WorldWideScience

Sample records for mickelson creek field

  1. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  2. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    Science.gov (United States)

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  3. Sediment and radionuclide transport in rivers. Summary report, field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-11-01

    A three-phase field sampling program was conducted on the Buttermilk-Cattaraugus Creek system to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Phase 1 of the sampling program was conducted during November and December 1977; Phase 2 during September 1978; and Phase 3 during April 1979. Bed sediment, suspended sediment, and water samples were collected over a 45-mile reach of the creek system. Bed sediment samples were also collected at the mouth of Cattaraugus Creek in Lake Erie. A fourth sampling trip was conducted during May 1980 to obtain supplementary channel geometry data and flood plain sediment samples. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239,240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, CS-134, Co-60, Pu-238, Pu-239,240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks

  4. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    Science.gov (United States)

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  5. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions

  6. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  7. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    . Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.

  8. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-10-25

    ...] Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor Creek, and... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  9. Bear Creek Valley Floodplain hot spot removal early action characterization field data summary report, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-04-01

    This report summarizes the field and laboratory efforts as a result of the Bear Creek Floodplain Hot Spot Removal Project Early Action. The purpose of this project was to collect data necessary to assess contaminant levels in the Bear Creek Valley Floodplain and evaluate the risk posed by the sites. This report provides information on the background of the site, characterization of site and field activities, results of field and laboratory data collected, extent and distribution of contamination, and an assessment of the future risk posed by the site

  10. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  11. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, Justin K.; Olson, Jill M. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.

  12. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  13. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  14. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    Science.gov (United States)

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  15. Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas

    Science.gov (United States)

    Qi, L.; Carr, T.R.

    2006-01-01

    In the Hugoton Embayment of southwestern Kansas, St. Louis Limestone reservoirs have relatively low recovery efficiencies, attributed to the heterogeneous nature of the oolitic deposits. This study establishes quantitative relationships between digital well logs and core description data, and applies these relationships in a probabilistic sense to predict lithofacies in 90 uncored wells across the Big Bow and Sand Arroyo Creek fields. In 10 wells, a single hidden-layer neural network based on digital well logs and core described lithofacies of the limestone depositional texture was used to train and establish a non-linear relationship between lithofacies assignments from detailed core descriptions and selected log curves. Neural network models were optimized by selecting six predictor variables and automated cross-validation with neural network parameters and then used to predict lithofacies on the whole data set of the 2023 half-foot intervals from the 10 cored wells with the selected network size of 35 and a damping parameter of 0.01. Predicted lithofacies results compared to actual lithofacies displays absolute accuracies of 70.37-90.82%. Incorporating adjoining lithofacies, within-one lithofacies improves accuracy slightly (93.72%). Digital logs from uncored wells were batch processed to predict lithofacies and probabilities related to each lithofacies at half-foot resolution corresponding to log units. The results were used to construct interpolated cross-sections and useful depositional patterns of St. Louis lithofacies were illustrated, e.g., the concentration of oolitic deposits (including lithofacies 5 and 6) along local highs and the relative dominance of quartz-rich carbonate grainstone (lithofacies 1) in the zones A and B of the St. Louis Limestone. Neural network techniques are applicable to other complex reservoirs, in which facies geometry and distribution are the key factors controlling heterogeneity and distribution of rock properties. Future work

  16. Calibration of a Field-Scale Soil and Water Assessment Tool (SWAT Model with Field Placement of Best Management Practices in Alger Creek, Michigan

    Directory of Open Access Journals (Sweden)

    Katherine R. Merriman

    2018-03-01

    Full Text Available Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI to determine the effectiveness of the various best management practices (BMPs from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP Database. A Soil and Water Assessment Tool (SWAT model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE ratings for flow, sediment, total phosphorus (TP, dissolved reactive phosphorus (DRP, and total nitrogen (TN (0.90, 0.79, 0.87, 0.88, and 0.77, respectively, and satisfactory NSE rating for nitrate (0.51. Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively, and unsatisfactory NSE rating for nitrate (0.28. The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC; CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%.

  17. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan

    Science.gov (United States)

    Merriman-Hoehne, Katherine R.; Russell, Amy M.; Rachol, Cynthia M.; Daggupati, Prasad; Srinivasan, Raghavan; Hayhurst, Brett A.; Stuntebeck, Todd D.

    2018-01-01

    Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).

  18. Laboratory and field testing of an accelerated bridge construction demonstration bridge : US Highway 6 bridge over Keg Creek.

    Science.gov (United States)

    2013-04-01

    The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice : newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated ...

  19. Hail creek

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    2005-09-01

    The paper examines the development of one of the largest coking coal deposits in the world. Hail Creek is 100 km west of Mackay and 35 km northeast of Nebo, Queensland and has proven opencut reserves of 195.6 as at December 2003. Coal processing stated in July 2003. The award winning project included construction of a coal handling and preparation plant, a railway, a village and offsite infrastructure and mine buildings and site services. Coal is mined by conventional dragline and truck/shovel techniques. 1 photo.

  20. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    Science.gov (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  1. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    Science.gov (United States)

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  2. Judy Creek and beyond

    International Nuclear Information System (INIS)

    Kerr, S.A.

    1999-01-01

    The story of the Pengrowth Energy Trust, a company created in 1988 to provide investors with an opportunity to participate in the oil and gas industry without the higher investment risk associated with exploratory drilling is the vehicle used to provide an overview of the development of the Judy Creek oil field, an historical sketch of Imperial Oil Limited, and of the development of the community of Swan Hills shed, a town carved out of muskeg by early pioneers in 1957-1958. The book is replete with anecdotes and photographs, depicting the indomitable spirit of the people whose determination and faith made the development of the oil industry in Alberta possible

  3. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    Science.gov (United States)

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads

  4. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied

  5. Predicting Volume and Biomass Change from Multi-Temporal Lidar Sampling and Remeasured Field Inventory Data in Panther Creek Watershed, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Krishna P. Poudel

    2018-01-01

    Full Text Available Using lidar for large-scale forest management can improve operational and management decisions. Using multi-temporal lidar sampling and remeasured field inventory data collected from 78 plots in the Panther Creek Watershed, Oregon, USA, we evaluated the performance of different fixed and mixed models in estimating change in aboveground biomass ( ∆ AGB and cubic volume including top and stump ( ∆ CVTS over a five-year period. Actual values of CVTS and AGB were obtained using newly fitted volume and biomass equations or the equations used by the Pacific Northwest unit of the Forest Inventory and Analysis program. Estimates of change based on fixed and mixed-effect linear models were more accurate than change estimates based on differences in LIDAR-based estimates. This may have been due to the compounding of errors in LIDAR-based estimates over the two time periods. Models used to predict volume and biomass at a given time were, however, more precise than the models used to predict change. Models used to estimate ∆ CVTS were not as accurate as the models employed to estimate ∆ AGB . Final models had cross-validation root mean squared errors as low as 40.90% for ∆ AGB and 54.36% for ∆ CVTS .

  6. Decision 99-27 application 1029022 - Petro-Canada Oil and Gas application to install compressors at the Wilson Creek gas plant and at LSD 3-19-43-4 W5M, Wilson Creek Field

    International Nuclear Information System (INIS)

    1999-11-01

    Petro-Canada Oil and Gas applied to the Alberta Energy and Utilities Board (EUB) for approval to add two new compressors at the existing Wilson Creek sour gas processing facility, and to construct and operate a new sour gas compressor station in Alberta. The application was made pursuant to Section 26 (1)(b) of the Oil and Gas Conservation Act and Sections 7.001, 9.020, and 15.050 of the Oil and Gas Conservation Regulations. The applications and interventions were considered at a hearing at the Last West Hall, Rimbley, Alberta, commencing 7 April 1999. The issues concerning the applications were: the need for and location of the compressors, plant life, emissions, sulphur recovery, and noise. Petro-Canada will proceed with its commitment to local landowners to install and commission a sulphur recovery unit within 16 months of the date of this report. The sulphur recovery capability of the facility will meet guidelines defined in IL 88-13 for new sour gas plants based on either the current or an acceptable maximum daily inlet sulphur rate. Continuous-vent gas streams, including glycol regenerator, produced-water tank, and hydrocarbon condensate tank vents, at both the 3-29 compressor and at the Wilson Creek plant site will be burned in a flare or incinerator. Flare stacks at the 3-19 compressor site will be equipped with a suitable pilot and automatic igniter. The Wilson Creek plant flare system will be equipped with a suitable pilot, as well as automatic igniter and/or flame failure detection system. Petro-Canada will implement local ambient air quality monitoring and sound level monitoring consistent with its commitments to local landowners and regulatory requirements

  7. Appenzell Creek, Aquashicola Creek, Buck Hill Creek, Bush Kill Creek, Cherry Creek, Cranberry Creek, Marshall Creek, Pocono Creek, and Swiftwater Creek Field SURVEY, Monroe COUNTY, PA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  8. Mapping geomorphic process domains to predict hillslope sediment size distribution using remotely-sensed data and field sampling, Inyo Creek, California

    Science.gov (United States)

    Leclere, S.; Sklar, L. S.; Genetti, J. R.

    2014-12-01

    The size distribution of sediments produced on hillslopes and supplied to channels depends on the geomorphic processes that weather, detach and transport rock fragments down slopes. Little in the way of theory or data is available to predict patterns in hillslope size distributions at the catchment scale from topographic and geologic maps. Here we use aerial imagery and a variety of remote sensing techniques to map and categorize geomorphic landscape units (GLUs) by inferred sediment production process regime, across the steep mountain catchment of Inyo Creek, eastern Sierra Nevada, California. We also use field measurements of particle size and local geomorphic attributes to test and refine GLU determinations. Across the 2 km of relief in this catchment, landcover varies from bare bedrock cliffs at higher elevations to vegetated, regolith-covered convex slopes at lower elevations. Hillslope gradient could provide a simple index of sediment production process, from rock spallation and landsliding at highest slopes, to tree-throw and other disturbance-driven soil production processes at lowest slopes. However, many other attributes are needed for a more robust predictive model, including elevation, curvature, aspect, drainage area, and color. We combine tools from ArcGIS, ERDAS Imagine and Envi with groundtruthing field work to find an optimal combination of attributes for defining sediment production GLUs. Key challenges include distinguishing: weathered from freshly eroded bedrock, boulders from intact bedrock, and landslide deposits from talus slopes. We take advantage of emerging technologies that provide new ways of conducting fieldwork and comparing field data to mapping solutions. In particular, cellphone GPS is approaching the accuracy of dedicated GPS systems and the ability to geo-reference photos simplifies field notes and increases accuracy of later map creation. However, the predictive power of the GLU mapping approach is limited by inherent uncertainty

  9. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along the...

  10. Pine creek geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Ewers, G.R.; Ferguson, J.

    1988-01-01

    The Pine Creek Geosyncline is a 66,000 km 2 inlier of Early Proterozoic metasediments, mafic and felsic intrusives and minor extrusives, surrounding small late Archaean granitic domes. Economic uranium occurrences cluster into three fields, with the Alligator Rivers field being the most significant. The metasediments are alluvial and reduced shallow-water pelites and psammites. Evaporitic carbonate developed on shallow shelves around Archaean islands. Basin development and sedimentation (c. 2000-1870 Ma) were related to gradual subsidence induced by crustal extension. Facies variations and volcanism were in places controlled by the extensional faults. The rocks were metamorphosed to lower the high grade, complexly folded, and intruded by numerous granitoids from c. 1870 to 1730 Ma. Late orogenic felsic volcanics accumulated in local rift systems. Middle Proterozoic sandstone was deposited on a peneplaned and deeply weathered surface from about 1650 Ma. Uranium is enriched in some Archaean and Proterozoic igneous rocks, but there is no local or regional enrichment of the metasedimentary hosts or of the unconformably overlying sandstone. There is no regional gravity, magnetic or radiometric character attributable to the region's significance as a uranium province; contrasts with surrounding sedimentary basins reflect expected differences in rock properties between a heterogeneous igneous/metamorphic region and relatively homogeneous undeformed and unmineralized sediments. Uranium-enriched Archaean and Proterozoic granitoids and felsic volcanics with labile U are likely though not exclusive source rocks. U was probably transported in oxidized low temperature solutions as uranyl complexes and precipitated in reduced, structurally controlled, low-pressure traps. All uranium occurrences are broadly classified as 'Proterozoic unconformity related'. Greatest potential for further discovery is offered in the Alligator Rivers field, where perhaps at least 3 to 5.5 times the

  11. Henretta Creek reclamation project

    International Nuclear Information System (INIS)

    Pumphrey, J.F.

    2009-01-01

    Teck Coal Ltd. operates 6 open-pit coal mines, of which 5 are located in the Elk Valley in southeastern British Columbia. The Fording River Operations (FRO) began in 1971 in mining areas in Eagle Mountain, Turnbull Mountain and Henretta Valley. The recovery of approximately 5 million tons of coal from the Henretta Creek Valley posed significant challenges to mine planners, hydrologists and environmental experts because the coal had to be recovered from the valley flanks and also from under the main valley floor, on which the fish-bearing Henretta Creek runs. The Henretta Dragline Mining project was described along with the water control structures and fisheries management efforts for the cutthroat trout. A detailed Environmental Impact Assessment and Stage 1 mining report for the Henretta Valley area was completed in December 1990. FRO was granted a mining and reclamation permit in 1991. A temporary relocation of 1,270 metres was required in in April 1997 in order to enable mining on both sides and below the creek bed. Among the innovative construction techniques was a diversion of Henretta Creek through large diameter steel culverts and a specialized crossing of the creek to allow fish passage. The first water flowed through the reclaimed Henretta Creek channel in late 1998 and the first high flow occurred in the spring of 2000. Teck coal FRO then launched an annual fish and fish habitat monitoring program which focused on the Henretta Creek Reclaimed Channel and Henretta Lake. This document presented the results from the final year, 2006, and a summary of the 7 year aquatic monitoring program. It was concluded that from mining through to reclamation, the Henretta project shows the commitment and success of mining and reclamation practices at Teck Coal. Indicators of the project's success include riparian zone vegetation, fisheries re-establishment, aquatic communities and habitat utilization by terrestrial and avian species. 33 refs., 1 fig.

  12. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Natural Resource Agency — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  13. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  14. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  15. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  16. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  17. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  18. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  19. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  20. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  1. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  2. The effects of sediment and mercury mobilization in the South Yuba River and Humbug Creek Confluence Area, Nevada County, California: Concentrations, speciation, and environmental fate-Part 1: Field characterization

    Science.gov (United States)

    Fleck, Jacob A.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Hothem, Roger L.; Wright, Scott A.; Ellett, Kevin; Beaulieu, Elizabeth; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Eberl, Dennis D.; Blum, Alex E.; May, Jason T.

    2011-01-01

    Millions of pounds of mercury (Hg) were deposited in the river and stream channels of the Sierra Nevada from placer and hard-rock mining operations in the late 1800s and early 1900s. The resulting contaminated sediments are relatively harmless when buried and isolated from the overlying aquatic environment. The entrained Hg in the sediment constitutes a potential risk to human and ecosystem health should it be reintroduced to the actively cycling portion of the aquatic system, where it can become methylated and subsequently bioaccumulated in the food web. Each year, sediment is mobilized within these fluvial systems during high stormflows, transporting hundreds of tons of Hg-laden sediment downstream. The State of California and resource-management agencies, including the Bureau of Land Management (BLM) and the U.S. Forest Service, are concerned about additional disturbances, such as from suction gold dredging activities, which have the potential to mobilize Hg associated with buried sediment layers elevated in Hg that are otherwise likely to remain buried under normal storm conditions. The BLM initiated a study looking at the feasibility of removing Hg-contaminated sediment at the confluence of the South Yuba River and Humbug Creek in the northern Sierra Nevada of California by using standard suction-dredge technology. Additionally, the California State Water Resources Control Board (SWRCB) supported a comprehensive characterization of the intended dredge site. Together, the BLM and SWRCB supported a comprehensive characterization of Hg contamination at the site and the potential effects of sediment disturbance at locations with historical hydraulic mining debris on downstream environments. The comprehensive study consisted of two primary components: field studies and laboratory experiments. The field component, described in this report, had several study elements: 1) a preliminary, small-scale, in-stream dredge test; 2) comprehensive characterization of grain

  3. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  4. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  5. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    Science.gov (United States)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  6. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  7. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  8. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  9. Treatability study on the Bear Creek Valley characterization area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Phase II work plan for S-3 site contaminated groundwater interception--in-field media evaluation and groundwater capture methods

    International Nuclear Information System (INIS)

    1996-12-01

    A treatability study is being conducted to support implementation:of early actions at the S-3 Site in the Bear Creek Valley (BCV) Characterization Area (CA). The objectives of the early actions Will be (1) to reduce concentrations of uranium and nitrate in Bear Creek and (2) to reduce contaminants of concern in North Tributary (NT)-1 and NT-2. The BCV CA is located within the US DOE's Oak Ridge Reservation in Tennessee. Hazardous and radioactive materials from the Y-12 Plant operations were, disposed of at various sites within BCV. Groundwater and surface water in the BCV CA have been contaminated. The remedial investigation (RI) for the BCV CA identified that the greatest mass flux of contaminants from the various sources migrates via groundwater at the source and discharges to surface water in Bear Creek and its tributaries. In the RI, the combined discharge from the S-3 Site and the Boneyard/Burnyard (BYBY) was identified as accounting for 75% of the cancer risk and more than 80% of the chemical toxicity to Potential downgradient human receptors. In addition, the S-3 Site has caused degradation of surface water quality in upper Bear Creek and two of its tributaries. The BCV CA treatability study focuses on capture and treatment of shallow groundwater before it discharges to tributary waters. The objectives Of treatment of this groundwater are (1) to reduce the concentrations of uranium and nitrate in NT-1 and Bear Creek such that the concentrations of these chemicals in surface water and groundwater are reduced to acceptable levels, (2) to reduce the concentrations of nitrate and metals, and reduce the overall concentration of total dissolved solids; and (3) to hydraulically contain the plume of contaminated, groundwater that is moving in bedrock in the Nolichucky Shale such that the rate of contaminant discharge will be reduced in the long term. The objective of Phase II is to produce conceptual designs for treatment system configurations

  10. Ground water in Creek County, Oklahoma

    Science.gov (United States)

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  11. Pine Creek Ranch, FY 2001 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Berry, Mark E.

    2001-01-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring

  12. Hydrogen sulfide concentration in Beaver Dam Creek

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-01-01

    Concentration-time profiles calculated with LODIPS for various hypothetical releases of hydrogen sulfide from the heavy water extraction facility predict lethal conditions for swamp fish from releases as small as 568 kg discharged over a period of 30 minutes or from releases of 1818 kg discharged over a period of 6 hours or less. The necessary volatilization and oxidation coefficients for LODIPS were derived from field measurements following planned releases of H 2 S. Upsets in the operation of the wastewater strippers in the Girdler-Sulfide (GS) heavy water extraction facility in D Area have released significant amounts of dissolved H 2 S to Beaver Dam Creek. Because H 2 S is toxic to fish in concentrations as low as 1 mg/liter, the downstream environmental impact of H 2 S releases from D Area was evaluated

  13. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Science.gov (United States)

    2010-07-13

    ... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek...-managed public land on Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and... Proposed Land Use Alternative) identified in the final environmental impact statement (FEIS). Under the...

  14. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  15. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  16. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  17. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the Baltimore...

  18. 27 CFR 9.211 - Swan Creek.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  19. 33 CFR 117.231 - Brandywine Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  20. 33 CFR 117.841 - Smith Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  1. 33 CFR 117.324 - Rice Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  2. Currents and siltation at Dharamtar creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Kolhatkar, V.M.; Fernandes, A.A.

    Hydrographic data collected in Dharamtar Creek during 1976-77 have been analysed. This showed that the waters in the Creek are well mixed and the salinity varied with the tide. The tidal currents are found to be generally strong. The distribution...

  3. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  4. Buck Creek River Flow Analysis

    Science.gov (United States)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  5. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  6. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  7. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Science.gov (United States)

    2012-02-24

    ... Operation Regulation; Snake Creek, Islamorada, FL AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of Snake Creek Bridge, mile 0.5, across Snake Creek... schedule of Snake Creek Bridge in Islamorada, Florida. This deviation will result in the bridge opening...

  8. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  9. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  10. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    Science.gov (United States)

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  11. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  12. Some Physicochemical Charateristics of Badagry Creek, Nigeria ...

    African Journals Online (AJOL)

    West African Journal of Applied Ecology ... Badagry Creek runs through Nigeria and Republic of Benin with access to the Atlantic Ocean. ... Colour, surface temperature, pH, salinity, turbidity, phenol, dissolved oxygen, biological oxygen ...

  13. Tritium at the Steel Creek Landing

    International Nuclear Information System (INIS)

    Arnett, M.; Heffner, J.D.; Fledderman, P.D.; Littrell, J.W.; Hayes, D.W.; Dodgen, M.S.

    1998-01-01

    In December 1997 and January 1998, the South Carolina Department of Health and Environmental Control (SCDHEC) collected routine weekly grab samples from the Savannah River near the Steel Creek Boat Landing

  14. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  15. Wolf Creek Generating Station containment model

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-01-01

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project

  16. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-05-03

    ...] Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor Creek, and... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  17. A Peek into 'Alamogordo Creek'

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 On its 825th Martian day (May 20, 2006), NASA's Mars Exploration Rover Opportunity stopped for the weekend to place its instrument arm onto the soil target pictured here, dubbed 'Alamogordo Creek.' Two views from the panoramic camera, acquired at about noon local solar time, are at the top. Below them is a close-up view from the microscopic imager. At upper left, a false-color view emphasizes differences among materials in rocks and soil. It combines images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. At upper right is an approximately true-color rendering made with the panoramic camera's 600-nanometer, 535-nanometer and 480-nanometer filters. The microscopic-imager frame covers the area outlined by the white boxes in the panoramic-camera views, a rectangle 3 centimeters (1.2 inches) across. As Opportunity traverses to the south, it is analyzing soil and rocks along the way for differences from those seen earlier. At this site, the soil contains abundant small spherical fragments, thought to be hematite-rich concretions, plus finer-grained basaltic sand. Most of the spherical fragments seen in the microscopic image are smaller than those first seen at the rover's landing site in 'Eagle Crater,' some five kilometers (3.1 miles) to the north. However, a few larger spherical fragments and other rock fragments can also be seen in the panoramic-camera images.

  18. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  19. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  20. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    The study was aimed at assessing the quality of water from the Ogbe Creek ... indicated the impact of the perturbational stress on the organisms inhabiting the creek. ... experiences seasonal flooding which introduces a lot of detritus and ...

  1. Plankton biodiversity of Dharamtar creek adjoining Mumbai harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    rich plankton community. However, recent industrial development along the banks of creek may pose the problem due to waste disposal into this creek system. Losses of marine life diversity are largely the results of conflicting uses, in particular...

  2. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  3. FIDDLER CREEK POLYMER AUGMENTATION PROJECT; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  4. Streamflow conditions along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  5. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  6. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet Estuary,...

  7. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-02-02

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD AGENCY: Coast Guard, DHS. ACTION: Notice... operation of the Baltimore County highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk... Avenue across Bear Creek, mile 3.4 between Dundalk and Sparrows Point, MD. This change would require the...

  8. Sedimentation Study and Flume Investigation, Mission Creek, Santa Barbara, California; Corte Madera Creek, Marin County, California

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2000-01-01

    .... An existing concrete-lined flood control channel on Corte Madera Creek in Marin County, California lacks a debris basin at its upstream terminus and carries significant bed load through a supercritical flow reach...

  9. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  10. Drywell corrosion stopped at Oyster Creek

    International Nuclear Information System (INIS)

    Lipford, B.L.; Flynn, J.C.

    1993-01-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results

  11. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  12. Tidal mixing in Dahej creek waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Sarma, R.V.

    Mixing characteristics of a tidal inlet near Dahej at the mouth of Narmada River, Gujarat, India are examined in terms of tides, currents and bathymetry. The dilution potential of the Dahej Creek waters during a tidal march for a given rate...

  13. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  14. UTILIZING CREEKS FOR INTEGRATED RURAL COASTAL ...

    African Journals Online (AJOL)

    Osondu

    2013-02-09

    Feb 9, 2013 ... This study examines the Utilization of Creeks for Integrated Coastal Development of Ilaje ... utilization, poor fishing techniques, poor sources of water and navigation routes, and manual ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.3 .... together, implement, monitor and evaluate.

  15. Collaborative monitoring in Walnut Creek, California

    Science.gov (United States)

    Heidi Ballard; Ralph Kraetsch; Lynn Huntsinger

    2002-01-01

    In 1995 and 2000, a monitoring program was designed and implemented to track oak regeneration and native grass populations in target management areas in the four Open Space Preserves of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the...

  16. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota

    2017-09-01

    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  17. Sediment sources and storages in the urbanizing South Creek catchment, Lake Macquarie, NSW

    International Nuclear Information System (INIS)

    Curtis, S.J.

    1988-10-01

    An investigation of the sediment source areas and sediment storages has been undertaken in the South Creek catchment, Lake Macquarie, NSW. Source areas have been examined by analyzing suspended sediment concentrations, field measurements and observations, and caesium-137 values. The caesium-137 technique and field measurements were used to study the sediment storages on the South Creek flood plain. Particle size analysis of sediments on the slopes and flood plain were undertaken to provide information on the efficiency of the sediment transport system. The results of these investigations indicate that the developing urban areas are the main sources of poorest water quality (in terms of suspended sediment) in the South Creek catchment. The open woodland, rural and established urban areas were minor sediment source areas, although the open woodland had the potential to become a major sediment source if disturbed by human activities. The developing urban areas had efficient sediment transport systems, while the open woodland and rural areas tended to deposit sediment locally. The upstream section of the flood plain was found to be storing more sediment than the downstream section. The study revealed that when urban development occurs on the steeper gradients of the South Creek catchment erosion processes are greatly accelerated and thus the developing urban area becomes the major source of poorest water quality in the catchment. The importance of the developing urban area as a sediment source needs to be considered in any future land developments in urbanizing drainage basins

  18. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  19. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  20. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  1. The macroinvertebrates of Magela Creek, Northern Territory

    International Nuclear Information System (INIS)

    Marchant, R.

    1982-04-01

    The littoral zones of five permanent billabongs in Magela Creek were sampled monthly for macroinvertebrates. Greatest numbers of taxa and individuals were caught in the late wet season and early dry season in the shallow billabongs; in the deep billabongs, seasonal variations were not so marked. These changes appeared to be associated with the development of macrophytes, which offered food and shelter to the invertebrate fauna. The dominant groups were the Chironomidae, Oligochaetae and Ephemeroptera. The seasonal patterns of the catches were sufficiently consistent for future samples to be able to be compared with these initial ones with some confidence that any changes are real. This work is part of a larger study into the biota and water quality of Magela Creek designed to provide data on aquatic communities before mining of the Ranger uranium deposit starts

  2. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  3. Clean Coal Power at Toms Creek

    International Nuclear Information System (INIS)

    Schmid, M.R.

    1993-01-01

    On October 20, 1992 the US Department of Energy (DOE), through the Morgantown Energy Technology Center, entered into Cooperative Agreement DE-FC-21-93MC92444 with TAMCO Power Partners to implement the Toms Creek Integrated Gasification Combined - Cycle Demonstration Project. The process design is proceeding as scheduled, and a draft Environmental Information Volume has been produced. The overall project schedule, however, may have to be adjusted when the Power Sales Agreement has been finalized

  4. Final Environmental Assessment, Horse Creek Bridge Replacement

    Science.gov (United States)

    2010-10-01

    existing bridge pipes that have failed and replace the failed structure with a new, prefabricated pedestrian bridge within the original bridge footprint...vehicles, nor designed for support of standard passenger vehicle loads. The bridge would be a single prefabricated unit consisting of a steel grate...placed on new concrete abutments built on the existing foundations on the creek banks, and put in place by a crane operating from the vehicle parking

  5. Channel stability of Turkey Creek, Nebraska

    Science.gov (United States)

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  6. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  7. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  8. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    International Nuclear Information System (INIS)

    Burjorjee, D.; Gan, B.

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops

  9. The Patroon Creek Contamination Migration Investigation

    International Nuclear Information System (INIS)

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-01-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areas of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek, and

  10. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  11. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    Science.gov (United States)

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  12. The natural channel of Brandywine Creek, Pennsylvania

    Science.gov (United States)

    Wolman, M.G.

    1955-01-01

    This study of the channel of Brandy wine Creek, Pennsylvania, consists of three parts. The first is an analysis of the changes which take place in the width, depth, velocity, slope of the water surface, suspended load, and roughness factor with changing discharge below the bankfull stage at each of several widely separated cross sections of the channel. Expressed as functions of the discharge, it is found that the variables behave systematically. In every section studied, as the discharge increases, the velocity increases to about the 0.6 power, depth to the 0.4, and load to the 2.0 power of the discharge. The roughness decreases to the 0.2 power of the discharge. The relative magnitudes and the direction of these variations are similar to those which have been observed in other rivers in the United States, primarily in the West. Some modifications of the hypotheses applicable to the western rivers are probably required because on Brandywine Creek the difference between the materials on the bed and in the banks is considerably greater than it is on most of the western rivers studied. In the second part of the paper the progressive changes of the same variables in the downstream direction with increasing discharge at a given frequency are described. Despite the disorderly appearance of the stream, it is found that the variables display a progressive, orderly change in the downstream direction when traced from the headwater tributaries through the trunk stream of Brandywine Creek. At a given frequency of flow, width increases with discharge to about the 0.5 power. Depth increases downstream somewhat less rapidly, while the slope and roughness both decrease in the downstream direction. Despite a decrease in the size of the material on the bed, both the mean velocity and the mean bed velocity increase downstream. The rates of change of these variables are in close accord with the changes observed on rivers flowing in alluvium and in stable irrigation canals. These

  13. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  14. Bear Creek Project. Final environmental statement

    International Nuclear Information System (INIS)

    1977-06-01

    The Bear Creek Project consists of certain mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from nine known ore bodies will take place over a period of ten years (estimated); a mill with a nominal capacity of 1000 tons per day of ore will be constructed and operated as long as ore is available. The waste material (tailings) from the mill, also produced at a rate of about 1000 tons per day, will be stored onsite in an impoundment. Environmental impacts and adverse effects are summarized

  15. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  16. 75 FR 57766 - Ryckman Creek Resources, LLC; Notice of Petition

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-498-000] Ryckman Creek Resources, LLC; Notice of Petition September 15, 2010. Take notice that on September 3, 2010, Ryckman Creek..., a petition for an Exemption of Temporary Acts and Operations and Request for Expedited Approval...

  17. 33 CFR 117.1001 - Cat Point Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  18. 33 CFR 117.800 - Mill Neck Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  19. 33 CFR 117.705 - Beaver Dam Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  20. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Science.gov (United States)

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  1. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Science.gov (United States)

    2013-12-19

    ... operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across... performing lift bridge maintenance and upgrades for the BNSF Chambers Creek Railway Bridge across Chambers... maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements...

  2. Waterflood using a muskeg water source Milligan Creek Unit, B. C

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, W C

    1968-01-01

    The Milligan Creek field, in NE. British Columbia, is a small but high capacity sand reservoir of Triassic age. Waterflooding was initiated early in the life of the reservoir to provide pressure maintenance and increase oil recovery from the pool. Due to the lack of a subsurface supply in the area, muskeg water from a nearby creek was utilized. This cold water with its high content or iron and organic material has proven to be a major water treatment problem. After considerable experimentation a process using flocculation, filtration through a sand- anthracite filter, and deaeration was found to yield water satisfactory for injection. Seasonal variation in water quality remains a problem. Four years of waterflooding have yielded satisfactory results with a decrease in voidage, an increase in reservoir pressure and the attainment of a high level of production for a pool of this size. Performance has been accurately predicted by means of a potentiometric model.

  3. Prioritization of buffer areas with multi objective analysis: application in the Basin Creek St. Helena

    International Nuclear Information System (INIS)

    Zuluaga, Julian; Carvajal, Luis Fernando

    2006-01-01

    This paper shows a Multi objective Analysis (AMO-ELECTRE 111) with Geographical Information System (GIS) to establish priorities of buffer zones on the drainage network of the Santa Elena Creek, Medellin middle-east zone. 38 alternatives (small catchment) are evaluated with seven criteria, from field work, and maps. The criteria are: susceptibility to mass sliding, surface and lineal erosion, conflict by land use, and state of the waterways network in respect to hydrology, geology and human impact. The ELECTERE III method allows establishing priorities of buffer zones for each catchment; the indifference, acceptance, veto, and credibility threshold values, as well as those for criteria weighting factors are very important. The results show that the north zone of the catchment, commune 8, in particular La Castro creek, is most affected. The sensibility analysis shows that the obtained solution is robust, and that the anthropic and geologic criteria are paramount

  4. Hoe Creek 1990 quarterly sampling cumulative report

    Energy Technology Data Exchange (ETDEWEB)

    Crader, S.E.; Huntington, G.S.

    1991-03-01

    Groundwater samples were collected and analyzed for benzene and for total phenols three times during 1990. This report summarizes the results of these sampling events and compares the results with those obtained in previous years. Possible further options for remediation of the Hoe Creek site was addressed. Three underground coal gasification (UCG) burns were performed by Lawrence Livermore National Laboratory for the US Department of Energy in 1976, 1977, and 1979 at the Hoe Creek site, which is about 20 miles south of Gillette, Wyoming. As a result of these burns, there has been considerable contamination of groundwater by various organic compounds. There have been three efforts at remediating this situation. In 1986 and again in 1987, contaminated water was pumped out, treated, and reinjected. In 1989, the water was pumped, treated, and sprayed into the atmosphere. Benzene and total phenols have been monitored at various monitoring wells as the site during 1990. The highest detected benzene concentration in 1990 was 220 {mu}g/L, and the highest total phenols concentration was 430 {mu}g/L. It is apparent that contamination is still above baseline levels, although the concentration of total phenols is far less than immediately after the burns. The burned coal seams are still releasing organic compounds into the groundwater that passes through them.

  5. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    International Nuclear Information System (INIS)

    Watson, David B.; Brooks, Scott C.; Mathews, Teresa J.; Bevelhimer, Mark S.; DeRolph, Chris; Brandt, Craig C.; Peterson, Mark J.; Ketelle, Richard

    2016-01-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats' surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  6. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  7. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  8. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  9. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  10. An overview of metallic mineralization in the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Roarty, M.J.

    1980-01-01

    Although renowned for its relatively recently discovered large uranium deposits, the Pine Creek Geosyncline has a history of exploitation dating back to 1865, during which time 16 metals have been extracted. Uranium makes up 96.8 percent of the value of recorded production and reserves at present metal prices, lead 1.9 percent, gold and zinc 0.32 percent each, iron 0.2 percent, silver 0.2 percent and all other metals 0.3 percent. The Alligator Rivers Uranium Field accounts for 95 percent of the total value of recorded production and reserves, the Rum Jungle Uranium Field 4 percent, and all other areas 1 percent. Deposits range from stratiform through stratabound to vein-type. Most have undergone some degree of alteration or remobilisation, and extreme metasomatism in some masks clues to the earlier evolution of the deposits. Small vein-type hydrothermal deposits, clustered around intrusive granites, predominate. Other deposits can be sub-divided into those associated with the basement, those associated with the Masson and Cahill Formations, and those associated with the Gerowie Tuff, Koolpin, and Kapalga Formations. Many deposits have undergone supergene concentration near the surface, and some have been formed predominantly by this process. Uranium appears to have been mainly derived from Archaean source rocks, and base metals and some precious metals from volcanic exhalative sources. Main areas of potential are the Alligator Rivers region for uranium and possibly gold, and the central part of the geosyncline for base metals. (author)

  11. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  12. Evaluation of Lower East Fork Poplar Creek Mercury Sources - Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Melanie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The purpose of this report is to assess new data that has become available and provide an update to the evaluations and modeling presented in the Oak Ridge National Laboratory (ORNL) Technical Manuscript Evaluation of lower East Fork Poplar Creek (LEFPC) Mercury Sources (Watson et al., 2016). Primary sources of field and laboratory data for this update include multiple US Department of Energy (DOE) programs including Environmental Management (EM; e.g., Biological Monitoring and Abatement Program, Mercury Remediation Technology Development [TD], and Applied Field Research Initiative), Office of Science (Mercury Science Focus Areas [SFA] project), and the Y-12 National Security Complex (Y-12) Compliance Department.

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  14. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A - Waste sites, source terms, and waste inventory report; Appendix B - Description of the field activities and report database; Appendix C - Characterization of hydrogeologic setting report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV

  15. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  16. Bereavement rituals in the Muscogee Creek tribe.

    Science.gov (United States)

    Walker, Andrea C; Balk, David E

    2007-08-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included: (a) conducting a wake service the night before burial; (b) never leaving the body alone before burial; (c) enclosing personal items and food in the casket; (d) digging graves by hand; (e) each individual throwing a handful of dirt into the grave before covering, called giving a "farewell handshake"; (f) covering the grave completely by hand; (g) building a house over the grave; (h) waiting 4 days before burial; (i) using medicine/purification; and (j) adhering to socialized mourning period. Cultural values of family, community, religion, importance of the number 4, Indian medicine, and the meaning of death contributed to the development of these rituals.

  17. Bear Creek Project. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    The Bear Creek Project consists of mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from six known ore bodies will take place over ten years; a 1000 tons ore/day will be constructed and operated as long as ore is available. The tailings will be stored onsite in an impoundment. The project would convert 2700 acres from grazing use to mining/milling activities for about ten years. Mining would disturb a total of 1600 acres but, because of reclamation, the max acreage disturbed at any one time would be about 1000 acres, the average being about 650 acres. Dose rates were computed for an individual in a ranch house at the nearest ranch. Conditions for the protection of the environment are proposed. Possible environmental impacts evaluated cover air, land, water, soil, vegetation, wildlife, and community. A benefit-cost analysis is made

  18. Four Mile Creek semi-annual sampling report, January 1993 sampling event

    International Nuclear Information System (INIS)

    1993-05-01

    From 1955 to 1988 low-level radioactive wastewater generated by chemical separation processes within the General Separations Area (GSA) was discharged to seepage basins in the F and H Areas of the Savannah River Site (SRS). These basins were designed to permit the infiltration of the process wastewaters. As wastewater percolated downward through the basins, chemical and radioactive constituents were retained or sequestered in the subsoils. An extensive study aimed at characterizing the groundwater seeping into Four Mile Creek and its associated seepline was conducted in 1988 and 1989 (Haselow et al. 1990). Results of this study suggested that contaminants leaching from the F and H Area seepage basins were impacting the Four Mile Creek wetland system. The seepage basins were closed in 1988 and capped and sealed in 1990. This effectively eliminated the source of the contaminants and the hydraulic head driving the migration of contaminants from the basins. It has been hypothesized that, after the elimination of the source and head, annual rainfall amounts would be sufficient to dilute and flush out contaminants remaining in the subsoils and groundwaters beneath the basins. Westinghouse Savannah River Company has designed a semi-annual sampling and analytical program for the Four Mile Creek (FMC) seepline and stream water to test the hypothesis. This report summarizes field monitoring activities from January 25, 1993 to February 4, 1993

  19. Benthic macroinvertebrate assemblages and sediment toxicity testing in the Ely Creek watershed restoration project

    International Nuclear Information System (INIS)

    Soucek, D.J.; Currie, R.J.; Cherry, D.S.; Latimer, H.A.

    1998-01-01

    The Ely Creek watershed in Lee County, Virginia, contains an abundance of abandoned mined land (AML) seeps that contaminate the majority of the creek and its confluence into Big Stone Creek. Contaminated sediments had high concentrations of iron (∼10,000 mg/kg), aluminum (∼1,500 mg/kg), magnesium (∼400 mg/kg) and manganese (∼150 mg/kg). Copper and zinc generally ranged from 3 to 20 mg/kg. Benthic macroinvertebrates surveys at six of 20 sites sampled in the watershed yielded no macroinvertebrates, while eight others had total abundances of 1 to 9 organisms. Four reference sites contained ≥100 organisms and at least 14 different taxa. Laboratory, 10-day survival/impairment sediments tests with Daphnia magna did not support the field data. Mortality of 92 to 100% for D. magna occurred in samples collected from six cities. Daphnid reproduction was more sensitive than laboratory test organism survivorship; however, neither daphnid survivorship nor reproduction were good predictors of taxa richness. Laboratory test concerns included the use of a reference diluent water rather than site specific diluent water

  20. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  1. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  2. Hydrogeologic Assessment of the East Bear Creek Unit, San LuisNational Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2007-07-15

    San Luis National Wildlife Refuge Complex to meetReclamation s obligations for Level 4 water supply under the CentralValley Project Improvement Act. Hydrogeological assessment of the EastBear Creek Unit of the San Luis National Wildlife Refuge was conductedusing a combination of field investigations and a survey of availableliterature from past US Geological Survey Reports and reports by localgeological consultants. Conservative safe yield estimates made using theavailable data show that the East Bear Creek Unit may have sufficientgroundwater resources in the shallow groundwater aquifer to meet aboutbetween 25 percent and 52 percent of its current Level II and between 17percent and 35 percent of its level IV water supply needs. The rate ofsurface and lateral recharge to the Unit and the design of the well fieldand the layout and capacity of pumped wells will decide both thepercentage of annual needs that the shallow aquifer can supply andwhether this yield is sustainable without affecting long-term aquiferquality. In order to further investigate the merits of pumping the nearsurface aquifer, which appears to have reasonable water quality for usewithin the East Bear Creek Unit -- monitoring of the potential sources ofaquifer recharge and the installation of a pilot shallow well would bewarranted. Simple monitoring stations could be installed both upstreamand downstream of both the San Joaquin River and Bear Creek and beinstrumented to measureriver stage, flow and electrical conductivity.Ideally this would be done in conjunction with a shallow pilot well,pumped to supply a portion of the Unit's needs for the wetland inundationperiod.

  3. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  4. Ecology of phytoplankton from Dharmatar Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Phytoplankton pigment, cell count and species diversity wee studied at five locations in Dharamtar Creek during September 1984 to November 1985. Chemical parameters indicated a healthy system free of any environmental stress. The water...

  5. Missing link between the Hayward and Rodgers Creek faults.

    Science.gov (United States)

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-10-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface-a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake ( M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  6. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    bedoti was the true inhabitant. In general zooplankton production indicated 1.5 fold increase towards the upper reaches of the creek where salinity variations were drastic. A more diversified faunal assemblage of oceanic and neritic species characterised...

  7. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  8. Results of the 2000 Creek Plantation Swamp Survey

    International Nuclear Information System (INIS)

    Fledderman, P.D.

    2000-01-01

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible

  9. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth

    Science.gov (United States)

    Chen, Y.; Thompson, C. E. L.; Collins, M. B.

    2012-03-01

    The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.

  10. Ocean breeze monitoring network at the Oyster Creek Nuclear Plant

    International Nuclear Information System (INIS)

    Heck, W.

    1987-01-01

    The Oyster Creek Nuclear Generating Station (OCNGS) is located in New Jersey 10 km west of the Atlantic Ocean. Routine meteorological monitoring at the station has consisted of a single meteorological tower 120 m high and instrumented at the 10-m, 46-m, and 116-m levels. An analysis of 5 yr of data from this tower showed the OCNGS is affected by an ocean breeze ∼ 1 day out of 4 during May through August. This suggested the need for meteorological monitoring in addition to the single met tower at OCNGS. As a result of the 1985 OCNGS meteorological monitoring study, GPU Nuclear established an ocean breeze monitoring network in the fall of 1986. It is a permanent part of OCNGS meteorological monitoring and consists of the same sites as used in the 1985 field study. Meteorological towers are located at the ocean site, the inland site, and at OCNGS. The ocean tower is 13 m (43 ft) high, the inland tower 10 m (33 ft), and the OCNGS tower 116 m (380 ft). Wind speed, wind direction, and temperature are measured on each tower; delta-temperature is also measured on the main tower. The instruments are calibrated in the spring, summer, and fall. The network is operated and maintained by GPU Nuclear Environmental Controls. The ocean breeze monitoring network and meteorological information system forms the basis for including the effects of the ocean breeze in OCNGS emergency off-site dose assessment

  11. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    period of 1 year, or the 1-year storm), which is a statistically common (high probability) storm. The Big Cottonwood Creek site is downstream from the Hayden Pass Fire burn area, which dramatically altered the hydrology of the watershed and caused this statistically rare (low probability) flood from a statistically common (high probability) storm. The peak flood stage at the cross section closest to the U.S. Highway 50 culvert was 6,438.32 feet (ft) above the North American Datum of 1988 (NAVD 88).The August 29, 2016, flood at the Fountain Creek site had an estimated annual exceedance probability of 0.5505 (return period equal to the 1.8-year flood). The August 29, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return period of 1 year, or the 1-year storm). The peak stage during this flood at the cross section closest to the U.S. Highway 24 bridge was 5,832.89 ft (NAVD 88).Slope-area indirect discharge measurements were carried out at the Big Cottonwood Creek and Fountain Creek sites to estimate peak discharge of the August 23, 2016, flood and August 29, 2016, flood, respectively. The USGS computer program Slope-Area Computation Graphical User Interface was used to compute the peak discharge by adding the surveyed cross sections with Manning roughness coefficient assignments to the high-water marks. The Manning roughness coefficients for each cross section were estimated in the field using the Cowan method.

  12. Surface-water resources of Polecat Creek basin, Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  13. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  14. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    Science.gov (United States)

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  15. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-09-01

    Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

  16. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  17. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  18. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    Science.gov (United States)

    Cravotta,, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  19. Puente Willow Creek en Monterrey, California

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-09-01

    Full Text Available Of the 10 awards given every year by the Prestressed Concrete Institute for the most outstanding prestressed concrete projects, two have been awarded in California this year, one of them to the Willow Creek bridge, near Monterrey. The prestressed, double T girders of this bridge were made at a workshop, a great distance from the bridge site. These are 24 m long, 1.35 m high, and are stabilized by transversal diaphragms, 20 cm in thickness. The table deck is of reinforced concrete, being 8.85 m wide and 20 cm thick. The structure is straightforward, slender, and adapts itself pleasantly to the background. It has seven spans and crosses over a secondary road, in addition to bridging the Willow stream. The supporting piles are hollow, of rectangular cross section, and over them a cross beam carries the five girders and the deck itself. The end abutments consist of vertical reinforced concrete walls, and supporting, soil filled, structures. The above information was supplied by the California Road Department.De los diez premios que anualmente concede el Prestressed Concrete Institute para las obras de hormigón pretensado más notables, dos han correspondido a California y uno de ellos al puente de Willow Creek, situado en la región de Monterrey. Las vigas de hormigón pretensado, con sección en forma de doble T, se prefabricaron en un taller situado a gran distancia del puente. Tienen 24 m de longitud y 1,35 m de canto, estando arriostradas con diafragmas transversales de 20 cm de espesor. La losa del tablero, de hormigón armado, tiene 8,85 m de anchura y 20 cm de espesor. La estructura es sencilla, esbelta y armoniza perfectamente con el paisaje que la circunda. Tiene siete tramos y salva un paso inferior secundario y el arroyo Willow. Los soportes, se apoyan sobre pilotes, algunos de gran altura; son huecos, de sección rectangular y terminan en una cruceta que sirve de sostén a las cinco vigas que soportan la losa del tablero. Los estribos

  20. Regional geology of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Crick, I.H.; Stuart-Smith, P.G.

    1980-01-01

    The Pine Creek Geosyncline comprises about 14km of chronostratigraphic mainly pelitic and psammitic Lower Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as three small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Lower Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The Lower Proterozoic metasediments are mainly pelites (about 75 percent) which are commonly carbonaceous, lesser psammites and carbonates (about 10 percent each), and minor rudites (about 5 percent). Volcanic rocks make up about 10 percent of the total sequence. The environment of deposition ranges from shallow-marine to supratidal and fluviatile for most of the sequence, and to flysch in the topmost part. Poor exposure and deep weathering over much of the area hampers correlation of rock units; the correlation preferred by the authors is presented, and possible alternatives are discussed. Regional geological observations pertinent to uranium ore genesis are described. (author)

  1. Pine Creek Geosyncline, N.T

    International Nuclear Information System (INIS)

    Ewers, G.R.; Ferguson, J.; Needham, R.S.; Donnelly, T.H.

    1984-01-01

    The Pine Creek Geosyncline comprises about 14 km of chronostratigraphic mainly pelitic and psammitic Early Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800 Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast, granulites are present in the extreme northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Early Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10 km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The uranium deposits post-date the approx. 1800 Ma regional metamorphic event; isotopic dating of uraninite and galena in the ore bodies indicates ages of mineralisation at approx. 1600 Ma, approx. 900 Ma and approx. 500 Ma. The ore bodies are stratabound, located within breccia zones, are of a shallow depth, and occur immediately below the Early/Middle Proterozoic unconformity

  2. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  3. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  4. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J.; Burris, J.A.

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  5. Characterization of hydrology and water quality of Piceance Creek in the Alkali Flat area, Rio Blanco County, Colorado, March 2012

    Science.gov (United States)

    Thomas, Judith C.

    2015-12-07

    Previous studies by the U.S. Geological Survey identified Alkali Flat as an area of groundwater upwelling, with increases in concentrations of total dissolved solids, and streamflow loss, but additional study was needed to better characterize these observations. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, White River Field Office, conducted a study to characterize the hydrology and water quality of Piceance Creek in the Alkali Flat area of Rio Blanco County, Colorado.

  6. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    Science.gov (United States)

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  7. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  8. Sherman Creek Hatchery, annual report 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were done to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear 200,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake

  9. Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine

    2011-01-01

    Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the

  10. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  11. 75 FR 66077 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental...

    Science.gov (United States)

    2010-10-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12555-004-PA] Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Supplemental Environmental Assessment... Energy Projects has reviewed the application for an original license for the Mahoning Creek Hydroelectric...

  12. Marine ecological habitat: A case study on projected thermal power plant around Dharamtar creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Naidu, V.S.; Jagtap, T.G.

    Estuaries and tidal creeks, harboring mangroves particularly, face tremendous anthropogenic pressures. Expansion of mega cities and the thermal power plants are generally proposed in the vicinity of estuaries and creek, due to the feasibility...

  13. 76 FR 8728 - Bear Creek Hydro Associates, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2011-02-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13951-000] Bear Creek Hydro..., Motions To Intervene, and Competing Applications On December 22, 2010, the Bear Creek Hydro Associates... (FPA), proposing to study the [[Page 8729

  14. Phytoplankton characteristics in a polluted Bombay Harbour-Thana-Bassein creek estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ramaiah, N.; Nair, V.R.

    Annual variations in phytoplankton characteristics were studied from Bombay Harbour-Thana creek-Bassein creek (BHTCBC) estuarine confluence to assess the levels of pigment concentration, productivity and, qualitative and qunatitative nature...

  15. 78 FR 26063 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Final Environmental...

    Science.gov (United States)

    2013-05-03

    ...-100-00-0-0, CUPCA00] Central Utah Project Completion Act; East Hobble Creek Restoration Project Final... Creek Restoration Project. These two agencies have determined that the proposed [[Page 26064

  16. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    International Nuclear Information System (INIS)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.; Wolf, D.A.

    1981-01-01

    The purpose of the Date Creek Supplement is to characterize the chemistry of sediment samples representing stream basins in which the Anderson Mine (and related prospects) occur. Once characterized, the chemistry is then used to delineate other areas within the Date Creek Basin where stream sediment chemistry resembles that of the Anderson Mine area. This supplementary report examines more closely the data from sediment samples taken in 239 stream basins collected over a total area of approximately 900 km 2 (350 mi 2 ). Cluster and discriminant analyses are used to characterize the geochemistry of the stream sediment samples collected in the Date Creek Basin. Cluster and discriminant analysis plots are used to delineate areas having a potential for uranium mineralization similar to that of the Anderson Mine

  17. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    Science.gov (United States)

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  18. Petrographic and geochemical characteristics of the Cypress Creek salt core

    International Nuclear Information System (INIS)

    1983-07-01

    Law Engineering Testing Company supervised the drilling of a corehole into the stock of Cypress Creek Dome, located in Perry County, Mississippi. A total of 170 ft of caprock and 501 ft of salt stock was recovered for physical examination and chemical analysis. This report describes the types of analyses performed and summarizes the data developed. The entire caprock and salt core were described and photographed prior to selection of samples for petrologic and geochemical analysis. Transmitted light techniques were used to determine gross structural and compositional variations in the core. The core lithologies are presented graphically, at a scale of 1 in. to 2 ft. In addition to the detailed field descriptions and photographs, petrologic studies performed on selected caprock and salt samples included: thin-section examination, scanning-electron microscope studies, energy-dispersion analysis, and x-ray-diffraction analysis. Geochemical analyses were performed to determine the average elemental composition of the salt core and amounts of methane and carbon dioxide gases contained within the salt grains. Except for two thin (3 and 6 ft thick) gypsum zones in the top 27 ft of the caprock, the core is predominantly anhydrite (generally 80%). Minor amounts of dolomite and calcite are also present. The salt core consists predominantly of crystalline halite, fine- to medium-grained (0.25 to 1 in.) with few megacrysts. Anhydrite occurs in the salt core as disseminated grains, ranging in length from <0.1 in. to 12 in. Discrete zones exist within the salt core, distinguished from one another primarily by the character of the anhydrite inclusions

  19. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    Science.gov (United States)

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  20. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    Science.gov (United States)

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to

  1. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F T; Mead, S W; Stuermer, D H

    1982-05-20

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the ground water. However, field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, valuable lessons ere learned concerning groundwater monitoring. A suggested monitoring strategy is discussed.

  2. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  3. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their... Granite Creek Watershed Mining Plans analysis area that meets the Purpose of and Need for Action. It is... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an...

  4. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  5. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  6. 76 FR 65118 - Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD

    Science.gov (United States)

    2011-10-20

    ...-AA09 Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD AGENCY: Coast Guard, DHS. ACTION... regulation. The Baltimore County Revenue Authority (Dundalk Avenue) highway toll drawbridge across Bear Creek... applicable or necessary. Basis and Purpose The drawbridge across Bear Creek, mile 1.5 was removed and...

  7. 75 FR 31418 - Intermountain Region, Payette National Forest, Council Ranger District; Idaho; Mill Creek-Council...

    Science.gov (United States)

    2010-06-03

    ... Ranger District; Idaho; Mill Creek--Council Mountain Landscape Restoration Project AGENCY: Forest Service... the Mill Creek--Council Mountain Landscape Restoration Project. The approximate 51,900 acre project area is located about two miles east of Council, Idaho. The Mill Creek--Council Mountain Landscape...

  8. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Science.gov (United States)

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission (Commission) of...

  9. Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001

    Science.gov (United States)

    Galeone, Daniel G.; Low, Dennis J.

    2003-01-01

    Powell Creek and Armstrong Creek Watersheds are in Dauphin County, north of Harrisburg, Pa. The completion of the Dauphin Bypass Transportation Project in 2001 helped to alleviate traffic congestion from these watersheds to Harrisburg. However, increased development in Powell Creek and Armstrong Creek Watersheds is expected. The purpose of this study was to establish a baseline for future projects in the watersheds so that the effects of land-use changes on water quality can be documented. The Pennsylvania Department of Environmental Protection (PADEP) (2002) indicates that surface water generally is good in the 71 perennial stream miles in the watersheds. PADEP lists 11.1 stream miles within the Armstrong Creek and 3.2 stream miles within the Powell Creek Watersheds as impaired or not meeting water-quality standards. Siltation from agricultural sources and removal of vegetation along stream channels are cited by PADEP as likely factors causing this impairment.

  10. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  11. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  12. Preliminary investigations on the Ichthyodiversity of Kilifi Creek, Kenya

    African Journals Online (AJOL)

    (Smith, 1939) off the Kenyan coast at Malindi only. 50 km north of ... communities, river fed creek, upstream and the bay proper, in Gazi ... habitat degradation: pollution, overfishing, ..... exploitable fishes from a marine park and its effect on the ...

  13. 78 FR 67084 - Drawbridge Operation Regulation; Broad Creek, Laurel, DE

    Science.gov (United States)

    2013-11-08

    ...-AA09 Drawbridge Operation Regulation; Broad Creek, Laurel, DE AGENCY: Coast Guard, DHS. ACTION: Notice....25, both at Laurel, DE. The proposed new rule would change the current regulation by requiring a..., mile 8.2, all at Laurel, shall open on signal if at least 48 hours notice is given. Previous regulation...

  14. Short notes and reviews The fossil fauna of Mazon Creek

    NARCIS (Netherlands)

    Schultze, Hans-Peter

    1998-01-01

    Review of: Richardson’s Guide to the Fossil Fauna of Mazon Creek, edited by Charles W. Shabica & Andrew A. Hay. Northeastern Illinois University, Chicago, Illinois, 1997: XVIII + 308 pp., 385 figs., 4 tables, 1 faunal list; $75.00 (hard cover) ISBN 0-925065-21-8. Since the last century, the area

  15. Forest Creeks Research Natural Area: guidebook supplement 39

    Science.gov (United States)

    Reid Schuller; Ron Halvorson

    2010-01-01

    This guidebook describes Forest Creeks Research Natural Area, a 164-ha (405-ac) area comprising two geographically distinct canyons and associated drainages. The two units have been established as examples of first- to third-order streams originating within a ponderosa pine (Pinus ponderosa) zone. The two riparian areas also represent examples of...

  16. Copepod composition, abundance and diversity in Makupa Creek ...

    African Journals Online (AJOL)

    Evenness (J) was, however, relatively constant (0.67 to 0.84) during the entire sampling period. These results point to suppressed copepod diversity and abundance in Makupa Creek, and possible reasons for this, which may include environmental degradation caused by pollution, are presented. Western Indian Ocean ...

  17. Cherry Creek Research Natural Area: guidebook supplement 41

    Science.gov (United States)

    Reid Schuller; Jennie Sperling; Tim Rodenkirk

    2011-01-01

    This guidebook describes Cherry Creek Research Natural Area, a 239-ha (590-ac) area that supports old-growth Douglas-fir-western hemlock (Pseudotsuga menziesii- Tsuga heterophylla) forest occurring on sedimentary materials in the southern Oregon Coast Range. Major plant associations present within the area include the western hemlock/Oregon oxalis...

  18. Fish Creek Rim Research Natural Area: guidebook supplement 50

    Science.gov (United States)

    Reid Schuller; Ian Grinter

    2016-01-01

    This guidebook describes major biological and physical attributes of the 3531-ha (8,725-ac) Fish Creek Rim Research Natural Area located within the Northern Basin and Range ecoregion and managed by the Bureau of Land Management, Lakeview District (USDI BLM 2003).

  19. WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987

    Science.gov (United States)

    In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

  20. Tillman Creek Mitigation Site As-Build Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  1. 78 FR 47427 - AUC, LLC Reno Creek, In Situ

    Science.gov (United States)

    2013-08-05

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 040-09092; NRC-2013-0164] AUC, LLC Reno Creek, In Situ... October 3, 2012, AUC submitted a license application to the U.S. Nuclear Regulatory Commission (NRC... provided the first time that a document is referenced. The AUC License Application request and additional...

  2. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...

  3. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  4. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    International Nuclear Information System (INIS)

    Matscha, G.; Sutherland, D.

    2005-06-01

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs

  5. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-34-000] Bear Creek..., 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569 Brookwood Village, Suite 749, Birmingham....208, 157.213 and 157.216 of the Commission's Regulations under the Natural Gas Act, and Bear Creek's...

  6. The characteristics and interpretation of regional gravity, magnetic and radiometric surveys in the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Tucker, D.H.; Stuart, D.C.; Hone, I.G.; Sampath, N.

    1980-01-01

    The Bureau of Mineral Resources, Geology and Geophysics (BMR) has covered the Pine Creek Geosyncline with helicopter gravity stations on an 11,000m grid, and airborne magnetic and gamma spectrometer surveys along east-west lines 150m above ground level and 1500m apart. These data are available as maps at various scales, and most recently at 1:500,000 scale to overlay a geological map of the region at the same scale (BMR 1979a, 1979b, 1979c and 1979d). Inspection of the new regional maps shows that most of the known uranium deposits lie in areas of magnetically disturbed metasediments near residual Bouguer anomaly lows associated with radioactive granites. Some of these regional associations have been reported elsewhere (Stephansson and Johnson, 1976; Horsfall and Wilkes, 1975; Tucker, Hone, Sampath and Ewers, 1979). To better understand the links between the regional geophysics and regional geology, BMR undertook a multidisciplinary investigation of the geophysical characteristics of the Pine Creek Geosyncline during 1977 and 1978. The investigation included detailed ground surveys over anomalies, field and laboratory studies of rock physical properties, mineralogy studies, geological mapping, and computer modelling of anomaly sources

  7. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  8. Tephrostratigraphy and potassium-argon age determinations of seven volcanic ash layers in the Muddy Creek formation of southern Nevada

    International Nuclear Information System (INIS)

    Metcalf, L.A.

    1982-04-01

    Seven silicic tephra layers occur in alluvial deposits of the Muddy Creek and equivalent formations at three localities in southern Nevada. Chemical and petrographic characterization indicate the tephra were derived from seven different volcanic eruptions and do not represent any previously known tephra layers. K-Ar age determinations on minerals or glass from each layer yielded 6 to 12 m.y. ages. Discordant ages were obtained on multiple mineral phases due to incorporation of detrital contaminants. The tephra are sufficiently distinctive to constitute stratigraphic marker horizons in the Muddy Creek and equivalent formations. Derivation from the southwestern Nevada volcanic field, active 16 to 6 m.y., is highly likely for some of the tephra. The K-Ar results suggest substantial parts of the Muddy Creek Formation and equivalent basin-fill are 6 to 12 m.y., indicating basin-range faulting began prior to 12 m.y. Little tectonic deformation or physiographic change has occurrred in the past 6 m.y

  9. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    Science.gov (United States)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  10. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  11. White Oak Creek embayment sediment retention structure design and construction

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmell, B.L.; Page, D.G.; Wilkerson, R.B.; Hudson, G.R.; Kauschinger, J.L.; Zocolla, M.

    1994-01-01

    White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  12. Hydrologic data for North Creek, Trinity River basin, Texas, 1976

    Science.gov (United States)

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  13. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    Science.gov (United States)

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  14. Retran simulation of Oyster Creek generator trip startup test

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    RETRAN simulation of Oyster Creek generator trip startup test was carried out as part of Oyster Creek RETRAN model qualification program for reload licensing applications. The objective of the simulation was to qualify the turbine model and its interface with the control valve and bypass systems under severe transients. The test was carried out by opening the main breakers at rated power. The turbine speed governor closed the control valves and the pressure regulator opened the bypass valves within 0.5 sec. The stop valves closed by a no-load turbine trip, before the 10 percent overspeed trip was reached and the reactor scrammed on high APRM neutron flux. The simulation resulted in qualifying a normalized hydraulic torque for the turbine model and a 0.3 sec, delay block for the bypass model to account for the different delays in the hydraulic linkages present in the system. One-dimensional kinetics was used in this simulation

  15. Water quality monitoring report for the White Oak Creek Embayment

    International Nuclear Information System (INIS)

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described

  16. Numerical simulation of flow in Brush Creek Valley, Colorado

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Lee, R.L.

    1987-06-01

    In this paper, we present some results from our three-dimensional, non-hydrostatic, finite element model applied to simulations of flow in Brush Creek Valley. These simulations are not intended to reproduce any particular experiment, but rather are to evaluate the qualitative performance of the model, to explore the major difficulties involved, and to begin sensitivity studies of the flows of interest. 2 refs., 11 figs

  17. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    Science.gov (United States)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  18. NITRATE REDUCTION PROGRAM AT THE LINE CREEK OPERATION

    OpenAIRE

    Jeff W Hawley

    2015-01-01

    Blasting activities at the Line Creek operation are releasing oxides of nitrogen and arecontributing to chemical changes in the surrounding watersheds. Through analysis of themechanisms of nitrogen release, history of explosive usage, historical nitrate release, changingregulatory requirements, strategy analysis and social impacts associated with the release ofnitrates a nitrate reduction plan will be established.The paper develops the framework for engineering groups, operations groups andma...

  19. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  20. SPRINGS WITH CALCAREOUS TUFA IN THE VALLEY OF THE JAMNE CREEK IN GORCE

    Directory of Open Access Journals (Sweden)

    Roksana Krause

    2015-01-01

    Full Text Available The study gives a detail characteristic of a hard water springs habitat with the communities of Cratoneurion commutati (habitat code of Nature 2000: 7220, localized within Nature 2000 protected area Ostoja Gorczańska PLH120018, in an upper part of the valley of Jamne creek. The plants are described along with the main habitat parameters, namely: altitude, exposition, slope gradient, insolation, type of bedrock, water flow regime and the spring outflow efficiency. The temperature, pH, electrical conductivity were measured in the field, the concentrations of Ca and Mg in spring water were measured by Atomic Absorption Spectroscopy (AAS. The investigated headwater areas are small (0.7–80 m2 and highly differentiated by the intensity of calcareous tufa precipitation and the degree of plant cover development.

  1. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    Science.gov (United States)

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12

  2. Stability of a sand spit due to dredging in an adjacent creek

    Digital Repository Service at National Institute of Oceanography (India)

    Patgaonkar, R.S.; Ilangovan, D.; Vethamony, P.; Babu, M.T.; Jayakumar, S.; Rajagopal, M.D.

    , safety factor 1. Introduction The Jatadharmohan creek (hereinafter referred to as JMC) is a tidal creek oriented in the NE-SW direction (Fig. 1) and lies to the south of Paradip, along the east coast of India. This creek runs almost parallel... cor = 15 + (Nobs -15)/2, for Nobs > 15 b) Overburden correction: Ncor = Nobs x 350/ (? + 70) where, ? = overburden pressure The critical circular failure surface is the one for which factor of safety is the least. This is arrived...

  3. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    OpenAIRE

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01

    Horseshoe Creek, located in the Oakland Hills of California, flows through a remnant oak and redwood forests in Horseshoe Canyon. From the 1880s through the 1930s, nearby Leona sulfur mine deposited massive tailings piles in the valleys east of Horseshoe Creek. During that time, clear-cut logging of redwoods denuded and destabilized the surrounding hillsides. Today, most of Horseshoe Creekʼs upper and middle reaches are either culverted or transformed into an engineered channel, and Merritt C...

  4. Feasibility Report and Environmental Statement for Water Resources Development, Cache Creek Basin, California

    Science.gov (United States)

    1979-02-01

    classified as Porno , Lake Miwok, and Patwin. Recent surveys within the Clear Lake-Cache Creek Basin have located 28 archeological sites, some of which...additional 8,400 acre-feet annually to the Lakeport area. Porno Reservoir on Kelsey Creek, being studied by Lake County, also would supplement M&l water...project on Scotts Creek could provide 9,100 acre- feet annually of irrigation water. Also, as previously discussed, Porno Reservoir would furnish

  5. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    Science.gov (United States)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream

  6. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  7. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  8. Degassing during magma ascent in the Mule Creek vent (USA)

    Science.gov (United States)

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  9. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Radium 226 in waters of the Magela creek, Northern Australia

    International Nuclear Information System (INIS)

    Sauerland, C.; Medley, P.; Martin, P.

    2004-01-01

    The Magela Creek is located in the tropical monsoonal belt of Australia, which is characterised by contrasting wet (December to March) and dry (April to November) seasons. Magela Creek drains a catchment of which about half of the total area lies upstream of the open-cut Ranger uranium mine. The main risk identified for ecosystems surrounding this mine site is from dispersion of mine waste waters during the wet season. Monitoring of biological indicator organisms, water quality (physical and chemical) and radionuclide concentrations in surface water, groundwater and biota is conducted upstream and downstream of the Ranger mine to measure possible environmental impacts of mining. Of special interest is the radionuclide radium-226, as it is predicted to dominate the effective dose to members of the critical group (i.e. the Aboriginal population living downstream of the mining site) resulting from any release of waters from the mine site, in particular through intake of food items such as freshwater mussels and fish. Receiving water standards for radium-226 have been set for the mine on the basis of radiological dose assessments in accordance with the recommendations of the International Commission on Radiological Protection (ICRP 1996). It is proposed in this paper to compare trigger values based on ICRP recommendations with trigger values developed in line with the philosophy of the new Australian Water Quality Guidelines (ANZECC and ARMCANZ 2000). Total Ra-226 activity concentrations were determined in Magela creek both upstream and downstream of the Ranger uranium mine, using alpha spectrometry with a detection limit of about 0.5 mBq/L. According to the new Water Quality Guidelines site-specific trigger values for total Ra-226 activity concentrations were statistically derived from a reference dataset. They are intended to provide an early warning system for the management of a pollutant source for the purpose of environmental protection of downstream ecosystems

  11. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Witthar, S.R.

    1998-01-01

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  12. Monitoring and research at Walnut Creek National Wildlife Refuge

    Science.gov (United States)

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  13. Leith Creek, Scotland County, North Carolina, Detailed Project Report. Revised.

    Science.gov (United States)

    1977-07-01

    of Leith Creek within the study limits. Climate in the area is characteristic of the warm temperate zone. In summer, the days are generally hot and...RESOURCES B-2 TERRAIN AND LAND USE B-4 S CLIMATE B-4 ARCHEOLOGiCAL CONSIDERATIONS B-4 NATURAL RESOURCES B-5 0 HUMAN RESOURCES 8-6 POPULATION...irtoved cnd it ions jere corcp’-ted11, >.ve pti Vn (CI card) of the Hydr- aulic Enqincerinq Cm tt ’ .. ~ v.’Water- Surface Profi les’. Improved profil

  14. The meaning of alcohol to traditional Muscogee Creek Indians.

    Science.gov (United States)

    Wing, D M; Thompson, T

    1996-01-01

    The purpose of this study was to learn the meaning of alcohol to the traditional Muscogee Creek Indians of eastern Oklahoma. Using Leininger's theory of culture care diversity and universality as the theoretical base, the authors conducted interviews of 24 traditional people to elicit both emic and etic meanings of alcohol. The conceptualization of alcohol as a dichotomy of power to do both good and evil emerged as the central theme. Other meanings of alcohol were explicated in relation to five social structure dimensions. The findings suggest culturally competent nursing implications for preserving, accommodating, and repatterning the meaning of alcohol.

  15. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  16. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  17. Characterization of surface water contaminants in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Ford, C.; Madix, S.; Rash, C.

    1995-01-01

    Surface waters in the Clinch River and Poplar Creek have been contaminated by activities on the DOE's Oak Ridge Reservation throughout the more than 50 year history of Oak Ridge. Though the Clinch River and Poplar Creek drainage areas are contaminated with heavy metals, organics and radionuclides, public access to these sites is not restricted. The investigation, divided into discrete studies, was tailored to provide a statistically sound picture of contaminants and aqueous toxicity in Poplar Creek, investigate contaminant remobilization from sediments, and determine contaminant levels during a series of ''worst-case'' events. Results for Poplar Creek indicate that average contaminant values were below levels of concern for human health and ecological risk, though contaminant distributions suggest that episodic events contribute sufficiently to system contaminant levels to be of concern. Additionally, water column contaminant levels were significantly higher in particle deposition areas rather than at known contaminant sources. Levels of organic compounds in reference areas to Poplar Creek exceeded those in the Poplar Creek study area. In the Clinch River and Poplar Creek, statistical differences in metal and radionuclide levels from known contaminated areas confirmed previous results, and were used to independently distinguish between sites. Contaminant concentrations were elevated in association with sediments, though no distinction between deposition and remobilization could be made. Due to elevated contaminant levels, and some unexpected contaminant distributions, sites in Poplar Creek and off-channel embayments of the Clinch River were identified that will require additional characterization

  18. 78 FR 62361 - Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed...

    Science.gov (United States)

    2013-10-21

    ... Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed Restricted Service... issuance of a new license for the Otter Creek Hydroelectric Project No. 2558. The programmatic agreement... Agreement would be incorporated into any Order issuing a license. Green Mountain Power Corporation, as...

  19. Road construction on Caspar Creek watersheds --- 10-year report on impact

    Science.gov (United States)

    J. S. Krammes; David M. Burns

    1973-01-01

    In 1960, Federal and State agencies jointly started a long-term study of the effects of logging and road building on streamflow, sedimentation, aquatic habitat, and fish populations on two watersheds of Caspar Creek, in northern California. The experimental watersheds are the North and South Forks of the Creek. The data being collected consist of continuous streamflow...

  20. Concentration of metals in shrimps and crabs from Thane-Bassein creek system, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamurti, A.J.; Nair, V.R.

    was in the order of Zn>Cu>Cd>Ni>Pb. In shrimps maximum level of Cu (av. 41.3 ppm dry wt) and Zn (av. 164 ppm dry wt) were observed respectively in Metapenaeus brevicornis from Thane Creek and Exopalaemon stylifera from Bassein Creek. The crabs, Scylla serrata from...

  1. 75 FR 37790 - Mahoning Creek Hydroelectric Company, LLC; Notice of Intent To Issue a Supplemental Environmental...

    Science.gov (United States)

    2010-06-30

    ... Hydroelectric Company, LLC; Notice of Intent To Issue a Supplemental Environmental Assessment for the Proposed Mahoning Creek Hydroelectric Project June 23, 2010. On March 23, 2010, Commission staff issued an Environmental Assessment (EA) for the proposed Mahoning Creek Hydroelectric Project. On April 22, 2010, the U.S...

  2. 75 FR 15705 - Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-03-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12555-004-PA] Mahoning Creek Hydroelectric Company, LLC; Notice of Availability of Environmental Assessment March 23, 2010. In... reviewed the application for an original license for the Mahoning Creek Hydroelectric Project, to be...

  3. Foraminiferal study from Kharo Creek, Kachchh (Gujarat), north west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Chaturvedi, S.K.

    any creek of Kachchh area will also serve as a baseline data to assess the future impact of industrial pollution (if any) as a jetty for offoading cement is being constructed in Kharo creek for proposed cement plant which is coming up in this area....

  4. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Science.gov (United States)

    2010-12-14

    ... and/or affected individuals, organizations and governmental agencies will be used to identify resource... upcoming 2015 World Alpine Championships. In order for Beaver Creek to continue to host international... located at Beaver Creek. Hosting the 2015 International Skiing Federation (FIS) World Alpine Ski...

  5. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  6. 77 FR 29918 - Proposed Amendment of Class E Airspace; Battle Creek, MI

    Science.gov (United States)

    2012-05-21

    ... airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAP) at W. K. Kellogg.... Kellogg Airport, Battle Creek, MI. Controlled airspace is needed for the safety and management of IFR... controlled airspace at W.K. Kellogg Airport, Battle Creek, MI. Environmental Review This proposal will be...

  7. 76 FR 72025 - Noise Compatibility Program Notice for W.M. Kellogg Airport, Battle Creek, MI

    Science.gov (United States)

    2011-11-21

    ... for W.M. Kellogg Airport, Battle Creek, MI AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... exposure maps submitted by the City of Battle Creek, Michigan for W.K. Kellogg Airport under the provisions... noise compatibility program that was submitted for W.K. Kellogg Airport under part 150 in conjunction...

  8. Tom Beaver, Creek Television Reporter. With Teacher's Guide. Native Americans of the Twentieth Century.

    Science.gov (United States)

    Minneapolis Public Schools, MN.

    A biography for elementary school students presents an account of an American Indian television reporter, Tom Beaver (Creek), and includes a map of Oklahoma showing the location of Indian tribes. A teacher's guide following the biography contains information about the Creek tribe and the history of television, learning objectives and directions…

  9. Effects of timber harvest on aquatic vertebrates and habitat in the North Fork Caspar Creek

    Science.gov (United States)

    Rodney J. Nakamoto

    1998-01-01

    I examined the relationships between timber harvest, creek habitat, and vertebrate populations in the North and South forks of Caspar Creek. Habitat inventories suggested pool availability increased after the onset of timber harvest activities. Increased large woody debris in the channel was associated with an increase in the frequency of blowdown in the riparian...

  10. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  11. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Science.gov (United States)

    2013-01-14

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental Assessment AGENCY: Office of the Assistant Secretary... assessment for the East Hobble Creek Restoration Project is available for public review and comment. The...

  12. CREEK Project's Oyster Growth and Survival Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  13. CREEK Project's Water Chemistry, Chlorophyll a, and Suspended Sediment Weekly Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  14. CREEK Project: RUI: the Role of Oyster Reefs in the Structure and Function of Tidal Creeks. A Project Overview: 1996-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet, South Carolina, USA were studied using a replicated BACI (Before - After...

  15. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G

  16. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  17. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  18. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  19. Evaluation of the consequences of thermal isolation on biota of upper Steel Creek

    International Nuclear Information System (INIS)

    Gladden, J.B.

    1984-04-01

    The objective of this report is to summarize and evaluate existing data concerning the upper reaches of Steel Creek on the Savannah River Plant (SRP) near Aiken, South Carolina. This report addresses the current ecological status of this stream section and the need and/or desirability of maintaining an ambient water temperature zone of passage with lower Steel Creek or the nearby Meyers Branch, an undisturbed watershed that is a major tributary to Steel Creek. The specific case evaluated involves the construction of an 800 to 1000 acre cooling reservoir on Steel Creek upstream of the confluence of Steel Creek and Meyers Branch. Water temperatures exiting this reservoir are assumed to never exceed 90 0 F. Studies were conducted in connection with the proposed restart of the L-Reactor at SRP. 8 references, 3 figures, 2 tables

  20. Evaluation of protected, threatened, and endangered fish species in Upper Bear Creek watershed

    International Nuclear Information System (INIS)

    Ryon, M.G.

    1998-07-01

    The East Bear Creek Site for the proposed centralized waste facility on the US Department of Energy's Oak Ridge Reservation was evaluated for potential rare, threatened or endangered (T and E) fish species in the six primary tributaries and the main stem of Bear Creek that are within or adjacent to the facility footprint. These tributaries and portion of Bear Creek comprise the upper Bear Creek watershed. One T and E fish species, the Tennessee dace (Phoxinus tennesseensis), was located in these streams. The Tennessee dace is listed by the State of Tennessee as being in need of management, and as such its habitat is afforded some protection. Surveys indicated that Tennessee dace occupy the northern tributaries NT-1, NT-4, and NT-5, as well as Bear Creek. Several specimens of the dace were gravid females, indicating that the streams may function as reproductive habitat for the species. The implications of impacts on the species are discussed and mitigation objectives are included

  1. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    International Nuclear Information System (INIS)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of 238 U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site

  2. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of L reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1981-10-01

    Information is presented on the following subjects: habitat and vegetation, the avifauna, semi-aquatic and terrestrial vertebrates, and aquatic communities of Steel Creek, species of special concern, and radiocesium in Steel Creek. Two main goals of the study were the compilation of a current inventory of the flora and fauna of the Steel Creek ecosystem and an assessment of the probable impacts of radionuclides, primarily 137 Cs, that were released into Steel Creek during earlier reactor operations. Although a thorough evaluation of the impacts of the L reactor restart is impossible at this time, it is concluded that the effects on the Steel Creek ecosystem will be substantial if no mitigative measures are taken

  3. 77 FR 58979 - Boundary Establishment for the Au Sable, Bear Creek, Manistee, and the Pine Wild and Scenic...

    Science.gov (United States)

    2012-09-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Boundary Establishment for the Au Sable, Bear Creek..., Washington Office, is transmitting the final boundary of the Au Sable, Bear Creek, Manistee, and the Pine..., Cadillac, MI 49601, (231) 775- 5023, ext. 8756. SUPPLEMENTARY INFORMATION: The Au Sable, Bear Creek...

  4. 75 FR 9201 - Kilarc-Cow Creek Hydroelectric Project; Notice of Intention To Prepare an Environmental Impact...

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 606-027-CA] Kilarc-Cow... of license for the Kilarc-Cow Creek Hydroelectric Project, FERC No. 606. The project contains two developments and is located on Old Cow Creek and South Cow Creek in Shasta County, northern California. In the...

  5. 75 FR 62112 - Intent To Prepare an Environmental Impact Statement (EIS) for the San Juan Creek and Tributaries...

    Science.gov (United States)

    2010-10-07

    ... evaluate flood risk management alternative measures along the lower portions of San Juan, Trabuco, and Oso... to its confluence with Tijeras Creek; and Oso Creek from its confluence with Trabuco Creek northwest approximately 4.5 miles to just north of Oso Parkway. The communities of San Juan Capistrano, Mission Viejo...

  6. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Science.gov (United States)

    2012-01-11

    ... Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park AGENCY: National Park...), Rock Creek Park, Washington, DC The Plan will support long-term protection, preservation, and restoration of native vegetation and other natural and cultural resources in Rock Creek Park. DATES: The NPS...

  7. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  8. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  9. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  10. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  11. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  12. Geology, Burnst Timber Creek, west of fifth meridian, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    1966-01-01

    The Burnt Timber Creek map-area lies in the southern Foothills of Alberta and includes a narrow strip of the Front Range of the Rocky Mts. along its western edge. The area may be divided into 3 principal structural units, underlain from west to east by the McConnell, Burnt Timber, and Fallentimber thrusts, respectively. McConnell thrust underlies the eastern edge of the mountains. Subsidiary folding and faulting are locally evident in the Paleozoic strata above the thrust. Beneath the McConnell thrust, Mesozoic and Paleozoic strata of the Burnt Timber thrust sheet are strongly overturned in the Panther anticline. The axis of this anticline trends northwest. A culmination along it, in the vicinity of Sheep Creek, deforms the McConnel thrust as well. A total of 16 wells have been drilled to date in 4 separate groups. Each group has revealed the presence of gas and 8 of the wells have been capped as potential gas producers. The reservoir rocks are of Mississippian and Devonian age. Shell Panther River No. 1 well (5-19-30-10W5) is remarkable in having tested at about 86% hydrogen sulfide.

  13. Asotin Creek model watershed plan: Asotin County, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    The Northwest Power Planning Council completed its ''Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ''four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ''Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity

  14. Investigating organic matter in Fanno Creek, Oregon, Part 2 of 3: sources, sinks, and transport of organic matter with fine sediment

    Science.gov (United States)

    Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.

    2014-01-01

    Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River—about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek’s mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29–67 t of carbon, or about 49–116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.

  15. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    Science.gov (United States)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  16. Geochemistry of mercury and other constituents in subsurface sediment—Analyses from 2011 and 2012 coring campaigns, Cache Creek Settling Basin, Yolo County, California

    Science.gov (United States)

    Arias, Michelle R.; Alpers, Charles N.; Marvin-DiPasquale, Mark C.; Fuller, Christopher C.; Agee, Jennifer L.; Sneed, Michelle; Morita, Andrew Y.; Salas, Antonia

    2017-10-31

    Cache Creek Settling Basin was constructed in 1937 to trap sediment from Cache Creek before delivery to the Yolo Bypass, a flood conveyance for the Sacramento River system that is tributary to the Sacramento–San Joaquin Delta. Sediment management options being considered by stakeholders in the Cache Creek Settling Basin include sediment excavation; however, that could expose sediments containing elevated mercury concentrations from historical mercury mining in the watershed. In cooperation with the California Department of Water Resources, the U.S. Geological Survey undertook sediment coring campaigns in 2011–12 (1) to describe lateral and vertical distributions of mercury concentrations in deposits of sediment in the Cache Creek Settling Basin and (2) to improve constraint of estimates of the rate of sediment deposition in the basin.Sediment cores were collected in the Cache Creek Settling Basin, Yolo County, California, during October 2011 at 10 locations and during August 2012 at 5 other locations. Total core depths ranged from approximately 4.6 to 13.7 meters (15 to 45 feet), with penetration to about 9.1 meters (30 feet) at most locations. Unsplit cores were logged for two geophysical parameters (gamma bulk density and magnetic susceptibility); then, selected cores were split lengthwise. One half of each core was then photographed and archived, and the other half was subsampled. Initial subsamples from the cores (20-centimeter composite samples from five predetermined depths in each profile) were analyzed for total mercury, methylmercury, total reduced sulfur, iron speciation, organic content (as the percentage of weight loss on ignition), and grain-size distribution. Detailed follow-up subsampling (3-centimeter intervals) was done at six locations along an east-west transect in the southern part of the Cache Creek Settling Basin and at one location in the northern part of the basin for analyses of total mercury; organic content; and cesium-137, which was

  17. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  18. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  19. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    International Nuclear Information System (INIS)

    Hurd, Todd M.; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David

    2008-01-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in δ 13 C relative to autotrophs and wild fish. Spring creek sediments were enriched in δ 13 C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in δ 34 S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in δ 15 N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with δ 13 C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and potential exposure

  20. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    Science.gov (United States)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-05-01

    SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent

  1. Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado

    Science.gov (United States)

    Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.

    2013-01-01

    The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the

  2. Invertebrates associated with ipomea aquatica in ogbe creek, logos, nigeria

    International Nuclear Information System (INIS)

    Saliu, J.K.; Fashola, Y.T.

    2006-01-01

    The association of invertebrates in Ogbe creek with Ipomea aquatica was investigated within the period from 7th September to 30th November, 2001, 167 invertebrates comprising of 19 species were harvested from 73 weeds. Corixa punctata (22.16%) was the most abundant invertebrate on Ipomea aquatica while Gyrinus notator larvae (0.60%) were the least abundant. The roots sheltered the highest number of invertebrates (113), comprising of 12 species recording a species diversity of 5.36 while the stem sheltered the lowest number of invertebrates (10) comprising of 3 species with a species diversity of 2.00. The ability of Ipomea aquaTica to harbour invertebrates was influenced by the morphological form of the plant. The root was the preferred site for the invertebrates because it was a suitable substrate for clinging and nutrient supply. (author)

  3. Sherman Creek Hatchery; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch [Washington Dept. of Fish and Wildlife, Olympia, WA (United States). Hatcheries Program

    1997-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations of the SCH have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were implemented to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary change has been to replace the kokanee fingerling program with a kokanee yearling (post smolt) program. The second significant change has been to rear 120,000 rainbow trout fingerling at SCH from July through October to enable the Spokane Tribal Hatchery (STH) to rear additional kokanee for the yearling program.

  4. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  5. Soda Creek springs - metamorphic waters in the eastern Alaska Range

    Science.gov (United States)

    Richter, D.H.; Donaldson, D.E.; Lamarre, R.A.

    1973-01-01

    The Soda Creek springs are a group of small, cold mineral springs on the southern flank of the eastern Alaska Range. The spring waters contain anomalous concentrations of carbon dioxide, sodium, chlorine, sulfate, boron, and ammonia and are actively precipitating deposits of calcite and aragonite. Sparingly present in these deposits are mixed-layer illite-montmorillonite clays and zeolite minerals. Low-temperaturemetamorphic reactions in subjacent marine sedimentary rocks of Jurassic and Cretaceous age may have produced the fluids and silicate minerals. With only a few exceptions, cool bicarbonate-rich springs in Alaska are concentrated south of the Denali fault system in south-central Alaska, southeastern Alaska, and along the Kaltag-Tintina fault system. These areas are characterized by active or recently activetectonism, major faults and folds, and an abundance of marine sedimentary rocks.

  6. Castle Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

  7. White Oak Creek Watershed topographic map and related materials

    International Nuclear Information System (INIS)

    Farrow, N.D.

    1981-04-01

    On March 22, 1978 a contract was let to Accu-Air Surveys, Inc., of Seymour, Indiana, to produce a topographic map of the White Oak Creek Watershed. Working from photography and ground control surveys, Accu-Air produced a map to ORNL's specifications. The map is in four sections (N.W., N.E., S.W., S.E.) at a scale of 1:2400. Contour intervals are 5 ft (1.5 m) with accented delineations every 25 ft (7.6 m). The scribe method was used for the finished map. Planimetric features, roads, major fence lines, drainage features, and tree lines are included. The ORNL grid is the primary coordinate system which is superimposed on the state plain coordinates

  8. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    International Nuclear Information System (INIS)

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs

  9. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  10. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    International Nuclear Information System (INIS)

    Carlson, M. P.; Treves, S. B.

    2005-01-01

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures

  11. Effects of historical coal mining and drainage from abandoned mines on streamflow and water quality in Bear Creek, Dauphin County, Pennsylvania-March 1999-December 2002

    Science.gov (United States)

    Chaplin, Jeffrey J.

    2005-01-01

    More than 100 years of anthracite coal mining has changed surface- and ground-water hydrology and contaminated streams draining the Southern Anthracite Coal Field in east-central Pennsylvania. Bear Creek drains the western prong of the Southern Anthracite Coal Field and is affected by metals in drainage from abandoned mines and streamwater losses. Total Maximum Daily Loads (TMDL) developed for dissolved iron of about 5 lb/d (pounds per day) commonly are exceeded in the reach downstream of mine discharges. Restoration of Bear Creek using aerobic ponds to passively remove iron in abandoned mine drainage is under consideration (2004) by the Dauphin County Conservation District. This report, prepared in cooperation with the Dauphin County Conservation District, evaluates chemical and hydrologic data collected in Bear Creek and its receiving waters prior to implementation of mine-drainage treatment. The data collected represent the type of baseline information needed for documentation of water-quality changes following passive treatment of mine drainage in Pennsylvania and in other similar hydrogeologic settings. Seven surface-water sites on Bear Creek and two mine discharges were monitored for nearly three years to characterize the chemistry and hydrology of the following: (1) Bear Creek upstream of the mine discharges (BC-UMD), (2) water draining from the Lykens-Williamstown Mine Pool at the Lykens Water-Level Tunnel (LWLT) and Lykens Drift (LD) discharges, (3) Bear Creek after mixing with the mine discharges (BC-DMD), and (4) Bear Creek prior to mixing with Wiconisco Creek (BCM). Two sites on Wiconisco Creek, upstream and downstream of Bear Creek (WC-UBC and WC-DBC, respectively), were selected to evaluate changes in streamflow and water quality upon mixing with Bear Creek. During periods of below-normal precipitation, streamwater loss was commonly 100 percent upstream of site BC-UMD (streamflow range = 0 to 9.7 ft3/s (cubic feet per second)) but no loss was detected

  12. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  13. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    Science.gov (United States)

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  14. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  15. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  16. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2015-08-20

    Digital flood-inundation maps for a 12.4-mile reach of Big Creek that extends from 260 feet above the McGinnis Ferry Road bridge to the U.S. Geological Survey (USGS) streamgage at Big Creek below Hog Wallow Creek at Roswell, Georgia (02335757), were developed by the USGS in cooperation with the cities of Alpharetta and Roswell, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Big Creek near Alpharetta, Georgia (02335700). Real-time stage information from this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs for many streams where the USGS operates streamgages and provides flow data. The forecasted peak-stage information for the USGS streamgage at Big Creek near Alpharetta (02335700), available through the AHPS Web site, may be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.

  17. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  18. Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, S.A.; Dhaktode, S.S.; Kadam, A.N.

    The surface sediment samples were collected by van Veen grab sampler during premonsoon, monsoon and postmonsoon seasons from Bombay harbour, Dharamtar creek and Amba river estuary Moisture content of the samples ranges from 36 to 67.5...

  19. AFSC/ABL: Pink salmon data collected at Sashin Creek Weir 1934-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A database describing a 67-year time series for Sashin Creek pink salmon (Oncorhynchus gorbuscha) data is presented. The database details the survival and other...

  20. Settlement to Improve Water Quality in Delaware River, Philadelphia-Area Creeks

    Science.gov (United States)

    EPA and the U.S. Department of Justice have reached agreement with a major water utility in the greater Philadelphia area to significantly reduce sewage discharges to the Delaware River and local creeks.

  1. Pipeline crossing across Manori Creek, Bombay; advantages of marine acoustic techniques in route selection

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Moraes, C.

    The National Institute of Oceanography (NIO) had carried out such survey in Bombay for obtaining geological informations in order to plan and design a pipeline route crossing Manori Creek to transport fresh water. The survey comprising...

  2. Anticipated transport of Cs-137 from Steel Creek following L-Area restart

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1982-01-01

    Heat exchanger cooling water, spent fuel storage basin effluents, and process water from P and L-Reactor Areas were discharged to Steel Creek beginning in 1954. Cs-137 was the most significant radionuclide discharged to the environs. Once the Cs-137 was discharged from P and L-Area reactors to Steel Creek, it became associated with silt and clay in the Steel Creek system. After its association with the silt and clay, the Cs-137 becomes part of the sediment transport process and undergoes continual deposition-resuspension in the stream system. This report discusses the expected fate and transport of Cs-137 currently present in the Steel Creek system after L-Reactor restart

  3. Diel variation in fish assemblages in tidal creeks in southern Brazil

    Directory of Open Access Journals (Sweden)

    JF. Oliveira-Neto

    Full Text Available Tidal creeks are strongly influenced by tides and are therefore exposed to large differences in salinity and depth daily. Here we compare fish assemblages in tidal creeks between day and night in two tidal creeks in southern Brazil. Monthly day and night, simultaneous collections were carried out in both creeks using fyke nets. Clupeiformes tended to be caught more during the day. Cathorops spixii, Genidens genidens and Rypticus randalli tended to be caught at night. Sciaenidae also tended to be caught more during the night. In general, pelagic species were diurnal, while deep water species were nocturnal. These trends are probably due to a variety of causes, such as phylogeny, predation and net avoidance.

  4. Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark

    DEFF Research Database (Denmark)

    Hinsby, K.; Hojberg, A.L.; Engesgaard, P.

    2007-01-01

    Vertical profiles of the chlorofluorocarbons CFC-11, CFC-12, and CFC-113 penetrating aerobic and anaerobic parts of a shallow sandy aquifer show that the CFC gases are degraded in the Rabis Creek, Denmark...

  5. Extractable organics in surface sediments from Thana creek and Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Rokade, M.A.; Bhosle, N.B.; Kadam, A.N.

    Considerable variations in hydrocarbon and fatty acid levels in surface sediments from Thana creek and Bombay harbour were observed Sediments from the westernside nearshore locations yielded higher values The residues were characterised by infrared...

  6. Ground-Water-Quality Data for Selected Wells in the Beaver Creek Watershed, West Tennessee

    National Research Council Canada - National Science Library

    Williams, Shannon D

    1996-01-01

    In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation, began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee...

  7. Impact of urbanization on flood of Shigu creek in Dongguan city

    Science.gov (United States)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  8. Biological and environmental characteristics of mangrove habitats from Manori creek, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Jagtap, T.G.; Mhalsekar, N.M.; Naik, A.N.

    better mangrove formations. A creek habitat had been evaluated for its biological and environmental characteristics, and is compared with similar but relatively lesser stressed Mandovi estuary (approx. 475 km south of Mumbai). Several evidences...

  9. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek

    Digital Repository Service at National Institute of Oceanography (India)

    Volvoikar, S.P.; Nayak, G.N.

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores...

  10. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  11. Influence of anthropogenic activities on the existing environmental conditions of Kandla Creek (Gulf of Kutch)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Fernandes, D.; Haldankar, S.R.; Rao, G.S.

    of fertilizer and raw materials; petroleum, oil and lubricants (POL) and the boat traffic. Strong macro tidal currents increase turbidity and TSS, while the high salinity water from creek tributaries formed from intense evaporation during summer, and the seepage...

  12. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  13. Impact of Urban Effluents on the Macroinvertebrates of a Creek in ...

    African Journals Online (AJOL)

    User

    The impact of effluents on the macroinvertebrate communities of an urban creek in ... of complying with the Environmental Protection Agency (EPA) guidelines are ..... Business. World Water Council, Earthscan. Publications Ltd. London, UK.

  14. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  15. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    Science.gov (United States)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing

  16. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  17. Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations

    Science.gov (United States)

    2013-07-01

    Water Bodies Organization 1 SWMM5 LMCW EPA 1 HEC - RAS Minnehaha Creek and Lake Minnetonka system HEC 2 CE-QUAL-W2 Lake Minnetonka system ERDC...and adjusted as needed to adequately address project goals and priorities. SWMM5 and HEC - RAS are the recommended Tier 1 models. The current SWMM5...model is an appropriate modeling platform for modeling subbasins in the LMCW. HEC - RAS should be used to model Minnehaha Creek and the Lake Minnetonka

  18. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    Science.gov (United States)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically

  19. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta

    Science.gov (United States)

    Schultz, Ryan; Wang, Ruijia; Gu, Yu Jeffrey; Haug, Kristine; Atkinson, Gail

    2017-01-01

    This paper summarizes the current state of understanding regarding the induced seismicity in connection with hydraulic fracturing operations targeting the Duvernay Formation in central Alberta, near the town of Fox Creek. We demonstrate that earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism using (i) cross-correlation detection methods to delineate transient temporal relationships, (ii) double-difference relocations to confirm spatial clustering, and (iii) moment tensor solutions to assess fault motion consistency. The spatiotemporal clustering of the earthquake sequences is strongly related to the nearby hydraulic fracturing operations. In addition, we identify a preference for strike-slip motions on subvertical faults with an approximate 45° P axis orientation, consistent with expectation from the ambient stress field. The hypocentral geometries for two of the largest-magnitude (M 4) sequences that are robustly constrained by local array data provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these lineaments as subvertical faults orientated approximately north-south, consistent with the regional moment tensor solutions. Finally, we conclude that the sequences were triggered by pore pressure increases in response to hydraulic fracturing stimulations along previously existing faults.

  20. A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta

    Science.gov (United States)

    Schultz, R.; Wang, R.; Gu, Y. J.; Haug, K.; Atkinson, G. M.

    2016-12-01

    In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45º P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.

  1. An inventory of wetlands in the East Fork Poplar Creek floodplain, Anderson and Roane Counties, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    An inventory of wetlands within the floodplain of East Fork Poplar Creek (EFPC) in Anderson and Roane Counties, Tennessee was conducted during October, 1991 through May, 1992 for the US Department of Energy (DOE) by the US Army Corps of Engineers, Nashville District. About 15 miles of EFPC channel and 500 acres of its floodplain are contaminated with mercury and other contaminants released from the Y-12 Plant on the DOE Oak Ridge Reservation. The wetland inventory will serve as baseline information for DOE`s remedial action planning and National Environmental Policy Act compliance efforts related to the contamination. In order to provide broad wetland determinations beyond which future wetland definitions are unlikely to expand, the 1989 Federal Manual for Identifying And Delineating Jurisdictional Wetlands was utilized. Using the manual`s methodology in a contaminated system under the approved health and safety plan presented some unique problems, resulting in intrusive sampling for field indicators of hydric soils being accomplished separately from observation of other criteria. Beginning with wetland areas identified on National Wetland Inventory Maps, the entire floodplain was examined for presence of wetland criteria, and 17 wetlands were identified ranging from 0.01 to 2.81 acres in size. The majority of wetlands identified were sized under 1 acre. Some of the wetlands identified were not delineated on the National Wetland Inventory Maps, and much of the wetland area delineated on the maps did not meet the criteria under the 1989 manual.

  2. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  3. The Wells Creek Meteorite Impact Site and Changing Views on Impact Cratering

    Science.gov (United States)

    Ford, J. R. H.; Orchiston, Wayne; Clendening, Ron

    2012-11-01

    Wells Creek is a confirmed meteorite impact site in Tennessee, USA. The Wells Creek structure was first noticed by railroad surveyors around 1855 and brought to the attention of J.M. Safford, Tennessee's State Geologist. He included an insert in the 1869 Geologic Map of Tennessee, which is the first known map to include the structure. The origin of the Wells Creek structure was controversial, and was interpreted as being either the result of volcanic steam explosion or meteorite impact. It was only in the 1960s that Wilson and Stearns were able to state that the impact hypothesis was preferred. Evidence for a Wells Creek meteorite impact includes drill core results, extreme brecciation and shatter cones, while a local lack of volcanic material is telling. Just to the north of the Wells Creek Basin are three small basins that Wilson concluded were associated with the Wells Creek impact event, but evidence regarding the origin of the Austin, Indian Mound and Cave Spring Hollow sites is not conclusive.

  4. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  5. Clear Creek Environmental Hydrologic Observatory: From Vision Toward Reality

    Science.gov (United States)

    Just, C.; Muste, M.; Kruger, A.

    2006-12-01

    The CyberEnviroNet research group at The University of Iowa includes around 25 scientists and engineers from Geography, Geoscience, Computer Science, and various Engineering Departments. The group leads diverse research and education projects involving "cyberinfrastructure" applied to water-resource and environmental concerns. Members of this group actively participate in the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) and the Collaborative Large-Scale Engineering Analysis Network for Environmental Research (CLEANER), ongoing NSF-supported activities and initiatives. Most activities are led by IIHR-Hydroscience & Engineering (IIHR) and the Center for Global and Regional Environmental Research (CGRER). An outcome of the CyberEnviroNet group activities is the emerging Clear Creek Environmental Hydrologic Observatory at the headwaters of Iowa's Clear Creek. It is envisioned that this process-based observatory will support the scientific investigation of relevant components of water cycle processes. Cyberinfrastructure is a complex concept that is difficult to narrowly define. However, this project will create a working example of cyberinfrastructure in the hydrologic and environmental sciences. It is a system that integrates a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. The creation of this multi-faceted system raises important questions: 1. Will such a system benefit the testing of scientific hypotheses in the areas of "envirohydrology" and hydrology? 2. If the answer is "yes", do we know how to assemble, operate, manage, and make it cost effective? 3. If the answers are "yes", then does it make sense for the hydrologic and

  6. Hydrological observation of the artificial catchment `Chicken Creek

    Science.gov (United States)

    Mazur, K.; Biemelt, D.; Schoenheinz, D.; Grünewald, U.

    2009-04-01

    In Lusatia, eastern Germany, an artificial catchment called 'Chicken Creek' was developed. The catchment with an area of 6 ha was designed as hillside on the top of a refilled open mining pit. The bottom boundary was created by a 1 to 2 m thick clay layer acting as aquiclude. The catchment body consists of a 2 to 4 m mighty layer of sandy to loamy sediments acting as aquifer. The catchment 'Chicken Creek' is the central investigation site of the German-Swiss Collaborative Research Centre SFB/TRR 38. The aim of the research is to characterise various ecosystem development phases with respect to the occurring relevant structures and processes. Therefore, structures and processes as well as interactions being dominant within the initial ecosystem development phase are investigated and will be compared to those occurring in the later stages of ecosystem development. In this context, one important part of the investigations is the detailed observation of hydrological processes and the determination of the water balance components. To achieve these objectives, a comprehensive monitoring programme was planned considering the following questions: Which parameters/data are required? Which parameters/data can be measured? Which spatial and temporal resolution of observations is required? The catchment was accordingly equipped with weirs, flumes, observation wells, probes and meteorological observation stations. First results were obtained and will be presented. The gathered data provide parameters and boundary conditions for the ensuing hydro(geo)logical modeling. Conclusions e.g. from groundwater flow simulations shall allow to improve theses about the dynamic in the saturated zone and support the quantification of the groundwater discharge as component of the water balance. First research results show that precipitation related surface runoff proves to be much more dominant in the hydrological system than initially expected. Therefore, the monitoring concept had to be

  7. Hydrogeological constraints on riparian buffers for reduction of diffuse pollution: examples from the Bear Creek watershed in Iowa, USA.

    Science.gov (United States)

    Simpkins, W W; Wineland, T R; Andress, R J; Johnston, D A; Caron, G C; Isenhart, T M; Schultz, R C

    2002-01-01

    Riparian Management Systems (RiMS) have been proposed to minimize the impacts of agricultural production and improve water quality in Iowa in the Midwestern USA. As part of RiMS, multispecies riparian buffers have been shown to decrease nutrient, pesticide, and sediment concentrations in runoff from adjacent crop fields. However, their effect on nutrients and pesticides moving in groundwater beneath buffers has been discussed only in limited and idealized hydrogeologic settings. Studies in the Bear Creek watershed of central Iowa show the variability inherent in hydrogeologic systems at the watershed scale, some of which may be favorable or unfavorable to future implementation of buffers. Buffers may be optimized by choosing hydrogeologic systems where a shallow groundwater flow system channels water directly through the riparian buffer at velocities that allow for processes such as denitrification to occur.

  8. Hydrogeology of the interstream area between Ty Ty Creek and Ty Ty Creek tributary near Plains, Georgia

    Science.gov (United States)

    Stewart, Lisa M.; Hicks, David W.

    1996-01-01

    This report is part of an interdisciplinary effort to identify and describe processes that control movement and fate of selected fertilizers and pesticides in the surface and subsurface environments in the Fall Line Hills district of the Georgia Coastal Plain physiographic province. This report describes the hydrogeology of the interstream area between Ty Ty Creek and it's tributary near Plains, Sumter County, Georgia. Geologic units of interest to this study are, in ascending order, (1) the Tuscahoma Formation, a bluish gray, silty clay; (2) the Tallahatta Formation, a fine-to-coarse, poorly sorted quartz sand that is divided into an upper and lower unit; and (3) the undifferentiated overburden, which consists of fine to medium poorly sorted sand, silt and clay. Continuous-core samples indicate that the unsaturated zone includes the undifferentiated overburden and the upper unit of the Tallahatta Formation, and attains a maximum thickness of about 52 feet (ft) in the southern part of the study area. The Claiborne aquifer in the study area consists of the lower unit of the Tallahatta Formation and ranges in thickness from 3 ft near Ty Ty Creek tributary to about 20 ft in the upland divide area. It is confined below by the clayey sediments of the Tuscahoma Formation. The Claiborne aquifer in the study area generally is confined above by an extensive clay layer that is the base if the upper unit of the Tallahatta Formation. Fluctuations in the amount of vertical recharge to the aquifer result in areal and temporal changes in aquifer conditions from confined to unconfined in parts of the study area. Hydraulic conductivity of the aquifer ranges from 3.5 to 7 feet per day. The transmissivity of the aquifer is approximately 50 feet squared per day. Water-level data indicate the potentiometric surface slopes to the south, southeast, and southwest with a gradient of about 87 to 167 feet per mile. The shape of the potentiometric surface and the direction of groundwater flow

  9. Soil Investigation of Lower East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Johnbull O [ORNL; Mayes, Melanie [ORNL; Earles, Jennifer E [ORNL; Mehlhorn, Tonia L [ORNL; Lowe, Kenneth Alan [ORNL; Peterson, Mark J [ORNL; Pierce, Eric M [ORNL

    2017-03-01

    Mercury is regarded by the US Department of Energy (DOE) Oak Ridge Office of Environmental Management as a priority contaminant on the Oak Ridge Reservation because of the environmental risks associated with substantial losses from buildings, soils, and surface waters at the Y-12 National Security Complex (Y-12). As a result of historical releases of mercury from Y-12 primarily in the 1950s and early 1960s, the lower East Fork Poplar Creek (LEFPC) stream channel and bank soil margins are contaminated with mercury (Brooks and Southworth 2011; Tennessee Valley Authority 1985b, a). A Mercury Remediation Technology Development project is underway to evaluate the nature of downstream mercury contamination and to develop targeted site-specific remedial technologies that can mitigate mercury release and biological uptake. It is known that mercury concentration varies longitudinally and with depth in LEFPC bank soils; however, soil types and soil physical properties are not well known, especially relative to the zones of mercury contamination. Moreover, there are no soil maps for the downstream reaches of LEFPC in Roane County (i.e. from the Chestnut Hill Road downstream) and this work represents the first ever soil mapping along this section of LEFPC.

  10. Blue Creek Winter Range: Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  11. Four Mile Creek bottomland restoration program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K.W.

    1995-12-31

    On the Savannah River Site (SRS), nuclear production reactors were cooled by a once-through cooling cycle, using water from the Savannah River and discharging the effluent to small tributaries of the Savannah River. Four Mile Creek (also known as Fourmile Branch) is a third order tributary of the Savannah River on the upper coastal plain of South Carolina. It received thermal effluent from C Reactor from 1955 to 1985, which increased the flow rate, water depth and water temperature. Prior to 1955, the base flow was approximately one cubic meter per second, but increased, with the reactor effluent, to approximately 11 cubic meters per second, raising the water depth in the channel by 15 to 30 cm. Effluent temperature at the outfall was approximately 60 C and at the delta was 40 to 45 C, depending on the operation level of the reactor, the season of the year and the specific meteorological conditions. The increased flow rate also increased erosion in the upper reaches of the stream with deposition of this eroded material occurring in the delta averaging 60 cm of newly deposited sand on top of the former substrate.

  12. White Oak Creek Embayment site characterization and contaminant screening analysis

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed 137 Cs concentrations [> 10 6 Bq/kg dry wt (> 10 4 pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of 137 Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h 1 1 m above the soil surface

  13. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  14. Biological monitoring program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Ashwood, T.L.; Beaty, T.W.; Brandt, C.C.; Christensen, S.W.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.S.

    1997-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  15. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  16. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  17. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-01-01

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ( 137 Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137 Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  18. Basic repository environment assessment design basis, Cypress Creek Dome Site

    International Nuclear Information System (INIS)

    1988-03-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Gulf Interior Region at Cypress Creek Cone, Mississippi. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling and packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $4.66 billion. Costs include those for the collocated WHPF, engineering, and contingency, but exclude waste from assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relatively easy access to the site. Construction would require an estimated 7 years. Engineering factors and costs are not strongly influenced by environmental considerations. 53 refs., 24 figs., 10 tabs

  19. Four Mile Creek bottomland restoration program. Final report

    International Nuclear Information System (INIS)

    McLeod, K.W.

    1995-01-01

    On the Savannah River Site (SRS), nuclear production reactors were cooled by a once-through cooling cycle, using water from the Savannah River and discharging the effluent to small tributaries of the Savannah River. Four Mile Creek (also known as Fourmile Branch) is a third order tributary of the Savannah River on the upper coastal plain of South Carolina. It received thermal effluent from C Reactor from 1955 to 1985, which increased the flow rate, water depth and water temperature. Prior to 1955, the base flow was approximately one cubic meter per second, but increased, with the reactor effluent, to approximately 11 cubic meters per second, raising the water depth in the channel by 15 to 30 cm. Effluent temperature at the outfall was approximately 60 C and at the delta was 40 to 45 C, depending on the operation level of the reactor, the season of the year and the specific meteorological conditions. The increased flow rate also increased erosion in the upper reaches of the stream with deposition of this eroded material occurring in the delta averaging 60 cm of newly deposited sand on top of the former substrate

  20. West Foster Creek Expansion Project 2007 HEP Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  1. Bioavailability of mercury in East Fork Poplar Creek soils

    International Nuclear Information System (INIS)

    Barnett, M.O.; Turner, R.R.

    1995-05-01

    The initial risk assessment for the East Fork Poplar Creek (EFPC) floodplain in Oak Ridge, Tennessee, a superfund site heavily contaminated with mercury, was based upon a reference dose for mercuric chloride, a soluble mercury compound not expected to be present in the floodplain, which is frequently saturated with water. Previous investigations had suggested mercury in the EFPC floodplain was less soluble and therefore less bioavailable than mercuric chloride, possibly making the results of the risk assessment unduly conservative. A bioavailability study, designed to measure the amount of mercury available for absorption in a child's digestive tract, the most critical risk endpoint and pathway, was performed on twenty soils from the EFPC floodplain. The average percentage of mercury released during the study for the twenty soils was 5.3%, compared to 100% of the compound mercuric chloride subjected to the same conditions. Alteration of the procedure to test additional conditions possible during soil digestion did not appreciably alter the results. Therefore, use of a reference dose for mercuric chloride in the EFPC risk assessment without inclusion of a corresponding bioavailability factor may be unduly conservative

  2. Active Urbanization and Channel Adjustment in Apple Creek, Appleton, WI

    Science.gov (United States)

    Clark, J. J.

    2002-12-01

    Headwaters of the Apple Creek watershed have been and continue to be rapidly developed as part of the City of Appleton's long-term growth plan. Concurrent with early development, and prior to development over the past 4 years, two regional stormwater management facilities were constructed. Cross-sectional surveys and core transects were used to determine channel response to urbanization mitigated by stormwater management. The reach immediately downstream of the first pond complex has a narrow, but well established, wooded riparian zone and has not changed in size or shape over the past two years. An engineered reach approximately one mile downstream, however has exhibited widespread bed aggradation. Cross-sectional area decreased an average of 51% over the past four years. Despite the use of sediment and erosion control BMPs, sediment concentrations exceeding 1000 mg/L during base flow are not uncommon downstream of construction sites adjacent to the stream. The artificially widened channel, a reduction in stream gradient, and the backwater effect from downstream ponds caused much of this sediment to remain within the engineered reach. It is estimated that approximately 21,000 Mg of sediment is stored in this mile-long reach. As this sediment migrates downstream, the forebay of the second set of stormwater ponds will begin to fill, reducing storage capacity and thereby limiting its effectiveness in mitigating peak discharges and sequestering nutrients.

  3. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  4. Telemetry-based mortality estimates of juvenile spot in two North Carolina estuarine creeks

    Science.gov (United States)

    Friedl, Sarah E.; Buckel, Jeffery A.; Hightower, Joseph E.; Scharf, Frederick S.; Pollock, Kenneth H.

    2013-01-01

    We estimated natural mortality rates (M) of age-1 Spot Leiostomus xanthurus by using a sonic telemetry approach. Sonic transmitters were surgically implanted into a total of 123 age-1 Spot in two North Carolina estuarine creeks during spring 2009 and 2010, and the fish were monitored by using a stationary acoustic receiver array and manual tracking. Fates of telemetered Spot were inferred based on telemetry information from estimated locations and swimming speeds. Potential competitors of age-1 Spot were assessed through simultaneous otter trawl sampling, while potential predators of Spot were collected using gill nets and trammel nets. The number of inferred natural mortalities was zero in 2009 (based on 29 telemetered Spot at risk) and four in 2010 (based on 52 fish at risk), with fish being at risk for up to about 70 d each year. Catches of potential competitors or predators did not differ between years, and age-1 Spot were not found in analyzed stomach contents of potential predators. Our estimated 30-d M of 0.03 (95% credible interval = 0.01–0.07) was lower than that predicted from weight-based (M = 0.07) and life-history-based (M = 0.06–0.36) estimates. Our field-based estimate of M for age-1 Spot in this estuarine system can assist in the assessment and management of Spot by allowing a direct comparison with M-values predicted from fish size or life history characteristics. The field telemetry and statistical analysis techniques developed here provide guidance for future telemetry studies of relatively small fish in open, dynamic habitat systems, as they highlight strengths and weaknesses of using a telemetry approach to estimate M.

  5. Texture analysis for mapping Tamarix parviflora using aerial photographs along the Cache Creek, California.

    Science.gov (United States)

    Ge, Shaokui; Carruthers, Raymond; Gong, Peng; Herrera, Angelica

    2006-03-01

    Natural color photographs were used to detect the coverage of saltcedar, Tamarix parviflora, along a 40 km portion of Cache Creek near Woodland, California. Historical aerial photographs from 2001 were retrospectively evaluated and compared with actual ground-based information to assess accuracy of the assessment process. The color aerial photos were sequentially digitized, georeferenced, classified using color and texture methods, and mosaiced into maps for field use. Eight types of ground cover (Tamarix, agricultural crops, roads, rocks, water bodies, evergreen trees, non-evergreen trees and shrubs (excluding Tamarix)) were selected from the digitized photos for separability analysis and supervised classification. Due to color similarities among the eight cover types, the average separability, based originally only on color, was very low. The separability was improved significantly through the inclusion of texture analysis. Six types of texture measures with various window sizes were evaluated. The best texture was used as an additional feature along with the color, for identifying Tamarix. A total of 29 color photographs were processed to detect Tamarix infestations using a combination of the original digital images and optimal texture features. It was found that the saltcedar covered a total of 3.96 km(2) (396 hectares) within the study area. For the accuracy assessment, 95 classified samples from the resulting map were checked in the field with a global position system (GPS) unit to verify Tamarix presence. The producer's accuracy was 77.89%. In addition, 157 independently located ground sites containing saltcedar were compared with the classified maps, producing a user's accuracy of 71.33%.

  6. Sampling and analysis plan for treatment water and creek water for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    This document provides the Environmental Restoration Program with information about the methodology, organizational structure, quality assurance and health and safety practices to be employed during the water sampling and analysis activities associated with the remediation of the Lower East Fork Poplar Creek Operable Unit during remediation of the National Oceanic and Atmospheric Administration and Bruner sites

  7. Sampling and analysis plan for treatment water and creek water for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This document provides the Environmental Restoration Program with information about the methodology, organizational structure, quality assurance and health and safety practices to be employed during the water sampling and analysis activities associated with the remediation of the Lower East Fork Poplar Creek Operable Unit during remediation of the National Oceanic and Atmospheric Administration and Bruner sites.

  8. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    Science.gov (United States)

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  9. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    Science.gov (United States)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  10. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  11. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality.

  12. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality

  13. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  14. Stable isotope tracing of trout hatchery carbon to sediments and foodwebs of limestone spring creeks

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Todd M. [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)], E-mail: tmhurd@ship.edu; Jesic, Slaven; Jerin, Jessica L.; Fuller, Nathan W.; Miller, David [Department of Biology, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257 (United States)

    2008-11-01

    Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in {delta}{sup 13}C relative to autotrophs and wild fish. Spring creek sediments were enriched in {delta}{sup 13}C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in {delta}{sup 34}S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in {delta}{sup 15}N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with {delta}{sup 13}C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of

  15. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  16. Physical Processes Affecting the Distribution of Diydymosphenia Geminata Biomass Bloom in Rapid Creek, South Dakota

    Science.gov (United States)

    Abessa, M. B.; Sundareshwar, P. V.; Updhayay, S.

    2010-12-01

    Didymosphenia geminata is a freshwater diatom that has invaded and colonized many of the world’s oligotrophic streams and rivers, including Rapid Creek in Western South Dakota - a perennial oligotrophic stream that emerges from the Black Hills and is fed by cold water release from the Pactola Reservoir. Since 2002, D. geminata blooms have been observed in certain stretches of the Rapid Creek. These massive blooms are localized to certain segments of the Creek where the flow is mainly slow, stable and shallow dominated by boulder type bed material and submerged large woody debris. Water chemistry data from this Creek showed the variability of major nutrients such as phosphate, nitrates/nitrites and ammonium are insignificant across our study sites while the nature of the stream flow is quite irregular. We measured flow rates, depth, temperature, stream bed characteristics, water chemistry, and D. geminata biomass in regions with and without blooms. The presentation will discuss how changes in physical parameters along the various reaches of the Creek impact the biomass distribution of this invasive alga.

  17. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  18. Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-2011

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Edmiston, C. Scott; Taylor, Michelle L.; Leemon, Daniel J.

    2013-01-01

    Fish Creek, an approximately 25-kilometer-long tributary to Snake River, is located in Teton County in western Wyoming near the town of Wilson. Fish Creek is an important water body because it is used for irrigation, fishing, and recreation and adds scenic value to the Jackson Hole properties it runs through. Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address these concerns, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the hydrology, water quality, and biologic communities of Fish Creek during 2007–11. The hydrology of Fish Creek is strongly affected by groundwater contributions from the area known as the Snake River west bank, which lies east of Fish Creek and west of Snake River. Because of this continuous groundwater discharge to the creek, land-use activities in the west bank area can affect the groundwater quality. Evaluation of nitrate isotopes and dissolved-nitrate concentrations in groundwater during the study indicated that nitrate was entering Fish Creek from groundwater, and that the source of nitrate was commonly a septic/sewage effluent or manure source, or multiple sources, potentially including artificial nitrogen fertilizers, natural soil organic matter, and mixtures of sources. Concentrations of dissolved nitrate and orthophosphate, which are key nutrients for growth of aquatic plants, generally were low in Fish Creek and occasionally were less than reporting levels (not detected). One potential reason for the low nutrient concentrations is that nutrients were being consumed by aquatic plant life that increases during the summer growing season, as a result of the seasonal increase in temperature and larger number of daylight hours. Several aspects of Fish Creek’s hydrology contribute to higher productivity and biovolume of aquatic plants in Fish Creek than typically observed in streams of its size in

  19. Draft environmental assessment: Cypress Creek Dome site, Mississippi. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Cypress Creek dome site in Mississippi as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Cypress Creek dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Cypress Creek dome site is not disqualified under the guidelines. The site is contained in the Gulf Interior Region of the Gulf Coastal Plain, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites - the Richton dome site and the Vacherie dome site. Although the Cypress Creek dome site appears to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region and is proposing to nominate the Richton dome site rather than the Cypress Creek dome site as one of the three sites suitable for characterization

  20. Hydrologic data for North Creek, Trinity River basin, Texas, 1975

    Science.gov (United States)

    Kidwell, C.C.

    1977-01-01

    This report contains the rainfall, runoff, and storage data collected during the 1975 water year for the 21.6-square-mile area above the stream-gaging station North Creek near Jacksboro, Texas. The weighted-mean rainfall in the study area during the water year was 39.01 inches, which is greater than the 18-year average of 30.21 inches for the period 1958-75. Monthly rainfall totals ranged from 1.04 inches in November to 7.94 inches in May. The mean discharge for 1975 at the stream-gaging station was 5.98 cfs, compared with the 14-year (1957-70) average of 5.75 cfs. The annual runoff from the basin above the stream-gaging station was 4,330 acre-feet or 3.76 inches. Three storms were selected for detailed computations for the 1975 water year. The storms occurred on Oct. 30-31, 1974, May 2, 1975 , and Aug. 26, 1975. Rainfall and discharge were computed on the basis of a refined time breakdown. Patterns of the storms are illustrated by hydrographs and mass curves. A summary of rainfall-runoff data is tabulated. There are five floodwater-retarding structures in the study area. These structures have a total capacity of 4,425 acre-feet below flood-spillway crests and regulate streamflow from 16.3 square miles, or 75 percent of the study area. A summary of the physical data at each of the floodwater-retarding structures is included. (Woodard-USGS)

  1. Processes of paleoarroyo aggradation in Kanab Creek, southern Utah

    Science.gov (United States)

    Townsend, K. F.; Rittenour, T. M.

    2015-12-01

    Many alluvial valleys in the southwest United States have experienced repeated periods of arroyo entrenchment and re-aggradation during the Holocene. Previous research suggests arroyo dynamics were regionally synchronous, implying that climate fluctuations are the dominant drivers. However, intrinsic reach- or catchment-specific geomorphic thresholds to entrenchment are also hypothesized to partially control the timing of arroyo processes. This study focuses on the Holocene alluvial history of three entrenched reaches of Kanab Creek, southern Utah, to explore these competing hypotheses. Episodes of prehistoric arroyo cutting and filling are reconstructed by recognition of buttress unconformable contacts in the arroyo-wall stratigraphy and age control derived from optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) radiocarbon dating. A combined dataset of 47 OSL and 47 radiocarbon ages is produced, and results indicate at least five periods of aggradation occurred since ~6.0 ka, each interrupted by an episode of arroyo entrenchment. Comparison of this record to recently completed chronologies from arroyo systems in the region indicates near-synchronous arroyo processes over the last ~1.5 ka; however, beyond 1.5 ka correlations are less clear. Broadly contemporaneous alluviation suggests a climatic driver, and comparison to paleoclimate records suggests that arroyo entrenchment events may be driven by transitions from periods of multi-year drought to wetter periods. However, the detailed alluvial chronology indicates that the initiation of aggradation is transient, with each period of paleoarroyo aggradation beginning downstream and propagating upstream, which suggests that potentially regionally synchronous, climate-driven events may not appear as such in the stratigraphic record.

  2. [AVS concentrations in Xinan Creek and the influencing factors].

    Science.gov (United States)

    Liu, Xiao-Bing; Wen, Yan-Mao; Li, Feng; Wu, Chang-Hua; Duan, Zhi-Peng

    2012-07-01

    Sediment and overlying water samples were collected at 10 sampling stations at Xinan Creek, a tidal river in Pearl River Delta, and analyzed for physical and chemical characteristics as well as microbial incicators, in order to reveal the main factors dominating the spatial distribution of acid volatile sulfide (AVS). The effects of Eh, SRB OC and TS on the spatial distribution of AVS were investigated and the impact of AVS on the toxicity of heavy metals in the studied area was evaluated. The results showed that the range of AVS was 0.207-41.453 micromol x g(-1), with an average of 6.684 micromol x g(-1), which is relatively high compared to the results in other studies. The AVS value of the surface layer was higher than the bottom layer in 5 stations. The AVS values in both the surface layer and the bottom layer were highly variable, the coefficients of variation being 93.61% and 153.09% , respectively. The analytical results revealed that TS was the factor with the greatest impact on the spatial distribution of AVS, and the order was TS > OC > Eh > SRB. Potential ecological risk of heavy metals existed in 60% of the smpling stations based on the value of Sigma (SEM5-AVS), however, with the criterion of [Sigma(SEM5-AVS)]/foc, none of them had inacceptable ecological risk. Furthermore, in terms of single species of heavy metals, there was certain risk of toxic effect for all the five heavy metals (Cd, Ni, Cu, Zn and Pb). The above mentioned results will provide valuable data for the in-depth study of the formation mechanism of AVS and helpful reference for environmental impact assessment and scientific rehabilitation of heavy metals in polluted rivers.

  3. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  4. An iterative and integrative approach to modeling the morphological alterations in backwater condition: A case study of Darby Creek, PA

    Science.gov (United States)

    Hosseiny, S. M. H.; Smith, V.

    2017-12-01

    Darby Creek is an urbanized highly flood-prone watershed in Metro-Philadelphia, PA. The floodplain and the main channel are composed of alluvial sediment and are subject to frequent geomorphological changes. The lower part of the channel is within the coastal zone, subjugating the flow to a backwater condition. This study applies a multi-disciplinary approach to modeling the morphological alteration of the creek and floodplain in presence of the backwater using an iteration and integration of combined models. To do this, FaSTMECH (a two-dimensional quasi unsteady flow solver) in International River Interface Cooperative software (iRIC) is coupled with a 1-dimensional backwater model to calculate hydraulic characteristics of the flow over a digital elevation model of the channel and floodplain. One USGS gage at the upstream and two NOAA gages at the downstream are used for model validation. The output of the model is afterward used to calculate sediment transport and morphological changes over the domain through time using an iterative process. The updated elevation data is incorporated in the hydraulic model again to calculate the velocity field. The calculations continue reciprocally over discrete discharges of the hydrograph until the flood attenuates and the next flood event occurs. The results from this study demonstrate how to incorporate bathymetry and flow data to model floodplain evolution in the backwater through time, and provide a means to better understanding the dynamics of the floodplain. This work is not only applicable to river management, but also provides insight to the geoscience community concerning the development of landscapes in the backwater.

  5. Changes in depositional environment for the past 35 years in the Thane Creek, central west coast of India: Inferences from REEs, metals and magnetic properties

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.L.; Kessarkar, P.M.; Parthiban, G.; Rao, V.P.

    The role of diagenetic processes in influencing the behaviour of metals (Fe, Mn, Cu, Ni, Zn), rare earth elements (REEs) and environmental magnetic parameters in two sediment cores from a polluted creek environment (the Thane Creek, Mumbai...

  6. Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001-2002

    Science.gov (United States)

    Schumacher, John G.

    2003-01-01

    five sampling sites along the 5.7-mi study reach of Shoal Creek, but the trends at successive downstream sites were out of phase and could not be explained by simple advection and dispersion. At base-flow conditions, the travel time of bacteria in Shoal Creek along the 5.7-mi reach between State Highway W (site 2) and the MDNR sampling site (site 3) was about 26 hours. Substantial dispersion and dilution occurs along the upper 4.1 mi of this reach because of inflows from a number of springs and tributaries and the presence of several long pools and channel meanders. Minimal dispersion and dilution occurs along the 1.6-mi reach immediately upstream from the MDNR sampling site. Measurements of fecal bacteria decay in Shoal Creek during July 2001 indicated that about 8 percent of fecal coliform and E. coli bacteria decay each hour with an average first-order decay constant of 0.084 h-1 (per hour). Results of field test plots indicated that substantial numbers of fecal bacteria present in poul try litter can survive in fields for as much as 8 weeks after the application of the litter to the land surface. Median densities of fecal coliform and E. coli in slurry-water samples collected from fields increased from less than 60 col/100 mL before the application of turkey and broiler litter, to as large as 420,000 and 290,000 col/100 mL after the application of litter. Bacteria densities in the test plots generally decreased in a exponential manner over time with decay rates ranging from 0.085 to 0.185 d-1 (per day) for fecal coliform to between 0.100 and 0.250 d-1 for E. coli. The apparent survival of significant numbers of fecal bacteria on fields where poultry litter has been applied indicates that runoff from these fields is a potential source of fecal bacteria to vicinity streams for many weeks following litter application.

  7. 2016-2017 Update of Hydraulic Fracturing Induced Earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Wang, R.; Gu, Y. J.; Zhang, M.

    2017-12-01

    With a reported Richter magnitude (ML) of 4.8, the January 12, 2016 earthquake near Fox Creek is the largest event in Alberta during the past decade. This event led to the suspension of a nearby hydraulic fracturing well, in compliance with the provincial "traffic-light" protocol. In previous study, we examine the hypocenter location and focal mechanism of this earthquake, and the results support an anthropogenic origin. Since then (until August 2017), no event reached ML=4, while several ML>3 events occurred in the Fox Creek area. Their focal mechanisms are consistent with the ones from previous events that were induced by hydraulic fracturing, suggesting a strike-slip mechanism with either N-S or E-W trending fault. In 2017, the near-source station (distance Fox Creek region.

  8. Environmental Setting of the Sugar Creek and Leary Weber Ditch Basins, Indiana, 2002-04

    Science.gov (United States)

    Lathrop, Timothy R.

    2006-01-01

    The Leary Weber Ditch Basin is nested within the Sugar Creek Basin in central Indiana. These basins make up one of the five study sites in the Nation selected for the Agricultural Chemicals: Sources, Transport, and Fate topical study, a part of the U.S. Geological Survey’s National Water-Quality Assessment Program. In this topical study, identifying the natural factors and human influences affecting water quality in the Leary Weber Ditch and Sugar Creek Basins are the focus of the assessment. A detailed comparison between the environmental settings of these basins is presented. Specifics of the topical study design as implemented in the Leary Weber Ditch and Sugar Creek Basins are described.

  9. Continuous fission-product monitor system at Oyster Creek. Final report

    International Nuclear Information System (INIS)

    Collins, L.L.; Chulick, E.T.

    1980-10-01

    A continuous on-line fission product monitor has been installed at the Oyster Creek Nuclear Generating Station, Forked River, New Jersey. The on-line monitor is a minicomputer-controlled high-resolution gamma-ray spectrometer system. An intrinsic Ge detector scans a collimated sample line of coolant from one of the plant's recirculation loops. The minicomputer is a Nuclear Data 6620 system. Data were accumulated for the period from April 1979 through January 1980, the end of cycle 8 for the Oyster Creek plant. Accumulated spectra, an average of three a day, were stored on magnetic disk and subsequently analyzed for fisson products, Because of difficulties in measuring absolute detector efficiency, quantitative fission product concentrations in the coolant could not be determined. Data for iodine fission products are reported as a function of time. The data indicate the existence of fuel defects in the Oyster Creek core during cycle 8

  10. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  11. Watershed restoration through remining in the Tangascootack Creek Watershed, Clinton County, Pennsylvania

    International Nuclear Information System (INIS)

    Skema, V.W.; Smith, M.W.; Bisko, D.C.; Dimatteo, M.

    1998-01-01

    The Pennsylvania Department of Environmental Protection and the Pennsylvania Geologic Survey are working together to remediate the effects of acid mine drainage. Remining of previously mined areas is a key component of a comprehensive strategy of improving water quality in polluted watersheds. In this new approach sites will be carefully selected on the basis of remaining coal reserves and overburden characteristics. One of the first watersheds targeted was the Tangascootack Creek watershed located in Clinton County near Lock Haven. The Geologic Survey agreed to provide geologic and coal resource maps for this previously unmapped area. This involved conducting field work examining rock exposures. Five cored holes were drilled, and core was examined to develop a geologic framework. Coals from these holes and from highwalls were chemically tested. Strata overlying the coal seams were analyzed using acid base accounting to determine their potential for generating acidity as well as alkalinity. Additional drill hole data and chemical analyses were collected from cooperating mining companies. This information was used to produce a geologic map showing coal crop lines and structure, coal thickness maps, mined-out area maps, overburden thickness maps, overburden geochemistry maps, strip ratio maps, and to estimate the extent of remaining coal reserves. Several significant geologic features were found in the course of mapping the watershed. One is the extreme variability in coal thickness and character of overburden rock. Another is the degree of relief found to be present on the Mississippian-Pennsylvanian unconformity. It is believed that this feature plays an important role in coal and high aluminum flint clay distribution regionally. And finally is the thick occurrence of Loyalhanna Formation calcareous sandstone which is providing a natural source of carbonate for the neutralization of acid mine drainage

  12. 77 FR 25193 - Notice of Availability of the Draft Environmental Impact Statement for the Lost Creek Uranium In...

    Science.gov (United States)

    2012-04-27

    ...-166318] Notice of Availability of the Draft Environmental Impact Statement for the Lost Creek Uranium In... (EIS) for the Lost Creek Uranium In Situ Recovery (ISR) Project and by this notice is announcing the... subpart 3809 regulations to construct a uranium ore recovery plant, an access road to the site, and a...

  13. "An Equal Interest in the Soil": Creek Small-Scale Farming and the Work of Nationhood, 1866-1889

    Science.gov (United States)

    Chang, David A.

    2009-01-01

    After the war in 1866, slaves became the owners of the lands they once farmed for their masters. The land they farmed became their own because of the nature of Creek citizenship and land tenure. The 1866 treaty of peace between the United States federal government and the Creek Nation (also known as the Muskogee Nation) declared that freed slaves…

  14. 77 FR 55817 - Panther Creek Power Operating, LLC; Supplemental Notice that Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-09-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2570-000] Panther Creek Power Operating, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request for... Panther Creek Power Operating, LLC's application for market-based rate authority, with an accompanying...

  15. 78 FR 11099 - Safety Zone Within the Lower Portion of Anchorage #9, Mantua Creek Anchorage; Paulsboro, NJ

    Science.gov (United States)

    2013-02-15

    ... 1625-AA00 Safety Zone Within the Lower Portion of Anchorage 9, Mantua Creek Anchorage; Paulsboro, NJ... temporary safety zone around the southern one-third of Anchorage 9 (Mantua Creek Anchorage), below position 39[deg] 51.573 N-075[deg] 13.557 W due to dredging operations. The Dredge Florida will be working...

  16. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation...: the waters of the Delaware River in the vicinity of the Salem and Hope Creek Generation Stations...

  17. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2...-70, and DPR-75, issued to PSEG Nuclear LLC (PSEG, the licensee), for operation of the Hope Creek...

  18. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  19. 76 FR 78641 - Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of Filing

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-002; Docket No. RC11-2-002] Cedar Creek Wind Energy, LLC, Milford Wind Corridor Phase I, LLC; Notice of Filing Take...) June 16, 2011 Order.\\1\\ \\1\\ Cedar Creek Wind Energy, LLC and Milford Wind Corridor Phase I, LLC, 135...

  20. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Science.gov (United States)

    2010-04-06

    ...] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo, Tulare... Wildlife Refuges (NWRs) located in Kern, San Luis Obispo, Tulare, and Ventura counties of California. We... developing a CCP for Hopper Mountain, Bitter Creek, and Blue Ridge NWRs in Kern, San Luis Obispo, Tulare, and...

  1. Innovations in Stream Restoration and Flood Control Design Meeting Flood Capacity and Environmental Goals on San Luis Obispo Creek

    Science.gov (United States)

    Wayne Peterson

    1989-01-01

    Can a natural flowing creek be increased in drainage capacity to protect an adjacent community from flooding while still maintaining a natural habitat? San Luis Obispo constructed one such project on over a mile of Creek as a part of a housing development. The City found that some of the mitigation measures included in the project worked while others did not. In the...

  2. Sediment transport and storage in North Fork Caspar Creek, Mendocino County, California: water years 1980-1988

    Science.gov (United States)

    Michael Brent Napolitano

    1996-01-01

    Abstract - The old-growth redwood forest of North Fork Caspar Creek was clear-cut between 1864 and 1904. Previous research on logging-related changes in suspended sediment and streamflow would suggest that North Fork Caspar Creek has recovered from historical logging (Rice et al., 1979; Ziemer, 1981); research on the influence of large woody debris (LWD) on channel...

  3. Summary of the Skookumchuck Creek bull trout enumeration project 2001.; TOPICAL

    International Nuclear Information System (INIS)

    Baxter, James S.; Baxter, Jeremy

    2002-01-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing

  4. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  5. Evaluation of some 90Sr sources in the White Oak Creek drainage basin

    International Nuclear Information System (INIS)

    Stueber, A.M.; Huff, D.D.; Farrow, N.D.; Jones, J.R.; Munro, I.L.

    1981-01-01

    The drainage basin was monitored to evaluate the relative importance of each source as a contributor to 90 Sr in White Oak Creek. The various sources fall into two general categories, those whose 90 Sr discharge is dependent upon rainfall and those relatively unaffected by the level of precipitation. The identification and ranking of existing non-point sources of 90 Sr in the White Oak Creek basin represents an important step in the ongoing comprehensive program at ORNL to provide a scientific basis for improved control measures and future disposal practices in solid waste disposal areas

  6. Estimates of natural streamflow at two streamgages on the Esopus Creek, New York, water years 1932 to 2012

    Science.gov (United States)

    Burns, Douglas A.; Gazoorian, Christopher L.

    2015-01-01

    Streamflow in the Esopus Creek watershed is altered by two major watershed management activities carried out by the New York City Department of Environmental Protection as part of its responsibility to maintain a water supply for New York City: (1) diversion of water from the Schoharie Creek watershed to the Esopus Creek through the Shandaken Tunnel, and (2) impoundment of the Esopus Creek by a dam that forms the Ashokan Reservoir and subsequent release through the Catskill Aqueduct. Stakeholders in the Catskill region are interested and concerned about the extent to which these watershed management activities have altered streamflow, especially low and high flows, in the Esopus Creek. To address these concerns, natural (in the absence of diversion and impoundment) daily discharge from October 1, 1931, to September 30, 2012, was estimated for the U.S. Geological Survey streamgages at Coldbrook (station number 01362500), downstream of the Shandaken Tunnel discharge, and at Mount Marion (01364500), downstream of the Ashokan Reservoir.

  7. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of the L-reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1982-10-01

    This report summarizes the findings of slightly more than one year's study of the Steel Creek ecosystem. Generally, the findings have allowed us to refine our understanding of the structural and functional organization of the Steel Creek ecosystem which is an essential prerequisite for predicting the impacts associated with L-reactor restart. Reanalysis of the Steel Creek plant community relationships using 1981 aerial photography revealed that this component of the delta ecosystem continues to change as a result of natural successional processes. The major detectable changes have occurred on the more elevated portions of Steel Creek delta where coverage by woody species (especially willow) is continuing to increase. This successional woody community is invading areas previously dominated by persistent herbaceous species such as cut grass. Eleven vegetation associations were identified in the Steel Creek delta area, including two associations that were not apparently affected by the earlier reactor operations

  8. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  9. Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Abbott

    2005-10-01

    Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratory’s Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 – 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury

  10. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the

  11. Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009

    Science.gov (United States)

    Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.

    2011-01-01

    The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on

  12. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  13. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    Science.gov (United States)

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  14. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Shamokin Creek Basin, Northumberland and Columbia Counties, Pennsylvania, 1999-2001

    Science.gov (United States)

    Cravotta,, Charles A.; Kirby, Carl S.

    2003-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the upper Shamokin Creek Basin in east-central Pennsylvania. The upper Shamokin Creek Basin encompasses an area of 54 square miles (140 square kilometers) within the Western Middle Anthracite Field, including and upstream of the city of Shamokin. Elevated concentrations of acidity, metals, and sulfate in the AMD from flooded underground anthracite coal mines and (or) unreclaimed culm (waste rock) piles degrade the aquatic ecosystem and water quality of Shamokin Creek to its mouth and along many of its tributaries within the upper basin. Despite dilution by unpolluted streams that more than doubles the streamflow of Shamokin Creek in the lower basin, AMD contamination and ecological impairment persist to its mouth on the Susquehanna River at Sunbury, 20 miles (32 kilometers) downstream from the mined area. Aquatic ecological surveys were conducted by the U.S. Geological Survey (USGS) in cooperation with Bucknell University (BU) and the Northumberland County Conservation District (NCCD) at six stream sites in October 1999 and repeated in 2000 and 2001 on Shamokin Creek below Shamokin and at Sunbury. In 1999, fish were absent from Quaker Run and Shamokin Creek upstream of its confluence with Carbon Run; however, creek chub (Semotilus atromaculatus) were present within three sampled reaches of Carbon Run. During 1999, 2000, and 2001, six or more species of fish were identified in Shamokin Creek below Shamokin and at Sunbury despite elevated concentrations of dissolved iron and ironencrusted streambeds at these sites. Data on the flow rate and chemistry for 46 AMD sources and 22 stream sites throughout the upper basin plus 1 stream site at Sunbury were collected by the USGS with assistance from BU and the Shamokin Creek Restoration Alliance (SCRA) during low base-flow conditions in August 1999 and high baseflow

  15. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    Johnson, B.J.Bradley J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  16. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  17. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  18. Effects of outcropping groundwater from the F- and H-Area seepage basins on the distribution of fish in Four Mile Creek

    International Nuclear Information System (INIS)

    Paller, M.H.; Storey, C.

    1990-10-01

    Four Mile Creek was electrofished during June 26--July 2, 1990 to assess the impacts of outcropping ground water form the F- and H-Area Seepage Basins on fish abundance and distribution. Number of fish species and total catch were comparable at sample stations upstream from and downstream from the outcropping zone in Four Mile Creek. Species number and composition downstream from the outcropping zone in Four Mile Creek were similar to species number and composition in unimpacted portions of Pen Branch, Steel Creek, and Meyers Branch. These findings indicate that seepage basin outcropping was not adversely affecting the Four Mile Creek fish community. 5 refs., 3 figs., 4 tabs

  19. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities

  20. Marsh soil responses to tidal water nitrogen additions contribute to creek bank fracturing and slumping

    Science.gov (United States)

    Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...

  1. 78 FR 20613 - Ochoco National Forest, Paulina Ranger District; Oregon; Wolf Creek Vegetation and Fuels...

    Science.gov (United States)

    2013-04-05

    ... 2012 and documented in the Wolf Creek Watershed Analysis. The watershed analysis determined that... includes National Forest system lands within the Lower Beavercreek watershed. The alternatives that will be... analysis and decision making process so interested and affected people may participate and contribute to...

  2. Fire history reflects human history in the Pine Creek Gorge of north-central Pennsylvania

    Science.gov (United States)

    Patrick H. Brose; Richard P. Guyette; Joseph M. Marschall; Michael C. Stambaugh

    2015-01-01

    Fire history studies are important tools for understanding past fire regimes and the roles humans played in those regimes. Beginning in 2010, we conducted a fire history study in the Pine Creek Gorge area of north-central Pennsylvania to ascertain the number of fires and fire-free intervals, their variability through time, and the role of human influences. We collected...

  3. Capacity of waters in the Magela Creek system, Northern Territory, to complex copper and cadmium

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.

    1984-08-01

    Two methods were used to determine the concentrations of copper-binding ligand (complexing capacity) and conditional formation constants for waters collected from the Magela Creek system, Northern Territory. These data are particularly important in estimating the concentrations of toxic forms of copper that may result from particular effluent discharge strategies from the Ranger uranium operation

  4. "Woman Hollering Creek" a Traves de la Musica: Articulating Mexicanidad to Pochismo

    Science.gov (United States)

    French, Lydia A.

    2011-01-01

    This essay intervenes in contemporary scholarship on Sandra Cisneros's "Woman Hollering Creek" (1991) by examining the canciones she uses as epigraphs and their relationship to the multiple nationalisms that Chicana/os actively negotiate. I argue that Cisneros's decision to include powerfully nationalist Mexican cancion traditions…

  5. Invertebrates of Meadow Creek, Union County, Oregon, and their use as food by trout.

    Science.gov (United States)

    Carl E. McLemore; William R. Meehan

    1988-01-01

    From 1976 to 1980, invertebrates were collected three times each year from several reaches of Meadow Creek in eastern Oregon. Five sampling methods were used: benthos, drift, sticky traps, water traps, and fish stomachs. A total of 372 taxa were identified, of which 239 were used as food by rainbow trout (steelhead; Salmo gairdneri Richardson). Of...

  6. 76 FR 75543 - Castle Creek Hydroelectric Project; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2011-12-02

    ... Hydroelectric Project; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments... (FPA), proposing to study the feasibility of the Castle Creek Hydroelectric Project to be located on... be located adjacent to the original hydroelectric plant, with a single shaft Pelton turbine...

  7. 76 FR 57729 - Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final...

    Science.gov (United States)

    2011-09-16

    ...-015] Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final Environmental Impact Statement for the Relicensing of the Boundary Hydroelectric Project and the Surrender of... reviewed the applications for license for the Boundary Hydroelectric Project (FERC No. 2144-38), and the...

  8. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  9. Death in Indiana: "The Massacre at Fall Creek" by Jessamyn West.

    Science.gov (United States)

    Rout, Kathleen

    1985-01-01

    Interpreted is the novel, "The Massacre at Fall Creek," that dramatizes an event that occurred in Indiana in 1824 in which White men killed unarmed Seneca Indians. The Whites were brought to trial, convicted, and hanged. The novel demonstrates the moral ambiguity that often characterizes responses toward crime and punishment. (RM)

  10. Summary of climatic data for the Bonanza Creek Experimental Forest, interior Alaska.

    Science.gov (United States)

    Richard J. Barney; Erwin R. Berglund

    1973-01-01

    A summary of climatic data during the 1968-71 growing seasons is presented for the subarctic Bonanza Creek Experimental Forest located near Fairbanks, Alaska. Data were obtained from three weather station sites at elevations of 1,650, 1,150, and 550 feet from May until September each year. Data are for relative humidity, rainfall, and maximum, minimum, and mean...

  11. Summary of hydrologic conditions in the Reedy Creek Improvement District, central Florida

    Science.gov (United States)

    German, Edward R.

    1986-01-01

    The Reedy Creek Improvement is an area of about 43 square miles in southwestern Orange and northwestern Osceola Counties, Florida. A systematic program of hydrologic data collection in the Reedy Creek Improvement District and vicinity provided data for assessing the impact of development, mostly the Walt Disney World Theme Park and related development on the hydrology. Data collected include stream discharge, water quality, groundwater levels, lakes levels, and climatological. Rainfall has been less than the long-term average in the Reedy Creek Improvement District since development began in 1968. The deficient rainfall has reduced stream discharge, lowered groundwater and lake levels, and possibly affected water quality in the area. Groundwater levels and lake levels have declined since 1970. However, the coincidence of below-average rainfall with the period of development makes it impossible to assess the effect of pumping on declines. Occurrence of toxic metals does not relate to development, but distribution of insecticides and herbicides does appear to relate to development. Specific conductance, phosphorous, and nitrate concentrations have increased in Reedy Creek since 1970, probably due to disposal of treated wastes. (USGS)

  12. 77 FR 65446 - Turtle Creek Industrial Railroad, Inc.-Acquisition and Operation Exemption-Consolidated Rail...

    Science.gov (United States)

    2012-10-26

    ... common carrier providing interstate rail service, primarily for Dura-Bond, without first obtaining... Industrial Railroad, Inc.--Acquisition and Operation Exemption--Consolidated Rail Corporation Turtle Creek... Consolidated Rail Corporation (Conrail) and to operate approximately 9.8 miles of rail line between milepost 0...

  13. Pilot project for a hybrid road-flooding forecasting system on Squaw Creek.

    Science.gov (United States)

    2014-09-01

    A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine : if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings : including those...

  14. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Mary Ann Madej; Greg Bundros; Randy Klein

    2012-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal...

  15. Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Anderson, M.

    1995-07-01

    This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives

  16. A relatively nonrestrictive approach to reducing campsite impact: Caney Creek Wilderness, Arkansas

    Science.gov (United States)

    David N. Cole; Thomas E. Ferguson

    2009-01-01

    An excessive number of highly impacted campsites led managers of the Caney Creek Wilderness to attempt to reduce campsite impacts with a program of trail relocation, education, closure of selected campsites, and site restoration. The strategy involved increasing the concentration of use somewhat, without resorting to the restrictiveness of a designated campsite policy...

  17. 75 FR 62469 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-10-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0907] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  18. 75 FR 30299 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0355] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  19. Winter food habits of coastal juvenile steelhead and coho salmon in Pudding Creek, northern California

    Science.gov (United States)

    Heather Anne Pert

    1993-01-01

    The objectives of this study were to determine winter food sources, availability, and preferences for coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss) in Pudding Creek, California. The majority of research on overwintering strategies of salmonids on the West Coast has been done in cooler, northern climates studying primarily the role of habitat...

  20. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2009

    Data.gov (United States)

    Department of the Interior — Water levels and water quality parameters recorded on Crane Creek in 2009. LOCATION: Lat. 41°37'21.347"N, long 83°12'40.758"W, near Oak Harbor, OH. Ottawa County, OH...

  1. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2010

    Data.gov (United States)

    Department of the Interior — Water levels and water quality parameters recorded on Crane Creek in 2010. LOCATION: Lat. 41°37'21.347"N, long 83°12'40.758"W, near Oak Harbor, OH. Ottawa County, OH...

  2. New observations on the stratigraphy and radiocarbon dates at the Cross Creek site, Opito, Coromandel Peninsula

    International Nuclear Information System (INIS)

    Furey, L.; Petchey, F.; Sewell, B.; Green, R.

    2008-01-01

    This paper re-examines stratigraphy and radiocarbon dates at Cross Creek in Sarah's Gully. Three new radiocarbon dates are presented for Layer 9, the earliest, and previously undated, occupation. This investigation is part of a programme of archaeological work being carried out on the Coromandel Peninsula. (author). 51 refs., 4 figs., 3 tabs

  3. 76 FR 6114 - Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization

    Science.gov (United States)

    2011-02-03

    ... National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization AGENCY: Forest Service, USDA. ACTION: Notice of Intent to prepare an Environmental Impact Statement. SUMMARY: The Lincoln National Forest will prepare an Environmental Impact Statement (EIS) to document and publicly disclose...

  4. 77 FR 46283 - Amendment of Class E Airspace; Battle Creek, MI

    Science.gov (United States)

    2012-08-03

    ...) Standard Instrument Approach Procedures at W.K. Kellogg Airport. The airport's geographic coordinates also... controlled airspace at W.K. Kellogg Airport (77 FR 29918) Docket No. FAA-2011-1110. Interested parties were... instrument approach procedures at W.K. Kellogg Airport, Battle Creek, MI. This action is necessary for the...

  5. Rice Creek Elementary School and the University of South Carolina: A Shared Vision for Excellence

    Science.gov (United States)

    Evans, Kathy; Holley, Jessica; Richburg-Sellers, Felicia; Robey, Susan; Suber, Shawn; Burton, Megan; Field, Bruce E.

    2012-01-01

    The 2011 Professional Development Schools National Conference recognized Rice Creek Elementary School for its outstanding collaborative accomplishments with the University of South Carolina, naming it as a recipient of the National Association for Professional Development School's Award for Exemplary Professional Development School Achievement.…

  6. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    Science.gov (United States)

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  7. 75 FR 30852 - Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project, Colorado

    Science.gov (United States)

    2010-06-02

    ... associated with the Dallas Creek Project; and the anticipated return on investment. If there are additional... entity to develop hydroelectric power at Ridgway Dam, and power purchasing and/or marketing... and interested entities to discuss Western's potential marketing of hydropower. FOR FURTHER...

  8. 78 FR 51753 - AUC, LLC Reno Creek, In Situ Project, New Source Material License Application

    Science.gov (United States)

    2013-08-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 040-09092; [NRC-2013-0164] AUC, LLC Reno Creek, In Situ..., AUC, LLC (AUC) submitted to the U.S. Nuclear Regulatory Commission (NRC) an application for a new... and operation, and decommissioning of AUC's proposed in-situ uranium recovery (ISR, also known as in...

  9. Assessing effects of changing land use practices on sediment loads in Panther Creek, north coastal California

    Science.gov (United States)

    Madej, Mary Ann; Bundros, Greg; Klein, Randy

    2011-01-01

    Revisions to the California Forest Practice Rules since 1974 were intended to increase protection of water quality in streams draining timber harvest areas. The effects of improved timber harvesting methods and road designs on sediment loading are assessed for the Panther Creek basin, a 15.4 km2 watershed in Humboldt County, north coastal California. We compute land use statistics, analyze suspended sediment discharge rating curves, and compare sediment yields in Panther Creek to a control (unlogged) stream, Little Lost Man Creek. From 1978 to 2008, 8.2 km2 (over half the watershed) was clearcut and other timber management activities (thinning, selection cuts, and so forth) affected an additional 5.9 km2. Since 1984, 40.7 km of streams in harvest units received riparian buffer strip protection. Between 2000 and 2009, 22 km of roads were upgraded and 9.7 km were decommissioned, reducing potential sediment production by an estimated 40,000 m3. Road density is currently 3.1 km/km2. Sediment rating curves from 2005 to 2010 indicate a decrease in suspended sediment concentrations when compared to the pre-1996 period, although Panther Creek still has a higher sediment yield on a per unit area basis than the control stream.

  10. Impacts of Organic Wastes on Water Quality of Woji Creek in Port ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2Department of Animal and Environmental Biology, Faculty of Science, University of Port ... attributable to the activities of the oil industry in the ... areas or on river banks and this increasing coastal ... management are not followed. ... wielding, sand mining, dredging, mangrove cutting, .... activities around and inside the creek.

  11. "We Did All the Work": Seeing Smartness in a Poarch Creek Way

    Science.gov (United States)

    Martin, Karla

    2016-01-01

    In the Poarch Creek community, being "smart" individually is not something that we learn until we go to school. Instead, in our community, to be considered "smart" you must learn how to work with and in the tribal community in a way that contributes to the needs of all of the people in the community. Through this article, I…

  12. Tidal Creek Morphology and Sediment Type Influence Spatial Trends in Salt Marsh Vegetation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David M.; Bartholdy, Jesper

    2013-01-01

    that by shaping major geomorphic features and providing sediments to the adjacent sites, fluvial-geomorphic processes of tidal creeks exert fundamental controls on the cross-channel distribution of abiotic and biotic factors. These results point to a need for biogeomorphic and landscape ecological perspectives...

  13. Channel incision and suspended sediment delivery at Caspar Creek, Mendocino County, California

    Science.gov (United States)

    Nicholas J. Dewey; Thomas E. Lisle; Leslie M. Reid

    2003-01-01

    Tributary and headwater valleys in the Caspar Creek watershed,in coastal Mendocino County, California,show signs of incision along much of their lengths.An episode of incision followed initial-entry logging which took place between 1860 and 1906. Another episode of incision cut into skid-trails created for second-entry logging in the 1970's.

  14. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit

  15. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Science.gov (United States)

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  16. Detection and distribution of rotavirus in raw sewage and creeks in Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mehnert, D.U.; Stewien, K.E. (Univ. of Sao Paulo (Brazil))

    1993-01-01

    Rotavirus invection is an important cause of hospitalization and mortality of infants and children in developing countries, especially where the water supply and sewage disposal systems are in precarious conditions. This report describes the detection, quantitation, and distribution of rotaviruses in domestic sewage and sewage polluted creeks in the city of San Paulo. 22 refs., 1 fig., 3 tabs.

  17. Hydrologic and water quality monitoring on Turkey Creek watershed, Francis Marion National Forest, SC

    Science.gov (United States)

    D.M. Amatya; T.J. Callahan; A. Radecki-Pawlik; P. Drewes; C. Trettin; W.F. Hansen

    2008-01-01

    The re-initiation of a 7,260 ha forested watershed study on Turkey Creek, a 3rd order stream, within the Francis Marion National forest in South Carolina, completes the development of a multi-scale hydrology and ecosystem monitoring framework in the Atlantic Coastal Plain. Hydrology and water quality monitoring began on the Santee Experimental...

  18. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2011

    Data.gov (United States)

    Department of the Interior — Water levels and water quality parameters recorded on Crane Creek in 2011. LOCATION: Lat. 41°37'21.347"N, long 83°12'40.758"W, near Oak Harbor, OH. Ottawa County, OH...

  19. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    Science.gov (United States)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by

  20. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  1. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    Science.gov (United States)

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  2. Best management practices plan for Phase II of the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Oak Ridge Y-12 Plant is currently under a Federal Agreement to define soil and groundwater contamination and develop remedies to protect human health and the environment. The western end of the site is known to have a former nitric acid disposal pit that has been remediated and capped. Remedial investigation data indicate this pit was a source of nitrate, uranium, technetium, and other metals contamination in groundwater. The downgradient receptor of this contamination includes Bear Creek and its tributaries. A feasibility study is under way to develop a remedy to prevent further contaminant migration to this receptor. To support the feasibility study, the treatability study is being completed to examine groundwater treatment at the S-3 site. This document serves as the top-level command medium for Phase II of the Bear Creek Valley (BCV) Treatability Study and, as such, will be the primary resource for management and implementation of field activities. Many of the details and standard operating procedures referred to herein can be found in other Lockheed Martin Energy Systems, Inc. (Energy Systems), documents. Several supporting documents specific to this project are also cited. These include the Sampling and Analysis Plan (SAP), the Health and Safety Plan (HASP), and the Waste Management Plan (WMP)

  3. Sampling and analysis plan for Phase II of the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that affect ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of environmental and media testing. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, surface water, seeps, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetland. Groundwater, surface water, and seeps will be monitored continuously for field parameters and sampled for analytical parameters during pump tests conducted periodically during the investigation. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment

  4. Skelental anomalies in fishes collected from Korangi Creek and back-water of Sandspit along the coast of Karachi (Pakistan)

    International Nuclear Information System (INIS)

    Hussain, S.M.

    2004-01-01

    Vertebral anomalies have been reported in Liza carinata, Valamugil cunnesiusand Therapon jarbua from Korangi Creek and L. carinata collected frombackwaters of Sandspit. Detail examination of external morphology and X-rays offishes showed kypholordosis and scoliosis in the vertebral column. It is presumed that these effects are results of pollutants in the coastal systems of Korangi Creek and Sandspit backwaters where heavy pollutants and domestic sewage of the Karachi city is discharged untreated. This study suggests the need of effective management measures to save fisheries resources of the creeks and coastal waters

  5. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    Science.gov (United States)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  6. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    Science.gov (United States)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  7. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  8. Water quality in the upper Shoal Creek basin, southwestern Missouri, 1999-2000

    Science.gov (United States)

    Schumacher, John G.

    2001-01-01

    Results of a water-quality investigation of the upper Shoal Creek Basin in southwestern Missouri indicate that concentrations of total nitrite plus nitrate as nitrogen (NO2t+NO3t) in water samples from Shoal Creek were unusually large [mean of 2.90 mg/L (milligrams per liter), n (sample size)=60] compared to other Missouri streams (mean of 1.02 mg/L, n=1,340). A comparison of instantaneous base-flow loads of NO2t+NO3t indicates that at base-flow conditions, most NO2t+NO3t discharged by Shoal Creek is from nonpoint sources. Nearly all the base-flow instantaneous load of total phosphorus as P (Pt) discharged by Shoal Creek can be attributed to effluent from a municipal wastewater treatment plant. Samples collected from a single runoff event indicate that substantial quantities of Pt can be transported during runoff events compared to base-flow transport. Only minor quantities of NO2t+NO3t are transported during runoff events compared to base-flow transport. Fecal coliform bacteria densities at several locations exceed the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. During 13 months of monitoring at 13 stream sites, fecal coliform densities (median of 277 and 400 col/100 mL) at two sites (sites 2 and 3) on Shoal Creek exceeded the MDNR standard at base-flow conditions. The maximum fecal coliform density of 120,000 col/100 mL was detected at site 3 (MDNR monitoring site) during a runoff event in April 1999 at a peak discharge of 1,150 ft3/s (cubic feet per second). Fecal coliform densities also exceeded the MDNR standard in three tributaries with the largest densities (median of 580 col/100 mL) detected in Pogue Creek. Results of ribopattern analyses indicate that most Escherichia coli (E. coli) bacteria in water samples from the study area probably are from nonhuman sources. The study area contains about 25,000 cattle, and has an estimated annual production of 33 million

  9. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  10. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  11. Evolution of the landscape along the Clear Creek Corridor, Colorado; urbanization, aggregate mining and reclamation

    Science.gov (United States)

    Arbogast, Belinda; Knepper, Daniel H.; Melick, Roger A.; Hickman, John

    2002-01-01

    Prime agricultural land along the Clear Creek floodplain, Colorado, attracted settlement in the 1850's but the demand for sand and gravel for 1900's construction initiated a sequence of events that exceeded previous interests and created the modified landscape and urban ecosystem that exists today. The Clear Creek valley corridor offers a landscape filled with a persistent visible and hidden reminder of it's past use. The map sheets illustrate the Clear Creek landscape as a series of compositions, both at the macro view (in the spatial context of urban structure and highways from aerial photographs) and micro view (from the civic scale where landscape features like trees, buildings, and sidewalks are included). The large-scale topographic features, such as mountains and terraces, appear 'changeless' (they do change over geologic time), while Clear Creek has changed from a wide braided stream to a narrow confined stream. Transportation networks (streets and highways) and spiraling population growth in adjacent cities (from approximately 38,000 people in 1880 to over a million in 1999) form two dominant landscape patterns. Mining and wetland/riparian occupy the smallest amount of land use acres compared to urban, transportation, or water reservoir activities in the Clear Creek aggregate reserve study area. Four types of reclaimed pits along Clear Creek were determined: water storage facilities, wildlife/greenbelt space, multiple-purpose reservoirs, and 'hidden scenery.' The latter involves infilling gravel pits (with earth backfill, concrete rubble, or sanitary landfill) and covering the site with light industry or residential housing making the landform hard to detect as a past mine site. Easier to recognize are the strong-edged, rectilinear water reservoirs, reclaimed from off-channel sand and gravel pits that reflect the land survey grid and property boundaries. The general public may not realize softly contoured linear wildlife corridors connecting urban

  12. Escapement monitoring of adult chinook salmon in the Secesh River and Lake Creek, Idaho, 1999; ANNUAL

    International Nuclear Information System (INIS)

    Faurot, Dave; Kucera, Paul A.

    2001-01-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  13. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    Science.gov (United States)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  14. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07

    Science.gov (United States)

    Ockerman, Darwin J.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  15. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA

    Science.gov (United States)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.

    2017-09-01

    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  16. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan

  17. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    Science.gov (United States)

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  18. Accelerated bridge construction utilizing precast pier caps on state highway 69 over Turkey Creek, Huerfano County, CO.

    Science.gov (United States)

    2014-07-01

    The purpose of this report is to document Accelerated Bridge Construction (ABC) techniques on IBRD : (Innovative Bridge Research and Development) project 102470 for the construction of Bridge N-16-Q : on State Highway 69 over Turkey Creek. The constr...

  19. 75 FR 42740 - Ryckman Creek Resources, LLC; Notice of Intent To Prepare an Environmental Assessment for the...

    Science.gov (United States)

    2010-07-22

    ..., Ryckman Creek proposes to initiate enhanced oil recovery (EOR) operations of the petroleum reserves... of the planned project under these general headings: Geology and soils; Land use; Water resources...

  20. Water Data Analysis 393937093090901 TURKEY CREEK NR SUMNER MO, FULBRIGHT RD NEAR SWAN LAKE NWR-2013-2016

    Data.gov (United States)

    Department of the Interior — WATER MONITORING STATION ANALYSIS – CALENDAR YEAR 2013 to 2016 SITE NUMBER: 393937093090901 SITE NAME: Turkey Creek nr Sumner MO, Fulbright Rd COOPERATION: Swan Lake...

  1. 76 FR 37160 - Notice of Availability of Final Supplemental Environmental Impact Statement for the Lost Creek In...

    Science.gov (United States)

    2011-06-24

    ... assessed the environmental impacts from the construction, operation, aquifer restoration, and..., operate, conduct aquifer restoration, and decommission an ISR facility at Lost Creek. Alternatives that were considered, but were eliminated from detailed analysis, included conventional mining and milling...

  2. Groundwater Dynamics along Forest-Marsh-Tidal Creek Transects in North Inlet Estuary, South Carolina: 1994-1996

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Ground water level elevations were collected every 10 to 15 days from piezometers stationed along three forest-marsh-tidal creek transects (B, C, and D) across the...

  3. Ten years of real-time streamflow gaging of turkey creek - where we have been and where we are going

    Science.gov (United States)

    Paul Conrads; Devendra Amatya

    2016-01-01

    The Turkey Creek watershed is a third-order coastal plain stream system draining an area of approximately 5,240 hectares of the Francis Marion National Forest and located about 37 miles northwest of Charleston near Huger, South Carolina. The U.S. Department of Agriculture (USDA) Forest Service maintained a streamflow gaging station on Turkey Creek from 1964 to 1981....

  4. A description of the katabatic ''plume'' from Coal Creek Canyon and its fate in the Rocky Flats Area

    International Nuclear Information System (INIS)

    Coulter, R.L.; Shannon, J.D.

    1993-01-01

    Katabatic flow from Coal Creek Canyon often affects the region that includes the Rocky Flats Plant near Denver, Colorado. The flow from the canyon enters a wide, gently sloping plain approximately 5 km upwind of the plant. Measurements of this flow are combined with a theoretical analysis that describes the dimensions and strength of the flow across the plains as a function of downwind distance from Coal Creek

  5. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986

  6. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

  7. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    Science.gov (United States)

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  8. Evaluation of the Steel Creek ecosystem in relation to the propsed restart of the L-reactor: interim report

    International Nuclear Information System (INIS)

    1982-04-01

    The ecological assessment of the Steel Creek ecosystempresents information concerning the fall and winter utilization of Steel Creek habitats. An understanding of the wintering behavior of these species is necessary to assess the impact of thermal effluents on these species. Waterfowl use of the Steel Creek habitats was extensive during winter 1981-1982. The habitat was used for both foraging and roosting. Mallards and wood ducks were the most important local game species. Observations of the thermal deltas indicated substantial migratory waterfowl use of areas near Four Mile Creek, while no ducks were observed in the vicinity of Pen Branch. Studies of the American alligator through the winter of 1981-1982 indicated that this species remains active through the winter. It has also been established that the Florida mud turtle, occurs in Steel Creek. Fish collections through the fall of 1981 and winter of 1981-1982 yielded 49 species. Considerable differences in overall fish species diversity and changes in fish species composition were observed. Substantial variations in radiocesium concentrations exist among species although all species were exposed to the same concentrations of radiocesium in water. Substantially less radiocesium remains in the system than was anticipated. Substantial differences occur in different stream segments as well as the vertical distribution of the isotope through the soil profile. The studies to date document that animal use of the Steel Creek cosystems is substantial

  9. Feasibility and potential effects of the proposed Amargosa Creek Recharge Project, Palmdale, California

    Science.gov (United States)

    Christensen, Allen H.; Siade, Adam J.; Martin, Peter; Langenheim, V.E.; Catchings, Rufus D.; Burgess, Matthew K.

    2015-09-17

    Historically, the city of Palmdale and vicinity have relied on groundwater as the primary source of water, owing, in large part, to the scarcity of surface water in the region. Despite recent importing of surface water, groundwater withdrawal for municipal, industrial, and agricultural use has resulted in groundwater-level declines near the city of Palmdale in excess of 200 feet since the early 1900s. To meet the growing water demand in the area, the city of Palmdale has proposed the Amargosa Creek Recharge Project (ACRP), which has a footprint of about 150 acres along the Amargosa Creek 2 miles west of Palmdale, California. The objective of this study was to evaluate the long-term feasibility of recharging the Antelope Valley aquifer system by using infiltration of imported surface water from the California State Water Project in percolation basins at the ACRP.

  10. White Oak Creek embayment sediment retention structure: The Oak Ridge model in action

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmel, B.L.; Page, D.G.; Hudson, G.R.; Wilkerson, R.B.; Zocolla, M.

    1992-01-01

    White Oak Creek is the major surface-water drainage through the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium-137, and lower levels of Cobalt-60 in near-surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBS. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (DEC) agreed to initiate a time-critical removal action in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  11. Association of radionuclides with streambed sediments in White Oak Creek watershed

    International Nuclear Information System (INIS)

    Spalding, B.P.; Cerling, T.E.

    1979-09-01

    Radionuclides are found in much higher concentrations on streambed sediment than in the water of White Oak Creek. Selective extraction of sediments demonstrates that 60 Co is immobilized in a nonexchangeable form in the ferromanganese hydrous oxide coatings on the sediments; 90 Sr occurs predominantly in an exchangeable form on clay, iron oxides, and ferromanganese hydrous oxides; 137 Cs occurs in a nonexchangeable and strongly bound form on clays which compose the dominant rock (Conasauga shale) in the watershed. The fine-gravel to coarse-sand size fraction of streambed sediments is the most suitable fraction for radionuclide analysis because of its abundance in the sediment and its high concentration of radionuclides compared to larger and smaller size fractions. A preliminary survey of all major tributes in White Oak Creek shows that radionuclide analysis of streambed sediments is a very useful technique to locate sources of radioactive contamination

  12. La Popala creek: quality analysis of water from some physical - chemical, microbiological variables and aquatic macroinvertebrates

    International Nuclear Information System (INIS)

    Milan Valoyes, Wandy Yohanna; Caicedo Quintero, Orlando; Aguirre Ramirez, Nestor Jaime

    2011-01-01

    The Popala creek supplies water to the people of Bolombolo in Venecia municipality in Antioquia, Colombia. In November 14th and 28th of 2009, four sampling station were located along the creek, to measure five sets of variables: physico- chemical, microbiological, aquatic macroinvertebrate, biological indicators and biotic index BMWP.Physico- chemical variables, aquatic macroinvertebrates and index BMWP indicate good environmental conditions in station 2, located about 150 m from the headwaters (station 1). On the other hand, Station 4, located near to the Cauca River, exhibits deterioration in water quality. Stations 3 and 4 displayed high levels of fecal coliforms. However, the samples taken from Bolombolo's water supply network indicate the water of the aqueduct is adequate for human consumption.

  13. Hydrology and hydrochemistry for the Rice Creek watershed of the Whiteshell Research Area, 1986--1990

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, G. A.; Laporte, J. M.; Clarke, D.

    1992-12-01

    This report presents data and results of a hydrometeorological study carried out in the Rice Creek Watershed of the Whiteshell Research Area during 1986-90. Major water budget components, such as precipitation, runoff, groundwater, storage and evaporation, are evaluated and discussed. men annual precipitation was 544 mm, mean runoff was 101 mm, with evapo-transpiration as the residual being 443 mm. The steady-state groundwater component of the runoff is estimated to be less than 2 mm/unit area, or less than 2% of men annual basin yield. Water chemistry data for precipitation,l surface waters, and groundwaters are presented and the relative concentrations compared to provide information about sources of streamflow. Data on a major storm event that provided precipitation with an estimated return period of over 100 a are presented. Also discussed are the effects of beaver dams on the hydrology of a major tributary of the Rice Creek watershed. (auth)

  14. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  15. RETRAN simulation of Oyster Creek MSIV closure and bypass valve tests

    International Nuclear Information System (INIS)

    Alammar, M.A.

    1987-01-01

    A series of benchmarks against start-up tests have been performed on the Oyster Creek boiling water reactor unit 2 RETRAN model in support of developing an in-house reload capability. The liquid and the pressure regulator models have been benchmarked against level and pressure setpoint changes, where small setpoint perturbations were made at rated power. The purpose of the present benchmark is to check the liquid level behavior during a severe level drop as during void collapse following a scram and to size the bypass valves by benchmarking the valves' contraction coefficient. The main steam isolation valves (MSIVs) closure start-up test was chosen for the former, while the bypass valve test was chosen for the latter. The two benchmarks complete the qualification of the upper downcomer liquid level for small and large level changes and the pressure regulator system for the Oyster Creek RETRAN model

  16. Uranium in spring water and bryophytes at Basin Creek in central Idaho

    International Nuclear Information System (INIS)

    Shacklette, H.T.; Erdman, J.A.

    1982-01-01

    Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium, but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium. These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. (Auth.)

  17. Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08

    Science.gov (United States)

    Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.

    2010-01-01

    Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of

  18. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  19. Environmental Assessment for Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-01-16

    The US Department of Energy (DOE) has prepared this EA to assess the environmental impacts of the commercial application of lignite fuel enhancement. The proposed demonstration project would be implemented at Great River Energy's Coal Creek Station near Underwood, North Dakota. The proposed project would demonstrate a technology to increase the heating value of lignite and other high-moisture coals by reducing the moisture in the fuels. Waste heat that would normally be sent to the cooling towers would be used to drive off a percentage of the moisture contained within the lignite. Application of this technology would be expected to boost power-generating efficiencies, provide economic cost savings for lignite and sub-bituminous power plants, and reduce air emissions. The proposed project would be constructed on a previously disturbed site within the Coal Creek Station and no negative impacts would occur in any environmental resource area.

  20. Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eller, Virginia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Earles, Jennifer E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowe, Kenneth Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehlhorn, Tonia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phillips, Debra H. [Queen' s Univ., Belfast (United Kingdom); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hg and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.

  1. Cherry Creek North Improvements and Fillmore Plaza Landscape Performance Benefits Assessment

    OpenAIRE

    Yang, Bo; Zhang, Yue

    2012-01-01

    The 16-block Cherry Creek North retail district was designed to be Denver's premier outdoor shopping area. Yet deteriorating infrastructure, tired aesthetics and competition from an adjacent indoor mall had led to steady decline. Fillmore Plaza in the heart of the district was no longer a desirable public space since being closed to vehicular traffic in 1987. The new streetscape strengthens the retail environment, preserves the district's history and character, improves identity, beautifies t...

  2. Stratigraphy of the Kapalga Formation north of Pine Creek and its relationship to base metal mineralization

    International Nuclear Information System (INIS)

    Goulevitch, J.

    1980-01-01

    The lithology, stratigraphy and mineralization of the Kapalga Formation (South Alligator Group) is described from the Margaret Syncline in the Pine Creek area of the Northern Territory of Australia. An interdigitation of carbonaceous siltstones and mudstones, chert, ashstones and tuffaceous chert, greywacke, siltstone, mudstone and minor banded iron formation (b.i.f.) characterises the Formation. These rocks define a vertical facies transition between low energy sediments of the underlying Koolpin Formation, and high energy sediments of the overlying Burrell Creek Formation. This transition is interlayered with numerous ashstone-tuffaceous chert horizons which were deposited during the waning stage of Gerowie Tuff sedimentation. The boundary between the Kapalga Formation of the South Alligator Group and the Burrell Creek Formation of the Finniss River Group is strictly conformable in this part of the Pine Creek 'Geosyncline'. Relict devitrified shards have been recognised in the Gerowie Tuff in the Margaret Syncline and these observations along with whole-rock chemical analyses conclusively support claims by previous investigators that these rocks are volcanic derivatives. Base metal mineralization at Iron Blow and Mt. Bonnie occurs as massive, stratiform, sulphide-silicate-carbonate lodes. The deposits are at the same stratigraphic level towards the base of the Kapalga Formation and minor stratification parallel with bedding has been observed. These features, and the association of the lodes with mud-flow breccias, lead to the conclusion that the lodes are syngenetic in origin. Thermochemical consideration of the sulphide assemblages together with the temporal relationship between the mineralization and Gerowie Tuff point to diagenetic devitrification of the underlying tuffaceous rocks as the source of the mineralization. Recent publications of experimental data from reaction of seawater and volcanic glass provide information which supports this thesis, and

  3. Swatara Creek basin of southeastern Pennsylvania--An evaluation of its hydrologic system

    Science.gov (United States)

    Stuart, Wilbur Tennant; Schneider, William J.; Crooks, James W.

    1967-01-01

    Local concentrations of population in the Swatara Creek basin of Pennsylvania find it necessary to store, transport, and treat water because local supplies are either deficient or have been contaminated by disposal of wastes in upstream areas. Water in the basin is available for the deficient areas and for dilution of the coal-mine drainage in the northern parts and the sewage wastes in the southern parts.

  4. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  5. Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jeffrey E [ORNL; Gehl, Anthony C [ORNL; Boudreaux, Philip R [ORNL; New, Joshua Ryan [ORNL

    2010-10-01

    This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

  6. Didymosphenia geminata in the Upper Esopus Creek: Current Status, Variability, and Controlling Factors

    OpenAIRE

    George, Scott Daniel; Baldigo, Barry Paul

    2015-01-01

    In May of 2009, the bloom-forming diatom Didymosphenia geminata was first identified in the Upper Esopus Creek, a key tributary to the New York City water-supply and a popular recreational stream. The Upper Esopus receives supplemental flows from the Shandaken Portal, an underground aqueduct delivering waters from a nearby basin. The presence of D. geminata is a concern for the local economy, water supply, and aquatic ecosystem because nuisance blooms have been linked to degraded stream condi...

  7. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    Science.gov (United States)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  8. Water quality of Cedar Creek reservoir in northeast Texas, 1977 to 1984

    Science.gov (United States)

    Leibbrand, Norman F.; Gibbons, Willard J.

    1987-01-01

    Water in Cedar Creek Reservoir in northeast Texas had volume-weighted average concentrations of less than 140 milligrams per liter of dissolved solids, less than 30 milligrams per liter of dissolved sulfate, and less than 25 milligrams per liter of chloride between vh nuary 1977 and August 1984. The water was soft to moderately hard; the total hardness concentrations ranged from 55 to 75 milligrams per liter as calcium carbonate.

  9. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  10. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault

    Science.gov (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.

    2017-12-01

    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  11. FY94 site characterization and multilevel well installation at a west Bear Creek Valley research site on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Moline, G.R.; Schreiber, M.E.

    1996-03-01

    The goals of this project are to collect data that will assist in determining what constitutes a representative groundwater sample in fractured shale typical of much of the geology underlying the ORR waste disposal sites, and to determine how monitoring-well construction and sampling methods impact the representativeness of the sample. This report details the FY94 field activities at a research site in west Bear Creek Valley on the Oak Ridge Reservation (ORR). These activities funded by the Energy Systems Groundwater Program Office through the Oak Ridge Reservation Hydrologic and Geologic Studies (ORRHAGS) task, focus on developing appropriate sampling protocols for the type of fractured media that underlies many of the ORR waste disposal sites. Currently accepted protocols were developed for porous media and are likely to result in nonrepresentative samples in fractured systems

  12. Residential runoff as a source of pyrethroid pesticides to urban creeks

    Energy Technology Data Exchange (ETDEWEB)

    Weston, D.P. [Department of Integrative Biology, University of California, 3060 Valley Life Sciences Building, Berkeley, CA 94720-3140 (United States)], E-mail: dweston@berkeley.edu; Holmes, R.W. [Water Branch, California Department of Fish and Game, 830 S Street, Sacramento, CA 95811 (United States)], E-mail: rholmes@dfg.ca.gov; Lydy, M.J. [Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University, 171 Life Sciences II, Carbondale, IL 62901 (United States)], E-mail: mlydy@siu.edu

    2009-01-15

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations.

  13. Tidal Influence on Nutrients Status and Phytoplankton Population of Okpoka Creek, Upper Bonny Estuary, Nigeria

    Directory of Open Access Journals (Sweden)

    O. A. Davies

    2013-01-01

    Full Text Available Okpoka Creek of the Upper Bonny Estuary in the Niger Delta is a tidal creek receiving organic anthropogenic effluents from its environs. The study investigated the influence of tides (low and high on the species composition, diversity, abundance, and distribution of phytoplankton. The surface water and phytoplankton samples were collected monthly from May 2004 to April 2006 at both tides from ten stations according to standard methods. Phytoplankton was identified microscopically. Species diversity was calculated using standard indices. Data analyses were done using analysis of variance, Duncan multiple range, and descriptive statistics. Phosphate and ammonia exceeded international acceptable levels of 0.10 mg/L for natural water bodies indicating high nutrient status, organic matter, and potential pollutants. A total of 158 species of phytoplankton were identified. Diatoms dominated the phytoplankton (62.9%. Diversity indices of diatoms were 1.5±0.03 (Margalef and 0.8±0.01 (Shannon. Pollution-indicator species such as Navicula microcephala, Nitzschia sigma, Synedra ulna (diatoms, Cladophora glomerata (green alga, Euglena acus (euglenoid, Anabeana spiroides (blue-green alga, and Ceratium furca (dinoflagellate were recorded at either only low, high or both tides. Concerted environmental surveillance on Upper Bonny Estuary is advocated to reduce the inflow of pollutants from the Bonny Estuary into this Creek caused by tidal influence.

  14. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  15. Spatial and seasonal variations of fish assemblages in mangrove creek systems in Zanzibar (Tanzania)

    Science.gov (United States)

    Mwandya, Augustine W.; Gullström, Martin; Andersson, Mathias H.; Öhman, Marcus C.; Mgaya, Yunus D.; Bryceson, Ian

    2010-11-01

    Spatial and seasonal variations of fish assemblage composition were studied in three non-estuarine mangrove creeks of Zanzibar (Tanzania). Fish were collected monthly for one year at three sites (lower, intermediate and upper reaches) in each creek using a seine net (each haul covering 170 m 2). Density, species number and diversity of fish were all higher at sites with dense cover of macrophytes (seagrass and macroalgae) than over unvegetated sandy sites. In general, fish assemblages mainly comprised juveniles of a few abundant taxa, e.g. Mugil cephalus, Mugilidae spp. and Leiognathus equulus at sites with mud substratum and Gerres oyena, Lethrinus harak and Sillago sihama at sites dominated by macrophytes. Multivariate analyses revealed significant separations in fish assemblage composition within the two creeks where the bottom substratum differed among sites. Overall, season seemed to have little effect on density, species number, diversity index ( H') and assemblage structure of fish. Water condition variables were also relatively stable across the season, although a short-term fluctuation primarily induced by decreased salinity, occurred during the heavy rains in April and May. Fish assemblage structure was not significantly affected by any of the abiotic factors tested. However, significant regressions were found between the other fish variables and environmental variables, but since these associations were mostly species-specific and generally inconsistent, we suggest that the overall distribution patterns of fish were mainly an effect of particular substrate preferences of fish species rather than contemporary water conditions.

  16. Residential runoff as a source of pyrethroid pesticides to urban creeks

    International Nuclear Information System (INIS)

    Weston, D.P.; Holmes, R.W.; Lydy, M.J.

    2009-01-01

    Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3 h as that discharged over 6 months of irrigation runoff. - Pyrethroid insecticides regularly detected in residential runoff at toxicologically significant concentrations

  17. Water-quality variations in Antelope Creek and Deadmans Run, Lincoln, Nebraska

    Science.gov (United States)

    Pettijohn, R.A.; Engberg, R.A.

    1985-01-01

    Eleven sets of samples from five sites on Antelope Creek and Dead Man 's Run in Lincoln, Nebraska, were collected from December 1982 through June 1983 to study water-quality variations. Specific-conductance values generally were similar for Antelope Creek at 52nd Street and 27th Street, but during a low-flow survey of December 1 they increased from 974 to 8,700 microsiemens per centimeter at 25 C from 27th Street to Court Street. Seepage of saline water from underlying bedrock to the stream occurs in this reach. Specific-conductance values were less variable for Dead Man 's Run, increasing an average of only 47 percent from 66th Street to U.S. Highway 6. Specific-conductance values were less at high flows in Antelope Creek, except in samples collected on January 6, 1983, which contained runoff from salted streets. Sodium and chloride concentrations in these samples were from 5 to 10 times greater than those measured in any other samples. Stray-current corrosion occurs when current flows between dissimilar metals. Zinc-coated wire of channel-stabilization structures (gabions) may be an anode and material within the stream banks may be a cathode. Dissolution of the zinc coating by this type of corrosion may be a cause for gabion deterioration in both streams. (USGS)

  18. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    Science.gov (United States)

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    The longnose darter Percina nasuta (Bailey) is one of Oklahoma’s rarest fish species (1) and is listed by the state as endangered. Throughout the rest of its range, which includes Missouri, Arkansas and the far eastern portion of Oklahoma, the longnose darter is classified as “rare” or “threatened” (2, 3, 4, 5, 6, 1). This species inhabits both slow- and fast-water habitats with cobble and gravel substrates in medium to large streams (7, 8, 1). Oklahoma populations of longnose darter are known to occur only in the Poteau River and Lee Creek drainages in Le Flore and Sequoyah counties, respectively (9, 10). Cross and Moore (9) collected longnose darters from the Poteau River in 1947. The species was not collected in a subsequent survey of the Poteau River in 1974 (11), possibly because of the effects from the Wister Dam, which was completed in 1949. Darters are especially susceptible to flow alterations from dams (2, 12). This, together with the 1992 completion of Lee Creek Reservoir in Arkansas, has raised concern for the Lee Creek population of longnose darters (13).

  19. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  20. Parameterization of the ACRU model for estimating biophysical and climatological change impacts, Beaver Creek, Alberta

    Science.gov (United States)

    Forbes, K. A.; Kienzle, S. W.; Coburn, C. A.; Byrne, J. M.

    2006-12-01

    Multiple threats, including intensification of agricultural production, non-renewable resource extraction and climate change, are threatening Southern Alberta's water supply. The objective of this research is to calibrate/evaluate the Agricultural Catchments Research Unit (ACRU) agrohydrological model; with the end goal of forecasting the impacts of a changing environment on water quantity. The strength of this model is the intensive multi-layered soil water budgeting routine that integrates water movement between the surface and atmosphere. The ACRU model was parameterized using data from Environment Canada's climate database for a twenty year period (1984-2004) and was used to simulate streamflow for Beaver Creek. The simulated streamflow was compared to Environment Canada's historical streamflow database to validate the model output. The Beaver Creek Watershed, located in the Porcupine Hills southwestern Alberta, Canada contains a heterogeneous cover of deciduous, coniferous, native prairie grasslands and forage crops. In a catchment with highly diversified land cover, canopy architecture cannot be overlooked in rainfall interception parameterization. Preliminary testing of ACRU suggests that streamflows were sensitive to varied levels of leaf area index (LAI), a representative fraction of canopy foliage. Further testing using remotely sensed LAI's will provide a more accurate representation of canopy foliage and ultimately best represent this important element of the hydrological cycle and the associated processes which govern the natural hydrology of the Beaver Creek watershed.