WorldWideScience

Sample records for micro-crack growth behavior

  1. Fatigue micro-crack initiation behavior and effect of irradiation damage on it in austenitic stainless steel

    International Nuclear Information System (INIS)

    Nakai, Ryosuke; Sato, Yuki; Nogami, Shuhei; Hasegawa, Akira

    2012-01-01

    The effect of irradiation on slip band formation and growth and micro-crack initiation behavior under low cycle fatigue in SUS316L austenitic stainless steel was investigated using accelerator-based proton irradiation and a low cycle fatigue test at room temperature in air. The micro-crack initiation was observed at slip band, grain boundary, twin boundary, and triple junction regardless of the total strain range and the proton irradiation. In unirradiated specimens, the micro-crack initiation life dropped by 75-90% due to the increase of the plastic strain range. Under the condition the plastic strain range was 0.4%, the micro-crack initiation was observed mainly at the grain boundary. On the other hand, under the condition the plastic strain range was 1.0%, the number fractions of the micro-crack initiation in slip band and twin boundary were increased. In proton-irradiated specimens, the micro-crack initiation life decreased by 50-80% and the micro-crack initiation was observed mainly at slip band and twin boundary. (author)

  2. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  3. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  4. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  5. Micro- and macroapproaches in fracture mechanics for interpreting brittle fracture and fatigue crack growth

    International Nuclear Information System (INIS)

    Ekobori, T.; Konosu, S.; Ekobori, A.

    1980-01-01

    Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data

  6. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  7. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  8. A study on fatigue crack growth behavior subjected to a single tensile overload

    International Nuclear Information System (INIS)

    Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B.

    2011-01-01

    Neutron diffraction and electric potential experiments were carried out to investigate the growth behavior of a fatigue crack subjected to a single tensile overload. The specific objectives were to (i) probe the crack tip deformation and fracture behaviors under applied loads; (ii) examine the overload-induced transient crack growth micromechanism; (iii) validate the effective stress intensity factor range based on the crack closure approach as the fatigue crack tip driving force; and (iv) establish a quantitative relationship between the crack tip driving force and crack growth behavior. Immediately after a single tensile overload was introduced and then unloaded, the crack tip became blunt and enlarged compressive residual stresses in both magnitude and zone size were observed around the crack tip. The results show that the combined contributions of the overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are responsible for the observed changes in the crack opening load and the resultant post-overload transient crack growth behavior.

  9. Crack growth behavior of low-alloy bainitic 51CrV4 steel

    OpenAIRE

    Canadinç, Demircan; Lambers, H. G.; Gorny B.; Tschumak, S.; Maier, H.J.

    2010-01-01

    The crack growth behavior of low-alloy bainitic 51CrV4 steel was investigated. The current results indicate that the stress state present during the isothermal bainitic transformation has a strong influence on the crack propagation behavior in the near threshold regime, when the crack growth direction is perpendicular to the loading axis of the original sample undergoing phase transformation. However, the influence of stresses superimposed during the bainitic transformation on the crack growt...

  10. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    Science.gov (United States)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  11. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  12. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  13. Crack growth retardation due to micro-roughness: a mechanism for overload effects in fatigue

    International Nuclear Information System (INIS)

    Suresh, S.

    1982-01-01

    A new mechanism for fatigue crack growth retardation following an overload is presented in this paper, based on a micro-roughness model. It is reasoned, with the aid of extensive experimental evidence available in the literature, that retardation following an overload is governed by the micromechanisms of near-threshold crack growth. This model is found to rationalize a number of hitherto unexplained experimental observations. Moreover, the present arguments, which suggest that plasticity-induced crack closure is not likely to be the primary mechanism for retardation following single overloads, do not exclude the role of residual stresses or blunting, but provide further mechanistic basis to account for the inconsistencies in the previous models. Additional sources of prolonged retardation, in terms of crack closure due to corrosion debris formed in moist environments, are suggested. It is pointed out that such environmental effects could play an important role in post-overload crack growth in certain alloy systems

  14. Fatigue-crack growth behavior in dissimilar metal weldments

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were used to characterize fatigue-crack propagation behavior in three dissimilar metal weldments at test temperatures of 800 0 F (427 0 C) and 1000 0 F (538 0 C). The weldments studied included Inconel 718/Type 316, all using Inconel 82 as the filler metal. In general, fatigue-crack growth rates in the weldments were equal to, or less than, those observed in the base metals. Crack deviation from the expected path perpendicular to the loading axis was noted in some cases, and is discussed

  15. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    Science.gov (United States)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  16. Evaluations of environmental effect on micro crack initiation and propagation by surface observations of fatigue specimens

    International Nuclear Information System (INIS)

    Fujikawa, Ryosuke; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    Fatigue life of nuclear facilities tends to be decreased by the influence of reactor coolant, which is called environmental effect. The effect accelerates crack growth rate but the influence for crack initiation is not clarified. This study intends to discuss the environmental effect in crack initiation. The crack length and the number of cracks are measured from the investigation of fatigue test specimens in reactor coolant and air. The behavior of crack initiation is revealed from the measurement of number of cracks, crack sizes and fatigue life. From this study, environmental effect of reactor coolant is considered to influence crack initiation and increase the number of micro crack. It is also estimated that the coalescence of cracks influences the acceleration of crack growth. (author)

  17. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  18. A crack growth evaluation method for interacting multiple cracks

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2003-01-01

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)

  19. Study of creep crack growth behavior of 316LN welds

    International Nuclear Information System (INIS)

    Venugopal, S.; Kumar, Yatindra; Sasikala, G.

    2016-01-01

    Creep crack growth (CCG) behavior plays an important role in the assessment of structural integrity of components operating at elevated temperature under load/stress condition. Integrity of the welded components is decided primarily by that of the weld. Creep crack growth behavior of 316LN welds prepared using consumables developed indigenously for welding the 316L(N) SS components for the Prototype Fast Breeder Reactor has been studied. The composition of the consumable is tailored to ensure about 5 FN (ferrite number) of δ ferrite in the weld deposit. Constant load CCG tests were carried out as per ASTM E1457 at different applied loads at temperatures in the range 823-923 K on CT specimens fabricated from 'V-type' weld joints with notch in the weld centre. The creep crack growth rate (α) is commonly correlated to a time dependent fracture mechanics parameter known as C*. The α3-C* correlations (α=D(C*) φ ) were established in the temperature range 823-923 K. The crack growth rates at different temperature have been compared with that given in RCC-MR. Extensive microstructural and fractographic studies using optical and scanning electron microscopy were carried out on the CCG tested specimens to understand the effect of transformation of delta ferrite on the creep damage and fracture mechanisms associated with CCG in the weld metal at different test conditions. (author)

  20. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  1. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  2. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  3. Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang; Jang, Yong Joon

    2007-01-01

    The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by using the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location

  4. Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Hoffman, M.J.; Dauskardt, R.H.

    2000-01-01

    Fracture and environmentally assisted subcritical crack-growth processes are examined in bulk Y-Si-Al-O-N oxynitride glasses with compositions typical of the grain boundary phase of silicon nitride ceramics. Both long-crack (in compact tension specimens) as well as short-crack behavior (using indentation techniques) were investigated to establish a reliable fracture toughness and to elucidate the anomalous densification behavior of the oxynitride glass. Environmentally assisted subcritical crack-growth processes were studied in inert, moist, and wet environments under both cyclic and static loading conditions. Behavior is discussed in terms of the interaction of the environment with the crack tip. Likely mechanisms for environmentally assisted crack growth are discussed and related to the subcritical crack-growth behavior of silicon nitride ceramics

  5. Statistical analysis of fatigue crack growth behavior for grade B cast steel

    International Nuclear Information System (INIS)

    Li, W.; Sakai, T.; Li, Q.; Wang, P.

    2011-01-01

    Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m 1/2 , very similar to the experimental value, about 8.7279 MPa m 1/2 . Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m 1/2 . In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.

  6. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  7. Fatigue Crack Growth Behavior of Austempered AISI 4140 Steel with Dissolved Hydrogen

    Directory of Open Access Journals (Sweden)

    Varun Ramasagara Nagarajan

    2017-11-01

    Full Text Available The focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behavior of an austempered low-alloy AISI 4140 steel. The investigation also examined the influence of dissolved hydrogen on the fatigue threshold in this material. The material was tested in two conditions, as-received (cold rolled and annealed and austempered (austenitized at 882 °C for 1 h and austempered at 332 °C for 1 h. The microstructure of the annealed specimens consisted of a mix of ferrite and fine pearlite; the microstructure of the austempered specimens was lower bainite. Tensile and Compact Tension specimens were prepared. To examine the influence of dissolved hydrogen, two subsets of the CT specimens were charged with hydrogen for three different time periods between 150 and 250 h. All of the CT samples were then subjected to fatigue crack growth tests in the threshold and linear regions at room temperature. The test results indicate that austempering resulted in significant improvement in the yield and tensile strength as well as the fracture toughness of the material. The test results also show that, in the absence of dissolved hydrogen, the crack growth rate in the threshold and linear regions was lower in austempered samples compared to the as-received (annealed samples. The fatigue threshold was also slightly greater in the austempered samples. In presence of dissolved hydrogen, the crack growth rate was dependent upon the ∆K value. In the low ∆K region (<30 MPa√m, the presence of dissolved hydrogen caused the crack growth rate to be higher in the austempered samples as compared to annealed samples. Above this value, the crack growth rate was increasingly greater in the annealed specimens when compared to the austempered specimens in presence of dissolved hydrogen. It is concluded that austempering of 4140 steel appears to provide a processing route by which the strength, hardness, and fracture toughness of

  8. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  9. Fatigue crack growth behavior and AE signal recognition from a composite patch repaired Ai thein plate

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang

    2004-01-01

    The fatigue crack growth behavior of a fatigue-cracked and patch-repaired AA2024-T3 plate has been monitored. It was found that the overall crack growth rate was reduced and the crack propagation into the adjacent hole was also retarded. Signals due to crack growth after patch-repair and those due to debonding of the plate-patch interface were discriminated each other by using principal component analysis. The former showed higher center frequency and lower amplitude, whereas the latter showed longer rise time, lower frequency and higher amplitude.

  10. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  11. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  12. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    Science.gov (United States)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  13. Effect of membrane and through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-11-01

    This study clarified the effect of a membrane and a through-wall bending stresses on fatigue crack growth behavior and coolant leakage velocity due to irregularity of crack surface. Each stress component relates to fatigue crack growth behavior directly in general and thus the wild-used K I solutions are anticipated to give good evaluation results on it. Meanwhile, it is necessary to notify that surface irregularity for coolant leakage assessment is made by stress history in nature. Surface irregularity is known to be largely classified into the following two aspects: surface roughness due to continuous crack opening and closure behavior and surface turnover due to cyclic bending stress dominance. Therefore, the deterministic parameters on resistance of coolant leakage by surface irregularity are considered to be not only stress history but crack opening behavior. (author)

  14. Time-dependent crack growth in steam generator tube leakage

    International Nuclear Information System (INIS)

    Chung, H.D.; Lee, J.H.; Park, Y.W.; Choi, Y.H.

    2006-01-01

    In general, cracks found in steam generator tubes have semi-elliptical shapes and it is assumed to be rectangular shape for conservatism after crack penetration. Hence, the leak and crack growth behavior has not been clearly understood after the elliptical crack penetrates the tube wall. Several experimental results performed by Argonne Nation Laboratory exhibited time-dependent crack growth behavior of rectangular flaws as well as trapezoidal flaws under constant pressure. The crack growth faster than expected was observed in both cases, which is likely attributed to time-dependent crack growth accompanied by fatigue sources such as the interaction between active jet and crack. The stress intensity factor, K 1 , is necessary for the prediction of the observed fatigue crack growth behavior. However, no K 1 solution is available for a trapezoidal flaw. The objective of this study is to develop the stress intensity factor which can be used for the fatigue analysis of a trapezoidal crack. To simplify the analysis, the crack is assumed to be a symmetric trapezoidal shape. A new K 1 formula for axial trapezoidal through-wall cracks was proposed based on the FEM results. (author)

  15. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  16. Stable crack growth behaviors in welded CT specimens -- finite element analyses and simplified assessments

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Aoki, Shigeru; Kikuchi, Masanori; Arai, Yoshio; Kashima, Koichi; Watanabe, Takayuki; Shimakawa, Takashi

    1993-01-01

    The paper describes stable crack growth behaviors in welded CT specimens made of nuclear pressure vessel A533B class 1 steel, in which initial cracks are placed to be normal to fusion line. At first, using the relations between the load-line displacement (δ) and the crack extension amount (Δa) measured in experiments, the generation phase finite element crack growth analyses are performed, calculating the applied load (P) and various kinds of J-integrals. Next, the simplified crack growth analyses based on the GE/EPRI method and the reference stress method are performed using the same experimental results. Some modification procedures of the two simplified assessment schemes are discussed to make them applicable to inhomogeneous materials. Finally, a neural network approach is proposed to optimize the above modification procedures. 20 refs., 13 figs., 1 tab

  17. Crack growth prediction method considering interaction between multiple cracks. Growth of surface cracks of dissimilar size under cyclic tensile and bending load

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Miyokawa, Eiichi; Kikuchi, Masanori

    2011-01-01

    When multiple cracks approach one another, the stress intensity factor is likely to change due to the interaction of the stress field. This causes change in growth rate and shape of cracks. In particular, when cracks are in parallel position to the loading direction, the shape of cracks becomes non-planar. In this study, the complex growth of interacting cracks is evaluated by using the S-Version finite element method, in which local detailed finite element mesh (local mesh) is superposed on coarse finite element model (global mesh) representing the global structure. In order to investigate the effect of interaction on the growth behavior, two parallel surface cracks are subjected to cyclic tensile or bending load. It is shown that the smaller crack is shielded by larger crack due to the interaction and stops growing when the difference in size of two cracks is significant. Based on simulations of various conditions, a procedure and criteria for evaluating crack growth for fitness-for-service assessment is proposed. According to the procedure, the interaction is not necessary to be considered in the crack growth prediction when the difference in size of two cracks exceeds the criterion. (author)

  18. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  19. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  20. Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Sasikala, G., E-mail: gsasi@igcar.gov.in; Dutt, B. Shashank; Venugopal, S.; Bhaduri, A.K.; Jayakumar, T.

    2014-04-01

    Fatigue crack growth (FCG) behavior of a reduced activation ferritic martensitic (indigenous RAFM) steel has been evaluated at 300, 653 and 823 K in Paris and threshold regimes. The effect of temperature on threshold stress intensity factor range and associated crack closure mechanisms is highlighted. The FCG results were compared with those for EUROFER 97. Further, crack tip effective stress intensity factor ranges (ΔK{sub tip,eff}) have been evaluated by taking crack tip shielding into account in order to examine the effect of temperature on true intrinsic FCG behavior.

  1. Analysis of short and long crack behavior and single overload effect by crack opening stress

    International Nuclear Information System (INIS)

    Song, Sam Hong; Lee, Kyeong Ro

    1999-01-01

    The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life

  2. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  3. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  4. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  5. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  6. Fatigue crack growth behavior of a new single crystal nickel-based superalloy (CMSX-4) at 650 C

    International Nuclear Information System (INIS)

    Sengupta, A.; Putatunda, S.K.

    1994-01-01

    CMSX-4 is a recently developed rhenium containing single crystal nickel-based superalloy. This alloy has potential applications in many critical high-temperature applications such as turbine blades, rotors, nuclear reactors, etc. The fatigue crack growth rate and the fatigue threshold data of this material is extremely important for accurate life prediction, as well as failure safe design, at elevated temperatures. In this paper, the fatigue crack growth behavior of CMSX-4 has been studied at 650 C. The investigation also examined the influence of γ' precipitates (size and distribution) on the near-threshold fatigue crack growth rate and the fatigue threshold. The influence of load ratio on the fatigue crack growth rate and the fatigue threshold was also examined. Detailed fractographic studies were carried out to determine the crack growth mechanism in fatigue in the threshold region. Compact tension specimens were prepared from the single crystal nickel-based superalloy CMSX-4 with [001] orientation as the tensile loading axis direction. These specimens were given three different heat treatments to produce three different γ' precipitate sizes and distributions. Fatigue crack growth behavior of these specimens was studied at 650 C in air. The results of the present investigation indicate that the near-threshold fatigue crack growth rate decreases and that the fatigue threshold increases with an increase in the γ' precipitate size at 650 C. The fatigue threshold decreased linearly with an increase in load ratio. Fractographs at 650 C show a stage 2 type of crack growth along {100} type of crystal planes in the threshold region, and along {111} type of crystal planes in the high ΔK region

  7. Fracture processes and mechanisms of crack growth resistance in human enamel

    Science.gov (United States)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  8. Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Suryanto, B., E-mail: b.suryanto@hw.ac.uk; Buckman, J.O.; Thompson, P.; Bolbol, M.; McCarter, W.J.

    2016-09-15

    Environmental Scanning Electron Microscopy (ESEM) is used to study the origin of micro-crack healing in an Engineered Cementitious Composite (ECC). ESEM images were acquired from ECC specimens cut from pre-cracked, dog-bone samples which then subjected to submerged curing followed by exposure to the natural environment. The mineralogical and chemical compositions of the healing products were determined using the EDX facility in the ESEM. It is shown that the precipitation of calcium carbonate is the main contributor to micro-crack healing at the crack mouth. The healing products initially appeared in an angular rhombohedral morphology which then underwent a discernable transformation in size, shape and surface texture, from relatively flat and smooth to irregular and rough, resembling the texture of the original surface areas surrounding the micro-cracks. It is also shown that exposure to the natural environment, involving intermittent wetting/drying cycles, promotes additional crystal growth, which indicates enhanced self-healing capability in this environment. - Highlights: •ESEM with EDX used to characterize the origin of micro-crack healing in an ECC •Evolution of healing precipitates studied at three specific locations over four weeks •Specimens exposed to laboratory environment, followed by the natural environment •Calcium carbonate is the main contributor to crack healing at the crack mouth. •Outdoor exposure involving intermittent rain promotes additional crystal growth.

  9. Effect of helium on fatigue crack growth and life of reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Takahashi, Manabu; Hasegawa, Akira; Yamazaki, Masanori

    2013-01-01

    The effects of helium on the fatigue life, micro-crack growth behavior up to final fatigue failure, and fracture mode under fatigue in the reduced activation ferritic/martensitic steel, F82H IEA-heat, were investigated by low cycle fatigue tests at room temperature in air at a total strain range of 0.6–1.5%. Significant reduction of the fatigue life due to helium implantation was observed for a total strain range of 1.0–1.5%, which might be attributable to an increase in the micro-crack propagation rate. However, the reduction of fatigue life due to helium implantation was not significant for a total strain range of 0.6–0.8%. A brittle fracture surface (an original point of micro-crack initiation) and a cleavage fracture surface were observed in the helium-implanted region of fracture surface. A striation pattern was observed in the non-implanted region. These fracture modes of the helium-implanted specimen were independent of the strain range

  10. Crack growth through low-cycle fatigue loading of material ARMOX 500T

    Directory of Open Access Journals (Sweden)

    V. Pepel

    2016-10-01

    Full Text Available This paper presents microstructure analysis of the creation and growth of cracks in uniaxial load. Analyse were done for steel Armox 500T (armour sheet. Results show that cracks are present quit early in steel lifetime. First micro cracks occur before the 200th cycles, whereby crack growth is progressive during further loading. Also it can be seen that after a certain number of cycles there are more longer cracks then shorter ones.

  11. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  12. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  13. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  14. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  15. Growth behavior of fatigue cracks in ultrafine grained Cu smooth specimens with a small hole

    Directory of Open Access Journals (Sweden)

    Masahiro Goto

    2015-10-01

    Full Text Available In order to study the growth mechanism of fatigue cracks in ultrafine grained copper, stresscontrolled fatigue tests of round-bar specimens with a small blind hole as a crack starter were conducted. The hole was drilled on the surface where an intersection between the shear plane of the final ECAP processing and the specimen surface makes an angle of 45° or 90° with respect to the loading axis. At a low stress (  a = 90 MPa, the direction of crack paths was nearly perpendicular to the loading direction regardless of the location of the hole. Profile of crack face was examined, showing the aspect ratio (b/a of b/a = 0.82. At a high stress (  a = 240 MPa, although the growth directions inclined 45° and 90° to the loading-axis were observed depending on the location of the drilling hole, crack faces in these cracks were extended along one set of maximum shear stress planes, corresponding to the final ECAP shear plane. The value of aspect ratios was b/a = 0.38 and 1.10 for the cracks with 45° and 90° inclined path directions, respectively. The role of deformation mode at the crack tip areas on crack growth behavior were discussed in terms of the mixed-mode stress intensity factor. The crack path formation at high stress amplitudes was affected by the in-plane shear-mode deformation at the crack tip.

  16. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    Science.gov (United States)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  17. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    Science.gov (United States)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  18. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    Science.gov (United States)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  19. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  20. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  1. The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu

    1989-01-01

    The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)

  2. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  3. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  4. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  5. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests

    International Nuclear Information System (INIS)

    Ast, Johannes

    2016-01-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system {100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior. This

  6. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    International Nuclear Information System (INIS)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B.

    1995-01-01

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650 0 C and 600 0 C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K op , with crack lenght (author). 12 refs., 5 figs., 2 tab

  7. Time-dependent crack growth in Alloy 718: An interim assessment

    International Nuclear Information System (INIS)

    James, L.A.

    1982-08-01

    Previous results on the time-dependent nature of fatigue-crack propagation (FCP) in Alloy 718 at elevated temperatures were reviewed. Additional experiments were conducted to further define certain aspects of the time-dependent crack growth behavior. it was found that loading waveform influenced FCP behavior, with tensile hold-times producing higher growth rates than continuous cycling at the same frequency. Crack growth rates under hold-time conditions tended to increase with decreasing grain size. Finally, experiments were conducted which tended to cast some doubt upon the ability of linear-elastic fracture mechanics (LEFM) techniques to characterize cracking behavior in this alloy under hold-time conditions. However, since a superior correlating parameter has not yet been proven, it is suggested that LEFM methods be used in the interim with appropriate safety factors to account for the potential errors. 34 refs., 10 figs., 4 tabs

  8. An evaluation on fatigue crack growth in a fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Wang Hongtao; Sun Libin; Li Chenfeng; Shi Li; Wang Haitao

    2012-01-01

    Highlights: ► The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. ► The curves of the fatigue crack growth rate versus the SIF range show three stages. ► The fatigue microcrack propagation is very sensitive to graphite's microstructures. ► Graphite's microstructures have no significant impact on fatigue macrocrack growth. ► The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45°, showing the main cause of the fatigue fracture is the shear stress. There are also a large amount of secondary cracks inside unit cells and on cell walls

  9. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  10. Short fatigue cracks growth and closure behavior in an austenitic stainless steel at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P.; Laiarinandrasana, L.; Drubay, B.; Piques, R.; Martelet, B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    In this work, following fatigue crack growth tests carried out at the CEN-SACLAY (AMORFIS program) by Laiarinandrasana (1994) on 316 L(N) CT specimens at 650{sup 0}C and 600{sup 0}C, short crack behavior of cracks emanating from machined notches is investigated. Experimental results are presented and discussions are directed to notch plasticity effect in relation with variations in crack opening stress intensity factor, K{sub op}, with crack lenght (author). 12 refs., 5 figs., 2 tab.

  11. Miniature specimen technology for postirradiation fatigue crack growth testing

    International Nuclear Information System (INIS)

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  12. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  13. Fatigue-crack propagation behavior of steels in vacuum, and implications for ASME Section 11 crack growth analyses

    International Nuclear Information System (INIS)

    James, L.A.

    1985-08-01

    Section XI of the ASME Boiler and Pressure Vessel Code provides rules for the analysis of structures for which cracks or crack-like flaws have been discovered during inservice inspection. The Code provides rules for the analysis of both surface flaws as well as flaws that are embedded within the wall of the pressure vessel. In the case of surface flaws, the Code provides fatigue crack growth rate relationships for typical nuclear pressure vessel steels (e.g., ASTM A508-2 and A533-B) cycled in water environments typical of those in light-water reactors (LWR). However, for the case of embedded cracks, the Code provides crack growth relationships based on results from specimens that were cycled in an elevated temperature air environment. Although these latter relationships are often referred to as applying to ''inert'' environments, the results of this paper will show that an elevated temperature air environment is anything but inert, and that use of such relationships can result in overly pessimistic estimates of fatigue-crack growth lifetimes of embedded cracks. The reason, of course, is that embedded cracks grow in an environment that is probably much closer to a vacuum than an air environment

  14. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.F.; Wang, W.J., E-mail: wenjunwang@mail.xjtu.edu.cn; Mei, X.S.; Zheng, B.X.; Yan, Z.X.

    2016-11-30

    Highlights: • The sub-5-μm microstructures on commercial pure titanium are creatively obtained based on cracks growth under 10 ns laser irradiation. • The distribution modification of laser energy induced by cambered microstructures was theoretically analyzed to produce nanostructures. • The sharp micro-nano structures under combined action of crack growth and hot-melt are obtained. - Abstract: This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm{sup 2} to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm{sup 2}, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm{sup 2}, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm{sup 2} and the sharp sub–5

  15. Stress and strain field singularities, micro-cracks, and their role in failure initiation at the composite laminate free-edge

    Science.gov (United States)

    Dustin, Joshua S.

    A state-of-the-art multi-scale analysis was performed to predict failure initiation at the free-edge of an angle-ply laminate using the Strain Invariant Failure Theory (SIFT), and multiple improvements to this analysis methodology were proposed and implemented. Application of this analysis and theory led to the conclusion that point-wise failure criteria which ignore the singular stress and strain fields from a homogenized analysis and the presence of free-edge damage in the form of micro-cracking, may do so at the expense of failure prediction capability. The main contributions of this work then are made in the study of the laminate free-edge singularity and in the effects of micro-cracking at the composite laminate free-edge. Study of both classical elasticity and finite element solutions of the laminate free-edge stress field based upon the assumption of homogenized lamina properties reveal that the order of the free-edge singularity is sufficiently small such that the domain of dominance of this term away from the laminate free-edge is much smaller than the relevant dimensions of the microstructure. In comparison to a crack-tip field, these free-edge singularities generate stress and strain fields which are half as intense as those at the crack-tip, leading to the conclusion that existing flaws at the free-edge in the form of micro-cracks would be more prone to the initiation of free-edge failure than the existence of a singularity in the free-edge elasticity solutions. A methodical experiment was performed on a family of [±25°/90°] s laminates made of IM7/8552 carbon/epoxy composite, to both characterize micro-cracks present at the laminate free-edge and to study their behavior under the application of a uniform extensional load. The majority of these micro-cracks were of length on the order of a few fiber diameters, though larger micro-cracks as long as 100 fiber diameters were observed in thicker laminates. A strong correlation between the application of

  16. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  17. An evaluation on fatigue crack growth in a fine-grained isotropic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongtao; Sun Libin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li Chenfeng [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Shi Li [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang Haitao, E-mail: wanght@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. Black-Right-Pointing-Pointer The curves of the fatigue crack growth rate versus the SIF range show three stages. Black-Right-Pointing-Pointer The fatigue microcrack propagation is very sensitive to graphite's microstructures. Black-Right-Pointing-Pointer Graphite's microstructures have no significant impact on fatigue macrocrack growth. Black-Right-Pointing-Pointer The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45 Degree-Sign , showing the

  18. Simulation of fatigue crack growth under large scale yielding conditions

    Science.gov (United States)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  19. The effect of environment on the creep crack growth behavior of several structural alloys

    International Nuclear Information System (INIS)

    Sadananda, K.; Shahinian, P.

    1980-01-01

    The creep crack growth behaviors of alloy 718, Inconel X-750, Udimet 700 and cold-worked type 304 and annealed and cold-worked type 316 austenitic stainless steels were determined in vacuum at elevated temperatures and the results were compared with those previously obtained in air. Alloy 718 and Inconel X-750 were found to be significantly sensitive to air with crack growth rates one to two orders of magnitude greater than those in vacuum. Udimet 700 is less sensitive to the environment and it is more sensitive to small changes in microstructure than to the environment per se. The austenitic stainless steels are least sensitive of all. Since the environmental sensitivity varies significantly for different materials, the service environment should be considered in the selection of materials for high temperature components. (Auth.)

  20. Analysis of cracking potential and micro-elongation of linerboard

    Directory of Open Access Journals (Sweden)

    Supattra Panthai

    2016-11-01

    Full Text Available Folding cracks of linerboards in relation to their micro-elongation and the forming conditions were studied using an industrial linerboard machine with a top former. The experiments consisted of the study of various forming conditions by manipulating the jet/wire speed ratio to produce linerboard with differences in fiber structures that were related to the cracked and uncracked products. The results showed that changes to the jet/wire speed ratio of about 0.01–0.02 to improve the tested folding endurance in the machine direction potentially produced folding cracks in the linerboard, which indicated an ambiguous interpretation of the foldability tests. The delaminated cracked layers were found to have a high folding endurance and tensile strength, while the decrease in the micro-elongation formulated in this study was found to be related to cracking. A lower micro-elongation of about 350–500 μm/N·g was found in a range of products with folding cracks.

  1. Slow crack growth in post-consumer recycled high-density polyethylene

    OpenAIRE

    Sciammarella, Cesar A.; Yang, Y.

    2015-01-01

    An experimental study of slow crack growth behavior of post-consumer recycled high-density polyethylene blended with virgin high-density polyethylene copolymer has been done. The study has been performed under constant load and in baths of distilled water at 40, 60, 80°C. The specimen used is notched with side grooves. The test results of crack growth have been analyzed using linear fracture mechanics and the rate process theory. The results show that the resistance to crack growth increases ...

  2. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... are used in most computations. The effect of the material characteristic length on the crack growth behavior and on the mesh sensitivity of the results is considered. For comparison purposes, results are also obtained For the corresponding local constitutive relation. The crack growth resistance is found...

  3. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    Science.gov (United States)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  4. An experimental study on the factors that affect fatigue crack growth retardation behavior in SM45C steel

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Kim, Jong Hoon; Ahn, Seok Hwan

    2000-01-01

    Constant ΔK fatigue crack growth tests were performed applying an intermediate multiple overload for SM45C steel. The purpose of the present study is to investigate the effects of specimen thickness at various baseline stress intensity levels(ΔK b ), overload application position(a/W) and overload application frequency(OL Hz ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK b level is increased with increasing the baseline stress intensity level in all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing the overload application position and increased with the overload application frequency

  5. The micro-damage process zone during transverse cortical bone fracture: No ears at crack growth initiation.

    Science.gov (United States)

    Willett, Thomas; Josey, David; Lu, Rick Xing Ze; Minhas, Gagan; Montesano, John

    2017-10-01

    Apply high-resolution benchtop micro-computed tomography (micro-CT) to gain greater understanding and knowledge of the formation of the micro-damage process zone formed during traverse fracture of cortical bone. Bovine cortical bone was cut into single edge notch (bending) fracture testing specimens with the crack on the transverse plane and oriented to grow in the circumferential direction. We used a multi-specimen technique and deformed the specimens to various individual secant modulus loss levels (P-values) up to and including maximum load (Pmax). Next, the specimens were infiltrated with a BaSO 4 precipitation stain and scanned at 3.57-μm isotropic voxel size using a benchtop high resolution-micro-CT. Measurements of the micro-damage process zone volume, width and height were made. These were compared with the simple Irwin's process zone model and with finite element models. Electron and confocal microscopy confirmed the formation of BaSO 4 precipitate in micro-cracks and other porosity, and an interesting novel mechanism similar to tunneling. Measurable micro-damage was detected at low P values and the volume of the process zone increased according to a second order polynomial trend. Both width and height grew linearly up to Pmax, at which point the process zone cross-section (perpendicular to the plane of the crack) was almost circular on average with a radius of approximately 550µm (approximately one quarter of the unbroken ligament thickness) and corresponding to the shape expected for a biological composite under plane stress conditions. This study reports details of the micro-damage fracture process zone previously unreported for cortical bone. High-resolution micro-CT enables 3D visualization and measurement of the process zone and confirmation that the crack front edge and process zone are affected by microstructure. It is clear that the process zone for the specimens studied grows to be meaningfully large, confirming the need for the J

  6. Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments

    Science.gov (United States)

    Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu

    Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.

  7. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth

    International Nuclear Information System (INIS)

    Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R.

    2011-01-01

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between Δε eff and ΔK eff provides experimental support for the hypothesis that ΔK eff can be considered as the fatigue crack tip driving force.

  8. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  9. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  10. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649 degree C. In general, crack growth rates increased with increasing temperature, and weldments given the ''conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the ''modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs

  11. Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.

    2015-08-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.

  12. Evaluation of initiation behavior of stress corrosion cracking for type 316L stainless steel in high temperature water. Behavior of crack initiation and effects of distribution of plastic strain on crack initiation

    International Nuclear Information System (INIS)

    Miura, Yasufumi; Miyahara, Yuichi; Kako, Kenji; Sato, Masaru

    2011-01-01

    It is known that the initiation of stress corrosion cracking (SCC) in components such as the reactor core shroud and primary loop re-circulation piping made of L-grade stainless steel is affected by the properties of surface work hardened layer. Therefore, it is important to clarify the effect of the hardened layer on SCC initiation behavior. In this study, creviced bent beam (CBB) test using specimens made of Type 316L stainless steel with controlled distribution of surface work hardened layer was conducted in a simulated BWR environment in order to evaluate the effect of the controlled layer on SCC initiation behavior. The results obtained are as follows; (1) Micro intergranular SCC of low carbon stainless steel was initiated in 50 hours. (2) In this SCC test, it was found that only micro cracks whose depths were smaller than 50 μm were observed until 250 hours and cracks whose depths were larger than 50 μm were observed after 500 hours. (3) SCC was initiated preferentially on the region with high plastic strain gradient in the specimen with controlled distribution of work hardened layer. (author)

  13. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  14. Crack propagation behavior of Ti-5Ta alloy in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    1999-05-01

    The crack propagation behavior of Ti-5Ta alloy both in boiling nitric acid solution and in air at room temperature has been investigated. The crack growth rate of Ti-5Ta alloy was measured as a function of the stress intensity factor range. After the tests, the fracture surface morphology was observed by a scanning electron microscope and the crystallographic orientation was examined by X-ray diffraction analysis. Difference in the crack growth behavior was not observed in both environments. The crack growth rate in boiling nitric acid solution was similar to that in air at room temperature. Moreover, the crystallographic orientation of Ti-5Ta alloy had little effect on the fatigue behavior, because this alloy does not have the susceptibility to SCC in nitric acid solution. (author)

  15. Standard test method for measurement of creep crack growth times in metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension δai = 0.2 mm from the onset of first applied force and creep crack growth rate, ˙a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...

  16. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  17. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    Science.gov (United States)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  18. A numerical analysis of crack growth in brittle microcracking composites

    International Nuclear Information System (INIS)

    Biner, S.B.

    1993-01-01

    A set of numerical analyses of crack growth was performed to elucidate the mechanism of microcracking on the observed fracture behavior of brittle solids and composites. The random nucleation, orientation and size effects of discrete microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results indicate that the energy expenditure due the microcrack nucleation seems not to contribute significantly to the resistance to crack growth. The main controlling parameter appears to be elastic interaction of the microcracks with the main crack in the absence of a reinforcing phase; therefore, the microcrack density plays an important role. In the case of the composites, the interaction of the main crack with the stress fields of the reinforcing phase, rather than interaction of microcracks, is the controlling parameter for the resistance to the crack growth even in the presence of a large population of microcracks. It will be also shown that the crack branching and crack kinking can readily develop as a result of microcracking

  19. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients.

    Science.gov (United States)

    Dumbryte, Irma; Linkeviciene, Laura; Malinauskas, Mangirdas; Linkevicius, Tomas; Peciuliene, Vytaute; Tikuisis, Kristupas

    2013-06-01

    The purpose of this study was to evaluate and compare enamel micro-crack characteristics of adult patients before and after removal of metal brackets. After the examination with scanning electron microscopy (SEM), 45 extracted human teeth were divided into three groups of equal size: group 1, the teeth having enamel micro-cracks, group 2, the teeth without initial enamel micro-cracks, and group 3, control group to study the effect of dehydration on existing micro-cracks or formation of new ones. For all the teeth in groups 1 and 2, the same bonding and debonding procedures of metal brackets were conducted. The length and width of the longest enamel micro-crack were measured for all the teeth before and after removal of metal brackets. The changes in the location of the micro-cracks were also evaluated. In group 3, teeth were subjected to the same analysis but not bonded. The mean overall width of micro-cracks after removal of metal brackets was 3.82 μm greater than before bonding procedure (P cracks in first zone (cervical third) and third zone (occlusal third) after debonding procedure (P enamel micro-cracks were found in 6 of 15 (40 per cent) examined teeth. Greatest changes in the width of enamel micro-cracks after debonding procedure appear in the cervical third of the tooth. On the basis of this result, the dentist must pay extra care and attention to this specific area of enamel during removal of metal brackets in adult patients.

  20. Evaluation of stress corrosion crack growth in BWR piping systems

    International Nuclear Information System (INIS)

    Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.

    1985-05-01

    This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs

  1. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  2. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  3. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  4. New evaluation method of crack growth in SiC/SiC composites using interface elements

    International Nuclear Information System (INIS)

    Serizawa, H.; Ando, M.; Lewinsohn, C.A.; Murakawa, H.

    2000-01-01

    Crack propagation behavior in SiC/SiC composites was analyzed using a new computer simulation method that included time-dependent interface elements. The simulation method was used to describe the time-dependent crack growth in SiC/SiC composites under four-point bending of single-edge-notched beam bend-bars. Two methods were used to simulate time-dependent crack growth in SiC/SiC composites due to fiber creep. In one method, the creep property was introduced into the interface elements by the general method of finite element method (FEM) analysis. In the second method, a new technique making the best use of the potential function was used to represent crack closure tractions due to creeping fibers. The stage-II slow crack growth of a general creep deformation was simulated by both methods. Additionally, stage-III crack growth and the transition from stage-II to stage-III could be simulated by the new method. The new method has the potential to completely simulate time-dependent crack growth behavior in SiC/SiC composites due to fiber creep

  5. Eddy current testing for blade edge micro cracks of aircraft engine

    Science.gov (United States)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  6. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  7. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    Science.gov (United States)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth

  8. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  9. Evaluation of crack growth behavior and probabilistic S–N characteristics of carburized Cr–Mn–Si steel with multiple failure modes

    International Nuclear Information System (INIS)

    Li, Wei; Sun, Zhenduo; Zhang, Zhenyu; Deng, Hailong; Sakai, Tatsuo

    2014-01-01

    Highlights: • The stepwise S–N characteristics only for interior induced failure was observed. • The interior crack growth behavior with threshold conditions in different stages was clarified. • The distribution characteristics of test data in transition failure region was evaluated. • A model for evaluating the probabilistic S–N curve with multiple failure modes was developed. - Abstract: The unexpected failures of case-hardened steels in long life regime have been a critical issue in modern engineering design. In this study, the failure behavior of a carburized Cr–Mn–Si steel under very high cycle fatigue (VHCF) was investigated, and a model for evaluating the probabilistic S–N curve associated with multiple failure modes was developed. Results show that the carburized Cr–Mn–Si steel exhibits three failure modes including the surface flaw-induced failure, the interior inclusion-induced failure without the fine granular area (FGA) and the interior inclusion-induced failure with the FGA. As the predominant failure mode in the VHCF regime, the interior failure process can be divided into four stages: (i) the small crack growth around the inclusion, (ii) the stable macroscopic crack growth outside the FGA, (iii) the unstable crack growth outside the fish-eye and (iv) the momentary fracture outside the final crack growth zone. The threshold values are successively evaluated to be 2.33 MPa m 1/2 , 4.13 MPa m 1/2 , 18.51 MPa m 1/2 and 29.26 MPa m 1/2 . The distribution characteristics of the test data in transition failure region can be well characterized by the mixed two-parameter Weibull distribution function. The developed probabilistic S–N curve model is in good agreement with the test data with multiple failure modes. Although the result is somewhat conservative in the VHCF regime, it is acceptable for safety considerations

  10. Artificial-Crack-Behavior Test Evaluation of the Water-Leakage Repair Materials Used for the Repair of Water-Leakage Cracks in Concrete Structures

    OpenAIRE

    Soo-Yeon Kim; Sang-Keun Oh; Byoungil Kim

    2016-01-01

    There are no existing standard test methods at home and abroad that can verify the performance of water leakage repair materials, and it is thus very difficult to perform quality control checks in the field of water leakage repair. This study determined that the key factors that have the greatest impact on the water leakage repair materials are the micro-behaviors of cracks, and proposed an artificial-crack-behavior test method for the performance verification of the repair materials. The per...

  11. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  12. Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy

    Science.gov (United States)

    2014-09-01

    concepts of fracture mechanics. Corrosion crack initiation or growth can develop when exposed to continuous or intermittent humid environment during...act as nucleation sites. For many materials of the structure such as Al, steel the growth of fatigue cracks from corrosion pit stands legitimate...critical or rather threshold values below which the nucleation of fatigue crack is not possible [6]. Under certain conditions that prevail on

  13. Role of prism decussation on fatigue crack growth and fracture of human enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne

    2009-10-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.

  14. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  15. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  16. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  17. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  18. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    Science.gov (United States)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  19. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  20. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  1. Microscopic examination of crack growth in a pressure vessel steel

    International Nuclear Information System (INIS)

    Isacsson, M.; Narstroem, T.

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material

  2. Microscopic examination of crack growth in a pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Isacsson, M.; Narstroem, T. [Royal Inst. of Tech., Stockholm (Sweden)

    1997-01-01

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material. 19 refs, 8 figs, 3 tabs.

  3. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...

  4. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  5. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  6. Snow fracture: From micro-cracking to global failure

    Science.gov (United States)

    Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg

    2017-04-01

    Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of

  7. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  8. Fatigue crack growth in additive manufactured products

    Directory of Open Access Journals (Sweden)

    A. Riemer

    2015-10-01

    Full Text Available Additive Manufacturing (AM is a new innovative technique that allows the direct fabrication of complex, individual, delicate and high-strength products, based on their 3D data. Selective Laser Melting (SLM is one of the AM processes that generates metallic components layer by layer using powder-bed technique. The irradiation and consequent melting of metallic powder is realised by the laser source. Employing SLM, especially complex and individual products, such as implants or aerospace parts, are well suited for economic production in small batches. The first important issue in this work was to analyse the fatigue crack growth (FCG in titanium alloy Ti-6-4 and stainless steel 316L processed by SLM. As a first step, stress intensity range decreasing tests were performed on SLM samples in their “as-built” condition. The next step was to adopt measures for optimisation of fatigue crack growth performance of SLM parts. For this purpose various heat treatments such as stress relief annealing and hot isostatic pressing (HIP were applied to the CT specimens. Finally, the strong impact of heat treatment on the residual lifetime was demonstrated by numerical fatigue crack growth simulations. For this purpose, the hip joint implant consisting of Ti-6-4 and processed by SLM was taken into account. It was found that residual stresses have a strong influence on the crack growth in Ti-6-4, while the influence of the micro-pores on the threshold values remains low. In contrast the results for 316L show that its fracturemechanical behaviour is not affected by residual stresses, whereas the microstructural features lead to modification in the da/dN-K-data. The second fundamental aim of this work was to demonstrate the possibilities of the SLM process. For that reason, the individually tailored bicycle crank was optimised regarding its weight and local stresses and finally manufactured using the SLM system. The iterative optimisation procedure was based on

  9. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    Science.gov (United States)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  10. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  11. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  12. Fatigue crack growth in fiber reinforced plastics

    Science.gov (United States)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  13. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  14. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  15. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  16. Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties

    Directory of Open Access Journals (Sweden)

    A. Tzamtzis

    2016-02-01

    Full Text Available An analytical model is developed to predict fatigue crack propagation rate under mode I loading in 2024 aluminum alloy with FSW HAZ material characteristics. Simulation of the HAZ local properties in parent 2024 AA was performed with overaging using specific heat treatment conditions. The model considers local cyclic hardening behavior in the HAZ to analyze crack growth. For the evaluation of the model, the analytical results have been compared with experimental fatigue crack growth on overaged 2024 alloy simulating material behavior at different positions within the HAZ. The analytical results showed that cyclic hardening at the crack tip can be used successfully with the model to predict FCG in a material at overaged condition associated with a location in the FSW HAZ.

  17. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  18. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  19. Ductile-phase toughening and fatigue crack growth in Nb3Al base alloys

    International Nuclear Information System (INIS)

    Gnanamoorthy, R.; Hanada, S.

    1996-01-01

    Niobium aluminide (Nb 3 Al) base intermetallic compounds exhibit good high-temperature strength and creep properties and potential for applications above 1,200 C provided their inadequately low room-temperature ductility, fracture toughness and fatigue crack growth behavior are improved. Addition of tantalum to Nb 3 Al base materials improves the high-temperature strength significantly and seems to be a potential alloying element. In the present study, room temperature fracture toughness and fatigue crack growth behavior of tantalum alloyed Nb 3 Al base alloy prepared by ingot metallurgy are investigated

  20. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  1. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  2. Micro-indentation fracture behavior of human enamel.

    Science.gov (United States)

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  3. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  4. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  5. Crack growth by micropore coalescence at high temperatures

    International Nuclear Information System (INIS)

    Beere, W.

    1981-01-01

    At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)

  6. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  7. A proposal for evaluation method of crack growth due to cyclic overload for piping materials based on an elastic-plastic fracture mechanics parameter

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshihito; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng; Sugino, Hideharu

    2011-01-01

    The magnitude of Niigata-ken Chuetsu-Oki earthquake in 2007 was beyond the assumed one provided in seismic design. Therefore it becomes an important issue to evaluate the crack growth behaviors due to the cyclic overload like large earthquake. Fatigue crack growth is usually evaluated by Paris's law using the range of stress intensity factor (ΔK). However, ΔK is inappropriate in a loading condition beyond small scale yielding. In this study, the crack growth behaviors for piping materials were investigated based on an elastic-plastic fracture mechanics parameter, J-integral. It was indicated that the crack growth due to the cyclic overload beyond small scale yielding could be the sum of fatigue and ductile crack growth. The retardation effect of excessive loading on the crack growth was observed after the loading. The modified Wheeler model using J-integral has been proposed for the prediction of retardation effect. Finally, an evaluation method for crack growth behaviors due to the cyclic overload is suggested. (author)

  8. Fatigue-crack growth behavior of Type 347 stainless steels under simulated PWR water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Min, Ki-Deuk; Yoon, Ji-Hyun; Kim, Min-Chul; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fatigue crack growth rate (FCGR) curve of stainless steel exists in ASME code section XI, but it is still not considering the environmental effects. The longer time nuclear power plant is operated, the more the environmental degradation issues of materials pop up. There are some researches on fatigue crack growth rate of S304 and S316, but researches of FCGR of S347 used in Korea nuclear power plant are insufficient. In this study, the FCGR of S347 stainless steel was evaluated in the PWR high temperature water conditions. The FCGRs of S347 stainless steel under pressurized-water conditions were measured by using compact-tension (CT) specimens at different levels of dissolved oxygen (DO) and frequency. 1. FCGRs of SS347 were slower than that in ASME XI and environmental effect did not occur when frequency was higher than 1Hz. 2. Fatigue crack growth is accelerated by corrosion fatigue and it is more severe when frequency is slower than 0.1Hz. 3. Increase of crack tip opening time increased corrosion fatigue and it deteriorated environmental fatigue properties.

  9. Cracking Behavior of a Concrete Arch Dam with Weak Upper Abutment

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2017-01-01

    Full Text Available The cracking behavior and failure mode of a 78 m high concrete double-curvature arch dam with weak upper abutment are investigated through performing cracking analysis. The mechanical behavior of concrete is simulated using a smeared crack model, in which a combination of the compression yield surface and the crack detection surface with a damaged elasticity concept is employed to describe the failure of concrete. The arch dam with practical mechanical properties of the upper and lower abutments is firstly studied with emphasis on its cracking behavior during overloading. Then, a comprehensive sensitivity analysis is carried out to investigate the influence of the ratio of the mechanical properties of upper abutment to those of lower abutment on dam failure with prime attention placed on the failure mode. Simulation results indicate the adopted smeared crack model is well-suited to the crack analysis of concrete arch dam. It is shown that cracking is localized around the interface between upper and lower abutments, which leads to a fast crack growth in the through-thickness direction of dam and finally causes the dam failure. Furthermore, the sensitivity analysis presents three types of failure modes corresponding to different ratio value, wherein Modes II and III should be avoided since the weak upper abutment plays a predominant role in the cracking and failure of concrete arch dam.

  10. Crack growth prediction for low-cycle fatigue regime

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2017-01-01

    The objective of this study is to show a crack growth prediction procedure for the low-cycle fatigue regime. First, fatigue crack growth tests using Type 316 stainless steel specimens at room temperature were reviewed. It was seen that the crack growth rates correlated well with the equivalent stress intensify factor, which was derived using strain range instead of stress range. Furthermore, the effective equivalent stress intensify factor derived using the effective strain range exhibited excellent correlation with the crack growth rates obtained under various specimen geometries and loading conditions including high and low-cycle regimens. The obtained crack growth rates were also compared with the growth rate prescribed in the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME). The test results agreed with the growth rate of JSME code. Finally, the procedure for predicting the low-cycle fatigue crack growth was shown. Although the JSME code is aimed at predicting fatigue crack growth for the so-called small scale yielding condition (high-cycle fatigue regime), the material constants determined for the high-cycle fatigue regime can be used even for the low-cycle fatigue regime. (author)

  11. Some considerations regarding the creep crack growth threshold

    International Nuclear Information System (INIS)

    Thouless, M.D.; Evans, A.G.

    1984-01-01

    The preceding analysis reveals that the existence of a threshold determined by the sintering stress does not influence the post threshold crack velocity. Considerations of the sintering stress can thus be conveniently excluded from analysis of the post threshold crack velocity. The presence of a crack growth threshold has been predicted, based on the existence of cavity nucleation controlled crack growth. A preliminary analysis of cavity nucleation rates within the damage zone reveals that this threshold is relatively abrupt, in accord with experimental observations. Consequently, at stress intensities below K /SUB th/ growth becomes nucleation limited and crack blunting occurs in preference to crack growth

  12. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  13. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  14. A study on fatigue crack growth model considering high mean loading effects based on structural stress

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Cheol; Jin, Tae Eun; Dong, P.

    2004-01-01

    The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inarguable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data

  15. Monitoring crack growth using thermography

    International Nuclear Information System (INIS)

    Djedjiga, Ait Aouita; Abdeldjalil, Ouahabi

    2008-01-01

    The purpose of this work is to present a novel strategy for real-time monitoring crack growth of materials. The process is based on the use of thermal data extracted along the horizontal axis of symmetry of single edge notch tension (SENT) specimens, during fatigue tests. These data are exploited using an implemented program to detect in situ the growth of fatigue crack, with the critical size and propagation speed of the crack. This technique has the advantage to be applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. (authors)

  16. Corrosion fatigue crack growth of pressure vessel welds in PWR environment

    International Nuclear Information System (INIS)

    Bamford, W.H.; Ceschini, L.J.; Moon, D.M.

    1983-01-01

    The fatigue crack growth rate behavior of several pressure vessel steel welds in PWR environment is discussed. The behavior is compared with associated heat-affected zone behavior, and with comparable base metal results. The welds show different degrees of susceptibility to the environmental influence, and this is discussed in some detail, along with fractographic observations on the tested specimens

  17. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji

    2005-01-01

    of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles......-ray tomography, do not allow sufficient resolution of microcracks. A new technique presented in this paper allows detection of microcracks in cement paste while avoiding artefacts induced by unwanted restraint, drying or temperature variations. The technique consists in casting small circular cylindrical samples...... aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  18. Artificial-Crack-Behavior Test Evaluation of the Water-Leakage Repair Materials Used for the Repair of Water-Leakage Cracks in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Soo-Yeon Kim

    2016-09-01

    Full Text Available There are no existing standard test methods at home and abroad that can verify the performance of water leakage repair materials, and it is thus very difficult to perform quality control checks in the field of water leakage repair. This study determined that the key factors that have the greatest impact on the water leakage repair materials are the micro-behaviors of cracks, and proposed an artificial-crack-behavior test method for the performance verification of the repair materials. The performance of the 15 kinds of repair materials that are currently being used in the field of water leakage repair was evaluated by applying the proposed test method. The main aim of such a test method is to determine if there is water leakage by injecting water leakage repair materials into a crack behavior test specimen with an artificial 5-mm crack width, applying a 2.5 mm vertical behavior load at 100 cycles, and applying 0.3 N/mm2 constant water pressure. The test results showed that of the 15 kinds of repair materials, only two effectively sealed the crack and thus stopped the water leakage. The findings of this study confirmed the effectiveness of the proposed artificial-crack-behavior test method and suggest that it can be used as a performance verification method for checking the responsiveness of the repair materials being used in the field of water leakage repair to the repetitive water leakage behaviors that occur in concrete structures. The study findings further suggest that the use of the proposed test method makes it possible to quantify the water leakage repair quality control in the field.

  19. Study on fatigue life evaluation of structural component based on crack growth criterion

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki

    1984-07-01

    As one of the practical application of fracture mechanics, fatigue life evaluation method based on crack growth criterion has been diffusing in various field of technology in order to determine the rational and reliable life of structural components. The fatigue life by this method is evaluated based on the fatigue crack growth analysis from defects, while many problems, such as the influence of residual stress on the crack growth behavior, the effect of overloading, and evaluation method for multiple surface cracks, are not sufficiently solved yet. In this paper, the above problems are treated, and based on some exprimental data some simple mehtods for fatigue life evaluation are proposed regarding the above problems. Verification of the proposed methods are shown in the paper by comparing with some experimental results, and the applicability of the proposed method is also examined by the fatigue test of pipes with cracks in the inner surface. (author)

  20. Crack path and fracture surface modifications in cement composites

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-10-01

    Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.

  1. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  2. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  3. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature

    Directory of Open Access Journals (Sweden)

    Gourdin Stéphane

    2014-01-01

    Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.

  4. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm)

    Science.gov (United States)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.

    2016-11-01

    This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.

  5. The effect of texture variation on delayed hydride cracking behavior of Zr-2.5%Nb plate

    International Nuclear Information System (INIS)

    Kim, S.-S.; Kim, Y.S.; Kuk, I.-H.

    1999-01-01

    In order to investigate the effect of texture variation on the delayed hydride cracking behavior in Zr-2.5%Nb plates, crack growth rate and K IH tests have been carried out at temperature ranges varying from 415 to 506 K after texture modification by rolling. The texture variation of plates was achieved by direct-rolling and cross-rolling. Texture was measured through the determination of inverse pole figures, from which the basal pole components were calculated. The results have shown that the texture of a plate in which the basal poles are concentrated in the transverse direction can be changed significantly by cross-rolling. The crack growth rate increases exponentially with the basal pole component in the direction normal to the cracking plane. The increase in stress relieving temperature on cold worked material reduces crack growth rate. K IH decreases linearly with the basal pole component, and a behavior of which could be explained by the uniformly dispersed aggregate composite theory. (orig.)

  6. Monte Carlo simulation taking account of surface crack effect for stress corrosion cracking in a stainless steel SUS 304

    International Nuclear Information System (INIS)

    Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi

    2008-01-01

    Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)

  7. Micromechanisms of ductile stable crack growth in nuclear pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, W.P.A.; Druce, S.G.

    1981-10-01

    The objective of this work was to investigate the relationship between the micromechanisms of ductile crack growth, the microstructural constituent phases present in nuclear pressure vessel steel, and the observed fracture behavior as determined by impact and fracture mechanics tests. Results from a microstructural and mechanical property comparison of an A508 Class 3 pressurized water reactor nozzle forging cutout and a 150-mm-thick A533B Class 1 plate are reported. The variation of upper-shelf toughness between the two steels and its orientation sensitivity are discussed on the basis of inclusion and precipitate distributions. Inclusion clusters in A533B, deformed to elongated disks in the rolling plane, have a profound effect on short transverse fracture properties. Data derived using the multi-specimen J-integral method to characterize the initiation of ductile crack extension and resistance to stable crack growth are compared with equivalent Charpy results. Results of the J /SUB R/ -curve analyses indicate (1) that the A533B short transverse crack growth resistance is approximately half that observed from transverse and longitudinal specimen orientations, and (2) that the A508 initiation toughness and resistance to stable crack growth are insensitive to position through the forging wall, and are higher than exhibited by A533B at any orientation in the midthickness position.

  8. Predominantly elastic crack growth under combined creep-fatigue cycling

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1979-01-01

    A rationalization of the various observed effects of combined creep-fatigue cycling upon predominantly elastic fatigue-crack propagation in austenitic steel is presented. Existing and new evidence is used to show two main groups of behaviour: (i) material and cycling conditions which lead to modest increases (6-8 times) in the rate of crack growth are associated with relaxation-induced changes in the material deformation characteristics, and (ii) material and cycling conditions severe enough to generate internal fracture damage lead to significant (up to a factor of 30) increases in crack growth rate when compared with fast-cycling crack propagation rates at the same temperature. A working hypothesis is presented to show that the boundary between the two groups occurs when the scale of the nucleated creep damage is of the same magnitude as the crack tip opening displacement. This leads to the possibility of unstable crack advance. Creep crack growth rates are shown to provide an upper bound to creep-fatigue crack growth rates when crack advance is unstable. If the deformation properties only are affected by the creep-fatigue cycling then creep crack growth rates provide a lower bound. The role of intergranular oxygen corrosion in very low frequency crack growth tests is also briefly discussed. (author)

  9. Fatigue crack growth behavior of Inconel 718 produced by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Nicoletto, G.; Bača, A.

    2016-01-01

    Roč. 35, č. 10 (2016), s. 31-40 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Inconel 718 * Selective laser melting * Microstructure * Fatigue crack growth * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics

  10. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  11. Fatigue crack growth thresholds measurements in structural materials

    International Nuclear Information System (INIS)

    Lindstroem, R.; Lidar, P.; Rosborg, B.

    1999-05-01

    Fatigue crack growth thresholds and da/dN-data at low Δk I -values ( 1/2 ) have been determined for type 304 stainless steel, nickel-base weld metal Alloy 182, nickel-base metal Alloy 600, and low-alloy steel in air at ambient temperature and in high-temperature water and steam. The stainless alloys have been tested in water with 0.2 ppm O 2 at 288 deg C and the low-alloy steel in steam at 286 deg C. The fatigue crack growth threshold was defined as the ΔK I -value resulting in a crack growth rate of 10 -7 mm per cycle. The measured fatigue crack growth thresholds (at frequencies from 0.5 to 20 Hz) are quite similar independent of the material and the environment. A relatively inexpensive and time-saving method for measuring fatigue crack growth thresholds, and fatigue crack growth rates at low ΔK I -values, has been used in the tests. The method is a ΔK I -decreasing test with constant K I Max

  12. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  13. Laser carved micro-crack channels in paper-based dilution devices.

    Science.gov (United States)

    Liu, Qian; Xu, Chaoping; Liang, Heng

    2017-12-01

    We developed novel laser carved micro-crack (LCC) paper-based channels to significantly accelerate the liquid flow without an external pump. For the aqueous solutions they increased the flow velocity 59 times in 16% laser power-8 micro-cracks-LCC channel compared with it in solely-printed channels. All experimental data from both LCC and solely-printed channels were well-fitted by the time-distance quadratic trinomial that we developed on laser power and micro-crack number. We designed and fabricated T-junction microstructures of LCCs. Further, the microfluidic paper-based analytical device (μPAD) of LCC on dye mixing gradient and pH gradient were developed with the characteristics, fast self-acting transportation and high-performance mixing of liquid flows. In the dye mixing gradient the time cost was reduced from 2355s in the solely-printed one to only 123s in the five-stage of this LCC-μPAD. It was useful for quick and long-distance transferences through the multiple units of μPADs. Certainly, this LCC-μPAD was inexpensive, disposable, portable and applicable to resource-limited environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of temperature on corrosion fatigue crack growth of pressure vessel steels in PWR coolant

    International Nuclear Information System (INIS)

    Tice, D.R.; Bramwell, I.L.; Fairbrother, H.; Worswick, D.

    1994-01-01

    This paper presents experimental results concerning crack propagation rates in A508-III pressure vessel steel (medium sulphur content) exposed to PWR primary water at temperatures between 130 and 290 C. The results indicate that the greatest increase in corrosion fatigue crack growth rate occurs at temperatures in the range 150 to 200 C. Under these conditions, there was a marked change in the appearance of the fracture surface, with extensive micro-branching of the crack front and occasional bifurcation of the whole crack path. In contrast, at 290 C, the fracture surface is smoother, similar to that due to inert fatigue. The implication of these observations for assessment of the pressure vessel integrity, is examined. 14 refs., 15 figs., 3 tabs

  15. Numerical analysis of macro-crack formation behavior within the lump coke; Cokes sonai kiretsu shinten kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H; Sato, H; Miura, T [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-03-15

    The thermal stress analysis within lump coke was studied in order to investigate macro-crack formation and deformation behavior which strongly influence heat and mass transfer in a coke oven chamber. The dilatation of plastic layer, heating rate dependence of thermophysical and mechanical properties of coal/coke, creep in the plastic and semi-coke layers, macro-crack propagation and radiative heat transfer within the macro-crack were considered in an analytical model. The macro-crack propagation was determined from the estimated crack tip stress intensity factor, K{sub I}, at the macro-crack tip compared with the plane strain fracture toughness, K{sub IC}, through the unsteady-state calculation. Calculated results on crack formation and deformation behavior of lump coke were in good agreement with experimental observations in a laboratory-scale oven chamber. The analytical model could predict micro-crack formation within the lump coke normal to the heated wall and the coke surface close to the heated wall. 12 refs., 13 figs.

  16. Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  17. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  18. Miniaturized fatigue crack growth specimen technology and results

    International Nuclear Information System (INIS)

    Puigh, R.J.; Bauer, R.E.; Ermi, A.M.; Chin, B.A.

    1981-01-01

    The miniature fatigue crack propagation technology has been extended to in-cell fabrication of irradiated specimens. Baseline testing of selected titanium alloys has been performed at 25 0 C in air. At relatively small values for the stress intensity factor, ΔK, the crack growth rates for all titanium alloys investigated are within a factor of three. The crack growth rates for these titanium alloys are a factor of three greater than the crack growth rates of either 316SS (20% CW) or HT-9. Each of the titanium alloys has observable crack propagation for stress intensity factors as small as 4.2 MPa√m

  19. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    Science.gov (United States)

    1984-05-01

    The effects of cyclic frequency, electrochemical potential and bulk solution composition on the kinetics of small corrosion fatigue cracks have not...threshold behavior between cast iron (co = 113 MPa) and maraging steel (co = 1906 MPa), as a function of surface roughness (to simulate crack size) (after...4130 steel the crack size effect on corrosion fatigue, Fig. 2, is predicted in part based on linear superposition of stress corrosion growth rates for

  20. Effects of friction and high torque on fatigue crack propagation in mode III

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-01-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle

  1. Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Costin, Walter L. [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Lavigne, Olivier, E-mail: Olivier.lavigne@adelaide.edu.au [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Kotousov, Andrei; Ghomashchi, Reza [School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Linton, Valerie [Energy Pipelines Cooperative Research Centre, Faculty of Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-01-10

    Hydrogen assisted cracking (HAC) is a common type of failure mechanism that can affect a wide range of metals and alloys. Experimental studies of HAC are cumbersome due to various intrinsic and extrinsic parameters and factors (associated with stress, hydrogen and the materials microstructure) contributing to the hydrogen crack kinetics. The microstructure of many materials consists of diverse constituents with characteristic features and mechanical properties which only occur in very small material volumes. The only way to differentiate the effect of these individual constituents on the hydrogen crack kinetics is to miniaturise the testing procedures. In this paper we present a new experimental approach to investigate hydrogen assisted crack growth in a microstructural constituent, i.e. acicular ferrite. For this purpose, sharply notched micro-cantilevers were fabricated with a Focus Ion Beam within this selected microscopic region. Acicular ferrite can be found in many ferrous alloys including ferritic weld metal and has specific features that control its intrinsic susceptibility to HAC. These features were characterised via Electron Backscatter Diffraction and the specimens were subsequently loaded under uncharged and hydrogen charged conditions with a nano-indenter. The outcomes of the testing, demonstrated that the threshold stress intensity factor, K{sub th}, to initiate crack propagation in acicular ferrite ranges between 1.56 MPa m{sup 1/2} and 4.36 MPa m{sup 1/2}. This range is significantly below the values of K{sub th} reported for various ferrous alloys in standard macro-tests. This finding indicates that the mechanisms and resistance to HAC at micro-scale could be very different than at the macro-scale as not all fracture toughening mechanisms may be activated at this scale level.

  2. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    International Nuclear Information System (INIS)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner's rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the ΔK methodology (Paris law), ΔJ concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided

  3. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  4. Influence of Al on the fatigue crack growth behavior of Fe–22Mn–(3Al)–0.6C TWIP steels

    International Nuclear Information System (INIS)

    Ma, Penghui; Qian, Lihe; Meng, Jiangying; Liu, Shuai; Zhang, Fucheng

    2015-01-01

    The influence of Al on fatigue crack growth (FCG) behavior of the high-Mn austenitic twinning-induced plasticity (TWIP) steel was investigated by conducting FCG tests on Fe–22Mn–0Al–0.6C and Fe–22Mn–3Al–0.6C TWIP steels (hereafter, referred to as 0Al and 3Al TWIP steel, respectively). The FCG tests were performed at stress ratio of 0.1 under the control of stress intensity factor range using three-point bending specimens. Excepting that the traditional two-dimensional (2D) observation methods (optical, scanning and transmission electron microscopes) were used to observe the crack paths, fracture surfaces and microstructure features, a high-resolution synchrotron X-ray computed tomography was also applied to observe the three-dimensional (3-D) crack morphology. The results indicate that the FCG resistance of the 0Al TWIP steel is superior to that of 3Al TWIP steel in the near threshold regime. Observed from the 2D crack paths and 3D crack morphologies, it can be found that the crack surface roughness and crack deflection of the 0Al steel are greater than those of 3Al steel. It is suggested that the degree of roughness-induced crack closure decreases with the addition of Al. And the 0Al steel shows much larger plastic zone sizes ahead of the crack tip than the 3Al steel, suggesting that plasticity-induced crack closure may also play an important role in decreasing the FCG rate in the 0Al steel. By excluding the crack closure effects, the 0Al steel still exhibits a higher effective crack growth threshold value than the 3Al steel; this is considered to be due to the higher planarity of slip in the 0Al steel than in the 3Al steel, and the mechanical twins generated in the 0Al steel reduce the stress concentration at crack tip

  5. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    Science.gov (United States)

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Standard test method for creep-fatigue crack growth testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of creep-fatigue crack growth properties of nominally homogeneous materials by use of pre-cracked compact type, C(T), test specimens subjected to uniaxial cyclic forces. It concerns fatigue cycling with sufficiently long loading/unloading rates or hold-times, or both, to cause creep deformation at the crack tip and the creep deformation be responsible for enhanced crack growth per loading cycle. It is intended as a guide for creep-fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. Therefore, this method requires testing of at least two specimens that yield overlapping crack growth rate data. The cyclic conditions responsible for creep-fatigue deformation and enhanced crack growth vary with material and with temperature for a given material. The effects of environment such as time-dependent oxidation in enhancing the crack growth ra...

  7. Effects of loading frequency on fatigue crack growth mechanisms in α/β Ti microstructure with large colony size

    International Nuclear Information System (INIS)

    Sansoz, F.; Ghonem, H.

    2003-01-01

    This paper deals with crack tip/microstructure interactions at 520 deg. C in lamellar Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242) alloy under different fatigue loading frequencies. A series of heat treatments were performed in order to produce large colony microstructures that vary in their lamellar and colony size. Fatigue crack growth (FCG) experiments were conducted on these microstructures at loading frequencies of 10 and 0.05 Hz. The lower frequency was explored with and without imposing a 5 min hold-time at the peak stress level during each loading cycle. Results show that the crack growth behavior is sensitive to the loading frequency. For the same microstructure, the crack growth rate is found to be lower at 10 than at 0.05 Hz. The addition of a hold-time, however, did not alter the FCG rate indicating that creep strain during one loading cycle does not contribute significantly in the crack growth process. It is also shown that variations in lamella and colony size have no effects on the FCG rate except for the early stage of crack propagation. Scanning Electron Microscope examinations are performed on the fracture surface in order to identify the relevant crack growth mechanisms with respect to the loading frequency and the microstructure details. Quasi-cleavage of the α/β colonies along strong planar shear bands is shown to be a major mode of failure under all test condition. At a loading frequency of 10 Hz, the crack path proceeds arbitrary along planes either perpendicular or parallel to the long axis of α lamellae, while at 0.05 Hz, parallel-to-lamellae crack paths become favored. Corresponding differences of crack growth behavior are examined in terms of slip emission at the crack tip and interactions with the microstructure details

  8. Crack growth under combined creep and fatigue conditions in alloy 800

    International Nuclear Information System (INIS)

    Pfaffelhuber, M.; Roedig, M.; Schubert, F.; Nickel, H.

    1989-08-01

    To investigate the crack growth behaviour under combined creep-fatigue loading, CT 25 mm-specimens of X10NiCrAlTi 32 20 (Alloy 800) have been tested in experiments with cyclic loadings and hold times, with static loadings and short stress rekief interrupts, with ramp type loadings and with sequences of separate fatigue and creep crack growth periods. The test temperature of 700deg C was selected because only in this temperature range this alloy provides similar amounts of crack growth under creep and fatigue conditions due to equivalent stress levels. For the estimation of crack growth under combined loading conditions a linear accumulation of increase in crack length was proved using the crack growth laws of pure creep and fatigue crack growth. Hold time and ramp loadings lead to a higher crack growth rate compared with pure creep or pure fatigue crack growth tests. In hold time experiments the crack growth rate is higher than ramp tests of the same period time. The results of hold time tests can be fairly enough predicted by linear damage accumulation rules. (orig.) [de

  9. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  10. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  11. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  12. Effects of irradiation and thermal aging upon fatigue-crack growth behavior of reactor pressure boundary materials. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    James, L. A.

    1978-10-01

    Two processes that have the potential to produce degradation in the properties of pressure boundary materials are neutron irradiation and long-time thermal aging. This paper uses linear-elastic fracture mechanics techniques to assess the effect of these two processes upon the fatigue-crack growth behavior of a number of alloys commonly employed in reactor pressure boundaries. The materials evaluated include ferritic steels, austenitic stainless steels, and nickel-base alloys typical of those employed in a number of reactor types including water-cooled, gas-cooled, and liquid-metal-cooled designs.

  13. Effects of friction and high torque on fatigue crack propagation in Mode III

    Science.gov (United States)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  14. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  15. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  16. Temperature and loading frequency effects of fatigue crack growth in HDPE pipe material

    International Nuclear Information System (INIS)

    Merah, N.; Khan, Z.; Bazoune, A.; Saghir, F.

    2006-01-01

    High density polyethylene (HDPE) pipes are being extensively used for gas, water, sewage and waste water distribution systems. Laboratory tests appear to show that HDPE is more able to suppress rapid crack propagation, while remaining somehow resistant to slow crack growth failures observed in service. Procedures for estimating pipe life in service have been established by making use of fatigue crack growth (FCG) results. These procedures are concerned mainly with room temperature. Applications with some safety factor to include the temperature effect. Use of HDPE pipes in water and gas distribution in the Gulf area has seen a net increase. This study addresses the combined effects of temperature and frequency on FCG properties of commercial HDPE pipe material. FCG accelerated tests were conducted on single-etch notch (SEN) specimens in the temperature range of -10 to 70C at frequencies ranging from 0.1 to 50 Hz. The FCG tests are conducted at a stress amplitude level approximately 1/4 of room temperature yield stress and crack growth behavior was investigated using linear elastic fracture mechanics concepts. The stress intensity range delta K gave satisfactory correlation of crack, growth rate (da/dN) at the temperatures of -10, 0, 23 and 40C and at frequencies of 0.1, 1, and 50 Hz. The crack growth resistance was found to decrease with increase in test temperature and decrease growth resistance was found to decrease with increase in test temperature and decrease with frequency. For 70C no crack propagation was observed, the failure was observed to occur by collapse or generalized yielding. Fractographic analyses results are used to explain temperature and frequency effects on FCG. The effect of temperature on da/dN for HDPE material was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing delta K yield stress. (author)

  17. A comparison of fatigue crack growth in human enamel and hydroxyapatite.

    Science.gov (United States)

    Bajaj, Devendra; Nazari, Ahmad; Eidelman, Naomi; Arola, Dwayne D

    2008-12-01

    Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (pcrack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth.

  18. On the influence of microscale inertia on dynamic ductile crack extension

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  19. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  20. Modes of long crack growth under non-stationary temperature fields

    International Nuclear Information System (INIS)

    Tereshin, D.A.

    2012-01-01

    Highlights: ► Moving thermal stresses can result in much lengthier cracks than usually expected. ► Codirectional crack grows gradually along with thermal zone movement. ► Oppositely directed crack grows stepwise towards thermal tension movement. ► The total crack increment can be up to the whole region of thermal tension travel. - Abstract: The exploitation practice of structures under thermal loads evidences that the final length of a quasistatic crack can be considerably greater than the thermal tension zone, sometimes causing that the structure approaches complete fracture. This occurs in one or several cycles of a gradual crack growth due to the evolution of thermal field in time resulting in that fracture zone follows the moving tension zone. By the extreme example of quasistationary thermal stress field the set of quasistatic crack growth modes and their peculiarities for the case of moving thermal stresses are described here. These are modes developing both in the direction of the thermal stress field propagation and in the opposite direction. The critical condition of each mode is described, and the crack growth rates are estimated. The rational crack growth evaluation procedure is also proposed. The theoretical conclusions are supported by the experiment, which demonstrates the growth of long thermal cracks.

  1. Crack Growth along Interfaces in Porous Ceramic Layers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy

    2001-01-01

    Crack growth along porous ceramic layers was studied experimentally. Double cantilever beam sandwich specimens were loaded with pure bending moments to obtain stable crack growth. The experiments were conducted in an environmental scanning electron microscope enabling in situ observations...

  2. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    Science.gov (United States)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  3. Multi-scale analysis of deformation behavior at SCC crack tip (3) (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2008-08-01

    In recent years, incidents of the stress corrosion cracking (SCC) were frequently reported that occurred to the various components of domestic boiling water reactors (BWR), and the cause investigation and measure become the present important issue. By the Japan nuclear energy safety organization (JNES), a research project on the intergranular SCC (IGSCC) in nuclear grade stainless steels (henceforth, IGSCC project) is under enforcement from a point of view to secure safety and reliability of BWR, and SCC growth data of low carbon stainless steels are being accumulated for the weld part or the work-hardened region adjacent to the weld metal. In the project, it has been an important subject to guarantee the validity of accumulated SCC data. At a crack tip of SCC in compact tension (CT) type specimen used for the SCC propagation test, a macroscopic plastic region is formed where heterogeneity of microstructure developed by microscopic sliding and dislocations is observed. However, there is little quantitative information on the plastic region, and therefore, to assess the data of macroscopic SCC growth rate and the validity of propagation test method, it is essentially required to investigate the plastic region at the crack tip in detail from a microscopic viewpoint. This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with JNES that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of SCC. The research was carried out to evaluate the validity of the SCC growth data acquired in the IGSCC project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary

  4. Outline and current status of crack growth evaluation

    International Nuclear Information System (INIS)

    Arai, Taku

    2017-01-01

    This paper explains the outline of crack growth evaluation against stress corrosion cracking (SCC), knowledge obtained from actual equipment failure cases, and the latest trends of technology development concerning crack growth evaluation. As for the reactor integrity evaluation system, the use of the maintenance standards for the nuclear power generation of the Japan Society of Mechanical Engineers (hereinafter referred to as maintenance standards') is specified for its evaluation. Based on whether or not the result satisfies the evaluation criteria for the SCC soundness assessment, it is judged whether continuous operation within the evaluation period is allowed or repair/replacement is required. According to main findings obtained from the cases of actual equipment failure, the following have been recognized. (1) The SCC generated and developed in the nickel base alloy welded metal stayed at the boundary between low alloy steel and stainless steel. (2) The progress of SCC strongly depends on the growth direction of dendrite, which is the welded solidified structure, and preferentially develops in the direction parallel to the growth direction. The latest development of crack propagation evaluation includes (1) development of solution for stress intensity factor, and (2) crack propagation evaluation by means of FEM analysis. With regard to the SCC of stainless steel in recirculation system piping under BWR environment, if the defect depth and surface length are sized, the progress of cracks in the actual equipment can be reproduced to some extent by crack growth according to maintenance standards. The sizing results of the defect based on non-destructive test are the starting point. (A.O.)

  5. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  6. Crack growth behaviour of aluminium wrought alloys in the Very High Cycle Fatigue regime

    Directory of Open Access Journals (Sweden)

    Bülbül Fatih

    2018-01-01

    Full Text Available Investigations have shown that in the regime of Very High Cycle Fatigue (VHCF “natural” crack initiation often takes place underneath the material surface leading to crack propagation without contact to atmospheric components. In order to elucidate the environmental damage contribution and its effect on the VHCF long crack propagation, fatigue experiments with alternating environment (vacuum and laboratory air were performed. An ultrasonic fatigue testing system (USFT equipped with a small vacuum chamber was applied that enables the in-situ examination of the long fatigue crack propagation at a resonance frequency of about 20 kHz by using a long distance microscope. By means of the Focused-Ion-Beam technique, micro-notches were prepared in the USFT specimens. The tests were carried out on the aluminium alloys EN-AW 6082 and 5083 in different conditions. It has been found that the atmosphere has a significant influence on the VHCF long crack propagation which manifests itself in the crack path as well as in the crack growth rates. Because of pronounced single sliding in vacuum, shear-stress-controlled crack propagation was detected whereas in laboratory air normal-stress-controlled crack propagation occurred. Furthermore, it has been proven that the secondary precipitation state of the aluminium alloy significantly influences the VHCF long crack propagation in vacuum.

  7. Crack growth simulation for plural crack using hexahedral mesh generation technique

    International Nuclear Information System (INIS)

    Orita, Y; Wada, Y; Kikuchi, M

    2010-01-01

    This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

  8. Crack retardation by load reduction during fatigue crack propagation

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon

    2003-01-01

    Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction

  9. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  10. Fatigue crack growth rate studies on pipes and pipe welds made of austenitic stainless steel and carbon steel

    International Nuclear Information System (INIS)

    Arora, Punit; Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Pukazhendhi, D.M.; Gandhi, P.; Raghava, G.

    2011-01-01

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel and carbon steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT)/Three Point Bend (TPB) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of pipes/pipe welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K RMS ) at deepest and surface points. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K RMS ) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. (author)

  11. Proposal of fatigue crack growth rate curve in air for nickel-base alloys used in BWR

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Itatani, Masao; Nagase, Hiroshi; Aoike, Satoru; Yoneda, Hideki

    2013-01-01

    When the defects are detected in the nuclear components in Japan, structural integrity assessment should be performed for the technical judgment on continuous service based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). Fatigue crack growth analysis is required when the cyclic loading would be applied for the components. Recently, fatigue crack growth rate curve in air environment for Nickel-base alloys weld metal used in BWR was proposed by the authors and it was adopted as a code case of JSME FFS Code to evaluate the embedded flaw. In this study, fatigue crack growth behavior for heat-affected zone (HAZ) of Nickel-base alloys in air was investigated. And a unified fatigue crack growth rate curve in air for HAZ and weld metal of Nickel-base alloys used in BWR was evaluated. As a result, it was found that the curve for weld metal could be applied as a curve for both HAZ and weld metal since moderately conservative assessment of fatigue crack growth rate of HAZ is possible by the curve for weld metal in the Paris region. And the threshold value of stress intensity far range (ΔK th ) is determined to 3.0 MPa√m based on the fatigue crack growth rate of HAZ. (author)

  12. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  13. Fatigue crack growth in mixed mode I+III+III non proportional loading conditions in a 316 stainless steel, experimental analysis and modelization of the effects of crack tip plasticity

    International Nuclear Information System (INIS)

    Fremy, F.

    2012-01-01

    This thesis deals with fatigue crack growth in non-proportional variable amplitude mixed mode I + II + III loading conditions and analyses the effects of internal stresses stemming from the confinement of the plastic zone in small scale yielding conditions. The tests showed that there are antagonistic long-distance and short-distance effects of the loading history on fatigue crack growth. The shape of loading path, and not only the maximum and minimum values in this path, is crucial and, by comparison, the effects of contact and friction are of lesser importance. Internal stresses play a major role on the fatigue crack growth rate and on the crack path. An approach was developed to analyze the elastic-plastic behavior of a representative section of the crack front using the FEA. A model reduction technic is used to extract the relevant information from the FE results. To do so, the velocity field is partitioned into mode I, II, III elastic and plastic components, each component being characterized by an intensity factor and a fixed spatial distribution. The calculations were used to select seven loading paths in I + II and I + II + III mixed mode conditions, which all have the same amplitudes for each mode, the same maximum, minimum and average values. These paths are supposed to be equivalent in the sense of common failure criteria, but differ significantly when the elastic-plastic behavior of the material is accounted for. The results of finite element simulations and of simulations using a simplified model proposed in this thesis are both in agreement with experimental results. The approach was also used to discuss the role of mode III loading steps. Since the material behavior is nonlinear, the nominal loading direction does not coincide with the plastic flow direction. Adding a mode III loading step in a mode I+II fatigue cycle, may, in some cases, significantly modify the behaviour of the crack (crack growth rate, crack path and plastic flow). (author)

  14. Simplified method of computation for fatigue crack growth

    International Nuclear Information System (INIS)

    Stahlberg, R.

    1978-01-01

    A procedure is described for drastically reducing the computation time in calculating crack growth for variable-amplitude fatigue loading when the loading sequence is periodic. By the proposed procedure, the crack growth, r, per loading is approximated as a smooth function and its reciprocal is integrated, rather than summing crack growth cycle by cycle. The savings in computation time results since only a few pointwise values of r must be computed to generate an accurate interpolation function for numerical integration. Further time savings can be achieved by selecting the stress intensity coefficient (stress intensity divided by load) as the argument of r. Once r has been obtained as a function of stress intensity coefficient for a given material, environment, and loading sequence, it applies to any configuration of cracked structure. (orig.) [de

  15. Parametric analysis of fatigue crack growth

    International Nuclear Information System (INIS)

    Carden, A.E.

    1975-01-01

    The effect of temperature and frequency on fatigue crack growth were empirically observed and treated as a coefficient on a stress intensity factor term. The stress intensity factor term is a function of Ksub(max), Ksub(min) (or stress ratio) and a threshold K term. The apparent threshold values were selected in order to linearize the data. At 1000 0 F a constant da/dt (creep crack growth rate) is approached for cycle periods approaching 2000 s indicating a limiting and linear-inverse frequency effect. (author)

  16. The reduction in fatigue crack growth resistance of dentin with depth.

    Science.gov (United States)

    Ivancik, J; Neerchal, N K; Romberg, E; Arola, D

    2011-08-01

    The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.

  17. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-08-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  18. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    Science.gov (United States)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  19. Fatigue crack growth retardation in spot heated mild steel sheet

    Indian Academy of Sciences (India)

    A fatigue crack can be effectively retarded by heating a spot near the crack tip under nil remote stress condition. The subcritical spot heating at a proper position modifies the crack growth behaviour in a way, more or less, similar to specimen subjected to overload spike. It is observed that the extent of crack growth retardation ...

  20. Relationship Between Crack Growth Resistance KR Curve and Specimen Width for 2060 - T8E30 Lithium Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Tong Di Hua

    2016-01-01

    Full Text Available KR crack growth resistance curve can be used to predict crack propagation behavior, estimate the crack component bearing capacity after the crack, so KR curve research occupies very important position in the fracture mechanics. Based on crack growth resistance KR test curve of 2060 - T8E30 lithium aluminum alloy under the same thickness for different width, studies have shown that under the same thickness, the influence of the width on the resistance curve of crack propagation can be neglected. Empirical equation of resistance curve of crack extension of the smaller width specimen is given. Extending the fitting equation to that of larger width, it can be found that it is highly coincided with the experimental results.

  1. Crack growth rate in the HAZ of alloy 600/182

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J. [CIEMAT (Spain); Ahluwalia, K. [EPRI, (United States); Hickling, J. [EPRI Consultant (Cyprus)

    2011-07-01

    CGR (Crack Growth Rate) experiments to obtain data for the HAZ (Heat Affected Zone) of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line. This paper presents some results obtained in an experimental program carried out to the CGR in the HAZ of several welded Alloy 600 plates. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C degrees under cyclic and constant loading (both with and without periodic partial unloading). Satisfactory CGR data were obtained for the HAZ in an Alloy 600 plate (mill annealed at high temperature) welded with Alloy 182 under both environmentally assisted fatigue test conditions (cyclic loading at different frequencies) and during stress corrosion testing (i.e. at predominantly constant load). The CGR values were generally similar to those obtained for the corresponding base metal (with tentative evidence for slightly faster growth in the HAZ under pure constant load). The HAZ specimens showed a higher tendency to crack inter-granularly under cyclic loading. CGR values under predominantly SCC conditions corresponded well (after temperature correction) with the MRP - 55 75. percentile disposition curve for PWSCC in Alloy 600 materials. This contrasts with the behavior observed by other investigators, where the HAZ material was found to exhibit markedly higher CGRs. A possible explanation for this discrepancy is the higher PWSCC susceptibility of the Alloy 600 base metal used to prepare the HAZ specimens in this program. It appears that the strong increase in the HAZ CGR observed elsewhere may take place if the base metal is a heat with inherently low PWSCC susceptibility (i.e. with good microstructure, adequate carbide distribution, etc.). However, if the Alloy 600 base metal already has a susceptible

  2. Crack growth rate in the HAZ of alloy 600/182

    International Nuclear Information System (INIS)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J.; Ahluwalia, K.; Hickling, J.

    2011-01-01

    CGR (Crack Growth Rate) experiments to obtain data for the HAZ (Heat Affected Zone) of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line. This paper presents some results obtained in an experimental program carried out to the CGR in the HAZ of several welded Alloy 600 plates. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C degrees under cyclic and constant loading (both with and without periodic partial unloading). Satisfactory CGR data were obtained for the HAZ in an Alloy 600 plate (mill annealed at high temperature) welded with Alloy 182 under both environmentally assisted fatigue test conditions (cyclic loading at different frequencies) and during stress corrosion testing (i.e. at predominantly constant load). The CGR values were generally similar to those obtained for the corresponding base metal (with tentative evidence for slightly faster growth in the HAZ under pure constant load). The HAZ specimens showed a higher tendency to crack inter-granularly under cyclic loading. CGR values under predominantly SCC conditions corresponded well (after temperature correction) with the MRP - 55 75. percentile disposition curve for PWSCC in Alloy 600 materials. This contrasts with the behavior observed by other investigators, where the HAZ material was found to exhibit markedly higher CGRs. A possible explanation for this discrepancy is the higher PWSCC susceptibility of the Alloy 600 base metal used to prepare the HAZ specimens in this program. It appears that the strong increase in the HAZ CGR observed elsewhere may take place if the base metal is a heat with inherently low PWSCC susceptibility (i.e. with good microstructure, adequate carbide distribution, etc.). However, if the Alloy 600 base metal already has a susceptible

  3. On Subsurface Crack Growth in Fibre Metal Laminate Materials

    National Research Council Canada - National Science Library

    Randall, Christian

    2003-01-01

    Fatigue crack growth in fibre metal laminates (FMLs) is significantly more complex than in monolithic materials due to the interaction of various physical mechanisms that govern the growth of cracks in laminates...

  4. Numerical treatment of creep crack growth

    International Nuclear Information System (INIS)

    Kienzler, R.; Hollstein, T.

    1990-06-01

    To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)

  5. 77 K Fatigue Crack Growth Rate of Modified CF8M Stainless Steel Castings

    International Nuclear Information System (INIS)

    Walsh, R. P.; Toplosky, V. J.; Han, K.; Heitzenroeder, P. J.; Nelson, B. E.

    2006-01-01

    The National Compact Stellerator Experiment (NCSX) is the first of a new class of stellarators. The modular superconducting coils in the NCSX have complex geometry that are manufactured on cast stainless steel (modified CF8M) winding forms. Although CF8M castings have been used before at cryogenic temperature there is limited data available for their mechanical properties at low temperatures. The fatigue life behavior of the cast material is vital thus a test program to generate data on representative material has been conducted. Fatigue test specimens have been obtained from key locations within prototype winding forms to determine the 77 K fatigue crack growth rate. The testing has successfully developed a representative database that ensures confident design. The measured crack growth rates are analyzed in terms of the Paris law parameters and the crack growth properties are related to the materials microstructure

  6. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  7. A comparison between Japanese and French A16 defect assessment procedures for thermal fatigue crack growth

    International Nuclear Information System (INIS)

    Wakai, T.; Horikiri, M.; Poussard, C.; Drubay, B.

    2005-01-01

    This paper presents the results of a benchmark on thermal fatigue crack growth evaluation for a thick-wall cylinder subjected to cyclic thermal transients. The simplified crack growth evaluation methods of both JNC in JAPAN and A16 procedures proposed by CEA in France are presented. The predictions obtained using both methods are compared with the experimental data. The JNC method, which accounts for the non-linear stress component provides predictions of crack advance in a good agreement with the experimental data. In contrast, significant differences are observed between the A16 predictions and the experimental data. The discrepancies are mainly due to the non-linear stress component which is not accounted for in the A16 method. When using the JNC stress intensity factor solution determined by finite element analysis to account for the non-linear stress component, the A16 method well predicts the thermal fatigue crack growth behavior

  8. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  9. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  10. Test Method Variability in Slow Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, J. A.; Tandon, R.

    2010-01-01

    The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.

  11. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Hutař, Pavel; Náhlík, Luboš; Seitl, Stanislav; Polák, Jaroslav

    2011-01-01

    Roč. 412, 1 (2011), s. 7-12 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : ferritic-martensitic steel * long crack growth * small crack growth * crack closure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.052, year: 2011

  12. Investigation on the electrochemical properties and crack growth rates of stainless steels in BWR alkaline environments

    International Nuclear Information System (INIS)

    Wang, L.H.; Hsu, T.Y.; Huang, C.S.

    2000-01-01

    Increasing pH of reactor water to mildly alkaline is considered as one of the mitigating water chemistry strategies to reduce the activity release of radioactive oxides and suppress the growth rate of stress corrosion cracking. However, only limited experimental data are currently available in the published literature, it is imperative to perform additional tests to verify the effectiveness of slightly alkaline reactor water. Because the electrochemical behavior and SCC are intricately related, this study will attempt to investigates the electrochemical properties and measures the crack growth rates (CGRs) of type 304 stainless steel (SS) in both normal water chemistry (200 ppb O 2 , neutral pH 25 ) and alkaline chemistry (200 ppb O 2 , pH 25 = 8.0). The additive for pH control is potassium hydroxide (KOH). The crack growth rate was monitored by reversing DC potential drop technique. The electrochemical measurements include AC impedance measurement and potential pulsing test to measure the repassivation behavior. The characteristics of electrochemical properties and its effect on stress corrosion crocking in BWR alkaline environments have been further examined. (author)

  13. Methodology to evaluate the crack growth rate by stress corrosion cracking in dissimilar metals weld in simulated environment of PWR nuclear reactor

    International Nuclear Information System (INIS)

    Paula, Raphael G.; Figueiredo, Celia A.; Rabelo, Emerson G.

    2013-01-01

    Inconel alloys weld metal is widely used to join dissimilar metals in nuclear reactors applications. It was recently observed failures of weld components in plants, which have triggered an international effort to determine reliable data on the stress corrosion cracking behavior of this material in reactor environment. The objective of this work is to develop a methodology to determine the crack growth rate caused by stress corrosion in Inconel alloy 182, using the specimen (Compact Tensile) in simulated PWR environment. (author)

  14. Comparison of experiment and theory for elastic-plastic plane strain crack growth

    International Nuclear Information System (INIS)

    Hermann, L.; Rice, J.R.

    1980-02-01

    Recent theoretical results on elastic-plastic plane strain crack growth, and experimental results for crack growth in a 4140 steel in terms of the theoretical concepts are reviewed. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasi-statically advancing crack tip in an ideally-plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large scale yielding. Nevertheless, it suffices to derive a relation between the imposed loading and amount of crack growth, prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens

  15. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  16. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  17. Fatigue crack growth behaviour of the aluminium-lithium alloy 2090

    International Nuclear Information System (INIS)

    Tabrett, C.P.; McKeighan, P.C.; Smith, D.J.

    1993-01-01

    The fatigue crack growth (FCG) behavior of the aluminum lithium (Al-Li) alloy 2090-T84 has been investigated from a series of constant amplitude FCG tests. The influence of in plane orientation (L-T, T-L+45) and sheet thickness (1.6 and 6 mm) on the FCG rates for the rolled product has been examined. In general, the T-L orientation possess superior FCG resistance for both thicknesses and the 6 mm thick sheet material showed improved FCG resistance when compared to the 1.6 mm thick material for all orientations. It is believed this trend is related to the greater roughness and larger asperities found on the fatigue crack surfaces for the 6 mm thick material. Closure corrected FCG data suggests that much of the difference between the L-T and T-L orientation for the 6 mm thick sheet arise from variations in crack closure levels. (author)

  18. Modification of the FRI crack growth model formulation from a mathematical viewpoint

    International Nuclear Information System (INIS)

    Hashimoto, Tsuneyuki; Koshiishi, Masato

    2009-01-01

    The FRI model of crack growth, which incorporates mechanical properties into the slip oxidation mechanism of crack advance, is an extension of the well-known Ford-Andresen model. When the exponent of the oxidation current decay curve is set close to 1, however, the FRI model gives an infinite crack growth rate. Here, the oxidation decay curve integral is revised to eliminate this divergence, and modified crack growth rate equations are derived. Also presented here is a procedure for determining the oxidation current parameters from the curve-fitting to measurements of crack growth rate. Parameter value determination and crack growth calculations are illustrated for cold-worked Type 316L stainless steel. (author)

  19. Thermal fatigue crack growth analysis in a nozzle corner

    International Nuclear Information System (INIS)

    Blauel, J.G.; Hodulak, L.

    1983-01-01

    Calculations of the crack growth under local thermal shock fatigue are performed. Estimates of crack growth are based on stress distributions obtained by a finite element analysis for thermal transients in the structure without crack. Stress intensity factors are calculated using interpolation formulae derived from known basic solutions for part-through cracks under constant and linearly varying load. The crack propagation at selected parts of the crack front is calculated stepwise by integration of the Paris law with material constants C and n interpolated from test results on compact specimens at constant temperatures. Experimental results for the model vessel test MB1 at an internal pressure of 14 N/mm 2 and a temperature of 320 0 C exposed to a repeated local spraying with cold water are presented and compared to predictions

  20. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  1. Near-threshold fatigue crack growth behavior of AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Tobler, R.L.

    1986-01-01

    The near-threshold fatigue behavior of an AISI 316 alloy was characterized using a newly developed, fully automatic fatigue test apparatus. Significant differences in the near-threshold behavior at temperatures of 295 and 4 K are observed. At 295 K, where the operationally defined threshold at 10 -10 m/cycle is insensitive contains stress ratio and strongly affected by crack closure, the effective threshold stress intensity factor (ΔK/sub Th/)/sub eff/) is about 4.65 MPa m/sub 1/2/ at R = 0.3. At 4 K, the threshold is higher, crack closure is less pronounced, and there is a stress ratio dependency: (ΔK/sub Th/)/sub eff/ is 5.1 MPa m/sup 1/2/ at R = 0.3 and 6.1 MPa m/sup 1/2/ at R - 0.1. There is also a significant difference in the form of the da/dN-versus-ΔK curves on log-log coordinates: at 4 K the curve has the expected sigmoidal shape, but at 295 K the trend is linear over the region of da/dN from 10 -7 to 10 -10 m/cycle. Other results suggest that the near-threshold measurements of a 6.4-mm-thick specimen of this alloy are insensitive to cyclic test frequency below 40 Hz

  2. Molar cusp deformation evaluated by micro-CT and enamel crack formation to compare incremental and bulk-filling techniques.

    Science.gov (United States)

    Oliveira, Laís Rani Sales; Braga, Stella Sueli Lourenço; Bicalho, Aline Arêdes; Ribeiro, Maria Tereza Hordones; Price, Richard Bengt; Soares, Carlos José

    2018-07-01

    To describe a method of measuring the molar cusp deformation using micro-computed tomography (micro-CT), the propagation of enamel cracks using transillumination, and the effects of hygroscopic expansion after incremental and bulk-filling resin composite restorations. Twenty human molars received standardized Class II mesio-occlusal-distal cavity preparations. They were restored with either a bulk-fill resin composite, X-tra fil (XTRA), or a conventional resin composite, Filtek Z100 (Z100). The resin composites were tested for post-gel shrinkage using a strain gauge method. Cusp deformation (CD) was evaluated using the images obtained using a micro-CT protocol and using a strain-gauge method. Enamel cracks were detected using transillumination. The post-gel shrinkage of Z100 was higher than XTRA (P cracks than XTRA (P = 0.012). Micro-CT was an effective method for evaluating the cusp deformation. Transillumination was effective for detecting enamel cracks. There were fewer negative effects of polymerization shrinkage in bulk-fill resin restorations using XTRA than for the conventional incremental filling technique using conventional composite resin Z100. Shrinkage and cusp deformation are directly related to the formation of enamel cracks. Cusp deformation and crack propagation may increase the risk of tooth fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Crack initiation behaviors of metallic walls subjected to high heat flux expected at plasma disruption

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Uno, Masayoshi; Seki, Masahiro.

    1989-01-01

    Experimental and numerical studies were performed to investigate crack initiation behavior near a surface of stainless steel and tungsten when subjected to extremely high heat flux. The improved electron beam test facility was used as the heat source. Two-dimensional thermal and elasto-plastic stress analyses were also performed. From the results for stainless steel, micro-cracks about 0.1 mm deep only initiated in the resolidified layer along dendrites. No cracks propagated into the non-melted zone, and repeated heating of up to 20 times did not affect the depth and population of the cracks. According to the elasto-plastic stress analyses, no fatigue cracks were expected. Cracks with a depth of more than a few millimeters were observed in a tungsten plate. The cracks initiated at a boundary between heated and unheated areas. They grew into the non-melted zone, and curved towards the center part of the heated area. The elasto-plastic stress analyses indicated that the cracks were initiated due to the residual tensile strain after heated at the surface of the test specimen. When the heat flux was repeated, the cracks propagated and penetrated to the rear side of the test specimen in several repetition. (author)

  4. Probabilistic Modeling of the Fatigue Crack Growth Rate for Ni-base Alloy X-750

    International Nuclear Information System (INIS)

    Yoon, Jae Young; Nam, Hyo On; Hwang, Il Soon; Tae Hyun Lee

    2012-01-01

    The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model(FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. From fitting the data to Paris' Law, the parameters C and m of Paris' Law model were assumed to obey the Gaussian distribution. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were updated to reduce the uncertainty in the model by using the Bayesian inference method. (author)

  5. Evaluation of fatigue crack growth and fracture resistance of SA350 LF2 material

    International Nuclear Information System (INIS)

    Singh, P.K.; Dubey, J.S.; Chakrabarty, J.K.; Vaze, K.K.; Kushwaha, H.S.

    2003-01-01

    The aim of the present paper is to evaluate the tensile and fracture mechanics properties of the SA350 LF2 carbon steel material used as the Header material in the primary heat transport (PHT) system piping of the Indian pressurized heavy water reactors (PHWR). Tensile, fatigue crack growth rate and fracture toughness tests have been carried out on specimens machined from the Header of the actual PHT pipes. The effect of temperature on tensile properties has been discussed. The effect of temperature and notch orientation on fracture resistance behavior of the material and fatigue crack growth rate dependence on the notch orientation and stress ratio has also been discussed. (author)

  6. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth...

  7. Crack growth in first wall made of reduced activation ferritic steel by transient creep due to long pulse operation

    International Nuclear Information System (INIS)

    Honda, T.; Kudo, Y.; Hatano, T.; Kikuchi, K.; Nishimura, T.; Saito, M.

    2003-01-01

    The long pulse operation is assumed in ITER and future reactor. If the first wall has a defect, the crack may be propagated by cyclic thermal loads. In addition, flattop of more than 300 s during plasma burning is expected in ITER, so the crack propagation behavior will depend on the operation duration period. This study deals with the crack propagation behavior on F82H under high thermal load cycles. The high heat flux tests were performed under three types of duration periods to investigate creep fatigue behavior. To clarify the crack growth mechanism and the effects of transient creep, three-dimensional analyses were performed. It was concluded that the creep effect during the operation duration period enlarges stress intensity factor K in the cooling period and that consequently, the crack propagation length was increased

  8. Validity limits in J-resistance curve determination: A computational approach to ductile crack growth under large-scale yielding conditions. Volume 2

    International Nuclear Information System (INIS)

    Shih, C.F.; Xia, L.; Hutchinson, J.W.

    1995-02-01

    In this report, Volume 2, Mode I crack initiation and growth under plane strain conditions in tough metals are computed using an elastic/plastic continuum model which accounts for void growth and coalescence ahead of the crack tip. The material parameters include the stress-strain properties, along with the parameters characterizing the spacing and volume fraction of voids in material elements lying in the plane of the crack. For a given set of these parameters and a specific specimen, or component, subject to a specific loading, relationships among load, load-line displacement and crack advance can be computed with no restrictions on the extent of plastic deformation. Similarly, there is no limit on crack advance, except that it must take place on the symmetry plane ahead of the initial crack. Suitably defined measures of crack tip loading intensity, such as those based on the J-integral, can also be computed, thereby directly generating crack growth resistance curves. In this report, the model is applied to five specimen geometries which are known to give rise to significantly different crack tip constraints and crack growth resistance behaviors. Computed results are compared with sets of experimental data for two tough steels for four of the specimen types. Details of the load, displacement and crack growth histories are accurately reproduced, even when extensive crack growth takes place under conditions of fully plastic yielding. A description of material resistance to crack initiation and subsequent growth is essential for assessing structural integrity such as nuclear pressure vessels and piping

  9. On the influence of the environment on modeling the fatigue crack growth process

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    The effect of the environment at room and elevated temperature were considered with respect to the influence exerted on the basic mechanical aspects of the fatigue crack growth process. An experimental assessment of this influence was obtained by conducting fatigue crack growth tests both in air and vacuum and the results of such experiments are given. Topics considered include crack closure, short crack growth in notched and unnotched specimens, Mode II crack growth, and the effects of oxidation at elevated temperatures. It is shown that the basic mechanisms of fatigue crack growth can be greatly altered by the presence of oxide films at the fatigue crack tip. Modeling the mechanical aspects of the crack growth process is by itself a challenging task. In addition, the environmental considerations adds to the complexity of the modeling process. (Author)

  10. Micro alloyed steel weldability and sensibility testing on the lamellar cracks appearance

    Directory of Open Access Journals (Sweden)

    S. Stojadinović

    2011-07-01

    Full Text Available In this work are given the testing results of mechanical properties welded joints and microstructure of micro alloyed steel as well as its sensitivity to lamellar cracks appearance. The obtained results show that steel has good resistance to lamellar cracks appearance and with an appropriate wire choice for welding, a good combination of mechanical properties could be obtained at room (ambience temperatures as well as at low temperatures.

  11. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  12. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  13. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.

    Science.gov (United States)

    Nanninga, N; Slifka, A; Levy, Y; White, C

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

  14. Biaxial loading effects on the growth of cracks

    International Nuclear Information System (INIS)

    Brown, M.W.; Miller, K.J.; Walker, T.J.

    1983-01-01

    Fatigue crack growth under different biaxial stress states is considered for both small scale yielding and high bulk stress conditions. Analytical and elastic finite element results are compared favourably alongside experimental results on a AISI 316 stainless steel at both room and elevated temperatures. Differences in crack growth rates are compared against different crack tip cyclic plastic zone sizes for various degrees of mixed mode loading, thereby overcoming the limitations of the Paris Law and LEFM. The usefulness of the approach is indicated for studies in the behaviour of materials subjected to thermal shock. Where steep temperature gradients are introduced due to rapid thermal transients, high strains are produced which propagate fatigue cracks under cyclic conditions. Since stress gradients are generally associated with thermal shock situations, the cracks grow through a plastically deformed region near the surface into an elastic region. A unified approach to fatigue behaviour, encompassing both linear elastic and elastic-plastic fracture mechanics, will enable analysis of thermal shock situations. The approach to crack propagation developed here shows that cyclic growth rates are a function of a severe strain zone size in which local stresses exceed the tensile strength, i.e. monotonic instability. The effects of stress biaxiality and mixed mode loading are included in the analysis, which may be extended to general yielding situations. (orig.)

  15. Self-healing of Micro-cracks in Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Suryanto B.

    2015-12-01

    Full Text Available The performance of an Engineered Cementitious Composite (ECC to self-heal micro-cracks under a controlled laboratory environment is presented. Ten dog-bone shaped samples were prepared; five of them were preloaded to known strains and then left to heal in water in a temperature-controlled laboratory. Ultrasonic pulse velocity (UPV measurements were undertaken to monitor the crack-healing process. It was found that all samples exhibited recoveries in UPV and were able to recover to between 96.6% and 98% of their pre-test UPV values over a period of four weeks. An accelerated rate of healing was observed in the initial two-day period immediately following the preloading test.

  16. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    Science.gov (United States)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  17. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology

  18. Kinetics of fatigue crack growth and crack paths in the old puddled steel after 100-years operating time

    Directory of Open Access Journals (Sweden)

    G. Lesiuk

    2015-10-01

    Full Text Available The goal of the authors’ investigations was determination of the fatigue crack growth in fragments of steel structures (of the puddled steel and its cyclic behavior. Tested steel elements coming from the turn of the 19th and 20th were gained from still operating ancient steel construction (a main hall of Railway Station, bridges etc.. This work is a part of investigations devoted to the phenomenon of microstructural degradation and its potential influence on their strength properties. The analysis of the obtained results indicated that those long operating steels subject to microstructure degradation processes consisting mainly in precipitation of carbides and nitrides inside ferrite grains, precipitation of carbides at ferrite grain boundaries and degeneration of pearlite areas [1, 2]. It is worth noticing that resistance of the puddled steel to fatigue crack propagation in the normalized state was higher. The authors proposed the new kinetic equation of fatigue crack growth rate in such a steel. Thus the relationship between the kinetics of degradation processes and the fatigue crack growth rate also have been shown. It is also confirmed by the materials research of the viaduct from 1885, which has not shown any significant changes in microstructure. The non-classical kinetic fatigue fracture diagrams (KFFD based on deformation ( or energy (W approach was also considered. In conjunction with the results of low- and high-cycle fatigue and gradual loss of ductility as a consequence (due to the microstructural degradation processes - it seems to be a promising construction of the new kinetics fatigue fracture diagrams with the energy approach.

  19. Development of crack growth and crack initiation test units for stress corrosion cracking examinations in high-temperature water environments under neutron irradiation (1) (Contract research)

    International Nuclear Information System (INIS)

    Izumo, Hironobu; Ishida, Takuya; Kawamata, Kazuo; Inoue, Shuichi; Ide, Hiroshi; Saito, Takashi; Ishitsuka, Etsuo; Chimi, Yasuhiro; Ise, Hideo; Miwa, Yukio; Ugachi, Hirokazu; Nakano, Junichi; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-04-01

    To evaluate integrity of irradiation-assisted stress corrosion cracking (IASCC) on in-core structural materials used in light water reactors (LWRs), useful knowledge regarding IASCC has been obtained mainly by post-irradiation examinations (PIEs). In the core of commercial LWRs, however, the actual IASCC occurs under the effects of irradiation on both materials and high-temperature water environment. Therefore, it is necessary to confirm the suitability of the knowledge by PIE with comparison to IASCC behaviors during in-core SCC tests. Fundamental techniques for in-core crack growth and crack initiation tests have been developed already at the Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency (JAEA). For the in-core crack growth test technique, to evaluate the effects of neutron irradiation on stainless steels irradiated to low neutron fluences, it is indispensable to develop new loading technique which is applicable to compact tension (CT) specimens with thickness of 0.5 inch (0.5T), from the viewpoint of validity based on the fracture mechanics. Based on the present technical investigation for the in-core loading technique, it is expected that a target load of 7.6 kN approximately can apply to a 0.5T-CT specimen by adopting a loading unit of a lever type instead of the previous uni-axial tension type. For the in-core crack initiation test technique, moreover, construction of a loading unit adopting linear variable differential transformers (LVDTs) has been investigated and technical issues have examined. (author)

  20. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    Science.gov (United States)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  1. Fatigue crack growth-Microstructure relationships in a high-manganese austenitic TWIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T., E-mail: niendorf@mail.uni-paderborn.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Rubitschek, F.; Maier, H.J. [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Niendorf, J.; Richard, H.A. [University of Paderborn, Fachgruppe Angewandte Mechanik (Applied Mechanics), 33095 Paderborn (Germany); Frehn, A. [Benteler Automotive, Product Group Chassis Systems, An der Talle 27-31, 33102 Paderborn (Germany)

    2010-04-15

    The crack growth behavior of a high-manganese austenitic steel, which exhibits the twinning-induced plasticity (TWIP) effect, was investigated under positive stress ratios. An experimental study making use of miniature compact tension (CT) specimens and thorough microstructural analyses including transmission electron microscopy and fracture analyses demonstrated that the microstructural evolution in the plastic zone of the fatigued TWIP CT specimens is substantially different as compared to the monotonic plastic deformation case. Specifically, the twin density in the plastic zone of the CT specimens is very low, leading to the conclusion that the deformation mechanisms depend drastically on the loading conditions. The absence of twinning under cyclic loading in the plastic zone of the CT specimens indicates that even large accumulated plastic strains are not sufficient to cause substantial twinning in the TWIP steel. This lack of hardening preserves the ductile character of the TWIP steel in the plastic zone ahead of the crack tip and provides for a crack growth rate in the Paris regime lower than reported for other high strength steels.

  2. Propagation of cracks and damage in non aging linear viscoelastic media

    International Nuclear Information System (INIS)

    Nguyen, S.T.

    2010-01-01

    Most of France's energy is nuclear. The reactor building comprises a internal and external containment. The internal containment is prestressed to limit the flow of leakage in the internal-external space. The prestress decreases during time by the creep of concrete. It may propagate the cracks by the accidental internal pressure. So we define two research problems: propagation of macro-cracks in viscoelastic structure; effective behavior of micro-cracked viscoelastic material. Firstly, we develop a Burger viscoelastic model of concrete with two approaches: numerical and analytical. Then we solve the problem of single cracks in developing thermodynamically the concept of energy release rate. In the third part we develop a viscoelastic model to study the effective behavior of micro-cracked materials in the case without propagation. The problem of propagation of microcracks is then studied by a numerical approach based on the 'representative pattern morphology'. These studies are finally applied to solve the problems of crack propagation and damage of containment under accidental internal pressure. (authors)

  3. Application of a Cohesive Zone Model for Simulating Fatigue Crack Growth from Moderate to High ΔK Levels of Inconel 718

    Directory of Open Access Journals (Sweden)

    Huan Li

    2018-01-01

    Full Text Available A cyclic cohesive zone model is applied to characterize the fatigue crack growth behavior of a IN718 superalloy which is frequently used in aerospace components. In order to improve the limitation of fracture mechanics-based models, besides the predictions of the moderate fatigue crack growth rates at the Paris’ regime and the high fatigue crack growth rates at the high stress intensity factor ΔK levels, the present work is also aimed at simulating the material damage uniformly and examining the influence of the cohesive model parameters on fatigue crack growth systematically. The gradual loss of the stress-bearing ability of the material is considered through the degradation of a novel cohesive envelope. The experimental data of cracked specimens are used to validate the simulation result. Based on the reasonable estimation for the model parameters, the fatigue crack growth from moderate to high ΔK levels can be reproduced under the small-scale yielding condition, which is in fair agreement with the experimental results.

  4. An effective FEM-based approach for discrete 3D crack growth

    DEFF Research Database (Denmark)

    Nielsen, Morten Eggert; Lambertsen, Søren Heide; Pedersen, Erik B.

    2015-01-01

    A new geometric approach for discrete crack growth modeling is proposed and implemented in a commercial FEM software. The basic idea is to model the crack growth by removing volumes of material as the crack front advances. Thereby, adaptive meshing techniques, found in commercial software, is wel...

  5. Crack growth in an austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Polvora, J.P.

    1998-01-01

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C* s . Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)

  6. Modeling of multibranched crosslike crack growth

    International Nuclear Information System (INIS)

    Canessa, E.; Tanatar, B.

    1991-06-01

    Multibranched crosslike crack patterns formed in concentrically loaded square plates are studied in terms of fractal geometry, where the associated fractal dimension d f is calculated for their characterization. We apply simplest deterministic and stochastic approaches at a phenomenological level in an attempt to find generic features as guidelines for future experimental and theoretical work. The deterministic model for fracture propagation we apply, which is a variant of the discretized Laplace approach for randomly ramified fractal cracks proposed by Takayasu, reproduces the basic ingredients of observed complex fracture patters. The stochastic model, although is not strictly a model for crack propagation, is based on diffusion-limited aggregation (DLA) for fractal growth and produces slightly more realistic assessment of the crosslike growth of the cracks in asymmetric multibranches. Nevertheless, this simple ad-hoc DLA-version for modeling the present phenomena as well as the deterministic approach for fracture propagation give fractal dimensionality for the fracture pattern in accord with our estimations made from recent experimental data. It is found that there is a crossover of two fractal dimensions, corresponding to the core (higher d f ) and multibranched crosslike (lower D f ) regions, that contains loops, that are interpreted as representing different symmetry regions within the square plates of finite size. (author). 26 refs, 5 figs

  7. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  8. A crack opening stress equation for fatigue crack growth

    Science.gov (United States)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  9. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  10. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho

    2016-01-01

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  11. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  12. The influence of loading frequency on near-threshold fatigue crack growth

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Tokaji, Keiro; Ochi, Satoshi

    1986-01-01

    Fatigue crack growth and crack closure in the near-threshold region were investigated under different loading frequencies for three types of steel. The results show that the loading frequency influences the near-threshold characteristics in fatigue crack growth, through the different contributions of the fretting oxide induced crack closure. This behaviour is attributed to condensation of moisture between crack faces, which is influenced by the loading frequency. The formation of the fretting oxide debris promoted by the condensation of moisture becomes marked at a higher frequency. However, it is an unstable and complicating phenomenon, since the condensation is also influenced by relative humidity, test temperature and sheet thickness. Therefore, it is concluded that non-oxide controlled crack growth characteristics should be used for the life prediction of structures. (author)

  13. Damage assessment of low-cycle fatigue by crack growth prediction. Development of growth prediction model and its application

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2012-01-01

    In this study, the fatigue damage was assumed to be equivalent to the crack initiation and its growth, and fatigue life was assessed by predicting the crack growth. First, a low-cycle fatigue test was conducted in air at room temperature under constant cyclic strain range of 1.2%. The crack initiation and change in crack size during the test were examined by replica investigation. It was found that a crack of 41.2 μm length was initiated almost at the beginning of the test. The identified crack growth rate was shown to correlate well with the strain intensity factor, whose physical meaning was discussed in this study. The fatigue life prediction model (equation) under constant strain range was derived by integrating the crack growth equation defined using the strain intensity factor, and the predicted fatigue lives were almost identical to those obtained by low-cycle fatigue tests. The change in crack depth predicted by the equation also agreed well with the experimental results. Based on the crack growth prediction model, it was shown that the crack size would be less than 0.1 mm even when the estimated fatigue damage exceeded the critical value of the design fatigue curve, in which a twenty-fold safety margin was used for the assessment. It was revealed that the effect of component size and surface roughness, which have been investigated empirically by fatigue tests, could be reasonably explained by considering the crack initiation and growth. Furthermore, the environmental effect on the fatigue life was shown to be brought about by the acceleration of crack growth. (author)

  14. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  15. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  16. Assessment of the interaction of variables in the intergranular stress corrosion crack growth rate behavior of Alloys 600, 82, and 182

    International Nuclear Information System (INIS)

    Paraventi, D.J.; Moshier, W.C.

    2007-01-01

    SCC testing of Alloy 600 and its weld metals has demonstrated that temperature, stress intensity factor (K), dissolved hydrogen, and yield strength all play a role on crack growth in deaerated, hydrogenated water. Typically, each variable has been modeled independently. However, some of these variables interact, which can affect crack growth predictions. In particular, testing has demonstrated several important interactions, including final annealing temperature and K, cold work and dissolved hydrogen, and orientation and cold work. The annealing temperature influences the K dependence of Alloy 600, with lower temperature anneals decreasing the influence of stress on growth. The response to cold work varies as a function of processing method and orientation, with crack growth in the processing direction having a stronger yield strength dependence than crack growth perpendicular to the processing direction. The effect of hydrogen has been found to be related to electrochemical potential, with the most susceptible condition occurring near the Ni/NiO phase transition. However, cold worked Alloy 600 maintains the peak susceptibility at low hydrogen conditions. (author)

  17. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  18. Mechanistic dissimilarities between environmentally-influenced fatigue-crack propagation at near-threshold and higher growth rates in lower-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S.; Ritchie, R. O.

    1981-11-01

    The role of hydrogen gas in influencing fatigue crack propagation is examined for several classes of lower strength pressure vessel and piping steels. Based on measurements over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, crack propagation rates are found to be significantly higher in dehumidified gaseous hydrogen compared to moist air in two distinct regimes of crack growth, namely (i) at the intermediate range of growth typically above approx. 10/sup -5/ mm/cycle, and (ii) at the near-threshold region below approx. 10/sup -6/ mm/cycle approaching lattice dimensions per cycle. Both effects are seen at maximum stress intensities (K/sub max/) far below the sustained-load threshold stress intensity for hydrogen-assisted cracking (K/sub Iscc/). Characteristics of environmentally influenced fatigue crack growth in each regime are shown to be markedly different with regard to fractography and the effect of such variables as load ratio and frequency. It is concluded that the primary mechanisms responsible for the influence of the environment in each regime are distinctly different. Whereas corrosion fatigue behavior at intermediate growth rates can be attributed to hydrogen embrittlement processes, the primary role of moist environments at near-threshold levels is shown to involve a contribution from enhanced crack closure due to the formation of crack surface corrosion deposits at low load ratios.

  19. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  20. Fatigue crack growth in fiber-metal laminates

    Science.gov (United States)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  1. Observation and simulation of crack growth in Zry-4

    International Nuclear Information System (INIS)

    Bertolino, Graciela; Meyer, Gabriel; Perez Ipina, J

    2003-01-01

    Security and life extension of components of nuclear reactors are the most motivating aspects that encourage to study embrittlement processes of zirconium alloys by reaction with hydrogen.Here, the use of fracture mechanics tests are suitable to monitor the material resistance of components under service.Because many times is difficult to obtain normalized probes from real size components, researchers look for alternative experimental techniques or crack growth simulation from the knowledge of particular material properties.In this work we present the results obtained after experimental observation and computer simulation of crack growth in Zry-4 probes.Experimental observation were obtained by performing flexion tests in three point probes SSEN(B) of 3 x 7 x 32 mm 3 located in the chamber of a scanning electron microscope, measuring in situ the crack length and opening when an external load is applied.Using the information obtained from stress-displacement measurements after tensile tests and the empiric relationship between crack opening and crack length, the crack growth process was simulated.Displacement field in the zone close to the crack tip was obtained by finite elements technique (Castem, DMT, CEA) assuming plain stress, a plastic bilinear homogeneous material and neglecting texture or directional anisotropy.To compare experimental observation and simulation, a grid (10 x 10 μm 2 each square) was drawn in the zone close to the crack tip by selective sputtering.Following the movement of two (three) points of the surface allows to compare uni (bi) dimensional deformation.A good agreement between observation and simulation was observed: after the crack opening grew 28 times (from 1.5 to 42 μm) the base-height relationship of a triangle involving the crack tip change 40% (35%) in the experimental observation (simulation)

  2. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  3. Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong

    2001-03-01

    Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.

  4. Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel

    Science.gov (United States)

    Kumar, Jalaj; Ahmad, S.; Mukhopadhyay, C. K.; Jayakumar, T.; Kumar, Vikas

    2016-01-01

    High strength low alloy (HSLA) steels are a group of low carbon steels and used in oil and gas pipelines, automotive components, offshore structures and shipbuilding. Fatigue crack growth (FCG) characteristics of a HSLA steel have been studied at two different stress ratios (R = 0.3 and 0.5). Acoustic emission (AE) signals generated during the FCG tests have been used to understand the FCG processes. The AE signals were captured by mounting two piezoelectric sensors on compact tension specimens in liner location configuration. The AE generated in stage II of the linear Paris region of FCG has been attributed to the presence of two sub-stages with two different slopes. The AE generated at higher values of stress intensity factor is found to be useful to identify the transition from stage II to stage III of the FCG. AE location analysis has provided support for increased damage at the crack tip for higher stress ratio. The peak stress intensity (Kmax) values at the crack tip have shown good correlation with the transitions from stage IIa to stage IIb and stage II to stage III of the FCG for the two stress ratios.

  5. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  6. Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

    Science.gov (United States)

    Leser, Patrick E.; Newman, John A.; Warner, James E.; Leser, William P.; Hochhalter, Jacob D.; Yuan, Fuh-Gwo

    2016-01-01

    Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis data from sources such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finite element-based damage growth models unusable due to prohibitive computation times. However, these types of models are often the only option when attempting to model complex damage growth in real-world structures. Here, a recently developed high-fidelity crack growth model is used which, when compared to finite element-based modeling, has demonstrated reductions in computation times of three orders of magnitude through the use of surrogate models and machine learning. The model is flexible in that only the expensive computation of the crack driving forces is replaced by the surrogate models, leaving the remaining parameters accessible for uncertainty quantification. A probabilistic prognosis framework incorporating this model is developed and demonstrated for non-planar crack growth in a modified, edge-notched, aluminum tensile specimen. Predictions of remaining useful life are made over time for five updates of the damage diagnosis data, and prognostic metrics are utilized to evaluate the performance of the prognostic framework. Challenges specific to the probabilistic prognosis of non-planar fatigue crack growth are highlighted and discussed in the context of the experimental results.

  7. Fatigue crack growth threshold of austenitic stainless steels in simulated PWR primary water

    International Nuclear Information System (INIS)

    Tsutsumi, Kazuya; Yamamoto, Kenji; Nitta, Yoshikazu

    2007-01-01

    Many studies have revealed that fatigue crack growth (FCG) rate of austenitic stainless steels is accelerated in light water reactor environment compared to that in air at room temperature. Major driving factors in the acceleration of FCG rate are stress ratio, temperature and stress rise time. Based on this knowledge, FCG curves have been developed considering these factors as parameters. However, there are few data of FCG threshold ΔK th in light water reactor environment. Hence it is necessary to clarify FCG rate under near-threshold condition for more accurate evaluation of fatigue crack growth behavior under cyclic stress with relatively low ΔK. In the present study, therefore, ΔK th was determined for austenitic stainless steels in simulated PWR primary water, and FCG behavior under near-threshold condition was revealed by collecting fatigue crack propagation data. The results are summarized as follows: No propagation of fatigue crack was found in high temperature water, and there was a definite ΔK th . Average ΔK eff,th was 4.3 MPa·m 0.5 at 325degC, 3.3 MPa·m 0.5 at 100degC, and there was no considerable reduction compared to currently known ΔK eff,th in air. Thus, it was revealed tha ambient conditions had minimal effect, on ΔK eff,th , ΔK th increases with increasing temperature and decreasing frequency. As a result of fracture surface observation, oxide-induced-crack-closure was considered to be a cause of the dependency described above. In addition, it was suggested that changes in material properties also had influence on ΔK th, since ΔK eff,th itself increased at elevated temperature. (author)

  8. Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects

    DEFF Research Database (Denmark)

    Carlone, Pierpaolo; Citarella, Roberto; Sonne, Mads Rostgaard

    2016-01-01

    A great deal of attention is currently paid by several industries toward the friction stir welding process to realize lightweight structures. Within this aim, the realistic prediction of fatigue behavior of welded assemblies is a key factor. In this work an integrated finite element method - dual...... boundary element method (FEM-DBEM) procedure, coupling the welding process simulation to the subsequent crack growth assessment, is proposed and applied to simulate multiple crack propagation, with allowance for manufacturing effects. The friction stir butt welding process of the precipitation hardened AA...... on a notched specimen. The whole procedure was finally tested comparing simulation outcomes with experimental data. The good agreement obtained highlights the predictive capability of the method. The influence of the residual stress distribution on crack growth and the mutual interaction between propagating...

  9. Effects of root radius, stress, crack growth and rate on fracture instability

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, F A

    1965-01-01

    Of various criteria for fracture at the root of a notch, the energy, local stress, and displacement criteria have limited validity. More appropriate is the history of both stress and strain over a small region ahead of the crack, as required for fracture by the coalescence of holes. Expressions are given for crack initiation, growth, and subsequent instability in anti-plane strain of a nonhardening material. Instability is shown to depend primarily on those strain increments arising from crack growth at constant load rather than on those from increasing load at constant crack length. Thus final instability conditions are similar for single and double- ended cracks, round notches, and cracks cut under constant load. Round notches may give instability, restabilization and final instability. The growth and coalescence of holes in front of a crack in a linearly viscous material is studied for both tensile and anti-plant-strain cracks. The absence of residual strain eliminates instability, but the crack continually accelerates. (26 refs.)

  10. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    Directory of Open Access Journals (Sweden)

    Zhanchao Li

    2013-01-01

    Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.

  11. The diffusional growth of a grain boundary crack

    International Nuclear Information System (INIS)

    Puls, M.P.; Dutton, R.

    1977-10-01

    This report considers the possibility of high temperature rupture occurring by a grain boundary diffusional mechanism. It is assumed that a pre-existing, intergranular crack grows by loss of atoms from the crack tip to the grain boundary. Rupture occurs when the crack has grown to a critical length. A theoretical treatment of the kinetics of crack growth is presented and equations are derived for the crack velocity and time to rupture. A comparison is made with a previous theoretical model developed by Charles, together with rupture data obtained experimentally for the nickel-based alloy, Nimonic 80A. We conclude that experimental verification of the theoretical models requires a comparison with crack velocity data rather than time to rupture data. (author)

  12. Automatic measurement for monitoring crack growth with electric potential technique

    International Nuclear Information System (INIS)

    Nakajima, Nobuya; Kikuchi, Masaaki; Shima, Seishi

    1981-10-01

    In the study of fracture mechanics, it is one of the most important problems to monitor the crack growth phenomena. Recently, many experimental methods have been developed. In this report, the Direct Current (DC) potential method is employed for measuring the crack growth length in the pressuried high temperature water. The objective of the current investigation is to develop an experimental method to quantify the sensitivity of this method in the air environment using the Compact Tension (CT) specimen. The main results obtained are as follows: 1) It is ignored that the electrical potential changes with plastic deformation at the crack tip of the specimen. 2) Using the Reversible Direct Current (RDC) Method, the measurement system gives no effect on the electrical stability for a long time. 3) For the fatigue and statical crack growth length, good relation is observed between the crack length-to-specimen width ratio (a/W) and potential ratio (Va/Vo). (author)

  13. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  14. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  15. Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body

    Science.gov (United States)

    Selivanov, M. F.

    2017-11-01

    An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.

  16. Crack growth analysis in a weld-heat-affected zone using S-version FEM

    International Nuclear Information System (INIS)

    Kikuchi, Masanori; Wada, Yoshitaka; Shimizu, Yuto; Li, Yulong

    2012-01-01

    The objective of this study is the prediction of crack propagation under thermal, residual stress fields using S-Version FEM (S-FEM). By using the S-FEM technique, only the local mesh should be re-meshed and it becomes easy to simulate crack growth. By combining with an auto-meshing technique, the local mesh is re-meshed automatically, and a curved crack path is modeled easily. Virtual crack closure integral method (VCCM) is used to evaluate energy release rate at the crack tip. For crack growth analyses, crack growth rate and growth direction are determined using criteria for mixed mode loading condition. In order to confirm the validity of this analysis, some comparisons with previously reported analyses were done, and good agreement obtained. In this study, residual stress data were provided by JAEA, Japan Atomic Energy Agency, based on their numerical simulation. Stress corrosion crack (SCC) growth analyses in a pipe are conducted in two-dimensional and three-dimensional fields. Two cases, for an axi-symmetric distribution of residual stress in the pipe wall and a non-axisymmetric one are assumed. Effects of residual stress distribution patterns on SCC cracking are evaluated and discussed.

  17. The frequency effect on the fatigue crack growth rate of 304 stainless steel

    International Nuclear Information System (INIS)

    Shih, Y.-S.; Chen, J.-J.

    1999-01-01

    Under cyclic loading condition, the fatigue crack growth (FCG) rate governed by stress intensity factor and stress ratio is well known; Walker's equation, Forman's equation and Elber's equation are typical formulae to describe the fatigue crack growth rate. However, the loading frequency effect on the fatigue crack growth rate has yet to be explored. Recently, studies have focused on the loading frequency effect on some visco-elastic materials, and have provided a clearer understanding of the frequency effect on the fatigue crack growth rate. In a physical sense, knowledge about the loading frequency effect on the fatigue crack growth rate for 304 stainless steel is still lacking. James conducted a lot of experiments, and through data analysis, he concluded an evaluation equation which is based upon the experimental illustration. In this study, the physical properties of the material are used to illustrate the modification of fatigue crack growth rate, and a new formula which is based upon the modified Forman's equation, is provided. (orig.)

  18. Fatigue Crack Behavior of Stainless Steel 304 by the Addition of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Rizwanulhaque Syed

    2014-01-01

    Full Text Available Fatigue is the main source of almost half of whole mechanical failures. This research investigated the effect on cyclic fatigue behavior of stainless steel 304 (SS304 when including carbon nanotubes (CNTs at the crack tip. The cyclic fatigue tests were conducted on compact tension (CT specimens to establish the relationship between crack growth and the number of cycles (a-N. It is found that the incorporation of a small amount of CNTs increased the fatigue life of the SS304/metal. Micrographs showed that the enhancement in fatigue life is caused by CNTs dense arrangement around the crack tip, entangled with each other, and finer grain size. Smooth bonding at the interface of the CNTs and SS304 grains is also observed.

  19. On the importance of aging to the crack growth resistance of human enamel.

    Science.gov (United States)

    Yahyazadehfar, Mobin; Zhang, Dongsheng; Arola, Dwayne

    2016-03-01

    With improvements in oral health and an overall increase in quality of life, the percentage of fully or largely dentate seniors is increasing. Understanding the effects of aging on the mechanical properties of teeth is essential to the maintenance of lifelong oral health. In this investigation the effects of aging on the fracture toughness of human enamel were evaluated from incremental crack growth experiments performed on tissue of donor teeth representing "young" (17 ⩽ age ⩽ 25) and "old" (age ⩾ 55) age groups. Results showed that the old enamel exhibited significantly lower resistance to fracture than that of the young tissue in two orthogonal directions of crack growth. For crack growth transverse to the enamel rods, the fracture toughness of the old enamel (0.37 ± 0.15 MPa m(0.5)) was nearly 70% lower than that of tissue from the young teeth (1.23 ± 0.20 MPa m(0.5)). Based on results from a mechanistic analysis of crack growth, the reduction in fracture resistance is attributed to a decrease in the degree of extrinsic toughening. The practice of restorative dentistry should account for these changes in tooth tissues in the treatment of senior patients. The mechanical behavior of enamel has been studied for over 3 decades. Due to the limited volume of tissue available for evaluation, past work has been largely based on indentation methods. In this investigation we have evaluated the resistance to fracture of human enamel using a conventional fracture mechanics approach and incremental crack growth. We compared the fracture resistance of cuspal enamel obtained from the teeth of representative "young" and "old" donor groups. Our results show that there is a substantial reduction in the resistance to fracture with age, that it is anisotropic, and that the degradation is more severe than that which occurs to dentin. As such, we feel this work is a significant contribution to the field. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  20. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  1. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  2. On the R-curve behavior of human tooth enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne D

    2009-08-01

    In this study the crack growth resistance behavior and fracture toughness of human tooth enamel were quantified using incremental crack growth measures and conventional fracture mechanics. Results showed that enamel undergoes an increase in crack growth resistance (i.e. rising R-curve) with crack extension from the outer to the inner enamel, and that the rise in toughness is a function of distance from the dentin enamel junction (DEJ). The outer enamel exhibited the lowest apparent toughness (0.67+/-0.12 MPam(0.5)), and the inner enamel exhibited a rise in the growth toughness from 1.13 MPam(0.5)/mm to 3.93 MPam(0.5)/mm. The maximum crack growth resistance at fracture (i.e. fracture toughness (K(c))) ranged from 1.79 to 2.37 MPam(0.5). Crack growth in the inner enamel was accompanied by a host of mechanisms operating from the micro- to the nano-scale. Decussation in the inner enamel promoted crack deflection and twist, resulting in a reduction of the local stress intensity at the crack tip. In addition, extrinsic mechanisms such as bridging by unbroken ligaments of the tissue and the organic matrix promoted crack closure. Microcracking due to loosening of prisms was also identified as an active source of energy dissipation. In summary, the unique microstructure of enamel in the decussated region promotes crack growth toughness that is approximately three times that of dentin and over ten times that of bone.

  3. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

    Science.gov (United States)

    Heirani, Hasan; Farhangdoost, Khalil

    2018-01-01

    Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.

  4. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions

    Science.gov (United States)

    Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao

    2018-02-01

    Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.

  5. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  6. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  7. Reliable micro-measurement of strontium is the key to cracking the life-history code in the fish otolith

    International Nuclear Information System (INIS)

    Markwitz, A.; Grambole, D.; Herrmann, F.; Trompetter, W.J.; Dioses, T.; Gauldie, R.W.

    2000-01-01

    The fish otolith is a calcium carbonate (usually aragonite) crystal that grows continuously by accretion over the life of the fish and unlike bone is not continuously re-metabolised. Consequently, the otolith has long been regarded as a potential store of information about the life history of an individual fish, and this information is encoded in the deposition pattern of trace elements in the otolith. The code has been difficult to crack. However, recent developments have show that: (1) Sr is one of the few non-mobile trace elements in the otolith; and (2) the pattern of Sr deposition summarises the effects of environment changes that affect the growth rate of the otolith crystal. The remaining difficulties in cracking the chemical code in the otolith have hinged about making reliable micro-measurements of the stable Sr content at spatial resolutions of 10 μm or less; this interval represents about 4-6 days of otolith growth in most species of fish. This paper describes high beam resolution 2 μm linear measurements, and 6 μm square measurements over narrow windows of about 300 μm square, and links these micro-measures to macro-measures of 2D maps of the entire surface of sections of otoliths up to 5 mm square at beam resolutions of 25 μm square. The otoliths used in this study are from the Jurel, or Peruvian Jack mackerel, Trachurus murphyi (Carangidae: Teleostei)

  8. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  9. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Science.gov (United States)

    Wotzka, Daria

    2017-10-01

    Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa) and negative temperature (-100°C) of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  10. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    Directory of Open Access Journals (Sweden)

    Wotzka Daria

    2017-01-01

    Full Text Available Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa and negative temperature (-100̊C of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  11. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  12. Fatigue crack growth from blunt notches

    International Nuclear Information System (INIS)

    Rhodes, D.

    1982-01-01

    A number of methods have been proposed, by which the formation and early growth of fatigue cracks at blunt notches may be predicted. In this report, four methods are compared - i.e. analysis of the crack tip plastic deformation, the cyclic contour integral, δJ, the strain in a critical volume of material, and the notch root plastic strain range. It is shown that these approaches have fundamental elements in common, and that all are compatable with linear elastic fracture mechanics. Early results from a continuing experimental programme are reported. (orig.) [de

  13. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  14. An investigation on the crack growth resistance of human tooth enamel: Anisotropy, microstructure and toughening

    Science.gov (United States)

    Yahyazadehfar, Mobin

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. The primary objective of this dissertation is to characterize the role of enamel's microstructure and degree of decussation on the fracture behavior of human enamel. The importance of the protein content and aging on the fracture toughness of enamel were also explored. Incremental crack growth in sections of human enamel was achieved using a special inset Compact Tension (CT) specimen configuration. Crack extension was achieved in two orthogonal directions, i.e. longitudinal and transverse to the prism axes. Fracture surfaces and the path of crack growth path were evaluated using scanning electron microscopy (SEM) to understand the fundamental mechanisms of crack growth extension. Furthermore, a hybrid approach was adopted to quantify the contribution of toughening mechanisms to the overall toughness. Results of this investigations showed that human enamel exhibits rising R-curve for both directions of crack extension. Cracks extending transverse to the rods in the outer enamel achieved lower rise in toughness with crack extension, and significantly lower toughness (1.23 +/- 0.20 MPa·m 0.5) than in the inner enamel (1.96 +/- 0.28 MPa· 0.5) and in the longitudinal direction (2.01 +/- 0.21 MPa· 0.5). The crack growth resistance exhibited both anisotropy and inhomogeneity, which arise from the complex hierarchical microstructure and the decussated prism structure. Decussation causes deflection of cracks extending from the enamel surface inwards, and facilitates a continuation of transverse crack extension within the outer enamel. This process dissipates fracture energy and averts cracks from extending toward the dentin and vital pulp. This study is the first to investigate the importance of proteins and the effect of

  15. Fatigue crack growth monitoring: fracture mechanics and non-destructive testing requirements

    International Nuclear Information System (INIS)

    Williams, S.; Mudge, P.J.

    1982-01-01

    If a fatigue crack is found in a component in service, two options exist if plant integrity is to be maintained: first, the plant can be removed from service and repairs effected or replacements fitted; second, the growth of the crack can be monitored non-destructively until it is either considered to be too large to tolerate, in which case it must be repaired, or until a convenient down time when repair can be effected. The second option has obvious benefits for plant operators, but in such a situation it is essential that errors of the non-destructive estimate of defect size, which will undoubtedly exist, and uncertainties in the fatigue crack growth laws in operation must both be allowed for if a safe extension of service life is to be obtained; i.e. without failure by leakage or fast fracture arising from the fatigue crack. This paper analyses the accuracy required of non-destructive crack measurement techniques to permit the safe monitoring of crack growth by periodic inspection. It then demonstrates that it is possible to achieve adequate crack monitoring using conventional ultrasonic techniques. (author)

  16. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  17. Nonlinear response arising from non self-similar crack growth in finite thickness plates

    International Nuclear Information System (INIS)

    Sih, G.C.; Chen, C.

    1982-07-01

    Described in this report is a three-dimensional finite element procedure for finding the stresses in a finite thickness plate with a through crack. The Mode I loading is increased incrementally such that crack growth occurs in segments. The individual crack profiles are assumed to coincide with the locations of minimum strain energy density, (dW/dV)/sub min/. Its shape is found to change during growth. Each successive crack growth increment will increase even though the rising load increment is kept constant. Three different plate thickness to half crack length ratios were analyzed. An average critical crack ligament distance r/sub c/ = 0.172 in (0.437 cm) being independent of crack and specimen size was obtained. This corresponds to an analytically predicted fracture toughness S/sub c/ = r/sub c/ (dW/dV)/sub c/ = 15.489 lb/in (2708.825 N/m) for A533B steel at -10 0 F. Data at low temperature were used in order to confine crack growth within the linear elastic range

  18. Fatigue crack initiation and growth life prediction with statistical consideration

    International Nuclear Information System (INIS)

    Kwon, J.D.; Choi, S.H.; Kwak, S.G.; Chun, K.O.

    1991-01-01

    Life prediction or residual life prediction of structures or machines is one of the most strongly world wide needed problems as requirement in the stage of slowly developing economy which comes after rapidly and highly developing stage. For the purpose of statistical life prediction, fatigue test was conducted under the 3 stress levels, and for each stress level, 20 specimens are used. The statistical properties of the crack growth parameter m and C in the fatigue crack growth law of da/dN = C(ΔK) m , and the relationship between m and C, and the statistical distribution pattern of fatigue crack initiation, growth and fracture lives can be obtained by experimental results

  19. Model for predicting non-linear crack growth considering load sequence effects (LOSEQ)

    International Nuclear Information System (INIS)

    Fuehring, H.

    1982-01-01

    A new analytical model for predicting non-linear crack growth is presented which takes into account the retardation as well as the acceleration effects due to irregular loading. It considers not only the maximum peak of a load sequence to effect crack growth but also all other loads of the history according to a generalised memory criterion. Comparisons between crack growth predicted by using the LOSEQ-programme and experimentally observed data are presented. (orig.) [de

  20. Towards a European draft code of practice in creep crack growth testing

    International Nuclear Information System (INIS)

    Nikbin, K.M.

    2003-01-01

    Crack growth and initiation models as well as defect assessment codes need reliable and verifiable material properties data for use in their predictive methodologies. These data consist of uniaxial, multiaxial and crack initiation and growth data under static and cyclic loading at the relevant temperatures. International collaboration for developing standards in this field started in 1987 under the auspices of the VAMAS (Versailles Agreement for MAterials and Standards). Two technical Working Areas TWA11 and TWA19 committees ending 1998 have made substantial progress in unifying and standardising the methods for obtaining the relevant data. This collaboration has resulted in the development of ASTM E1457 creep crack growth testing standard. The European collaborative programme CRETE (see Acknowledgements), which began in 1999, is following up this valuable research in order to develop a European Code of Practice for elevated temperature crack growth which is planned to have a wider field of application. A Round Robin experimental, analytical and verification programme in CRETE will include testing a type 316 LN stainless steel at 550 degC and a Carbon-Manganese steel at 400 degC consisting of seven different geometries. The paper reviews the methods of analysis used for laboratory creep crack growth data and their relevance to long term crack initiation and growth in components. In addition, since design and life assessment and material properties under creep are an integral part of this project a short review of the models available for predicting creep and fatigue crack growth is presented. (author)

  1. Delayed hydride cracking behavior for zircaloy-2 plate

    International Nuclear Information System (INIS)

    Mills, J.W.; Huang, F.H.

    1991-01-01

    The delayed hydride cracking (DHC) behaviour for Zircaloy-2 plate was characterized at temperatures ranging from 300 to 550 o F. Specimens with a longitudinal (T-L) orientation exhibited a classic two-stage DHC response. At K values slightly above the threshold level (K th ), crack-growth rates increased dramatically with increasing K values (stage I). The K th value was found to be 11 and 14 ksi√ in at 400 and 500 o F. At high K values (stage II), cracking rates were relatively insensitive to applied K levels. Stage II crack growth was a thermally activated process described by an Arrhenius-type relationship with an activation energy of 65 kJ/mol. This energy level agreed with the theoretical activation energy for hydrogen diffusion into the triaxial stress field ahead of a crack. Above a critical temperature (300 o F), an overtemperature cycle was required to initiate DHC. The magnitude of the thermal excursion required to initiate cracking was found to increase at higher test temperatures. Specimens with a transverse(L-T) orientation showed a very low sensitivity to DHC because of an unfavorable crystallographic orientation for hydride reorientation. Metallographic and fractographic examinations were performed to understand the DHC mechanism. (author)

  2. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    OpenAIRE

    Li, Zhanchao; Gu, Chongshi; Wu, Zhongru

    2013-01-01

    The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...

  3. Ductile crack initiation in the Charpy V-notch test

    International Nuclear Information System (INIS)

    Server, W.L.; Norris, D.M. Jr.; Prado, M.E.

    1978-01-01

    Initiation and growth of a crack in the Charpy V-notch test was investigated by performing both static and impact controlled deflection tests. Test specimens were deformed to various deflections, heat-tinted to mark crack extension and broken apart at low temperature to allow extension measurements. Measurement of the crack extension provided an estimate of crack initiation as defined by different criteria. Crack initiation starts well before maximum load, and is dependent on the definition of ''initiation''. Using a definition of first micro-initiation away from the ductile blunting, computer model predictions agreed favorably with the experimental results

  4. Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)

    2015-12-15

    Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).

  5. Crack growth in non-homogeneous transformable ceramics. Part II : Crack deflection

    NARCIS (Netherlands)

    Stam, Geert; Giessen, Erik van der

    1996-01-01

    Crack growth in transformation toughened ceramics is studied using a micromechanics based continuum model which accounts for both dilatant and shear transformation strain components. In the computations, the transformable phase is taken to be distributed non-homogeneously in order to model Zirconia

  6. Examination of influencing factors on cyclic crack growth behaviour of cracked components. Final report; Untersuchung von Einflussfaktoren auf das zyklische Risswachstum angerissener Bauteile. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, Ewa Anna; Silcher, Horst

    2015-01-31

    Fatigue crack growth of short and long cracks was investigated for both materials: the Nb-stabilized austenitic stainless steel X6 CrNiNb 18-10 and the ferritic-bainitic steel 22 NiMoCr 3-7. These both steels belong to the materials in the primary circuit of german power plants. For a reliable estimation of the lifetime of components subject to cyclic fatigue a detailed knowledge of the phenomena accompanying fatigue processes and which cause both - initiation and growth of fatigue cracks is essential. The deformation induced transformation of austenite into α'-martensite at room temperature is thus very important in the initiation and growth of fatigue cracks. Because these processes are manifest at first at the microlevel, the use of methods which reveal information at high resolution is of significant importance. In order to study the initiation and growth of short cracks, cylindrical smooth specimens, compact tension C(T)- and modified C(T)-specimens have been used. Cyclic crack propagation of long cracks was investigated on compact tension C(T)-specimens with W=50 mm and B=10 mm. The SEM, TEM and EBSD technique are powerful methods for determining crystallographic orientation, for the identification of individual phases and for recealing plastic deformation. They were used for analyses of microcracks in combination with interrupted cyclic tests. The impact of crack closure on the threshold parameter ΔK{sub th} and the crack growth rate da/dN was investigated experimentally for the growth of long cracks under cyclic loading for different R-values at room temperature. Additional tests were performed at T=288 C in order to investigate the role of temperature on crack growth rates. The effect of overloads in tension and compression as another factor influencing the crack growth was also studied. Measured crack growth curves were fitted using Paris and Erdogan-Ratwani law as well as the NASGRO-equation. Fracture surfaces of selected specimens for both steels

  7. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  8. Smart Patches for Monitoring Fatigue Crack Growth in Aircraft Structures

    National Research Council Canada - National Science Library

    Ihn, Jeong-Beom

    2001-01-01

    A built-in cost-effective diagnostic system for monitoring crack growth in aircraft structures was developed, particularly for riveted fuselage joints and cracked aircraft parts with composite bonded patches...

  9. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  10. Study of initiation and growth of stress corrosion cracks. Quantitative characterization and modeling

    International Nuclear Information System (INIS)

    Peyrat, Christine

    1997-01-01

    A phenomenological study of Stress Corrosion Cracking (SCC) cracks initiation and growth was carried out on a Z 2 CN 18.10 stainless steel in a boiling aqueous magnesium chloride solution at 153 deg. C. The characterization method exploits the morphological information (cracks shape and size distribution) available on a specimen after SCC test. This method, independent of any mechanistic hypothesis, led to the analytical representation of the growth rate of a given crack as a function of its depth and of the density of deeper cracks. The presence of this last parameter could be the expression of a 'shielding effect' of mechanical origin, exerted by the cracks of large size. A 'true initiation' rate was calculated by an extrapolation based on the analytical expression of the growth rate. This analytical representation of cracks initiation and growth accounts for the saturation observed in the experimental determination of the 'apparent initiation'. As time goes, the number of cracks deeper than a given threshold depth tends towards a limit which depends very strongly on the chosen threshold. This saturation effect can be interpreted as exclusively due to the way the small cracks propagate, as the 'true initiation' rate can be expressed versus time by a simple power law. In the case of slow strain rate tests, it is shown that the kinetic parameters characteristic of initiation and growth depend on the applied elongation rate. In particular, the initial crack growth rate increases with elongation rate. The validity domains of the proposed expressions have been specified by means of SCC tests carried out under different types of mechanical loading. (author) [fr

  11. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  12. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  13. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    Science.gov (United States)

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  14. Microstructure-based approach for predicting crack initiation and early growth in metals.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  15. Influence of bending test configuration on cracking behavior of FRC

    DEFF Research Database (Denmark)

    Finazzi, Silvia; Paegle, Ieva; Fischer, Gregor

    2014-01-01

    the flexural load-deformation response of FRC. This research focuses particularly on the influence of the appearance and depth of the notch on the cracking behavior of FRC. For this purpose, several specimens, both un-notched and notched with different depths of the notch (25 mm and 45 mm), were tested....... The results obtained in the various tests are compared to determine to what extent the notch can affect cracking behavior and the resulting evaluation of the material according to the method described in the standard. Formation of cracking and the crack development has been documented by means of a digital...

  16. Effect of pre-strain history on small crack growth under low cycle fatigue for JIS SFVQ1A steel

    International Nuclear Information System (INIS)

    Hasunuma, Shota; Miyata, Yohei; Sakaue, Kenichi; Ogawa, Takeshi

    2011-01-01

    Low cycle fatigue tests were performed for a low alloy steel, JIS SFVQ1A, used for pressure vessels of nuclear power plants. The effect of pre-strain history on the small crack initiation and growth was investigated in detail using cellulose acetate replicas. Under the tests in which the total strain range, Δε, is constant, surface crack length, 2c, was smaller for the tests with larger Δε due to the different numbers of small crack initiation and coalescence. The pre-strain histories were applied at Δε of 8 or 16% with its fatigue usage factor, UF, of less than 0.2, followed by fatigue loading at Δε=2% until fracture. In these tests, the relationships between 2c and UF agreed with each other unless crack coalescence occurred. The scatter in fatigue life was attributed to the coalescences of small cracks. Fracture mechanics approach was applied to predict the fatigue lives and to characterize the growth behavior of small fatigue cracks. (author)

  17. Comparison of theory and experiment for elastic-plastic plane-strain crack growth. [AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, L.; Rice, J.R.

    1980-08-01

    Recent theoretical results on elastic-plastic plane-strain crack growth are reviewed and experimental results for crack growth in a 4140 steel are discussed in terms of the theoretical concepts. The theory is based on a recent asymptotic analysis of crack surface opening and strain distributions at a quasistatically advancing crack tip in an ideally plastic solid. The analysis is incomplete in that some of the parameters which appear in it are known only approximately, especially at large-scale yielding. Nevertheless, it is sufficient for the derivation of a relation between the imposed loading and amount of crack growth prior to general yielding, based on the assumption that a geometrically similar near-tip crack profile is maintained during growth. The resulting predictions for the variation of J with crack growth are found to fit well to the experimental results obtained on deeply cracked compact specimens.

  18. Studying the Combination Effect of Additives and Micro Steel Fibers on Cracks of Self-Healing Concrete

    Directory of Open Access Journals (Sweden)

    Muhannad Hussien Muhsin

    2017-01-01

    Full Text Available In this study, the effect of the combination of micro steel fibers and additives (calcium hydroxide and sodium carbonate on the size of cracks formation and healing them were investigated. This study aims to apply the use of self-healing phenomenon to repair cracks and to enhance the service life of the concrete structures. Micro steel fibers straight type were used in this research with 0.2% and 0.4% by volume of concrete. A weight of 20 and 30 kg/m3 of Ca(OH2 and 2 and 3 kg/m3 of Na2CO3 were used as a partial cement replacement. The results confirm that the concrete cracks were significantly self-healed up to 30 days re-curing. Cracks width up to 0.2 mm were completely self-healed after re-curing for 90 days by using the combination of micro steel fiber of 0.4% by volume of concrete and 25 kg/m3 of Ca(OH2 and 2.5 kg/m3 of Na2CO3 as a partial replacement of cement. Products of Self-healing are observed by Scanning Electron Microscopy (SEM with Energy Dispersive X-Ray Analysis (EDX. It was found that self-healing occurred mainly due to precipitation of calcium carbonate.

  19. Small fatigue cracks; Proceedings of the Second International Conference/Workshop, Santa Barbara, CA, Jan. 5-10, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, R.O.; Lankford, J.

    1986-01-01

    Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment of the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.

  20. Interface crack growth for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological...... an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness...

  1. Probabilistic modeling of fatigue crack growth in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Shen, W.; Soboyejo, A.B.O.

    2001-01-01

    This paper presents the results of a combined experimental and analytical study of the probabilistic nature of fatigue crack growth in Ti-6Al-4V. A simple experimental fracture mechanics framework is presented for the determination of statistical fatigue crack growth parameters from two fatigue tests. The experimental studies show that the variabilities in long fatigue crack growth rate data and the Paris coefficient are well described by the log-normal distributions. The variabilities in the Paris exponent are also shown to be well characterized by a normal distribution. The measured statistical distributions are incorporated into a probabilistic fracture mechanics framework for the estimation of material reliability. The implications of the results are discussed for the probabilistic analysis of fatigue crack growth in engineering components and structures. (orig.)

  2. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  3. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  4. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Li, H.; Yu, X.L.; Zhou, Y.; Duan, S.W.; Li, S.Z.; Huang, Z.L.; Zuo, L.S.

    2015-01-01

    Highlights: • LSP can greatly delay crack formation. • The micro-crack growing processes and its fracture are showed clearly. • Surface topographies and crack initiation locations are displayed. - Abstract: A series of contrasting experiments were carried out to examine the effects of laser shock processing (LSP) on fatigue properties of slot in 7075-T6 aluminum alloy plate. Both side surfaces of slot were subjected to LSP. The surface topographies were observed and the residual stresses were tested. The treated and the un-treated specimens were pulled by the fatigue cyclic loading respectively. The fatigue crack propagating processes were recorded, and the fatigue fracture microscopic morphologies were analyzed by scanning electron microscope (SEM). Experimental results and analyses show that LSP induces micro-dent on surface and squeezes the compressive residual stresses into surface layer of specimen. It can remarkably delay the micro-crack formation, and transfer the location of fatigue crack initiation from top surface to sub-surface. The spacing of fatigue striations on the treated specimen fatigue fracture obviously decreases. Therefore, the fatigue life of specimen after LSP treatment significantly increases

  5. Round Robin/collaborative programme [cyclic crack growth in low alloy steel

    International Nuclear Information System (INIS)

    Jones, R.L.; Hurst, P.; Scott, P.M.

    1989-01-01

    During the 10 years of its existence International Cooperative Group on Cyclic Crack Growth the (ICCGR) has undertaken five collaborative efforts related to cyclic crack growth and stress corrosion susceptibility in reactor pressure vessel steels. The initial collaborative effort, a data reduction exercise, identified and reconciled several important procedural differences and led to confidence that, given the same crack length versus cycles data, the Group members could all derive similar plots of da/dN versus δK. Subsequently, a low-R testing round robin highlighted the importance of a number of comparatively subtle aspects of the methods used for cyclic crack growth testing in water environments and led to confidence that the various laboratories could generate similar test data, given the same test material and a sufficiently precise and detailed test specification. The results of a high-R test programme support the conclusion that the state of the art of cyclic crack growth testing has now advanced to a point at which coordinated, multilaboratory test programmes are feasible and indeed, such a programme covering the influence of temperature is currently under way. The slow strain rate round robin has highlighted important test variables, notably the electrochemical potential, which must be carefully controlled in assessing the conditions under which pressure vessel steels may suffer from stress corrosion cracking. (author)

  6. Friction stress effects on mode I crack growth predictions

    NARCIS (Netherlands)

    Chen, Q.; Deshpande, V.S.; Giessen, E. van der; Needleman, A.

    2003-01-01

    The effect of a lattice friction stress on the monotonic growth of a plane strain mode I crack under small-scale yielding conditions is analyzed using discrete dislocation plasticity. When the friction stress is increased from zero to half the dislocation nucleation stress, the crack tip stress

  7. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    Science.gov (United States)

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  8. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  9. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  10. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: Yiren_Chen@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Alexandreanu, B.; Chen, W.-Y.; Natesan, K. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Li, Z.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Rao, A.S. [US Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2015-11-15

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  11. Fatigue crack growth characteristics of the pressure vessel steel SA 508 Cl. 3 in various environments

    International Nuclear Information System (INIS)

    Lee, S. G.; Kim, I. S.; Park, Y. S.; Kim, J. W.; Park, C. Y.

    2001-01-01

    Fatigue tests in air and in room temperature water were performed to obtain comparable data and stable crack measuring conditions. In air environment, fatigue crack growth rate was increased with increasing temperature due to an increase in crack tip oxidation rate. In room temperature water, the fatigue crack growth rate was faster than in air and crack path varied on loading conditions. In simulated light water reactor (LWR) conditions, there was little environmental effect on the fatigue crack growth rate (FCGR) at low dissolved oxygen or at high loading frequency conditions. While the FCGR was enhanced at high oxygen condition, and the enhancement of crack growth rate increased as loading frequency decreased to a critical value. In fractography, environmentally assisted cracks, such as semi-cleavage and secondary intergranular crack, were found near sulfide inclusions only at high dissolved oxygen and low loading frequency condition. The high crack growth rate was related to environmentally assisted crack. These results indicated that environmentally assisted crack could be formed by the Electrochemical effect in specific loading condition

  12. The role of microcracking on the crack growth resistance of brittle solids and composites

    International Nuclear Information System (INIS)

    Biner, S.B.

    1994-01-01

    A set of numerical analyses of crack growth was preformed to elucidate the influence of microcracking on the fracture behavior of microcracking brittle solids and composites. The random nucleation, orientation and size effects of discrete nucleating microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results obtained from the finite element analysis are compared with the continuum description of the microcracking. Although continuum description can provide a reasonable estimation of shielding, it fails to resolve the details of micromechanism of toughening resulting from microcracking, since not every shielding event during the course of crack extension corresponds to an increase in the R-curve. Moreover, as seen in the composite cases, the local events leading to toughening behavior may not be associated with the microcracking even in the presence of a large population of microcracks

  13. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  14. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  15. Calculation of deuteron interactions within micro-cracks of a D2 loaded lattice at room temperature

    International Nuclear Information System (INIS)

    Fulvio, F.

    2007-01-01

    We have analyzed the possibility that the coefficient of lattice deformation, linked to the formation of micro-cracks at room temperature and low energies, could influence the process of fusion. The calculated probability of fusion within a micro-crack, in the presence of D 2 loading at room temperature and for impure metals, shows moderately elevated values compared with the probability of fusion on the surface. For all the temperatures in the 150-350 K range and for all the energies between 150 and 250 eV, the formation of micro-cracks increases the probability of fusion compared to non-deformed lattices, and also reduces the thickness of the Coulomb barrier. Using the trend of the curve of potential to evaluate the influence of the concentration of impurities, a very high barrier is found within the pure lattice (J ∼ 0.25%). However, under the same thermodynamic conditions, the probability of fusion in the impure metal (J ∼ 0.75%) could be higher, with a total energy less than the potential so that the tunneling effect is amplified. Finally, we have analysed the influence of forced D 2 loading on the process. (author)

  16. Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2014-01-01

    In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the

  17. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  18. Hole Defects Affect the Dynamic Fracture Behavior of Nearby Running Cracks

    Directory of Open Access Journals (Sweden)

    R. S. Yang

    2018-01-01

    Full Text Available Effects of defects on the dynamic fracture behavior of engineering materials cannot be neglected. Using the experimental system of digital laser dynamic caustics, the effects of defects on the dynamic fracture behavior of nearby running cracks are studied. When running cracks propagate near to defects, the crack path deflects toward the defect; the degree of deflection is greater for larger defect diameters. When the running crack propagates away from the defect, the degree of deflection gradually reduces and the original crack path is restored. The intersection between the caustic spot and the defect is the direct cause of the running crack deflection; the intersection area determines the degree of deflection. In addition, the defect locally inhibits the dynamic stress intensity factor of running cracks when they propagate toward the defect and locally promotes the dynamic stress intensity factor of running cracks when they propagate away from the defect.

  19. A finite element analysis of stable crack growth in inhomogeneous materials

    International Nuclear Information System (INIS)

    Miyazaki, N.; Sakai, T.; Nakagaki, M.; Sasaki, T.

    1993-01-01

    The finite element method was applied to generation phase analyses for stable crack growth in inhomogeneous materials. Experimental data on stable crack growth in bimaterial CT specimens, which were composed of a base metal and a weld metal, were numerically simulated using the node-release technique, and the variations of the fracture mechanics parameters such as J-integral. T*-integral. J-circumflex-integral and CTOA were calculated. The effects of the fusion line and the weld on the near crack fracture mechanics parameters were discussed. (author)

  20. Effect of residual stresses on interface crack growth by void expansion mechanism

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2006-01-01

    Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids to c....... The results show that the value of the T-stress component in the softer material adjacent to the interface crack plays the dominant role, such that a negative value of this stress component gives a significant increase of the interface fracture toughness.......Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids...... to coalescence. In these elements the stress components normal to the interface and the shear stresses are given by equilibrium with the surrounding material, and the stress component tangential to the interface is determined by the requirement of compatibility with the surrounding material in the tangential...

  1. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  2. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    Science.gov (United States)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  3. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  4. Crack-arrest behavior in SEN wide plates of low-upper-shelf base metal tested under nonisothermal conditions: WP-2 series

    International Nuclear Information System (INIS)

    Naus, D.J.; Keeney-Walker, J.; Bass, B.R.; Robinson, G.C. Jr.; Iskander, S.K.; Alexander, D.J.; Fields, R.J.; deWit, R.; Low, S.R.; Schwartz, C.W.

    1990-08-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory under the sponsorship of the Nuclear Regulatory Commission is conducting analytical and experimental studies aimed at understanding the circumstances that would initiate the growth of an existing crack in a reactor pressure vessel (RPV) and the conditions leading to arrest of a propagating crack. Objectives of these studies are to determine (1) if the material will exhibit crack-arrest behavior when the driving force on a crack exceeds the ASME limit, (2) the relationship between K Ia and temperature, and (3) the interaction of fracture modes (arrest, stable crack growth, unstable crack growth, and tensile instability) when arrest occurs at high temperatures. In meeting these objectives, crack-arrest data are being developed over an expanded temperature range through tests involving large thermally shocked cylinders, pressurized thermally shocked vessels, and wide-plate specimens. The wide-plate specimens provide the opportunity for a significant number of data points to be obtained at relatively affordable costs. These tests are designed to provide fracture-toughness measurements approaching or above the onset of the Charpy upper-shelf regime in a rising toughness region and with an increasing driving force. This document discusses test methodology and results. 23 refs., 92 figs., 25 tabs

  5. Prediction of PWSCC in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides,, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxide found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip. (author). 12 refs, 27 figs

  6. Design of four-point SENB specimens with stable crack growth

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Kildegaard, Casper; Sørensen, Bent F.

    2018-01-01

    A four-point single-edge-notch-beam (SENB) test specimen loaded in displacement control (fixed grip) is proposed for studying crack deflection at bi-material interfaces. In order to ensure stable crack growth, a novel analytical model of the four-point SENB specimen in fixed grip is derived...... and compared with numerical models. Model results show that the specimen should be short and thick, and the start-crack length should be deep for the crack to propagate stable towards the bi-material interface. Observations from experimental tests of four-point SENB specimens with different start-crack lengths...

  7. Complete Tangent Stiffness for eXtended Finite Element Method by including crack growth parameters

    DEFF Research Database (Denmark)

    Mougaard, J.F.; Poulsen, P.N.; Nielsen, L.O.

    2013-01-01

    the crack geometry parameters, such as the crack length and the crack direction directly in the virtual work formulation. For efficiency, it is essential to obtain a complete tangent stiffness. A new method in this work is presented to include an incremental form the crack growth parameters on equal terms......The eXtended Finite Element Method (XFEM) is a useful tool for modeling the growth of discrete cracks in structures made of concrete and other quasi‐brittle and brittle materials. However, in a standard application of XFEM, the tangent stiffness is not complete. This is a result of not including...... with the degrees of freedom in the FEM‐equations. The complete tangential stiffness matrix is based on the virtual work together with the constitutive conditions at the crack tip. Introducing the crack growth parameters as direct unknowns, both equilibrium equations and the crack tip criterion can be handled...

  8. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    Science.gov (United States)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  9. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  10. An engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.; German, M.D.; Kumar, V.

    1981-01-01

    Progress made in two research programmes, sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterising crack initiation and continued extension are summarised. An engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is developed. The ultimate goal in the development of such a methodology is to establish an improved basis for analysing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering components. Extensive experimental and analytical investigations undertaken to evaluate potential criteria for crack initiation and growth and the selection of the final criteria for analysing crack growth and stability in flawed structures are summarised. The experimental and analytical results obtained to date suggest that parameters based on the J-integral and the crack tip opening displacement, delta, are the most promising. This is not surprising since, from a theoretical basis, the two approaches are similar if certain conditions are met. An engineering/design approach for the assessment of crack growth and instability in flawed structures is outlined. (author)

  11. Stable and unstable crack growth in Type 304 stainless steel plate

    International Nuclear Information System (INIS)

    Yagawa, G.

    1984-01-01

    Experimental and theoretical results on stable as well as unstable fractures for Type 304 stainless steel plates with a central crack subjected to tension force are given. In the experiment using a testing machine with a special spring for high compliance, the transition points from the stable to the unstable crack growth are observed and comparisons are made between the test results and the finite element solutions. A round robin calculation for the elastic-plastic stable crack growth using one of the specimens mentioned above is also given. (orig.)

  12. Fatigue crack growth studies on a tee junction using ultrasonic non-destructive methods

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Thavasimuthu, M.; Ramesh, A.S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    Fatigue cracks need to be detected and sized to maintain structural integrity. The significance of cracks detected in service must also be assessed. This paper describes the on-line ultrasonic testing carried out on a Tee joint subjected to fatigue loading. The initiation and growth of the cracks were monitored for every 5,000 cycles up to 40,000 cycles. The study demonstrated the use of ultrasonic testing for fatigue crack growth detection and sizing. (author)

  13. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests; Untersuchung der lokalen Bruchzaehigkeit und des elastisch-plastischen Bruchverhaltens von NiAl und Wolfram mittels Mikrobiegebalkenversuchen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Johannes

    2016-07-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system <100>{100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior

  14. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Zhong Yong; Xiao Furen; Zhang Jingwu; Shan Yiyin; Wang Wei; Yang Ke

    2006-01-01

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  15. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  16. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  17. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    Science.gov (United States)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  18. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method

    International Nuclear Information System (INIS)

    Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian

    2014-01-01

    The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)

  19. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    International Nuclear Information System (INIS)

    Kassir, M.K.; Hofmayer, C.H.; Bandyopadhyay, K.K.

    1991-01-01

    A High Level Vibration Test (HLVT) Program was carried out recently on the seismic table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Center (NUPEC) in Japan. The objective of the study being performed at Brookhaven National Laboratory is to use the HLVT data to assess the accuracy and usefulness of existing methods for predicting crack initiation and growth under complex, large amplitude loading. The work to be performed as part of this effort involves: (1) analysis of the stress/strain distribution in the vicinity of the crack, including the potential for residual stresses due to the weld repair; (2) analysis of the number of load cycles required for crack initiation, including estimates of the impact of the weld repair on the crack initiation behavior; (3) analysis of crack advance as a function of applied loading (classic fatigue versus cyclic tearing) taking into account the variable amplitude loading and the possible influence of the repair; and (4) material property testing to supplement the work performed as part of the HLVT, providing the materials data necessary to perform the analysis efforts. A summary of research progress for FY 1990 is presented. 2 refs

  20. Creep crack growth in phosphorus alloyed oxygen free copper

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))

    2011-01-15

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  1. Creep crack growth in phosphorus alloyed oxygen free copper

    International Nuclear Information System (INIS)

    Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe

    2011-01-01

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  2. An experimental and analytical study of ductile fracture and stable crack-growth

    International Nuclear Information System (INIS)

    Rousselier, G.

    1978-01-01

    A study is described, the objectives of which were to define a numerical model for stable crack growth, to calibrate the model by tensile tests, and to obtain agreement between corresponding numerical calculations and experiments on cracked specimens. The model was based on a finite element program with a critical state at the crack tip defined by a ductility curve: equivalent plastic strain versus stress triaxiality. The curve was determined by tests on notched tensile specimens of a low alloy rotor steel. The critical states corresponded to the initiation of a crack at the centre of the specimens. Three point bend tests were also performed and experimental and numerical load displacement curves and crack growth versus displacement curves were compared. Agreement with experiments on cracked specimens was obtained by simple fittings of the 'ductility' curve in the high triaxiality area. Results are discussed and it is indicated where future progress might be made in numerical modelling of cracked bodies. (author)

  3. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  4. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  5. Survey of the effect of heat-to-heat variations upon the fatigue-crack propagation behavior of types 304 and 316 stainless steels

    International Nuclear Information System (INIS)

    James, L.A.

    1975-05-01

    The fatigue-crack growth behavior of four heats of annealed Type 304 stainless steel and three heats of annealed Type 316 stainless steel were studied at elevated temperature using the techniques of linear-elastic fracture mechanics. It is estimated that a factor of 1.5 applied above and below the mean line would provide upper and lower bounds that would account for heat-to-heat variations. In addition, the three heats of Type 316 represented three different melt practices: air-melt, vacuum-arc-remelt, and double-vacuum-melt processes. No effect on fatigue-crack growth behavior was noted due to melt practice. (U.S.)

  6. Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack tip......, the materials show crack growth resistance. It is shown here that the resistance is strongly dependent on the value of the non-singular T-stress, acting parallel to the crack plane. The numerical technique employed makes use of a thin dislocation-free strip of elastic material inside which the crack propagates......, with the material outside described by continuum plasticity. Thus the width of the strip is a material length scale comparable to the dislocation spacing or the dislocation cell size....

  7. Crack coke in layer heat transfer analysis; Kiretsu no shinten wo tomonau kokusu sonai dennetsu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Hideyuki [Tohoku University, Miyagi (Japan)

    1999-03-05

    The research method heat transfer process by physical change of the coke by heat transfer from furnace wall in the retorting of coal seam filled in coke oven and flow of the gas is very complicated chamber oven style, and it does not become clear. For the purpose of the elucidation of in layer crack generation and progress mechanism, he is (1) The expansion of the softening cohesive layer. (2) Programming rate dependence of the heat. Mechanical property value on coal seam and semi- coke layer in the retorting. (3) The creep property of softening cohesive layer and semi- coke layer. (4) The setting of crack growth condition of stress intensity factor in crack tip and fracture property value of the coke by the comparison. (5) By considering the radiative heat transfer in the crack, coke in layer thermal stress analysis was carried out. The validity of these analytical result it was confirmed by the comparison with the experimental result of crack growth. Deformation behavior in the small dry distillation furnace, and crack growth mechanism in the coke layer became clear, and the prediction of the stress as micro-crack cause of generation of heating surface side coke surface and inside became possible. The numerical analysis method of the above crack growth mechanism greatly contributes to the prediction of dry distillation heating requirement and grain size of coke lump which is an index to the coke quality. Heat on material process which is accompanied by the solidification. Contraction from the softening and material migration phenomenon have been clarified by the creative research method, while this research is directly useful for energy saving of pig ironmaking process of becoming one of the ringleaders of the CO{sub 2} generation. (translated by NEDO)

  8. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  9. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  10. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    International Nuclear Information System (INIS)

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity — sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  11. Plastic collapse behavior for thin tube with two parallel cracks

    International Nuclear Information System (INIS)

    Moon, Seong In; Chang, Yoon Suk; Kim, Young Jin; Lee, Jin Ho; Song, Myung Ho; Choi, Young Hwan; Kim, Joung Soo

    2004-01-01

    The current plugging criterion is known to be too conservative for some locations and types of defects. Many defects detected during in-service inspection take on the form of multiple cracks at the top of tube sheet but there is no reliable plugging criterion for the steam generator tubes with multiple cracks. Most of the previous studies on multiple cracks are confined to elastic analyses and only few studies have been done on the steam generator tubes failed by plastic collapse. Therefore, it is necessary to develop models which can be used to estimate the failure behavior of steam generator tubes with multiple cracks. The objective of this study is to verify the applicability of the optimum local failure prediction models proposed in the previous study. For this, plastic collapse tests are performed with the tube specimens containing two parallel through-wall cracks. The plastic collapse load of the steam generator tubes containing two parallel through-wall cracks are also estimated by using the proposed optimum global failure model and the applicability is investigated by comparing the estimated results with the experimental results. Also, the interaction effect between two cracks was evaluated to explain the plastic collapse behavior

  12. Hydrogen-assisted fatigue crack growth in ferritic steels – a fractographic study

    Directory of Open Access Journals (Sweden)

    Wan Di

    2018-01-01

    Full Text Available Fatigue crack growth (FCG behavior of a Fe-3wt.%Si ferritic alloy under different environmental conditions using in-situ electrochemical (cathodic hydrogen (H charging has been investigated. Three frequencies have been applied. Results clearly show that the FCG rate increased by a factor spanning from 20 to 1000 times, depending on the loading frequencies, when compared to the reference test in air. Lower frequency leads to higher FCG rate. A comprehensive fractographic analysis was carried out: the area fraction of different fracture surface features was measured and taken into statistical analysis. Based on these investigations, the possible mechanisms of H-enhanced FCG are discussed. Similar tests in high-pressure H gas from other studies were also compared and discussed. These results give a preliminary understanding of H effect in fatigue crack propagation procedure in ferritic alloys.

  13. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, Kyle A.; Kruzic, Jamie J.; Sears, John S.; Hawk, Jeffrey A.

    2015-10-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

  14. Experimental study of the crack depth ratio threshold to analyze the slow crack growth by creep of high density polyethylene pipes

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien; Devilliers, Clémence; Lucatelli, Jean Marc; Gaudichet-Maurin, Emmanuelle; Brossard, Jean Michel

    2014-01-01

    To assess the durability of drinking water connection pipes subjected to oxidation and slow crack growth, a comprehensive database was constructed on a novel specimen geometry: the pre-cracked NOL ring. 135 tests were carried out consisting of initial crack depth ratio ranging from 0.08 to 0.6; single or double longitudinal cracks: tensile with steady strain rate and creep loading. A threshold value of the crack depth ratio of 0.2, induced by the oxidation was determined by analyzing several mechanical parameters. This threshold value was shown to be independent on the strain rate effects, single or double crack configuration and the kind of loading: tensile or creep. Creep test results with crack depth ratio larger than 0.2 were then utilized to establish a failure assessment diagram. A methodology allowing the prediction of residual lifetime of in-service pipes was proposed, using this diagram. - Highlights: • Experimental data on pre-cracked rings featuring a longitudinally cracked HDPE pipe. • Crack depth ratio threshold for slow crack growth study consecutive to oxidation. • Investigation of the effects of the single/double notch(es) and of the strain rate. • Original results obtained from tests performed with tensile and creep loadings. • Correlation between creep initiation time and C* with DENT and ring specimens

  15. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  16. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    Science.gov (United States)

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  17. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  18. Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless under operating conditions of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ki Deuk; Hong, Seok Min; Kim, Dae Whan; Lee, Bong Sang [Korea Atomic Energy Research Institute, Nuclear Materials Safety Research Division, Daejeon (Korea, Republic of); Kim, Seon Jin [Hanyang University, Division of materials science and engineering, Seoul (Korea, Republic of)

    2017-06-15

    The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

  19. Two Parameter Fracture Mechanics: Fatigue Crack Behavior under Mixed Mode Conditions

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Knésl, Zdeněk

    2008-01-01

    Roč. 75, č. 3-4 (2008), s. 857-865 ISSN 0013-7944. [Crack Paths 2006. Parma, 14.09.2006-16.09.2006] R&D Projects: GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Constraint * Mixed-mode loading * Fatigue crack * Crack growth * Crack path Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  20. Nucleation and growth of fatigue cracks in magnesium alloys of different structure

    International Nuclear Information System (INIS)

    Grinberg, N.M.; Serdyuk, V.A.; Malinkina, T.I.; Kamyshkov, A.S.

    1982-01-01

    Duration of the fatigue crack nucleation and growth rate have been in a wide range of stress intensity factor variations for MA2-1, MA2-1 hp (higher purity), MA12, (T2, T6 and T8), MA15, IMB6, MA21 magnesium alloys of different composition and structural state. The threshold and criti- cal values of stress intensity factors, Ksub(th) and Ksub(fc) are determined for those alloys, and morphology of fracture is studied at different stages of crack growth. Duration of the nucleation stage of a fatigue crack, the rate and micromechanisms of its growth are found to depedend on alloying and structural state of magnesium alloys. The best crack resistance characteristics has the MA2-1 alloy, the poorest - MA12 (T2) alloy. It is stated that thermal treatment by hardening and ageing increases the resistance of the MA12 alloy to fatigue fracture and the MA2-1 alloy of higher purity gives poorer parameters of crack resistance [ru

  1. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  2. Fatigue crack growth and life prediction under mixed-mode loading

    Science.gov (United States)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  3. The creep-fatigue crack growth behaviour of a 1CrMoV rotor steel

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.; Gladwin, D.N.; Maguire, J.

    1989-01-01

    Crack growth rates under simultaneous creep-fatigue conditions have been quantified for a 1CrMoV rotor steel. Measured growth rates were partitioned into cyclic and hold period contributions and these characterized by the relevant fracture mechanics parameters K and C. Cyclic growth rates measured in the creep-fatigue tests were enhanced compared with pure fatigue rates. This observation is compared with the behaviour of other steels and explained by quantitative metallography. The resulting crack growth equation can be used during integrity assessments for plant components containing cracks which are subject to thermal fatigue

  4. Study on the PWSCC Crack Growth Rate for Steam Generator Tubing

    International Nuclear Information System (INIS)

    Kang, Shin Hoo; Hwang, Il Soon; Lim, Jun; Lee, Seung Gi; Ryu, Kyung Ha

    2008-03-01

    Using in-situ Raman spectroscopy and crack growth rate lest system in simulated PWR primary water environment, the relationship between the oxide film chemistry and the PWSCC growth rate has been studied. We used I/2T compact tension specimen and disk specimen made of Alloy 182 and Alloy 600 for crack growth rate test and in-situ Raman spectroscopy measurement. Test was made in a refreshed autoclave with 30 cc STP / kg of dissolved hydrogen concentration. Conductivity, pH, dissolved hydrogen and oxygen concentration were continuously monitored at the outlet. The crack growth rate was measured by using switching DCPD technique under cyclinc triangular loading and at the same time oxide phase was determined by using in-situ Raman spectra at the elevation of the temperature. Additionally Raman spectroscopy was achieved for oxide phase transition of Alloy 600 according to the temperature and dissolved hydrogen concentration, 2 and 30cc STP / kg

  5. A test procedure for determining the influence of stress ratio on fatigue crack growth

    Science.gov (United States)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  6. Methods of forecasting crack growth rate under creep conditions

    International Nuclear Information System (INIS)

    Ol'kin, S.I.

    1979-01-01

    Using construction aluminium alloy application possibility of linear mechanics of the destruction for quantitative description of crack development process under creepage conditions is investigated. It is shown, that the grade dependence between the stress intensity coefficient and the crack growth rate takes place only at certain combination of the sample geometry and creepage parameters, and consequently, its applicability in every given case must necessarily be tested experimentally

  7. Effect of variable load on crack initiation microalloyed steel S 690-QL

    Directory of Open Access Journals (Sweden)

    M. Burzić

    2015-01-01

    Full Text Available The accumulation of damage in the form of initiation and growth of micro-cracks is the first stage of destruction that ends when the merger microcracks form macro cracks. Cracks formed in the cycle number N =104 - 105 are the result of low cycle fatigue. From the need to evaluate low cycle fatigue life was carried out to investigate the low cycle fatigue microalloyed high-strength steel S690QL in the heat-treated.

  8. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  9. A fracture mechanics analysis of bonded repaired skin/stiffener structures with inclined central crack

    International Nuclear Information System (INIS)

    Chung, Ki Hyun; Yang, Won Ho; Kim, Cheol; Heo, Sung Pil; Ko, Myung Hoon

    2001-01-01

    Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, Maximum Tangential Stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stresses intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary

  10. The stability of growth of a through-wall circumferential crack in a cylindrical pipe subjected to bending deformation

    International Nuclear Information System (INIS)

    Smith, E.

    1987-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to examine the stability of growth of a through-wall circumferential crack in a 304 stainless steel circular cylindrical pipe subject to bending deformation. They showed that crack growth is stable, in the sense that growth requires the rotation imposed at the pipe-ends to be increased, provided the pipe length is less than a critical length Lsub(c), which is given by their analysis. The Tada-Paris-Gamble analysis focuses on the question of the stability, or otherwise, of crack growth at the onset of crack extension. The analysis does not consider the possibilities that (a) instability might occur after some stable crack growth, and (b) arrest might occur after some unstable growth. A study of these aspects of the circumferential crack growth problem using the tearing modulus approach is precluded by the geometry dependence of the J-crack growth resistance curve. Consequently the present paper uses a crack tip opening angle criterion to describe crack growth, and thereby demonstrates that possibilities (a) and (b) should both occur, depending on the initial crack length and pipe length. In terms of relevance to the technologically important problem of cracking in Boiling Water Reactor piping, the important conclusion stemming from the paper's analysis is that stability of crack growth after the onset of crack extension is assured if the pipe length is less than a critical length L'sub(c). L'sub(c) is less than Lsub(c), the critical length relevant to the onset of crack extension, but it is still appreciably greater than the pipe run lengths in actual reactor piping systems, and safety against guillotine failure of a pipe is therefore generally assured. (author)

  11. On the behavior of crack surface ligaments

    International Nuclear Information System (INIS)

    Nilsson, P.; Staahle, P.; Sundin, K.G.

    1998-01-01

    Small ligaments connecting the fracture surfaces just behind a moving crack front are assumed to exist under certain conditions. The ligaments are rapidly torn as the crack advances. Inelastic straining of such ligaments influences the energy balance in the fracture process. The rapid tearing of a single ligament is studied both numerically and experimentally. An elastic visco-plastic material model is adopted for finite-element calculations. The results show that relatively large amounts of energy are dissipated during the tearing process. Further, the energy needed to tear a ligament increases rapidly with increasing tearing rate. The computed behavior is partly verified in a few preliminary experiments. The implications for slow stable crack tip speeds during dynamic fracture are discussed. (orig.)

  12. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49 ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Experimental investigation of grain size effect on fatigue crack growth rate in turbine disc superalloy GH4169 under different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Mao, Jianxing [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Song, Jun, E-mail: jun.song2@mcgill.ca [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Meng, Fanchao [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Shan, Xiaoming [China Aviation Powerplant Research Institute, Zhuzhou 412002 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-04

    Systematic experiments for fatigue crack growth (FCG) rate on compact tension (CT) specimens have been conducted in nickel-based superalloy GH4169 at a broad range of temperatures with a frequency of 10 Hz and a stress ratio of 0.1. In order to investigate the crack closure behavior, FCG experiments at stress ratio of 0.5 were also performed by comparing with the results at stress ration of 0.1. CT specimens were cut from three typical locations of an actual forged turbine disc to investigate the effect of grain size on the FCG behaviors. The grain size distribution, precipitates and fracture surface characteristics at different locations of the turbine disc were examined through optical microscope, transmission electron microscope (TEM) and scanning electronic microscope (SEM) analyses. Digital image correlation (DIC), optical interferometry and oxide film measurements were carried out to investigate the presence and inducement of the crack closure. Then a modified FCG model, with a distribution factor that evaluates the scattering in the FCG rate, was formulated to describe the dependence of FCG rate on grain size. Finally, the possible microscopic mechanisms to explain the grain size effect on the FCG behaviors based on crack deflection and blockage, and the crack closure inducements involving plasticity and oxide were discussed in this study.

  14. Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, J. W.

    2017-01-01

    parameter through the plate in the plastic zone at the crack tip. The distribution of the mode I and mode III stress intensity factors along the crack front are obtained for the elastic problem. The out-of-plane bending constraint imposed on the plate significantly influences the mixed mode behavior along......Elastic and elastic-plastic results are obtained for a semi-infinite slanted through-crack propagating in a symmetrically loaded plate strip with the aim of providing theoretical background to commonly observed plate tearing behavior. Were it is not for the slant of the crack through the thickness...... of the plate, the problem would be mode I, but due to the slant the local conditions along the crack front are a combination of mode I and mode III. A three-dimensional formulation for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and Lode...

  15. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  16. Nanoscale and submicron fatigue crack growth in nickel microbeams

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Imasogie, B.; Soboyejo, W.O.

    2007-01-01

    This paper presents a novel edge-notched microbeam technique for the study of short fatigue crack growth. The technique is used to study submicron and nanoscale fatigue in LIGA Ni thin films with columnar microstructures. The edge-notched microbeams were fabricated within LIGA Ni thin films, using focused ion beam (FIB) techniques. The microbeams were then cyclically deformed to failure at a stress ratio of 0.1. Different slip-band structures were observed below the nanoscale notches. Cyclic deformation resulted in the formation of primary slip bands below the notch. Subsequent crack growth then occurred by the unzipping of fatigue cracks along intersecting slip bands. The effects of the primary slip bands were idealized using dislocation-based models. These were used to estimate the intrinsic fatigue threshold and the fatigue endurance limit. The estimates from the model are shown to be consistent with experimental data from prior stress-life experiments and current/prior fatigue threshold estimates

  17. Predicting crack instability behavior of burst tests from small specimens for irradiated Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Davies, P.H.

    1997-01-01

    A scaling approach, based on the deformation J-integral at maximum load obtained from small specimens, is proposed for predicting the crack instability behavior of burst tests on irradiated Zr-2.5Nb pressure tubes. An assessment of this approach is carried out by comparison with other toughness criteria such as the modified J-integral and the plastic work dissipation rate approach. The largest discrepancy between the different parameters occurs for materials of intermediate toughness which exhibit the most stable crack growth and tunnelling up to maximum load. A study of one material of intermediate toughness suggests crack-front tunnelling has a significant influence on the results obtained from the 17-mm-wide specimens. It is shown that for a tube of intermediate toughness the different approaches can significantly underpredict the extent of stable crack growth before instability in a burst test even after correcting for tunnelling. The usefulness of a scaling approach in reducing the discrepancy between the small- and large-scale specimen results for this material is demonstrated

  18. The relationship between X-ray residual stress near the crack and crack opening/closing behavior controlling fatigue crack propagation in Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Torii, Tashiyuki; Toi, Norihiko; Nakano, Kohji; Honda, Kazuo

    1998-01-01

    Using the X-ray method of stress measurement for Ti-6Al-4V alloys, the residual stress near the crack was measured for annealed (AN) and solution treated and aged (STA) titanium alloys, under the condition that the measured X-ray stress was in satisfactory agreement with the applied stress under tension. The residual stress measured in the wake of the propagating fatigue crack, σ r , was compressive, resulting in a smaller crack opening displacement, COD, than theorized. The measured σ r and COD-values let us understand the fatigue crack propagation rate da/dN in terms of the effective stress intensity factor K eff . As a result, the da/dN under the same K eff -value was smaller in the AN specimen with zigzag crack growth than in the STA specimen with straight crack growth, although the da/dN-K eff relationship under various stress amplitudes was represented by a straight line in a log-log scale separately for the AN and STA specimens. (author)

  19. Fatigue crack growth due to overloads in plain concrete using ...

    Indian Academy of Sciences (India)

    cation of overload on concrete structures, acceleration in the crack growth process .... study by the same authors, Ray & Chandra Kishen (2010), they have employed the population growth ...... Institute of Technology, University of Trondheim.

  20. Fatigue crack growth in ferritic steels as influence by elevated temperature and environment

    International Nuclear Information System (INIS)

    Nakamura, H.; Minakawa, K.; Murali, K.; Mc Evily, A.J.

    1987-01-01

    Fatigue crack growth studies have been carried out at room temperature and at 538 deg C in air as well as in vacuum in order to assess the influence of both temperature and environment on the growth process. The materials investigated were 2 1/4Cr-1Mo steel, a modified 9Cr-1Mo steel and a 9Cr-2Mo steel, as well as weldments of the 9Cr-2Mo steel. Crack opening levels were determined for all test conditions. The R-dependency of the crack growth rate could be accounted for by crack closure, both at room and elevated temperature. Closure in air at 538 deg C was due to oxidation, whereas at room temperature closure was due to microstructurally related roughness and the influence of oxygen. (Author)

  1. Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Re...

  2. Measurement of fatigue crack growth using low-profile eddy-current sensors

    International Nuclear Information System (INIS)

    Ditchburn, R.J.; Ibrahim, M.E.; Burke, S.K.

    2011-01-01

    Conformable spiral coils show promise as permanently mounted eddy-current sensors for the detection and monitoring of surface-breaking cracks in electrically conductive structures. Flexibility and a low profile (typically less than 0.5 mm) are key advantages that allow the sensors to be unobtrusively mounted on curved surfaces and beneath surface coatings. Furthermore, these sensors can be permanently mounted in areas that would otherwise be difficult or impossible to reach without significant disassembly. The sensors can be activated and interrogated using the same well-established electromagnetic measurement principles in eddy-current nondestructive inspection. A material test machine was used to grow through-thickness fatigue crack in a compact-tension specimen made from the aerospace-grade aluminium alloy AA2014. The growth of the crack was examined by measuring the small impedance changes of planar spiral-coil sensors attached to the specimen. The results indicate that permanently attached conformable spiral coils can be used to detect a deep crack once it has grown beneath the sensor, and then to monitor subsequent crack growth.

  3. Growth of 2D and 3D plane cracks under thermo-mechanical loading with varying amplitudes

    International Nuclear Information System (INIS)

    Sbitti, Amine

    2009-01-01

    After a presentation of the phenomenon of thermal fatigue (in industrial applications and nuclear plants), this research thesis reports the investigation of the growth and arrest of a 2D crack under thermal fatigue (temperature and stress distribution over thickness, calculation of stress intensity factors, laws of fatigue crack growth, growth under varying amplitude), and the investigation of 3D crack growth under cyclic loading with varying amplitudes (analytic and numerical calculation of stress intensity factors, variational formulation in failure mechanics, 3D crack propagation under fatigue, use of the Aster code, use of the extended finite element method or X-FEM). The author discusses the origin and influence of the 3D crack network under thermal fatigue

  4. On the driving force for crack growth during thermal actuation of shape memory alloys

    Science.gov (United States)

    Baxevanis, T.; Parrinello, A. F.; Lagoudas, D. C.

    2016-04-01

    The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.

  5. Time-dependent crack growth and fracture in concrete

    International Nuclear Information System (INIS)

    Zhou Fan Ping.

    1992-02-01

    The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs

  6. Crack growth of throughwall flaw in Alloy 600 tube during leak testing

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Majumdar, Saurin

    2015-01-01

    Graphical abstract: - Highlights: • A series of leak testing was conducted at a constant pressure and room temperature. • The time-dependent increase in the leak rate was observed. • The fractography revealed slip offsets and crystallographic facets. • Time-dependent plasticity at the crack tip caused the slip offsets. • Fatigue by jet/structure interaction caused the crystallographic facets. - Abstract: We examined the issue of whether crack growth in a full thickness material can occur in a leaking crack. A series of leak tests was conducted at a room temperature and constant pressure (17.3 MPa) with Alloy 600 tube specimens containing a tight rectangular throughwall axial fatigue crack. To exclude a potential pulsation effect by a high pressure pump, the test water was pressurized by using high pressure nitrogen gas. Fractography showed that crack growth in the full thickness material can occur in the leaking crack by two mechanisms: time-dependent plasticity at the crack tip and fatigue induced by jet/structure interaction. The threshold leak rate at which the jet/structure interaction was triggered was between 1.3 and 3.3 L/min for the specific heat of the Alloy 600 tube tested

  7. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  8. A proposal for unification of fatigue crack growth law

    Science.gov (United States)

    Kobelev, V.

    2017-05-01

    In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.

  9. Fatigue crack growth analysis of a 450 PWR - lateral

    International Nuclear Information System (INIS)

    Taupin, P.; Flamand, F.

    1988-01-01

    Fatigue Crack Growth analysis of a 5 mm deep surface crack in the crotch region of a 45 0 Lateral (12 inch diameter) was performed on a 3-Loop 900 MWe PWR Plant under Normal and upset loading conditions. Stress Intensity factors were computed using the weight-function technique. The latter were obtained for a polynomial stress distribution at the corner of the lateral under contract with the Pressure Vessel Research Committee of the WRC. The study shows that after 40 years of normal operation the size of the end of life crack is limited to about 25 mm for the chosen lateral with a thickness of 300 mm

  10. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718

    International Nuclear Information System (INIS)

    Alexandre, F.

    2004-03-01

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  11. Development of European creep crack growth testing code of practice for industrial specimens

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, B.; Nikbin, K. [Imperial College, London (United Kingdom); Petrovski, B. [Technische Univ. Darmstadt (DE). Inst. fuer Werkstoffkunde (IFW)

    2004-07-01

    The integrity and residual life assessment of high temperature components require defects, detected or assumed to exist, through minimum allowable limits of detectable flaws using nondestructive testing methods. It relies on information obtained from the material's mechanical, uniaxial creep, creep crack initiation and growth properties. The information derived from experiments needs to be validated and harmonised following a Code of Practice that data variability between different institutions can be reduced to a minimum. The present paper reports on a Code of Practice (CoP) being prepared within the framework of the partially European Commission funded project CRETE. The novel aspect of the presented CoP is the inclusion of component relevant industrial specimen geometries. It covers testing and analysis of Creep Crack growth (CCG) in metallic materials at elevated temperature using six different cracked geometries that have been validated in. It aims to give advice on testing, measurements and analysis of creep crack growth data for a range of creep brittle to creep ductile materials using component service relevant specimen geometries and sizes. The CoP may be used for material selection criteria and inspection requirements for damage tolerant applications. In quantitative terms, these types of tests can be used to assess the individual and combined effects of metallurgical, fabrication, operating temperature, and loading conditions on creep crack growth life. Further issues will be addressed including material properties, damage and crack growth related constraint effect, stress relaxation and stress-strain fields, residual stresses, partitioning displacement, analysis of elasticcreep, elastic compliance measurements.

  12. Development of European creep crack growth testing code of practice for industrial specimens

    International Nuclear Information System (INIS)

    Dogan, B.; Nikbin, K.; Petrovski, B.

    2004-01-01

    The integrity and residual life assessment of high temperature components require defects, detected or assumed to exist, through minimum allowable limits of detectable flaws using nondestructive testing methods. It relies on information obtained from the material's mechanical, uniaxial creep, creep crack initiation and growth properties. The information derived from experiments needs to be validated and harmonised following a Code of Practice that data variability between different institutions can be reduced to a minimum. The present paper reports on a Code of Practice (CoP) being prepared within the framework of the partially European Commission funded project CRETE. The novel aspect of the presented CoP is the inclusion of component relevant industrial specimen geometries. It covers testing and analysis of Creep Crack growth (CCG) in metallic materials at elevated temperature using six different cracked geometries that have been validated in. It aims to give advice on testing, measurements and analysis of creep crack growth data for a range of creep brittle to creep ductile materials using component service relevant specimen geometries and sizes. The CoP may be used for material selection criteria and inspection requirements for damage tolerant applications. In quantitative terms, these types of tests can be used to assess the individual and combined effects of metallurgical, fabrication, operating temperature, and loading conditions on creep crack growth life. Further issues will be addressed including material properties, damage and crack growth related constraint effect, stress relaxation and stress-strain fields, residual stresses, partitioning displacement, analysis of elastic creep, elastic compliance measurements

  13. Fatigue crack growth in welded joints in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.B.

    1988-01-01

    A pipe-to-plate specimen has been developed to study the influence of seawater on the fatigue behaviour of welded tubular joints. DC potential drop techniques have been used to detect fatigue crack initiation, and to monitor the subsequent growth of fatigue cracks. Results for three specimens, tested in air are compared with similar data for tubular and T-plate joints. These comparisons indicate that the pipe/plate is a reasonable model of a tubular joint. Testing was performed on a further six specimens in artificial seawater; two each with free corrosion, optimum cathodic protection, and cathodic overprotection. Fatigue life reduction factors compared with corresponding tests in air were 1.8 and 2.8 for free corrosion, 1.7 and 1.1 with cathodic protection, and 4.2 and 3.3 with cathodic over-protection. These fatigue life reduction factors were comparable to results on T-plate specimens, and were strongly dependent on crack shape development. Linear elastic fracture mechanics techniques appear suitable for the calculation of fatigue crack propagation life. Three approximate solution techniques for crack tip stress intensity factors show reasonable agreement with experimentally derived values. It is recommended that forcing functions be used to model crack aspect ratio development in welded joints. Such forcing functions are influenced by the initial stress distribution and the environment. 207 refs., 192 figs., 22 tabs.

  14. Online fatigue crack growth monitoring with clip gauge and direct current potential drop

    OpenAIRE

    De Tender, Steven; Micone, Nahuel; De Waele, Wim

    2016-01-01

    Fatigue is a well-known failure phenomenon which has been and still is extensively studied. Often structures are designed according to the safe-life principle so no crack initiation occurs. Nowadays there is a high emphasis on cost-efficiency, and one might rather opt for a fail-safe design. Therefore a certain amount of crack growth can be allowed in structures, but then a good knowledge of stresses and related crack growth rates is needed. To this end, extensive studies are done to obtain a...

  15. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  16. Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach

    Directory of Open Access Journals (Sweden)

    Sofiane Maachou

    2014-04-01

    Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.

  17. Creep crack growth verification testing in alloy 800H tubular components

    International Nuclear Information System (INIS)

    Hunter, C.P.; Hurst, R.C.

    1992-01-01

    A method for determining the creep crack growth, CCG, and stress rupture behaviour of Alloy 800H tubular components containing longitudinal notches at 800deg C is described. The presence of the notch is found to systematically weaken the tube, the degree of weaking dependent upon the notch length and depth. The creep crack growth rates, determined from a specially adapted potential drop technique are compared with those obtained from conventional compact tension type specimens. Using the stress intensity factor, K 1 , and the C * parameter as the basis of comparison it is found that the latter gives excellent correlation between the specimen and component behaviour. Finally attention is drawn to the potential dangers of predicting the component creep crack growth behaviour from the data obtained using conventional specimens for a structure sensitive material such as Alloy 800H and conversely to the advantages of the component type CCG tests developed in the present work. (orig.)

  18. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, F; Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  19. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  20. Material size effects on crack growth along patterned wafer-level Cu–Cu bonds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof; Hutchinson, John W.

    2013-01-01

    together. Crack growth along the bond interface is here studied numerically using finite element analyses. The experiments have shown that plasticity in the Cu films makes a major contribution to the macroscopic interface toughness. To account for the size dependence of the plastic flow a strain gradient...... plasticity model is applied here for the metal. A cohesive zone model is applied to represent the crack growth along the bond between the two Cu films. This cohesive zone model incorporates the effect of higher order stresses in the continuum, such that the higher order tractions on the crack faces decay...... the toughness peak and the subsequent plateau level are highly sensitive to the value of the characteristic material length. A small material length, relative to the thickness of the Cu film, gives high toughness whereas a length comparable to the film thickness gives much reduced crack growth resistance...

  1. A fracture- mechanics calculation of crack growth rate for a gas turbine blade

    International Nuclear Information System (INIS)

    Mirzaei, M.; Karimi, R.

    2002-01-01

    The existence of thermo-mechanical stresses, due to the frequent start-ups and shutdowns of gas turbines. Combined with high working temperatures may cause creep and fatigue failure of the blades. This paper describes a fracture-mechanics life assessment of a gas turbine blade. Initially, the distributions of thermal and mechanical stresses were obtained by using the finite element method. Accordingly; the crack modeling was performed in a high stress region at the suction side surface of the blade. Several crack growth increments were observed and the related crack tip parameters were calculated. Finally; the creep-fatigue crack growth in each cycle was calculated and the total number of start-stop cycles was determined

  2. Environmental effects of high temperature sodium of fatigue crack characteristics

    International Nuclear Information System (INIS)

    Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio

    2004-01-01

    In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)

  3. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  4. Micro/nanoscale mechanical characterization and in situ observation of cracking of laminated Si3N4/BN composites

    International Nuclear Information System (INIS)

    Li Xiaodong; Zou Linhua; Ni Hai; Reynolds, Anthony P.; Wang Changan; Huang Yong

    2008-01-01

    Micro/nanoscale mechanical characterization of laminated Si 3 N 4 /BN composites was carried out by nanoindentation techniques. A custom-designed micro mechanical tester was integrated with an optical microscope and an atomic force microscope to perform in situ three-point bending tests on notched Si 3 N 4 /BN composite bend specimens where the crack initiation and propagation were imaged simultaneously with the optical microscope and atomic force microscope during bending loading. The whole fracture process was in situ captured. It was found that crack deflection was initiated/induced by the pre-existing microvoids and microcracks in BN interfacial layers. New fracture mechanisms were proposed to provide guidelines for the design of biomimetic nacre-like composites

  5. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  6. Evolution of dislocation structure and fatigue crack behavior in Fe-Si alloys during cyclic bending test

    International Nuclear Information System (INIS)

    Ushioda, Kohsaku; Takebayashi, Shigeto; Goto, Shoji; Komatsu, Yoshinari; Hoshino, Akinori

    2010-01-01

    The evolution of dislocation structures was investigated by means of TEM in Fe-Si alloys with 0, 0.5 and 1.0 mass% Si during a cyclic bending test in conjunction with fatigue crack behavior. The addition of Si increased the fatigue strength. In steel without Si the cell structure develops, whereas in steel with 1%Si the vein structure evolves, which is considered to lead to the increased fatigue strength. The cell structure in 0%Si steel is postulated to be caused by the easy cross slip of dislocations, whereas the vein structure in the steels with Si is inferred to be caused by the difficulty in cross slip presumably due to the decrease in stacking fault energy. Furthermore, the steel containing Si shows a dislocation free zone (DFZ) along grain boundaries. A transgranular fracture takes place in 0%Si steel, while in 1%Si steel many intergranular cracks were observed just beneath the top surface, which was thought to be caused by the fact that a) strains are dispersed within grains owing to the vein structure and b) micro cracks are initiated and propagated along a DFZ.

  7. Accelerated Testing Methodology Developed for Determining the Slow Crack Growth of Advanced Ceramics

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    Constant stress-rate ("dynamic fatigue") testing has been used for several decades to characterize the slow crack growth behavior of glass and structural ceramics at both ambient and elevated temperatures. The advantage of such testing over other methods lies in its simplicity: strengths are measured in a routine manner at four or more stress rates by applying a constant displacement or loading rate. The slow crack growth parameters required for component design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, test time can be reduced appreciably. If a preload corresponding to 50 percent of the strength is applied to the specimen prior to testing, 50 percent of the test time can be saved as long as the applied preload does not change the strength. In fact, it has been a common, empirical practice in the strength testing of ceramics or optical fibers to apply some preloading (<40 percent). The purpose of this work at the NASA Lewis Research Center is to study the effect of preloading on measured strength in order to add a theoretical foundation to the empirical practice.

  8. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Kyoung Soo; Lee, Sung Ho [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2015-03-15

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  9. Evaluation of J-groove weld residual stress and crack growth rate of PWSCC in reactor pressure vessel closure head

    International Nuclear Information System (INIS)

    Oh, Seung Hyuk; Ryu, Tae Young; Park, Seung Hyun; Won, Min Gu; Kang, Seok Jun; Kim, Moon Ki; Choi, Jae Boong; Lee, Kyoung Soo; Lee, Sung Ho

    2015-01-01

    Over the last decade, primary water stress corrosion cracking (PWSCC) has been frequently found in pressurized water reactor (PWR) applications. Especially, PWSCC has occurred in long-term operated PWRs. As this phenomenon leads to serious accidents, we must be beforehand with the anticipated problems. A typical PWR consists of J-groove welded components such as reactor pressure vessel closure head and nozzles. Reactor pressure vessel closure head is made of SA508 and it is covered by cladding. Alloy 600 is used for nozzles. And J-groove weld is conducted with alloy 82/182. Different material properties of these metals lead to residual stress and PWSCC consequentially. In this study, J-groove weld residual stress was investigated by a three-dimensional finite element analysis with an actual asymmetric J-groove weld model and process of construction. Also crack growth rate of PWSCC was evaluated from cracks applied on the penetration nozzles. Based on these two values, one cannot only improve the structural integrity of PWR, but also explain PWSCC behavior such that high residual stress at the J-groove weld area causes crack initiation and propagation through the surface of nozzles. In addition, crack behavior was predicted at the various points around the nozzle.

  10. Catalyst Particles for Fluid Catalytic Cracking Visualized at the Individual Particle Level by Micro-Spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.

    2011-01-01

    In this PhD research the investigation of the reactivity and acidity of Fluid Catalytic Cracking (FCC) catalysts at the level of an individual catalyst particles is described. A range of micro-spectroscopic techniques has been applied to visualize both the active zeolite component within the

  11. Mixed-Mode Crack Growth in Wood

    Directory of Open Access Journals (Sweden)

    Octavian POP

    2012-09-01

    Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.

  12. Creep crack growth behaviour of an AISI 316 steel plate for fast reactor structures

    International Nuclear Information System (INIS)

    D'Angelo, D.; Regis, V.

    1985-01-01

    The paper presents and analyses creep crack growth data obtained at 550, 600 and 650 0 C in air with SENT and CT specimens on type 316 stainless steel plate for LMFBR applications. Crack initiation and crack growth are tentatively correlated to K, sigmasub(net) and J* taking into account the constraint conditions due to specimen geometry. The validity of these parameters is discussed following the concept of transition time from small scale creep at the crack tip to extensive creep within the ligament. Post exposure microstructural and fractographic investigations do evidence that grain deformation processes are mainly responsible for cavity evolution. (orig.)

  13. Hybrid discrete dislocation models for fatigue crack growth

    NARCIS (Netherlands)

    Curtin, W. A.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.; Wallin, M.

    A framework for accurately modeling fatigue crack growth in ductile crystalline solids is necessarily multiscale The creation of new free surface occurs at the atomistic scale, where the material's cohesive strength is controlled by the local chemistry On the other hand, significant dissipation

  14. Fatigue crack propagation and delamination growth in Glare

    NARCIS (Netherlands)

    Alderliesten, R.C.

    2005-01-01

    Fibre Metal Laminate Glare consists of thin aluminium layers bonded together with pre-impregnated glass fibre layers and shows an excellent fatigue crack growth behaviour compared to monolithic aluminium. The fibres are insensitive to the occurring fatigue loads and remain intact while the fatigue

  15. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    International Nuclear Information System (INIS)

    Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ernestova, M.; Zamboch, M.; Seifert, H.P.; Ritter, S.; Roth, A.; Devrient, B.; Ehrnsten, U.

    2004-01-01

    water at stress intensity factors above the limit for linear elastic fracture mechanics. There is evidence that the prediction curves of the ASME Boiler and Pressure Vessel Code Section XI, Appendix A are not conservative for some relevant cases with regard to crack growth rates under cyclic load even in oxygenated high purity BWR water. The CASTOC results have provided an important contribution to the understanding of crack growth behavior on the one hand as a function of time and on the other hand as a consequence of the number and height of loading events. This is an important key for the evaluation of transient events, which may occur in a plant during service. (orig.)

  16. Detection and closure measurement of short fatigue crack initiated at notch root

    International Nuclear Information System (INIS)

    Lee, Jong-Hyung; Kobayashi, Hideo

    1985-01-01

    Short fatigue cracks initiated at the notch root were successfully detected at a fairly high accuracy by the ultrasonic amplitude calibration method for the notched compact specimens of an A508-3 steel. Crack closure measurements by the ultrasonic and back-face strain compliance methods were also performed. Crack growth characteristics at the notch root are similar to those of delyed retardation caused by a single peak overload. Also, transitional behavior from short cracks to long cracks was interpreted in terms of effective stress intensity ΔKsub(eff). The relation between crack growth rate da/dN and ΔKsub(eff) for short cracks shows a fairly good agreement with those for long cracks. (author)

  17. Indentation Damage and Crack Repair in Human Enamel*

    OpenAIRE

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced ...

  18. On the inter relationship between fatigue crack growth parameters in Paris regime

    International Nuclear Information System (INIS)

    Sasikala, G.

    2016-01-01

    Studies on fatigue crack growth behaviour of several steels and their welds for nuclear applications have been characterized in the author's laboratory in the past decade as a part of (i) creating the required database for integrity assessment of components, (ii) providing inputs for materials development, and (iii) understanding the crack growth behaviour in the light of basic mechanisms of cyclic deformation and damage. These include, effects of test variables (such as temperature, load ratio R) and material conditions (such as base and weld materials in as received, as welded or after subjecting to different ageing conditions). Different steels investigated include the ferritic grades modified 9Cr-1Mo steel (P91) and reduced activation ferritic martensitic steel, and austenitic grade SS 316L(N) and its weld. A common observation in the FCG literature is the inverse relationship between the Paris constant (log C) and exponent m, which has attracted considerable attention of the researchers in the field. The present paper attempts a fresh look at the inter relationship between Paris parameters obtained in the FCG studies on the above materials including the effect of crack closure and crack tip shielding. Further, some observed deviations from the inter relationship will be discussed in the light of changes in material properties and crack growth mechanisms. (author)

  19. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  20. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  1. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  2. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  3. Creep crack growth investigations for elevated temperature material application

    International Nuclear Information System (INIS)

    Krompholz, K.; Pierick, J.B.; Grosser, E.D.

    1981-01-01

    Creep crack growth data for the cast alloys IN-519 at 1123 K, Manaurite 36 X at 1123 K and 1173 K, and for the wrought alloys Incoloy 800 H and Inconel 617 at 1123 K, 1173 K, 1223 K, and 1273 K are reported. Up to 1273 K the crack lengths were measured by means of the potential drop technique. The data are plotted da/dt vs. net section stress. These results are compared with data on Inconel 617 analyzed according to stress intensity. (orig.)

  4. A grain boundary sliding model for cavitation, crack growth and ...

    African Journals Online (AJOL)

    A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...

  5. Growth optimization for thick crack-free GaN layers on sapphire with HVPE

    Energy Technology Data Exchange (ETDEWEB)

    Richter, E.; Hennig, Ch.; Kissel, H.; Sonia, G.; Zeimer, U.; Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, 12489 Berlin (Germany)

    2005-05-01

    Conditions for optimized growth of thick GaN layers with crack-free surfaces by HVPE are reported. It was found that a 1:1 mixture of H{sub 2}/N{sub 2} as carrier gas leads to the lowest density of cracks in the surface. Crack formation also depends on the properties of the GaN/sapphire templates used. Best results have been obtained for 5 {mu}m thick GaN/sapphire templates grown by MOVPE with medium compressive strain {epsilon}{sub zz} of about 0.05%. But there is no simple dependence of the crack formation on the strain status of the starting layer indicating that the HVPE growth of GaN can itself introduce strong tensile strain. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Crack growth rate in the HAZ of alloy 690TT/152

    International Nuclear Information System (INIS)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J.; Ahluwalia, K.; Hickling, J.

    2011-01-01

    Crack growth rate (CGR) experiments to obtain data for the HAZ of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line that is altered in several ways by the welding process. This paper describes an experimental program carried out to determine the CGR in the HAZ of an Alloy 690 test weld made using Alloy 152. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C under cyclic and constant loading (both with and without periodic partial unloading). For the Alloy 690 HAZ tested here, transgranular crack propagation (primarily due to environmentally assisted fatigue) with isolated intergranular secondary cracks was observed and there was no increase of the crack growth rate in comparison with that for Alloy 690 base metal. In both cases, the CGR values at constant load were very low (4*10 -9 mm/s down to effectively zero) and generally comparable with the data found in the literature for intergranular cracking of thermally treated or solution annealed Alloy 690 in simulated primary water. The scarce CGR data for the HAZ of Alloy 690 available to date do not suggest a significant increase in the PWSCC susceptibility of this resistant alloy, but further testing is still required given the expected variability in actual production welds. (authors)

  7. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films

    International Nuclear Information System (INIS)

    Kim, Seong-Woong; Li Xiaoyan; Gao Huajian; Kumar, Sharvan

    2012-01-01

    In situ tensile experiments in a transmission electron microscope revealed that micro-cracks in ultrafine grained, free-standing, thin copper foils containing nanoscale twins initiated in matrix domains separated by the twins and then arrested at twin boundaries as twin boundary sliding proceeded. The adjacent microcracks eventually coalesced through shear failure of the bridging twins. To investigate the atomic mechanism of this rarely seen nanoscale crack bridging behavior, molecular dynamics simulations were performed to show that during crack propagation twin boundaries are impinged upon by numerous dislocations from the plastically deforming matrix. These dislocations react at the interface and evolve into substantially impenetrable dislocation walls that strongly confine crack nucleation and resist crack propagation, leading to the experimentally observed crack bridging behavior. The present results raise an approach to significantly toughening polycrystalline thin films by incorporating nanoscale twin structures into individual grains that serve as crack bridging ligaments.

  8. Preloading To Accelerate Slow-Crack-Growth Testing

    Science.gov (United States)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  9. Cyclic inelastic deformation aspects of fatigue-crack-growth analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leis, B.N.; Zahoor, A.

    1980-01-01

    This paper concentrates on a J-integral analysis of fatigue crack growth. Data on cyclic plasticity are analyzed showing that there are limitations to the usefulness of the deformation theory in applications to cyclic plasticity. 56 refs.

  10. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  11. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    Science.gov (United States)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  12. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  13. On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Dutt, B. Shashank; Venugopal, S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sasikala, G., E-mail: gsasi@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Bhaduri, A.K.; Jayakumar, T.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2010-07-25

    Fatigue crack growth behaviour of a nuclear grade SS 316(N) weld metal was examined in the Paris and threshold regimes in the as-welded condition, at 300, 573 and 823 K. The {Delta}K{sub th} values were 11.2, 7.5, and 9.5 MPa {radical}m, respectively. These values were corrected for closure effects and the corresponding {Delta}K{sub th,eff} were found to be 7.7, 5.8 and 3.5 MPa {radical}m, respectively. The anomalous behaviour, i.e., the high value of {Delta}K{sub th} at 823 K has been explained based on crack closure effect which is roughness induced at 300 K and oxide induced at 823 K, with both these insignificant at 573 K. The effect of temperature on crack growth mechanism and the associated closure mechanisms are discussed. The stress shielding at the crack tip due to closure is accounted for and the effective stress intensity factor experienced by the crack tip, {Delta}K{sub eff,tip} is determined. It is demonstrated that {Delta}K{sub eff,tip} qualifies as a more appropriate parameter as the driving force for the temperature-dependent crack growth in the near-threshold and Paris regimes.

  14. Application of a Cycle Jump Technique for Acceleration of Fatigue Crack Growth Simulation

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Karlsson, A.M.

    2010-01-01

    A method for accelerated simulation of fatigue crack growth in a bimaterial interface is proposed. To simulate fatigue crack growth in a bimaterial interface a routine is developed in the commercial finite element code ANSYS and a method to accelerate the simulation is implemented. The proposed m...... of the simulation show that with fair accuracy, using the cycle jump method, more than 70% reduction in computation time can be achieved....

  15. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    Science.gov (United States)

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  16. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed

  17. Ductile fracture of circumferentially cracked pipes subjected to bending loads

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-10-01

    A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed.

  18. Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong-Yeon; Kim, Woo-Gon; Kim, Nak-Hyun [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2015-01-15

    The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCCMRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

  19. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    International Nuclear Information System (INIS)

    Tao, Junhui; Hu, Shubing; Ji, Longbo

    2016-01-01

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases and a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.

  20. Deterministic and probabilistic crack growth analysis for the JRC Ispra 1/5 scale pressure vessel n0 R2

    International Nuclear Information System (INIS)

    Bruckner-Foit, A.; Munz, D.

    1989-10-01

    A deterministic and a probabilistic crack growth analysis is presented for the major defects found in the welds during ultrasonic pre-service inspection. The deterministic analysis includes first a determination of the number of load cycles until crack initiation, then a cycle-by-cycle calculation of the growth of the embedded elliptical cracks, followed by an evaluation of the growth of the semi-elliptical surface crack formed after the crack considered has broken through the wall and, finally, a determination of the critical crack size and shape. In the probabilistic analysis, a Monte-Carlo simulation is performed with a sample of cracks where the statistical distributions of the crack dimensions describe the uncertainty in sizing of the ultrasonic inspection. The distributions of crack depth, crack length and location are evaluated as a function of the number of load cycles. In the simulation, the fracture mechanics model of the deterministic analysis is employed for each random crack. The results of the deterministic and probabilistic crack growth analysis are compared with the results of the second in-service inspection where stable extension of some of the cracks had been observed. It is found that the prediction and the experiment agree only with a probability of the order of 5% or less

  1. Evaluation of the MMCLIFE 3.0 code in predicting crack growth in titanium aluminide composites

    International Nuclear Information System (INIS)

    Harmon, D.; Larsen, J.M.

    1999-01-01

    Crack growth and fatigue life predictions made with the MMCLIFE 3.0 code are compared to test data for unidirectional, continuously reinforced SCS-6/Ti-14Al-21Nb (wt pct) composite laminates. The MMCLIFE 3.0 analysis package is a design tool capable of predicting strength and fatigue performance in metal matrix composite (MMC) laminates. The code uses a combination of micromechanic lamina and macromechanic laminate analyses to predict stresses and uses linear elastic fracture mechanics to predict crack growth. The crack growth analysis includes a fiber bridging model to predict the growth of matrix flaws in 0 degree laminates and is capable of predicting the effects of interfacial shear stress and thermal residual stresses. The code has also been modified to include edge-notch flaws in addition to center-notch flaws. The model was correlated with constant amplitude, isothermal data from crack growth tests conducted on 0- and 90 degree SCS-6/Ti-14-21 laminates. Spectrum fatigue tests were conducted, which included dwell times and frequency effects. Strengths and areas for improvement for the analysis are discussed

  2. Standard test method for measurement of fatigue crack growth rates

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    1.1 This test method covers the determination of fatigue crack growth rates from near-threshold to Kmax controlled instability. Results are expressed in terms of the crack-tip stress-intensity factor range (ΔK), defined by the theory of linear elasticity. 1.2 Several different test procedures are provided, the optimum test procedure being primarily dependent on the magnitude of the fatigue crack growth rate to be measured. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength so long as specimens are of sufficient thickness to preclude buckling and of sufficient planar size to remain predominantly elastic during testing. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size is variable to be adjusted for yield strength and applied force. Specimen thickness may be varied independent of planar size. 1.5 The details of the various specimens and test configurations are shown in Annex A1-Annex A3. Specimen configurations other than t...

  3. Finite element analysis of crack growth from rectangular notch in mixed mode loading

    International Nuclear Information System (INIS)

    Mohd Rawi Mohd Zin

    2002-01-01

    The direction of crack growth from rectangular notch for ductile material is determined in this paper. The ductile material is assumed to exhibit the elastic-plastic behaviour. In the model, the crack is assumed to start when the J-integral fracture criterion exceeded the critical value during the application of load and the crack tip propagated to a priori. The direction of the crack is characterised by maximum principles stress criterion and the mechanism of crack propagation is simulated by deleted element technique. The model is validated with experimental results and it shows good agreement. (Author)

  4. Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al

    International Nuclear Information System (INIS)

    Jha, S.K.; Ravichandran, K.S.

    2000-01-01

    The effect of mean stress, or the stress ratio (R), on the fatigue-crack growth (FCG) behavior of α-aged and ω-aged microstructures of the beta titanium alloy Ti-10V-2Fe-3Al was investigated. While the mean stress had a negligible effect on the FCG behavior of the α-aged microstructure, a strong effect was observed in the ω-aged microstructure. In particular, the values of the threshold stress-intensity range (ΔK th ) exhibited a strong dependence on R in the ω-aged microstructure, while this dependence was weak in the α-aged microstructure. These effects seem to arise primarily from fracture-surface roughness-induced crack closure. The crack closure levels for the α-aged microstructure were found to be very low compared to those for the ω-aged microstructure. Transmission electron microscopy and scanning electron microscopy studies of microstructures and fracture surfaces were performed to gain insight into the deformation characteristics and crack propagation mechanisms, respectively, in these microstructures. The microstructure-induced differences in FCG behavior are rationalized in terms of the effect of aging on slip and crack closure

  5. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  6. Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack

    International Nuclear Information System (INIS)

    Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.

    2001-01-01

    In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)

  7. Further Development of Crack Growth Detection Techniques for US Test and Research Reactors

    International Nuclear Information System (INIS)

    Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov; Joseph Palmer, A.; Teysseyre, Sebastien P.; Davis, Kurt L.; Rempe, Joy L.

    2015-01-01

    One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example. Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the

  8. Effect of T-stress on crack growth along an interface between ductile and elastic solids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2003-01-01

    For crack growth along an interface joining an elastic-plastic solid to an elastic substrate the effect of a non-singular stress component in the crack growth direction in the elastic-plastic solid is investigated. Conditions of small scale yielding are assumed, and due to the mismatch of elastic...

  9. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  10. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  11. Effect of laser shock processing on fatigue crack growth of duplex stainless steel

    International Nuclear Information System (INIS)

    Rubio-Gonzalez, C.; Felix-Martinez, C.; Gomez-Rosas, G.; Ocana, J.L.; Morales, M.; Porro, J.A.

    2011-01-01

    Research highlights: → LSP is an effective surface treatment to improve fatigue properties of duplex stainless steel. → Increasing pulse density, fatigue crack growth rate is reduced. → Microstructure is not affected by LSP. → Compressive residual stresses increases increasing pulse density. - Abstract: Duplex stainless steels have wide application in different fields like the ship, petrochemical and chemical industries that is due to their high strength and excellent toughness properties as well as their high corrosion resistance. In this work an investigation is performed to evaluate the effect of laser shock processing on some mechanical properties of 2205 duplex stainless steel. Laser shock processing (LSP) or laser shock peening is a new technique for strengthening metals. This process induces a compressive residual stress field which increases fatigue crack initiation life and reduces fatigue crack growth rate. A convergent lens is used to deliver 2.5 J, 8 ns laser pulses by a Q-switched Nd:YAG laser, operating at 10 Hz with infrared (1064 nm) radiation. The pulses are focused to a diameter of 1.5 mm. Effect of pulse density in the residual stress field is evaluated. Residual stress distribution as a function of depth is determined by the contour method. It is observed that the higher the pulse density the greater the compressive residual stress. Pulse densities of 900, 1600 and 2500 pul/cm 2 are used. Pre-cracked compact tension specimens were subjected to LSP process and then tested under cyclic loading with R = 0.1. Fatigue crack growth rate is determined and the effect of LSP process parameters is evaluated. In addition fracture toughness is determined in specimens with and without LSP treatment. It is observed that LSP reduces fatigue crack growth and increases fracture toughness if this steel.

  12. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.

  13. Crack growth resistance for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2006-01-01

    For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...

  14. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  15. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain); Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  16. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    International Nuclear Information System (INIS)

    Ernestova, M.; Zamboch, M.; Devrient, B.; Roth, A.; Ehrnsten, U.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ritter, S.; Seifert, H.P.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  17. Evaluation of stable crack growth by using the finite element method

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    1996-01-01

    In the study the analysis of stable crack growth by using the finite element method is considered. The results of numerical analyses are compared with the corresponding experimental results. The applications are reported in three separate papers enclosed at the end of the work. The first paper deals with the numerical analysis of a full scale pressure vessel test. The second and the third paper concern numerical analyses of fracture mechanical test specimens. In the literature study section of the work basic theories of fracture mechanics and common crack growth criteria are presented. The balance equations needed are written based on thermodynamical considerations. Physical interpretations of the energy release rate are briefly considered. Numerical calculation methods for determining the J-integral values are presented. The virtual crack extension method is used in the numerical examples. Also the Domain integral method and its implementation in the finite element method are described. (orig.) (70 refs.)

  18. Cracks in functionally graded materials

    International Nuclear Information System (INIS)

    Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.

    2003-01-01

    The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage

  19. Fatigue crack growth of the MA12 magnesium alloy in vacuum and air

    International Nuclear Information System (INIS)

    Grinberg, N.M.; Serdyuk, V.A.; Zmeevets, S.G.; Ostapenko, I.Z.; Malinkina, T.I.; Kamyshkov, A.S.

    1978-01-01

    The growth of a crack and the failure mechanism have been examined in the specimens prepared from magnesium alloy sheets containing 2.9% Nd and 0.44% Zr,the specimens being subjected to the cyclic bending in the open air and in vacuum of 1x10 -6 mm Hg. Examination of the plastic zone around a crack was carried out by the methods of optical microscopy and X-ray structure analysis of fractures. It has been shown that when tested in vacuum, the growth rate of a fatigue crac in vacuum is essentially slower than being tested in the open air. The fatigue failure mechanism is the same in the open air and in vacuum; during the slow growing of a crack, that mechanism is essentially a brittle intragrain cleavage. The plastic zone forming around the crack is greater in vacuum than in the open air

  20. Long fatigue crack growth in Inconel 718 produced by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Nicoletto, G.; Bača, A.

    2016-01-01

    Roč. 92, NOV (2016), s. 499-506 ISSN 0142-1123. [CP 2015 - International Conference on Crack Paths /5./. Ferrara, 16.09.2015-18.09.2015] Institutional support: RVO:68081723 Keywords : Inconel 718 * Selective laser melting * Microstructure * Fatigue crack growth * Fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016