively and whether urea, PSA, and osteopontin can be extracted simultaneously by electroporation and reverse iontophoresis.Methods: All in vitro experiments were conducted using a diffusion cell assembled with the stratum corneum of porcine skin. Three different symmetrical biphasic direct currents (SBdc, five various electroporations, and a combination of the two techniques were applied to the diffusion cell via Ag/AgCl electrodes. The three different SBdc had the same current density of 0.3 mA/cm2, but different phase durations of 0 (ie, no current, control group, 30, and 180 seconds. The five different electroporations had the same pulse width of 1 msec and number of pulses per second

  10. Effects of estradiol on norepinephrine and prostaglandin efflux in medial basal hypothalamus of ovariectomized rats

    International Nuclear Information System (INIS)

    Cardinali, D.P.; Fernandez Pardal, J.; Gimeno, M.F.; Gimeno, A.L.

    1982-01-01

    The spontaneous and K + -stimulated efflux of norepinephrine (NE) and the release of PGE 2 and PGF 2 α were examined in medial basal hypothalamus (MBH) of ovariectomized rats killed before and during the LH release that follows estradiol treatment. As compared to vehicle-treated, ovariectomized rats, estradiol-primed rats exhibited a 60% more increase in K + -stimulated 3 H-overflow of MBH slices preloaded with 3 H-NE at morning hours (1000 hours). Estradiol treatment did not result in further increase of K + -induced 3 H release from MBH slices at the time of LH release (1700 hours), nor affected labelled NE release in occipital cortex slices. A significant difference between K + -stimulated NE release of vehicle-treated spayed rats killed at 1000 and 1700 hours was observed, the latter showing 54% more release upon stimulus. PGE 2 efflux was time-dependent being highest at the evening in both vehicle- and estradiol-treated animals. The MBH of estrogenized rats released significantly more PGE 2 at the evening as compared to the controls. The release of PGF 2 α remained essentially unchanged regardless of estradiol treatment or time of day. The present results offer additional support to the involvement of MBH catecholamines and prostaglandins in the mechanism of LH secretion in the rat. (author)

  11. Epoxiconazole-induced degeneration in rat placenta and the effects of estradiol supplementation.

    Science.gov (United States)

    Rey Moreno, Maria Cecilia; Fussell, Karma C; Gröters, Sibylle; Schneider, Steffen; Strauss, Volker; Stinchcombe, Stefan; Fegert, Ivana; Veras, Mariana; van Ravenzwaay, Bennard

    2013-06-01

    Epoxiconazole (CAS-No. 133855-98-8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7-18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole-mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose-dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. © 2013 Wiley Periodicals, Inc.

  12. Effects of estradiol and progesterone on the variability of the micronucleus assay

    International Nuclear Information System (INIS)

    Baeyens, Ans; Vandersickel, Veerle; Thierens, Hubert; Ridder, Leo De; Vral, Anne

    2005-01-01

    To investigate chromosomal radiosensitivity of lymphocytes the micronucleus (MN) assay has been used for many years. The results of these studies suggest the use of the MN assay as a biomarker for cancer predisposition. However, the MN assay has still some limitations associated with the reproducibility and sensitivity. Especially a high intra-individual variability has been observed. An explanation for this high intra-individual variability is not yet available. In literature it is suggested that the high variability among females is attributable to hormonal status. In this study we investigated if the high intra-individual variability in micronucleus formation in lymphocytes of females after in vitro exposure to ionising radiation is caused by variations in hormone levels of estradiol (E2) and progesterone (PROG). For this, the MN assay was performed on blood samples of 18 healthy women during 7 consecutive weeks while the estradiol and progesterone levels were determined at the same time. The MN assay was also examined in cultures of isolated blood lymphocytes with estradiol or progesterone levels added in vitro. The results demonstrated that estradiol and progesterone levels have no influence on the variations in radiation-induced MN yields observed in blood samples of healthy women. These conclusions were confirmed by the 'in vitro' experiments as no correlation between the MN yields and the concentrations of hormones (estradiol or progesterone) added in vitro to isolated lymphocytes cultures was observed

  13. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Science.gov (United States)

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  14. Life-threatening coma and full-thickness sunburn in a patient treated with transdermal fentanyl patches: a case report

    Directory of Open Access Journals (Sweden)

    Sindali Katia

    2012-07-01

    Full Text Available Abstract Introduction Fentanyl transdermal patches have been widely used in the treatment of chronic pain and in palliative care settings since 1991 in cases where prolonged opioid use is often necessary. Transdermal drug delivery is deemed safe and effective with the advantages of delivering a steady dose of the drug and improving patient compliance due to its ease of use. However, intentional and unintentional misuse and overdose using transdermal opioid patches has been widely reported in the literature. Case presentation We describe the case of a 77-year-old Caucasian woman who developed severe opioid toxicity while sun tanning, likely due to altered fentanyl transdermal patch function in a heated environment. As a result of prolonged sun exposure due to an opioid-induced coma she then sustained hyperthermia and severe burns to her abdomen and lower limbs. This inadvertent fentanyl overdose necessitated initial treatment in intensive care and follow on care in a specialist burn unit. Conclusion Patients who are using fentanyl patches and their relatives should be educated about how to use the patch safely. Healthcare practitioners should warn patients about the possibility of overdosing on transdermally delivered drugs if used incorrectly. They should avoid strenuous activities and external heat sources such as warming blankets, hot water bottles, saunas, hot tubs or sunbathing and should seek medical attention if they develop a fever. Additionally, any burns sustained in the context of altered consciousness levels such as in this case with opioid overdose should raise suspicion about a potential deeper burn injury than is usually observed.

  15. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    Science.gov (United States)

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  16. Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats.

    Science.gov (United States)

    Bowman, R E; Ferguson, D; Luine, V N

    2002-01-01

    Twenty-one days of chronic restraint stress impairs male rat performance on the radial arm maze [Luine et al. (1994) Brain Res. 639, 167-170], but enhances female rat performance [Bowman et al. (2001) Brain Res. 904, 279-289]. To assess possible ovarian hormone mechanisms underlying this sexually dimorphic response to stress, we examined chronic stress effects in ovariectomized rats. Ovariectomized rats received Silastic capsule implants containing cholesterol or estradiol and were assigned to a daily restraint stress (21 days, 6 h/day) or non-stress group. Following the stress period, subjects were tested for open field activity and radial arm maze performance. Stress and estradiol treatment affected open field activity. All stressed animals, with or without estradiol treatment, made fewer total outer sector crossings. In contrast, estradiol-treated animals, with or without stress, made more inner sector visits, an indication that estradiol decreased anxious behavior on the open field across time. As measured by the total number of visits required to complete the task, stress did not affect radial arm maze performance in ovariectomized rats, but estradiol-treated animals, with or without stress, performed better than non-treated animals on the radial arm maze. Stressed subjects receiving estradiol showed the best radial arm maze performance. Following killing, tissue samples were obtained from various brain regions known to contribute to learning and memory, and monoamine and metabolite levels were measured. Several changes were observed in response to both stress and estradiol. Most noteworthy, stress treatment decreased homovanillic acid levels in the prefrontal cortex, an effect not previously observed in stressed intact females. Estradiol treatment increased norepinephrine levels in CA3 region of the hippocampus, mitigating stress-dependent changes. Both stress and estradiol decreased dentate gyrus levels of 5-hydroxyindole acetic acid. In summary, the current

  17. Mineralocorticoid receptor haplotype, estradiol, progesterone and emotional information processing.

    Science.gov (United States)

    Hamstra, Danielle A; de Kloet, E Ronald; Quataert, Ina; Jansen, Myrthe; Van der Does, Willem

    2017-02-01

    Carriers of MR-haplotype 1 and 3 (GA/CG; rs5522 and rs2070951) are more sensitive to the influence of oral contraceptives (OC) and menstrual cycle phase on emotional information processing than MR-haplotype 2 (CA) carriers. We investigated whether this effect is associated with estradiol (E2) and/or progesterone (P4) levels. Healthy MR-genotyped premenopausal women were tested twice in a counterbalanced design. Naturally cycling (NC) women were tested in the early-follicular and mid-luteal phase and OC-users during OC-intake and in the pill-free week. At both sessions E2 and P4 were assessed in saliva. Tests included implicit and explicit positive and negative affect, attentional blink accuracy, emotional memory, emotion recognition, and risky decision-making (gambling). MR-haplotype 2 homozygotes had higher implicit happiness scores than MR-haplotype 2 heterozygotes (p=0.031) and MR-haplotype 1/3 carriers (pemotion recognition test than MR-haplotype 1/3 (p=0.001). Practice effects were observed for most measures. The pattern of correlations between information processing and P4 or E2 differed between sessions, as well as the moderating effects of the MR genotype. In the first session the MR-genotype moderated the influence of P4 on implicit anxiety (sr=-0.30; p=0.005): higher P4 was associated with reduction in implicit anxiety, but only in MR-haplotype 2 homozygotes (sr=-0.61; p=0.012). In the second session the MR-genotype moderated the influence of E2 on the recognition of facial expressions of happiness (sr=-0.21; p=0.035): only in MR-haplotype 1/3 higher E2 was correlated with happiness recognition (sr=0.29; p=0.005). In the second session higher E2 and P4 were negatively correlated with accuracy in lag2 trials of the attentional blink task (pemotional information processing. This moderating effect may depend on the novelty of the situation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inclusion of 3H-estradiol-17#betta# in the chick embryo ovary in vitro

    International Nuclear Information System (INIS)

    Angelova, P.; Martinova, J.; K''ncheva, L.; Jordonov, Zh.; Bylgarska Akademiya na Naukite, Sofia)

    1982-01-01

    Basing on literature data on experimental investigation of genital differentiation of chick embryonal gonad in vitro, the authors have made their proposal that relationship between extragents and androgens in the favour of estradiol is of a great importance for differentiation of the gonad corti-- cal zone and for interruption of the meiosis process in cortical genital cells both genetically female and male (in the case of testis feminization). The autoradiographic investigation on 3 H-estradiol-17#betta# inclusion in an embryonal chick ovary in the period before the beginning of the meiotic prophase in genital cells has been performed in order to prove this hypothesis. The results obtained complement Gasc data on the presence of receptors for steroid hormones in embryonal chick gonads and confirm a conception that the development of indifferent gonad in female line is the same as the differentiation of cortical genital cells to oocyte conditioned by estradiol

  19. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  20. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  1. Male reproductive effects of octylphenol and estradiol in Fischer and Wistar rats

    DEFF Research Database (Denmark)

    Hossaini, Alireza; Dalgaard, Majken; Vinggaard, Anne

    2003-01-01

    to vehicle or 400 mg/kg bw of 4-tert-octylphenol administrated orally by gavage. Estradiol benzoate, at a dose of 40 mug/kg bw, was used as positive control agent. Treatment with estradiol benzoate decreased serum levels of testosterone, LH, FSH, inhibin and increased prolactin. Additionally, estradiol...... benzoate decreased the weight of all investigated reproductive organs, decreased sperm production and increased seminiferous tubular degeneration in both strains. More progressive effects on testis weight and histopathology were observed in the Fischer rats. Oral administration of octylphenol at 400 mg....../kg bw to both rat strains increased prolactin levels but had no effect on LH, FSH, testosterone or inhibin. In the octylphenol-treated Fischer rats the weights of the seminal vesicles and the levator ani/bulbocavernosus muscle were significantly decreased, whereas only the levator ani...

  2. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  3. Long-term estradiol treatment improves VIP-mediated vasodilation in atherosclerotic proximal coronary arteries

    DEFF Research Database (Denmark)

    Dalsgaard, T.; Mortensen, Alicja; Larsen, C. R.

    2003-01-01

    arteries. Female ovariectomized homozygous Watanabe heritable hyperlipidemic rabbits were randomized to 16 weeks treatment with 17beta-estradiol or placebo. The diet was semisynthetic, thereby avoiding the influence of phytoestrogens. Artery ring segments were mounted for isometric tension recordings...... in myographs. Following precontraction, the dose-response relationships for VIP and PACAP were evaluated. Treatment with 17beta-estradiol significantly improved the maximum VIP-mediated vasodilation (E-max, percentage of precontraction) in proximal coronary arteries (45.8 +/- 9.6% vs. 24.1 +/- 3.7%, p ....05). In the same artery segment, 17β-estradiol induced a significant decrease in the relative ratio between the repeated contractile response to potassium 30 and 120 mM (100 +/- 7% vs. 132 +/- 11%, p

  4. Negative effect of 17-beta-estradiol on growth parameters of goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    Reza Tarkhani

    2015-03-01

    Full Text Available Objective: To evaluate the effects of 17-beta-estradiol on growth factors of goldfish (Carassius auratus. Methods: To perform the test, 17-beta-estradiol was given 3 months period to fish at different doses as followed: control group, Group 1: 10 mg/kg food, Group 2: 25 mg/kg food and Group 3: 50 mg/kg food. For this purpose, a solution of hormone in pure ethanol used to spray on food. Feeding was done 3 times daily as an appetite. Comparing the mean values measured for length and weight using ANOVA. Results: Indicated with increase length and weight, the effects of the hormone get more distinct, so that with increase concentration of hormone, reduce weight and length. Conclusions: Estradiol along with testosterone and progesterone regulates final stages of oocyte maturation and ovulation. Various studies have proven the different concentrations of this hormone has different effects on the growth of different fishes.

  5. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation.

    Science.gov (United States)

    Lewis, Joan S; Meeke, Kathleen; Osipo, Clodia; Ross, Eric A; Kidawi, Noman; Li, Tianyu; Bell, Eric; Chandel, Navdeep S; Jordan, V Craig

    2005-12-07

    We previously developed an estrogen receptor (ER)-positive breast cancer cell line (MCF-7:5C) that is resistant to long-term estrogen deprivation and undergoes rapid and complete apoptosis in the presence of physiologic concentrations of 17beta-estradiol. Here, we investigated the role of the mitochondrial apoptotic pathway in this process. Apoptosis in MCF-7:5C cells treated with estradiol, fulvestrant, or vehicle (control) was investigated by annexin V-propidium iodide double staining and 4',6-diamidino-2-phenylindole (DAPI) staining. Apoptosis was also analyzed in MCF-7:5C cells transiently transfected with small interfering RNAs (siRNAs) to apoptotic pathway components. Expression of apoptotic pathway intermediates was measured by western blot analysis. Mitochondrial transmembrane potential (psim) was determined by rhodamine-123 retention assay. Mitochondrial pathway activity was determined by cytochrome c release and cleavage of poly(ADP-ribose) polymerase (PARP) protein. Tumorigenesis was studied in ovariectomized athymic mice that were injected with MCF-7:5C cells. Differences between the treatment groups and control group were determined by two-sample t test or one-factor analysis of variance. All statistical tests were two-sided. MCF-7:5C cells treated with estradiol underwent apoptosis and showed increased expression of proapoptotic proteins, decreased psim, enhanced cytochrome c release, and PARP cleavage compared with cells treated with fulvestrant or vehicle. Blockade of Bax, Bim, and p53 mRNA expression by siRNA reduced estradiol-induced apoptosis relative to control by 76% [95% confidence interval (CI) = 73% to 79%, P estradiol-induced apoptosis in long-term estrogen-deprived breast cancer cells. Physiologic concentrations of estradiol could potentially be used to induce apoptosis and tumor regression in tumors that have developed resistance to aromatase inhibitors.

  6. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  7. Estradiol and Progesterone Strongly Inhibit the Innate Immune Response of Mononuclear Cells in Newborns ▿

    Science.gov (United States)

    Giannoni, Eric; Guignard, Laurence; Knaup Reymond, Marlies; Perreau, Matthieu; Roth-Kleiner, Matthias; Calandra, Thierry; Roger, Thierry

    2011-01-01

    Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period. PMID:21518785

  8. In vivo measurement of tumor estradiol and Vascular Endothelial Growth Factor in breast cancer patients

    International Nuclear Information System (INIS)

    Garvin, Stina; Dabrosin, Charlotta

    2008-01-01

    Angiogenesis, crucial for tumor progression, is a process regulated in the tissue micro-environment. Vascular endothelial growth factor (VEGF) is a potent stimulatory factor of angiogenesis and a negative prognostic indicator of breast cancer. VEGF is biologically active in the extracellular space and hitherto, there has been a lack of techniques enabling sampling of angiogenic molecules such as VEGF in situ. The majority of breast cancers are estrogen-dependent, and estrogen has been shown to regulate VEGF in normal breast tissue and experimental breast cancer. We investigated if microdialysis may be applicable in human breast cancer for sampling of extracellular VEGF in situ and to explore if there is an association with local estradiol and VEGF levels in normal and cancerous breast tissue. Microdialysis was used to sample VEGF and estradiol in tumors and adjacent normal breast tissue in postmenopausal breast cancer patients. VEGF and estradiol were also measured in plasma, and immunohistochemical staining for VEGF was performed on tumor sections. We show that in vivo levels of extracellular VEGF were significantly higher in breast cancer tumors than in normal adjacent breast tissue. There was a significant positive correlation between estradiol and extracellular VEGF in normal breast tissue. However, no correlation was detected between estradiol and VEGF in tumors or between tumor VEGF and plasma VEGF. We conclude that VEGF and estradiol correlates significantly in normal breast tissue. Microdialysis may be used to provide novel insight in breast tumor biology and the regulation of molecules in the extracellular space of human breast tumors in vivo

  9. Evidence that the [3H]estradiol-binding protein in pancreas is localized in exocrine cells

    International Nuclear Information System (INIS)

    Grossman, A.; Richardson, S.B.; Altszuler, N.; Lane, B.

    1985-01-01

    Extracts of rat pancreas contain significant amounts of an [ 3 H]estradiol-binding protein. The amount of steroid-binding activity that could be measured varied considerably depending on the tonicity of the homogenizing medium. High speed supernatants of homogenates initially prepared in isotonic buffer contained about 10% of the binding activity as homogenates prepared in hypotonic buffer. Extraction with hypotonic buffer of pellets obtained by the isotonic procedure yielded most of the remaining [ 3 H]estradiol-binding activity. In an attempt to avoid errors resulting from incomplete homogenization and to detect possible changes in intracellular distribution of [ 3 H]estradiol-binding activity, pancreata were initially homogenized in isotonic buffer and centrifuged at high speed (100,000 X g; 1 hr). The pellet was then extracted with hypotonic buffer and centrifuged again at high speed, and both supernatants were analyzed for [ 3 H]estradiol-binding and amylase activities. Two or 14 days after treatment of male rats with streptozotocin, no apparent decline or redistribution of [ 3 H]estradiol-binding activity to the cytosol was noted despite extensive alteration of beta-islet cells, as determined by electron microscopic examination of sections of these pancreata and significant loss of insulin, as measured by RIA. Amylase activity was unaffected 2 days after streptozotocin treatment, but was depressed to about 1% of control levels at 14 days. Administration of insulin to the latter group of animals resulted in return of amylase to normal levels and a modest increase (approximately 50%) in [ 3 H]estradiol-binding activity

  10. A rapid enhancement of locomotor sensitization to amphetamine by estradiol in female rats.

    Science.gov (United States)

    Zovkic, Iva B; McCormick, Cheryl M

    2017-11-14

    Estradiol moderates the effects of drugs of abuse in both humans and rodents. Estradiol's enhancement of behavioral effects resulting from high (>2.5mg/kg) doses of amphetamine is established in rats; there is less evidence for the role of estradiol in locomotor effects elicited by lower doses, which are less aversive, increase incentive motivation, involve different neural mechanisms than higher doses, and often more readily reveal group differences than do higher doses. Further, the extent to which estradiol is required for the induction versus the expression of sensitization is unknown. To establish a protocol, we replicated the effects of estradiol on locomotor sensitization to amphetamine reported in a previous study that involved a high locomotor-activating dose (1.5mg/kg) of amphetamine, but with a lower dose. Ovariectomized female rats received 5μg of estradiol benzoate (EB) or OIL 30min before each of 5 treatments of 1.0mg/kg amphetamine or saline; all received a 0.5mg/kg challenge dose three days later. Compared with results for OIL, EB enhanced the locomotor-activating effects of repeated 1.0mg/kg amphetamine across treatment days. In contrast, on challenge day, there was no difference between EB-saline and EB-amphetamine to the lower dose (i.e., no sensitization). Experiments 2 and 3 involved a shorter induction (2days) and a lengthier withdrawal (9days) before the challenge test for the expression of sensitization to better differentiate the induction phase from the expression phase. In Expt2, EB-, and not OIL-, treated rats showed sensitization to 0.5mg/kg amphetamine; neither group showed sensitization to 1.5mg/kg amphetamine (ceiling effect?). In Expt3, rats were treated with EB either in both the induction and expression phases, in one of the phases only, or in neither phase. There was an effect of hormone treatment on challenge day and not on induction day; rats given EB on Challenge day showed sensitization to 0.5mg/kg amphetamine; OIL rats did

  11. Estradiol suppresses tissue androgens and prostate cancer growth in castration resistant prostate cancer

    International Nuclear Information System (INIS)

    Montgomery, Bruce; Nelson, Peter S; Vessella, Robert; Kalhorn, Tom; Hess, David; Corey, Eva

    2010-01-01

    Estrogens suppress tumor growth in prostate cancer which progresses despite anorchid serum androgen levels, termed castration resistant prostate cancers (CRPC), although the mechanisms are unclear. We hypothesize that estrogen inhibits CRPC in anorchid animals by suppressing tumoral androgens, an effect independent of the estrogen receptor. The human CRPC xenograft LuCaP 35V was implanted into orchiectomized male SCID mice and established tumors were treated with placebo, 17β-estradiol or 17β-estradiol and estrogen receptor antagonist ICI 182,780. Effects of 17β-estradiol on tumor growth were evaluated and tissue testosterone (T) and dihydrotestosterone (DHT) evaluated by mass spectrometry. Treatment of LuCaP 35V with 17β-estradiol slowed tumor growth compared to controls (tumor volume at day 21: 785 ± 81 mm 3 vs. 1195 ± 84 mm 3 , p = 0.002). Survival was also significantly improved in animals treated with 17β-estradiol (p = 0.03). The addition of the estrogen receptor antagonist ICI 182,780 did not significantly change survival or growth. 17β-estradiol in the presence and absence of ICI 182,780 suppressed tumor testosterone (T) and dihydrotestosterone (DHT) as assayed by mass spectrometry. Tissue androgens in placebo treated LuCaP 35V xenografts were; T = 0.71 ± 0.28 pg/mg and DHT = 1.73 ± 0.36 pg/mg. In 17β-estradiol treated LuCaP35V xenografts the tissue androgens were, T = 0.20 ± 0.10 pg/mg and DHT = 0.15 ± 0.15 pg/mg, (p < 0.001 vs. controls). Levels of T and DHT in control liver tissue were < 0.2 pg/mg. CRPC in anorchid animals maintains tumoral androgen levels despite castration. 17β-estradiol significantly suppressed tumor T and DHT and inhibits growth of CRPC in an estrogen receptor independent manner. The ability to manipulate tumoral androgens will be critical in the development and testing of agents targeting CRPC through tissue steroidogenesis

  12. Estrogen action in the mouse uterus: differential nuclear localization of estradiol in uterine cell types

    International Nuclear Information System (INIS)

    Korach, K.S.; Lamb, J.C.

    1981-01-01

    Autoradiographic studies of labeled steroid uptake in mouse uterine tissue indicated that labeled estradiol was predominantly sequestered in the nuclei of stromal and glandular epithelial cells at 1 h. Luminal epithelial cells did not show appreciable nuclear accumulation of labeled estradiol until 7-8 h after hormone injection. Studies using non-target tissues and unlabeled steroids indicated that the nuclear uptake events were tissue and estrogen steroid specific. The temporal pattern of steroid hormone uptake in the uterus would suggest that an initial interaction in stromal and glandular epithelial cells may be required prior to nuclear stimulation in the luminal epithelial target cell

  13. Estradiol treatment in preadolescent females enhances adolescent spatial memory and differentially modulates hippocampal region-specific phosphorylated ERK labeling.

    Science.gov (United States)

    Wartman, Brianne C; Keeley, Robin J; Holahan, Matthew R

    2012-10-24

    Estrogen levels in rats are positively correlated with enhanced memory function and hippocampal dendritic spine density. There is much less work on the long-term effects of estradiol manipulation in preadolescent rats. The present work examined how injections of estradiol during postnatal days 19-22 (p19-22; preadolescence) affected water maze performance and hippocampal phosphorylated ERK labeling. To investigate this, half of the estradiol- and vehicle-treated female rats were trained on a water maze task 24h after the end of estradiol treatment (p23-27) while the other half was not trained. All female rats were tested on the water maze from p40 to p44 (adolescence) and hippocampal pERK1/2 labeling was assessed as a putative marker of neuronal plasticity. During adolescence, preadolescent-trained groups showed lower latencies than groups without preadolescent training. Retention data revealed lower latencies in both estradiol groups, whether preadolescent trained or not. Immunohistochemical detection of hippocampal pERK1/2 revealed elevations in granule cell labeling associated with the preadolescent trained groups and reductions in CA1 labeling associated with estradiol treatment. These results show a latent beneficial effect of preadolescent estradiol treatment on adolescent spatial performance and suggest an organizational effect of prepubescent exogenously applied estradiol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. A new approach for noninvasive transdermal determination of blood uric acid levels

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2014-06-01

    Full Text Available Congo Tak-Shing Ching,1,2 Kok-Khun Yong,3 Yan-Dong Yao,4 Huan-Ting Shen,3 Shiu-Man Hsieh,5 Deng-Yun Jheng,1 Tai-Ping Sun,1,6 Hsiu-Li Shieh11Department of Electrical Engineering, National Chi Nan University, Nantou, 2Department of Photonics and Communication Engineering, Asia University, Taichung, 3Department of Internal Medicine, Puli Christian Hospital, Nantou, People’s Republic of China; 4Division of Science and Technology, Hong Kong Community College, Hong Kong; 5Department of Orthopedic Surgery, Puli Christian Hospital, 6Department of Electronic Engineering, Nan Kai University of Technology, Nantou, People’s Republic of ChinaAbstract: The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W, electroporation (100 V/cm2, and reverse iontophoresis (0.5 mA/cm2 was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2 demonstrated enough sensitivity (9.4 µA/mM for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R2=0.894 was demonstrated to exist between the concentration of uric acid (0.2–0.8 mM inside the diffusion cell and the current response of the

  15. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration

    Directory of Open Access Journals (Sweden)

    Berkó S

    2016-05-01

    Full Text Available Szilvia Berkó,1,* Kálmán F Szűcs,2,* Boglárka Balázs,1,3 Erzsébet Csányi,1 Gábor Varju,4 Anita Sztojkov-Ivanov,2 Mária Budai-Szűcs,1 Judit Bóta,2 Róbert Gáspár2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 2Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 3Gedeon Richter Plc., Budapest, 4Dr Derm Clinic of Anti-Aging Dermatology, Aesthetic Laser and Plastic Surgery, Budapest, Hungary *These authors contributed equally to this work Purpose: Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. Methods: The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Results: Both intravenously and EP-administered neostigmine (0.2–66.7 µg/kg increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 µg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. Conclusion: The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice. Keywords: transdermal

  16. Preparation and evaluation of microemulsion-based transdermal delivery of total flavone of rhizoma arisaematis

    Directory of Open Access Journals (Sweden)

    Shen LN

    2014-07-01

    Full Text Available Li-Na Shen,1 Yong-Tai Zhang,1 Qin Wang,2 Ling Xu,2 Nian-Ping Feng11Department of Pharmaceutical Sciences, 2Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaAbstract: The aims of the present study were to investigate the skin permeation and cellular uptake of a microemulsion (ME containing total flavone of rhizoma arisaematis (TFRA, and to evaluate its effects on skin structure. Pseudo-ternary phase diagrams were constructed to evaluate ME regions with various surfactants and cosurfactants. Eight formulations of ­oil-in-water MEs were selected as vehicles, and in vitro skin-permeation experiments were performed to optimize the ME formulation and to evaluate its permeability, in comparison to that of an aqueous suspension. Laser scanning confocal microscopy and fluorescent-activated cell sorting were used to explore the cellular uptake of rhodamine 110-labeled ME in human epidermal keratinocytes (HaCaT and human embryonic skin fibroblasts (CCC-ESF-1. The structure of stratum corneum treated with ME was observed using a scanning electron microscope. Furthermore, skin irritation was tested to evaluate the safety of ME. ME formulated with 4% ethyl oleate (weight/weight, 18% Cremophor EL® (weight/weight, and 18% Transcutol® P, with 1% Azone to enhance permeation, showed good skin permeability. ME-associated transdermal fluxes of schaftoside and isoschaftoside, two major effective constituents of TFRA, were 3.72-fold and 5.92-fold higher, respectively, than those achieved using aqueous suspensions. In contrast, in vitro studies revealed that uptake by HaCaT and CCC-ESF-1 cells was lower with ME than with an aqueous suspension. Stratum corneum loosening and shedding was observed in nude mouse skin treated with ME, although ME produced no observable skin irritation in rabbits. These findings indicated that ME enhanced transdermal TFRA delivery effectively and showed

  17. Transdermal rivastigmine for HIV-associated cognitive impairment: A randomized pilot study.

    Directory of Open Access Journals (Sweden)

    Jose A Muñoz-Moreno

    Full Text Available To assess the efficacy and safety of transdermal rivastigmine for the treatment of HIV-associated cognitive impairment.We recruited HIV-infected patients with cognitive impairment on stable antiretroviral therapy in a randomized controlled pilot trial with a 48-week follow-up. An additional assessment was held at 12 weeks. Participants received transdermal rivastigmine (9.5 mg daily, lithium (400 mg twice daily, titrated progressively, or remained in a control group (no new medication. The primary efficacy endpoint was change in a global cognitive score (NPZ-7. Secondary endpoints included change in specific cognitive measures, domains, and functional parameters. Safety covered the frequency of adverse events and changes in laboratory results.Seventy-six subjects were screened, and 29 were finally enrolled. Better cognitive outcomes were observed in all groups, although there were no significant differences between the arms (mean NPZ-7 change [SD]: rivastigmine, 0.35 (0.14; lithium, 0.25 (0.40; control, 0.20 (0.44 (p = 0.78. The rivastigmine group showed the highest positive trend (mean NPZ-7 [SD], baseline vs week 48: rivastigmine, -0.47 (0.22 vs -0.11 (0.29, p = 0.06; lithium, -0.50 (0.40 vs -0.26 (0.21, p = 0.22; control, -0.52 (0.34 vs -0.32 (0.52, p = 0.44. The cognitive domains with the highest positive trends were information processing speed at week 12 and executive function at week 48 (rivastigmine vs control: information processing speed, 0.35 (0.64 vs -0.13 (0.25, p = 0.17, d = 0.96; and executive functioning, 0.73 (0.33 vs 0.03 (0.74, p = 0.09, d = 1.18. No relevant changes were observed regarding functional outcomes. A total of 12 (41% individuals dropped out of the study: 2 (20% were due to medication-related effects in the rivastigmine group and 4 (36% in the lithium group. No severe adverse events were reported.The results from this small randomized trial indicate that transdermal rivastigmine did not provide significant

  18. Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors.

    Science.gov (United States)

    Tsai, J C; Guy, R H; Thornfeldt, C R; Gao, W N; Feingold, K R; Elias, P M

    1996-06-01

    The intercellular domains of the stratum corneum, which contain a mixture of cholesterol, free fatty acids, and ceramides, mediate both the epidermal permeability barrier and the transdermal delivery of both lipophilic and hydrophilic molecules. Prior studies have shown that each of the three key lipid classes is required for normal barrier function. For example, selective inhibition of either cholesterol, fatty acid, or ceramide synthesis in the epidermis delays barrier recovery rates after barrier perturbation of hairless mouse skin in vivo. In this study, we investigated the potential of certain inhibitors of lipid synthesis to enhance the transdermal delivery of lidocaine or caffeine as a result of their capacity to perturb barrier homeostasis. After acetone disruption of the barrier, the extent of lidocaine delivery and the degree of altered barrier function paralleled each other. Moreover, the further alteration in barrier function produced by either the fatty acid synthesis inhibitor 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), the cholesterol synthesis inhibitor fluvastatin (FLU), or cholesterol sulfate (CS) resulted in a further increase in lidocaine absorption. Furthermore, coapplications of TOFA and CS together caused an additive increase in lidocaine uptake. Finally, a comparable increase in drug delivery occurred when the barrier was disrupted initially with DMSO instead of acetone; coapplications of TOFA and FLU together again delayed barrier recovery and increased drug delivery by about 8-fold vs delivery from a standard enhancing vehicle. Whereas these metabolic inhibitors also variably increased the octanol/water partitioning of the drugs studied (perhaps via complexion or pH alterations), physicochemical effects of the inhibitors alone did not alter drug uptake in intact skin; i.e., passive mechanisms alone cannot account for the net increase in drug delivery. Our results show that modulations of epidermal lipid biosynthesis, following

  19. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation

    International Nuclear Information System (INIS)

    Zhu, Liangliang; Xiao, Ling; Xia, Yangliu; Zhou, Kun; Wang, Huili; Huang, Minyi; Ge, Guangbo; Wu, Yan; Wu, Ganlin; Yang, Ling

    2015-01-01

    This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1 ± 0.3 μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0–6.25 μM), K m values for E2-17-O-glucuronidation are located in the range of 7.2–7.4 μM, while V max values range from 0.38 to 1.54 nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2 μM) can elevate V max from 0.016 to 0.81 nmol/min/mg, while lifting K m in a much lesser extent from 4.4 to 11 μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with K A , α, and β values of 0.077 ± 0.18 μM, 3.3 ± 1.1 and 104 ± 56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4. - Highlights: • E2-3-O-glucuronidation in HLM is inhibited when co-incubated with DES. • E2-17-O-glucuronidation in HLM is stimulated when co-incubated with DES. • Acceleration of E2-17-O-glucuronidationin in HLM by DES is via activating the activity of UGT1A4

  20. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice

    Science.gov (United States)

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-05-01

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10

  1. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview

    Science.gov (United States)

    Zuki, S. A. Mohd; Rahman, N. Abd; Abu Bakar, N. F.

    2018-03-01

    Wound must be carefully treated to avoid serious infection that needs costly treatment. Method to enhance the recovery of the wound is crucial to have effective wound treatment. One of the technologies in wound treatment is transdermal patch that has the benefits of being non-invasive, easy to handle and permits constant drug dosage. In order to obtain a good controlled drug release, drug excipient needs to be investigated. Recently, natural Nanocrystal Cellulose (NCC) which can be synthesized from animal, algae, microorganism or plant has been actively used in drug delivery system as excipient. The application of NCC is advantageous due to its large surface area, biodegradable, non-toxic and abundance source.

  2. Synchronization of skin ablation and microjet injection for an effective transdermal drug delivery

    Science.gov (United States)

    Jang, Hun-jae; Yeo, Seonggu; Yoh, Jack J.

    2016-04-01

    An Er:YAG laser with 2940-nm wavelength and 150-µs pulse duration was built for the purpose of combined ablation and microjet injection. A shorter pulse duration compared to common erbium lasers in dentistry is desirable for a synchronization of skin ablation and subsequent microjet injection into target skin for transdermal injection of liquid dose. A single laser beam is split into two for an optimal energy of pre-ablation of skin and the residual energy allocated to a microjet ejection. A newly designed injector consists of an L-shaped chamber and a parabolic mirror in a single unit, and the handheld laser is a part of an integrated system requiring no optical fiber. Through various injection tests using the porcine skin, the effectiveness of the new delivery system is herein evaluated.

  3. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery.

    Science.gov (United States)

    Carvalho, André Luis Menezes; Silva, José Alexsandro da; Lira, Ana Amélia Moreira; Conceição, Tamara Matos Freire; Nunes, Rogéria de Souza; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Sarmento, Victor Hugo Vitorino; Leal, Leila Bastos; de Santana, Davi Pereira

    2016-07-01

    This study proposed to investigate and to compare colloidal carrier systems containing Zidovudine (3'-azido-3'-deoxythymidine) (AZT) for transdermal administration and optimization of antiretroviral therapy. Microemulsion (ME) and lamellar phase (LP) liquid crystal were obtained and selected from pseudoternary diagrams previously developed. Small-angle X-ray scattering and rheology analysis confirmed the presence of typical ME and liquid crystalline structures with lamellar arrangement, respectively. Both colloidal carrier systems, ME, and LP remained stable, homogeneous, and isotropic after AZT addition. In vitro permeation study (using pig ear skin) showed that the amount of permeated drug was higher for ME compared to the control and LP, obtaining a permeation enhancing effect on the order of approximately 2-fold (p drug permeation without causing apparent skin irritation. On the order hand, LP functioned as a drug reservoir reducing AZT partitioning into the skin. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  5. Fentanyl sublingual spray for breakthrough cancer pain in patients receiving transdermal fentanyl.

    Science.gov (United States)

    Alberts, David S; Smith, Christina Cognata; Parikh, Neha; Rauck, Richard L

    2016-10-01

    To investigate the relationship between effective fentanyl sublingual spray (FSS) doses for breakthrough cancer pain (BTCP) and around-the-clock (ATC) transdermal fentanyl patch (TFP). Adults tolerating ATC opioids received open-label FSS for 26 days, followed by a 26-day double-blind phase for patients achieving an effective dose (100-1600 µg). Out of 50 patients on ATC TFP at baseline, 32 (64%) achieved an effective dose. FSS effective dose moderately correlated with mean TFP dose (r = 0.4; p = 0.03). Patient satisfaction increased during the study. Common adverse event included nausea (9%) and peripheral edema (9%). FSS can be safely titrated to an effective dose for BTCP in patients receiving ATC TFP as chronic cancer pain medication. ClinicalTrials.gov identifier: NCT00538850.

  6. Rotigotine Transdermal Patch Improves Swallowing in Dysphagic Patients with Parkinson's Disease.

    Science.gov (United States)

    Hirano, Makito; Isono, Chiharu; Sakamoto, Hikaru; Ueno, Shuichi; Kusunoki, Susumu; Nakamura, Yusaku

    2015-08-01

    Abnormal swallowing, dysphagia, is a potentially fatal symptom in Parkinson's disease (PD) and is characterized by frequent silent aspiration, an unrecognized risk of suffocation and aspiration pneumonia. Several studies have reported that the injection of apomorphine, a dopamine agonist, alleviated dysphagia in some patients with PD. The effects of other antiparkinson medications against dysphagia remain controversial. Rotigotine is another dopamine agonist with non-oral administration, i.e., a transdermal patch. Its noninvasiveness seems to render this medicine even more suitable than apomorphine for dysphasic patients. However, no direct evidence has been reported. In the present retrospective open-label study, we for the first time objectively showed that rotigotine improved swallowing on videofluoroscopic examination in dysphagic patients with PD.

  7. Role of pressure-sensitive adhesives in transdermal drug delivery systems.

    Science.gov (United States)

    Lobo, Shabbir; Sachdeva, Sameer; Goswami, Tarun

    2016-01-01

    Transdermal drug delivery systems (TDDS) are employed for the delivery of drugs across skin into the systemic circulation. Pressure-sensitive adhesive (PSA) is one of the most critical components used in a TDDS. The primary function of PSA is to help in adhesion of patch to skin, but more importantly it acts as a matrix for the drug and other excipients. Hence, apart from adhesion of the patch, PSA also affects other critical quality attributes of the TDDS such as drug delivery, flux through skin and physical and chemical stability of the finished product. This review article provides a summary of the adhesives used in various types of TDDS. In particular, this review will cover the design types of TDDS, categories of PSAs and their evaluation and regulatory aspects.

  8. Transdermal permeation of geniposide in the herbal complex liniment in vivo and in vitro.

    Science.gov (United States)

    Wang, Yugang; Li, Lele; Li, Huiying; Zhu, Zhaoyun; Hua, Lei; Lei, Fan; Kheir, Michael M; Du, Lijun

    2010-06-15

    Zhongtong Caji, a kind of liniment, is a traditional Chinese medicinal formula that is widely used for clinical treatment of inflammation and sprains. In this study, the principal effective compound of this formula, geniposide, was used as a criterion to represent the transdermal permeability of the whole formula. A passive diffusion of Zhongtong Caji through the stratum corneum was discovered by an in vitro experiment. The dosage-content relationship detected in subcutaneous tissue after in vivo drug administration was further evidence of its permeation. Blood analysis after different dosages showed that the geniposide could be absorbed and accumulated by subcutaneous tissue within 1h after drug administration, and it would be eliminated by blood circulation 1h after drug treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    International Nuclear Information System (INIS)

    Malik, Ritu; Misra, Amit; Tondwal, Shailesh; Venkatesh, K S

    2008-01-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  10. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    Science.gov (United States)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  11. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine.

    Science.gov (United States)

    Dias, Sávia Francisca Lopes; Nogueira, Silvania Siqueira; de França Dourado, Flaviane; Guimarães, Maria Adelaide; de Oliveira Pitombeira, Nádia Aline; Gobbo, Graciely Gomides; Primo, Fernando Lucas; de Paula, Regina Célia Monteiro; Feitosa, Judith Pessoa Andrade; Tedesco, Antonio Claudio; Nunes, Lívio Cesar Cunha; Leite, José Roberto Souza Almeida; da Silva, Durcilene Alves

    2016-06-05

    Nanoprecipitation and dialysis methods were employed to obtain nanoparticles (NPs) of acetylated cashew gum (ACG). NPs synthesized by dialysis showed greater average size compared to those synthesized by nanoprecipitation, but they presented improved stability and yield. NPs were loaded with diclofenac diethylamine and the efficiency of the drug incorporation was over 60% for both methods, for an ACG:NP a weight ratio of 10:1. The cytotoxicity assay demonstrated that the NPs had no significant effect on the cell viability, verifying their biocompatibility. The release profile for the diclofenac diethylamine associated with the ACG-NPs showed a more controlled release compared to the free drug and a Fickian diffusion mechanism was observed. Transdermal permeation reached 90% penetration of the drug. Copyright © 2016. Published by Elsevier Ltd.

  12. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin

    International Nuclear Information System (INIS)

    Chu Maoquan; Wu Qiang; Wang Jiaxu; Hou Shengke; Miao Yi; Peng Jinliang; Sun Ye

    2007-01-01

    CdTe quantum dots (QDs) with red fluorescence have been used to study their transdermal delivery capacity through mouse skin. The results showed that the QDs could permeate through skin, either separated from or still attached to live mice. Although the fluorescence emitted by the QDs could only be found in the skin and muscle cells located under the mouse skins coated with QDs, an inductive coupled plasma atomic emission spectrometry (ICP-AES) study indicated that the main organs, such as the heart, liver, spleen, lung, kidney and brain, all contained a significant quantity of Cd atoms. Moreover, these Cd atoms could remain in vivo for at least one week. As a control, the concentration of Cd atoms in normal mice not coated with QDs was very low

  13. The specific features of using a rivastigmine transdermal formulation in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Elena Evgenyevna Vasenina

    2012-01-01

    Full Text Available Cholinergic deficiency associated mainly with the degeneration of neurons in the nucleus basalis of Meynert is one of the key factors of the development of cognitive impairments in Alzheimer’s disease (AD. Cholinesterase inhibitors are used to treat mild and moderate dementia in AD. However, the wide use of this group of agents is limited by the high incidence of some side effects. The application of a novel rivastigmine transdermal (patch formulation substantially reduces the risk of adverse reactions chiefly associated with a negative effect on the gastrointestinal tract and increases treatment adherence. Thus, there is a rise in the number of patients who may be given the drug in the optimal therapeutic dose for a long time.

  14. Transdermic absorption of Melagenina II; Evaluacion de la absorcion transdermica de la Melagenina II

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, I; Martinez Lopez, B; Ruiz Pena, M; Caso Pena, R [Centro de Isotopos, La Habana (Cuba)

    1998-12-31

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with {sup 125I} by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ({sup 125I}) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  15. Visual Hallucinations Due to Rivastigmine Transdermal Patch Application in Alzheimer's Disease; The First Case Report

    Directory of Open Access Journals (Sweden)

    Yıldız Değirmenci

    2016-12-01

    Full Text Available Rivastigmine is a well-known dual acting acetylcholinesterase and butyrylcholinesterase inhibitor, which is effective on behavioral and psychiatric symptoms including hallucinations, as well as cognitive symptoms of dementia. The most common adverse effects of rivastigmine related to cholinergic stimulation in brain and peripheral tissues are gastrointestinal, cardiorespiratory, extrapyramidal, genitourinary, musculoskeletal symptoms, sleep disturbances, and skin irritations with the transdermal patch form in particular. Despite to the previous reports revealing the improving effects of the drug on hallucinations, we presented a-80 year old women with Alzheimer's disease suffering from visual hallucinations whose complaints began with rivastigmine treatment. Since the patient had recent memory disturbance without any behavioral and/or psychiatric symptoms before rivastigmine administration, and visual hallucinations disappeared with the discontinuation of the drug, visual hallucinations were attributed to rivastigmine.

  16. Effect of transdermal glyceryl trinitrate and anti-inflammatory gel in infusion phlebitis.

    Science.gov (United States)

    Cökmez, Atilla; Gür, Serhat; Genç, Hüdai; Deniz, Sümer; Tarcan, Ercüment

    2003-10-01

    Phlebitis is the commonest complication of intravenous infusion. It has been suggested that it is initiated by venoconstriction at the infusion site, hence treatment with a vasodilator may reduce its incidence. A prospective controlled study was carried out on the effect of transdermal glyceryl trinitrate (GTN) and topical anti-inflammatory gel (non-steroidal anti-inflammatory drug; NSAID) on the survival of peripheral intravenous infusion in 386 patients. A total of 34.9% (43 out of 123) of the infusions failed in the control group compared with 14.1% (18 out of 127) in the NSAID group (P NSAI gel and GTN but NSAI gel is more effective than GTN.