WorldWideScience

Sample records for michaelis-menten kinetic parameters

  1. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Science.gov (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  2. Diffusion influence on Michaelis Menten kinetics: II. The low substrate concentration limit

    Science.gov (United States)

    Kim, Hyojoon; Shin, Kook Joe

    2007-02-01

    The diffusion-influenced Michaelis-Menten kinetics in the low substrate concentration limit is studied in one and three dimensions. For the initial pair distribution of enzyme and substrate, we obtain the exact analytical results. We find that at short times the diffusion effect can make the reaction rate faster. The concentration deviations of the substrate and enzyme show t-1/2 and t-3/2 power-law behaviours in one and three dimensions, respectively, at long times. On the other hand, the average lifetime of the intermediate is independent of the initial state in one dimension, while it depends on the initial state in three dimensions. The ultimate production yield approaches unity in one dimension but it reaches a different value depending on other parameters in three dimensions. We also obtain the analytical results for the initial random distribution.

  3. Diffusion influence on Michaelis-Menten kinetics: II. The low substrate concentration limit

    International Nuclear Information System (INIS)

    Kim, Hyojoon; Shin, Kook Joe

    2007-01-01

    The diffusion-influenced Michaelis-Menten kinetics in the low substrate concentration limit is studied in one and three dimensions. For the initial pair distribution of enzyme and substrate, we obtain the exact analytical results. We find that at short times the diffusion effect can make the reaction rate faster. The concentration deviations of the substrate and enzyme show t -1/2 and t -3/2 power-law behaviours in one and three dimensions, respectively, at long times. On the other hand, the average lifetime of the intermediate is independent of the initial state in one dimension, while it depends on the initial state in three dimensions. The ultimate production yield approaches unity in one dimension but it reaches a different value depending on other parameters in three dimensions. We also obtain the analytical results for the initial random distribution

  4. Stability estimation of autoregulated genes under Michaelis-Menten-type kinetics

    Science.gov (United States)

    Arani, Babak M. S.; Mahmoudi, Mahdi; Lahti, Leo; González, Javier; Wit, Ernst C.

    2018-06-01

    Feedback loops are typical motifs appearing in gene regulatory networks. In some well-studied model organisms, including Escherichia coli, autoregulated genes, i.e., genes that activate or repress themselves through their protein products, are the only feedback interactions. For these types of interactions, the Michaelis-Menten (MM) formulation is a suitable and widely used approach, which always leads to stable steady-state solutions representative of homeostatic regulation. However, in many other biological phenomena, such as cell differentiation, cancer progression, and catastrophes in ecosystems, one might expect to observe bistable switchlike dynamics in the case of strong positive autoregulation. To capture this complex behavior we use the generalized family of MM kinetic models. We give a full analysis regarding the stability of autoregulated genes. We show that the autoregulation mechanism has the capability to exhibit diverse cellular dynamics including hysteresis, a typical characteristic of bistable systems, as well as irreversible transitions between bistable states. We also introduce a statistical framework to estimate the kinetics parameters and probability of different stability regimes given observational data. Empirical data for the autoregulated gene SCO3217 in the SOS system in Streptomyces coelicolor are analyzed. The coupling of a statistical framework and the mathematical model can give further insight into understanding the evolutionary mechanisms toward different cell fates in various systems.

  5. Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.

    Science.gov (United States)

    Popović, Jovan

    2004-01-01

    When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.

  6. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30 S and large 50 S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  7. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.

    Science.gov (United States)

    Bezerra, Rui M F; Fraga, Irene; Dias, Albino A

    2013-01-01

    Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  9. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

    Science.gov (United States)

    Pereira, Félix Monteiro; Oliveira, Samuel Conceição

    2016-11-01

    In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

  10. Dynamic disorder in single-molecule Michaelis-Menten kinetics: The reaction-diffusion formalism in the Wilemski-Fixman approximation

    Science.gov (United States)

    Chaudhury, Srabanti; Cherayil, Binny J.

    2007-09-01

    Single-molecule equations for the Michaelis-Menten [Biochem. Z. 49, 333 (1913)] mechanism of enzyme action are analyzed within the Wilemski-Fixman [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)] approximation after the effects of dynamic disorder—modeled by the anomalous diffusion of a particle in a harmonic well—are incorporated into the catalytic step of the reaction. The solution of the Michaelis-Menten equations is used to calculate the distribution of waiting times between successive catalytic turnovers in the enzyme β-galactosidase. The calculated distribution is found to agree qualitatively with experimental results on this enzyme obtained at four different substrate concentrations. The calculations are also consistent with measurements of correlations in the fluctuations of the fluorescent light emitted during the course of catalysis, and with measurements of the concentration dependence of the randomness parameter.

  11. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  12. The Michaelis-Menten-Stueckelberg Theorem

    Directory of Open Access Journals (Sweden)

    Alexander N. Gorban

    2011-05-01

    Full Text Available We study chemical reactions with complex mechanisms under two assumptions: (i intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS and (ii they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE. Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events. This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

  13. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.

    Science.gov (United States)

    Goličnik, Marko

    2011-01-01

    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.

  14. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    Science.gov (United States)

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.

    2015-01-01

    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  15. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    Science.gov (United States)

    Lechner, Joseph H.

    2011-01-01

    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  16. Michaelis - Menten equation for degradation of insoluble substrate

    DEFF Research Database (Denmark)

    Andersen, Morten; Kari, Jeppe; Borch, Kim

    2017-01-01

    substrate it is difficult to assess whether the requirement of the MM equation is met. In this paper we study a simple kinetic model, where removal of attack sites expose new ones which preserve the total accessible substrate, and denote this approach the substrate conserving model. The kinetic equations...... are solved in closed form, both steady states and progress curves, for any admissible values of initial conditions and rate constants. The model is shown to merge with the MM equation and the reverse MM equation when these are valid. The relation between available molar concentration of attack sites and mass...

  17. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  18. Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays

    Directory of Open Access Journals (Sweden)

    Wenzhen Gan

    2013-01-01

    Full Text Available This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results.

  19. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    Science.gov (United States)

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  20. Why plankton modellers should reconsider using rectangular hyperbolic (Michaelis-Menten, Monod descriptions of predator-prey interactions

    Directory of Open Access Journals (Sweden)

    Kevin John Flynn

    2016-09-01

    Full Text Available Rectangular hyperbolic type 2 (RHt2; Michaelis-Menten or Monod -like functions are commonly used to describe predation kinetics in plankton models, either alone or together with a prey selectivity algorithm deploying the same half-saturation constant for all prey types referenced to external prey biomass abundance. We present an analysis that indicates that such descriptions are liable to give outputs that are not plausible according to encounter theory. This is especially so for multi-prey type applications or where changes are made to the maximum feeding rate during a simulation. The RHt2 approach also gives no or limited potential for descriptions of events such as true de-selection of prey, effects of turbulence on encounters, or changes in grazer motility with satiation. We present an alternative, which carries minimal parameterisation effort and computational cost, linking allometric algorithms relating prey abundance and encounter rates to a prey-selection function controlled by satiation. The resultant Satiation-Controlled-Encounter-Based (SCEB function provides a flexible construct describing numeric predator-prey interactions with biomass-feedback control of grazing. The SCEB function includes an attack component similar to that in the Holling disk equation but SCEB differs in having only a single (satiation-based handling constant and an explicit maximum grazing rate. We argue that there is no justification for continuing to deploy RHt2 functions to describe plankton predator-prey interactions.

  1. Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    DEFF Research Database (Denmark)

    Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.

    2016-01-01

    mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws....... These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction...

  2. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose.

    Science.gov (United States)

    Gejl, Michael; Rungby, Jørgen; Brock, Birgitte; Gjedde, Albert

    2014-08-01

    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  3. Complex dynamics of a stochastic discrete modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting

    Directory of Open Access Journals (Sweden)

    A. Elhassanein

    2014-06-01

    Full Text Available This paper introduced a stochastic discretized version of the modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. The dynamical behavior of the proposed model was investigated. The existence and stability of the equilibria of the skeleton were studied. Numerical simulations were employed to show the model's complex dynamics by means of the largest Lyapunov exponents, bifurcations, time series diagrams and phase portraits. The effects of noise intensity on its dynamics and the intermittency phenomenon were also discussed via simulation.

  4. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hyd...

  6. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.

    Science.gov (United States)

    Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda

    2014-01-01

    Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.

  7. Microscale Measurements of Michaelis-Menten Constants of Neuraminidase with Nanogel Capillary Electrophoresis for the Determination of the Sialic Acid Linkage.

    Science.gov (United States)

    Gattu, Srikanth; Crihfield, Cassandra L; Holland, Lisa A

    2017-01-03

    Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis-Menten constants (K M ) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A K M value of 3.3 ± 0.8 mM (V max , 2100 ± 200 μM/min) was obtained for 3'-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a K M of 2 ± 1 mM (V max , 400 ± 100 μM/min) was obtained for the 6'-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a K M value of 3 ± 2 mM (V max , 900 ± 300 μM/min) for 3'-sialyllactose. With a knowledge of V max , the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3' and 6' sialic acid linkages.

  8. On enzyme kinetic parameters modification of gamma irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Ferdes, M.; Turcu, G.R.

    1993-01-01

    To elucidate the molecular mechanisms of gamma-ray action on biomolecules there were investigated the modifications in activity and other kinetic parameters for some enzymes irradiated in pure dry state at relative high doses. There were considered bacterial and fungal α-amylases, glucoamylase and Mucor sp. protease irradiated by a 60 Co gamma-ray source in the dose range 1.0-30.0 kGy, at different dose-rates between 0.5-2.0 kGy/h, at room temperature. Considering the enzyme inactivation in this dose range, the dose-effect relationships have an expected form and depend on the irradiation conditions but not significantly on the dose rate. The catalytic properties of enzymes were modified by irradiation. By usual methods it is evidenced a direct correlation between the enzymatic activities, Michaelis-Menten constant, K m , reaction velocities, v, and the irradiation dose. These experimental findings can support a self-consistent theoretical approach on biophysical radiation action on biological active molecules like enzymes. At the same time, some enzyme behaviour to irradiation could be considered like a good biological indicator of radiation response. (Author) 4 Figs., 19 Refs

  9. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    Science.gov (United States)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  10. A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C G [Michigan Univ., Ann Arbor, MI (United States). Dept. of Chemical Engineering; Kim, C H; Rhee, S K [Korea Inst. of Science and Technology, Taejon (Korea, Republic of). Genetic Engineering Research Inst.

    1992-07-01

    A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglycosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with {alpha}-amylase, a series of Michaelis-Menten equations was obtained. After determining kinetic parameters from the results of simple experiments and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results. (orig.).

  11. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  12. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics.

    Science.gov (United States)

    Saaby, Lasse; Brodin, Birger

    2017-09-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate kinetic parameters, such as K m and V max , for carrier-mediated transport, whereas half-maximal inhibitor concentration (IC 50 ) and the disassociation constant for an inhibitor/P-gp complex (K i ) have been determined to estimate P-gp inhibition. This review addresses in vitro methods commonly used to study P-gp transport kinetics and aims at providing a critical evaluation of the application of steady-state Michaelis-Menten analysis of kinetic parameters for substrate/P-gp interactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Kinetics and mechanism of oxidation of aliphatic alcohols by ...

    Indian Academy of Sciences (India)

    TBATB) in aqueous acetic acid leads to the formation of the corresponding aldehydes. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to alcohols. The reaction failed to induce the ...

  14. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    Science.gov (United States)

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  15. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  16. Nutrient Removal from Wastewater using Microalgae: A Kinetic Evaluation and Lipid Analysis.

    Science.gov (United States)

    2017-09-15

    The objective of this study was to examine the performance of mixed microalgal bioreactors in treating three differenttypes of wastewaters - kitchen wastewater (KWW), palm oil mill effluent (POME), and pharmaceutical wastewater (PWW) in semi-continuous mode and to analyze the lipid content in the harvested algal biomass. The reactors were monitored for total nitrogen and phosphate removal at eight solid retention times (SRTs) - 2, 4, 6, 8, 10, 12, 14, and 16 days. The nutrient uptake kinetic parameters were quantified using linearized Michaelis-Menten and Monod models at steady-state conditions. The nutrient removal efficiency and lipid production were found to be higher in KWW when compared with the other wastewaters. Saturated fatty acids (C16:0, C18:0, and C18:1) accounted for more than 60% of the algal fatty acids for all the wastewaters. The lipid is, therefore, considered suitable for synthesizing biodiesel.

  17. Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI.

    Science.gov (United States)

    Xu, Tao; Mayer, Dirk; Gu, Meng; Yen, Yi-Fen; Josan, Sonal; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph; Spielman, Daniel

    2011-10-01

    With signal-to-noise ratio enhancements on the order of 10,000-fold, hyperpolarized MRSI of metabolically active substrates allows the study of both the injected substrate and downstream metabolic products in vivo. Although hyperpolarized [1-(13)C]pyruvate, in particular, has been used to demonstrate metabolic activities in various animal models, robust quantification and metabolic modeling remain important areas of investigation. Enzyme saturation effects are routinely seen with commonly used doses of hyperpolarized [1-(13)C]pyruvate; however, most metrics proposed to date, including metabolite ratios, time-to-peak of metabolic products and single exchange rate constants, fail to capture these saturation effects. In addition, the widely used small-flip-angle excitation approach does not correctly model the inflow of fresh downstream metabolites generated proximal to the target slice, which is often a significant factor in vivo. In this work, we developed an efficient quantification framework employing a spiral-based dynamic spectroscopic imaging approach. The approach overcomes the aforementioned limitations and demonstrates that the in vivo (13)C labeling of lactate and alanine after a bolus injection of [1-(13)C]pyruvate is well approximated by saturatable kinetics, which can be mathematically modeled using a Michaelis-Menten-like formulation, with the resulting estimated apparent maximal reaction velocity V(max) and apparent Michaelis constant K(M) being unbiased with respect to critical experimental parameters, including the substrate dose, bolus shape and duration. Although the proposed saturatable model has a similar mathematical formulation to the original Michaelis-Menten kinetics, it is conceptually different. In this study, we focus on the (13)C labeling of lactate and alanine and do not differentiate the labeling mechanism (net flux or isotopic exchange) or the respective contribution of various factors (organ perfusion rate, substrate transport

  18. KINETIKA FERMENTASI SELULOSA MURNI OLEH Trichoderma reesi QM 9414 MENJADI GLUKOSA DAN PENERAPANNYA PADA JERAMI PADI BEBAS LIGNIN [Kinetics of Pure Cellulose Fermentation by Trichoderma Reesei QM 9414 to Glucose and Its Application of on Lignin Free Rice Straw

    Directory of Open Access Journals (Sweden)

    M Iyan Sofyan

    2004-12-01

    Full Text Available The objectives of this research were: 1 to determine aeration rate and substrate concentration of pure cellulose to produce maximum glucose by Trichoderma reesei QM 9414 at 30 oC, and agitation 150 rpm; 2 to study the kinetics of pure cellulose fermentation by Trichoderma reesei QM 9414 to glucose and its implication upon fermentation of the lignin free rice straw. The experiment was arranged in factorial randomized complete design in three times replication. Treatments consisted of three levels of aeration (1,00 vvm; 1,5 vvm; 2,0 vvm and three levels of substrate concentration (0,75 ; 1,00 ; 1,25 % w/v. The results showed that at the exponential phase the average specific growth of Trichoderma reesei QM 9414 was 0,05374 hour-1, the maximum glucose product concentration of pure cellulose was 0.1644 gL-1,and the oxygen transfer was 0,0328 mg L-1 hour-1. According to t-test, the kinetics of pure cellulose fermentation model just the same as the lignin free rice straw fermentation.The enzymes produced by Trichoderma reesei QM 9414 in pure cellulose fermentation media followed the Michaelis-Menten model. The enzyme kinetic parameters were the maximum growth rate was 37x10-3 hour-1 and Michaelis-Menten constant was ½ maximum μ =17,5x10-3 hour-1. The volumetric oxygen transfer (KLa using rice straw was 0,0337 mg.hour-1. The value of KLa could be used for conversion from bioreactor at laboratory scale to commercial scale design.

  19. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.

    Science.gov (United States)

    Privman, Eve; Venton, B Jill

    2015-11-01

    Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions. © 2015 International Society for Neurochemistry.

  20. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction.

    Science.gov (United States)

    Jackson, R H; Cole, J A; Cornish-Bowden, A

    1981-01-01

    The reduction of both NO2- and hydroxylamine by the NADH-dependent nitrite reductase of Escherichia coli K 12 (EC 1.6.6.4) appears to follow Michaelis-Menten kinetics over a wide range of NADH concentrations. Substrate inhibition can, however, be detected at low concentrations of the product NAD+. In addition, NAD+ displays mixed product inhibition with respect to NADH and mixed or uncompetitive inhibition with respect to hydroxylamine. These inhibition characteristics are consistent with a mechanism in which hydroxylamine binds during catalysis to a different enzyme form from that generated when NAD+ is released. The apparent maximum velocity with NADH as varied substrate increases as the NAD+ concentration increases from 0.05 to 0.7 mM with 1 mM-NO2- or 100 mM-hydroxylamine as oxidized substrate. This increase is more marked for hydroxylamine reduction than for NO2- reduction. Models incorporating only one binding site for NAD can account for the variation in the Michaelis-Menten parameters for both NADH and hydroxylamine with [NAD+] for hydroxylamine reduction. According to these models, activation of the reaction occurs by reversal of an over-reduction of the enzyme by NADH. If the observed activation of the enzyme by NAD+ derives both from activation of the generation of the enzyme-hydroxylamine complex from the enzyme-NO2- complex during NO2- reduction and from activation of the reduction of the enzyme-hydroxylamine complex to form NH4+, then the variation of Vapp. for NO2- or hydroxylamine with [NAD+] is consistent with the occurrence of the same enzyme-hydroxylamine complex as an intermediate in both reactions. PMID:6279095

  1. Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants Micorriza arbuscular e os parâmetros cinéticos de absorção de fósforo pelo feijoeiro

    Directory of Open Access Journals (Sweden)

    Adriana Parada Dias da Silveira

    2004-04-01

    Full Text Available The mechanisms that determine greater P absorption by mycorrhizal plants are still not completely clear, and are attributed, in part, to an increase in the number of absorption sites promoted by the hyphae, and/or to a greater affinity of the colonized hypha or root carriers to P. The effect of mycorrhizae formed by Glomus etunicatum on the kinetic parameters of P absorption by the roots and on P influx in bean plants of the IAC-Carioca cultivar was evaluated, in two distinct plant development periods: at the onset of flowering and at the pod-filling stage (35 and 50 days after sowing, respectively. A mixture of sand and silica (9:1 was utilized as substrate and irrigated with nutrient solution. The kinetics assay was performed by the method of 32P depletion from the solution (depletion curve, using intact plants. Mycorrhization promoted greater growth and P absorption by bean plants, which was more conspicuously observed at the pod-filling stage. Mycorrhizal plants showed higher values of maximum ion uptake rate (Vmax and net P influx at the flowering stage. Lower minimum ion concentration (Cmin and Michaelis-Menten constant (Km values were verified in mycorrhizal plants at the pod-filling stage. Mycorrhizal plants also presented higher net P influx per plant, in both stages. Cmin was the kinetic parameter more intimately related to P absorption, and a significant correlation was obtained between this parameter and shoot P content and accumulation in bean plants.Os mecanismos envolvidos na maior absorção de P pela planta micorrizada ainda não estão totalmente esclarecidos, atribuindo-se, em parte, ao aumento no número de sítios de absorção promovido pela hifa e/ou maior afinidade dos carregadores da hifa ou da raiz colonizada ao P. Avaliou-se o efeito da micorriza formada por Glomus etunicatum nos parâmetros cinéticos da absorção radicular de P e no influxo de P em feijoeiro, cultivar IAC-Carioca, em duas épocas do ciclo da planta

  2. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  3. Kinetics of Single-Enzyme Reactions on Vesicles: Role of Substrate Aggregation

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2015-03-01

    Enzymatic reactions occurring in vivo on lipid membranes can be influenced by various factors including macromolecular crowding in general and substrate aggregation in particular. In academic studies, the role of these factors can experimentally be clarified by tracking single-enzyme kinetics occurring on individual lipid vesicles. To extend the conceptual basis for such experiments, we analyze herein the corresponding kinetics mathematically with emphasis on the role of substrate aggregation. In general, the aggregation may occur on different length scales. Small aggregates may e.g. contain a few proteins or peptides while large aggregates may be mesoscopic as in the case of lipid domains which can be formed in the membranes composed of different lipids. We present a kinetic model describing comprehensively the effect of aggregation of the former type on the dependence of the reaction rate on substrate membrane concentration. The results obtained with physically reasonable parameters indicate that the aggregation-related deviations from the conventional Michaelis-Menten kinetics may be appreciable. Special Issue Comments: This theoretical article is focused on single-enzyme reactions occurring in parallel with substrate aggregation on individual vesicles. This subject is related to a few Special Issue articles concerning enzyme dynamics6,7 and function8 and mathematical aspects of stochastic kinetics.9

  4. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction.

    OpenAIRE

    Jackson, R H; Cole, J A; Cornish-Bowden, A

    1981-01-01

    The reduction of both NO2- and hydroxylamine by the NADH-dependent nitrite reductase of Escherichia coli K 12 (EC 1.6.6.4) appears to follow Michaelis-Menten kinetics over a wide range of NADH concentrations. Substrate inhibition can, however, be detected at low concentrations of the product NAD+. In addition, NAD+ displays mixed product inhibition with respect to NADH and mixed or uncompetitive inhibition with respect to hydroxylamine. These inhibition characteristics are consistent with a m...

  5. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    Directory of Open Access Journals (Sweden)

    Oldiges Marco

    2009-01-01

    Full Text Available Abstract Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1 experimental measurement of participating molecules, (2 assignment of rate laws to each reaction, and (3 parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1 coarse-grained comparison of the algorithms on all models and (2 fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics

  6. THE KINETICS OF THE REACTIONS CATALYZED BY AN ENZYMATIC PREPARATION PRODUCED BY A BACILLUS LICHENIFORMIS STRAIN

    Directory of Open Access Journals (Sweden)

    MONICA DRAGOMIRESCU

    2007-05-01

    Full Text Available Robust immobilization techniques that preserve the activity of biomolecules have manypotential applications. In recent years, a number of new bioimobilisation methods in solgel-derived materials were reported. The interactions between the biomolecule and theinorganic material determine the degree to which the biomolecule retains its nativeproperties. The newer technological developments in the field of immobilizedbiocatalysts can offer the possibility of a wider and more economical exploitation ofbiocatalysts in biological applications, food and feed industry, medicine, and in thedevelopment of bioprocess monitoring devices, like the biosensors.The aim of this study was to obtain immobilized enzymatic preparations by methodswhich affect enzyme conformations and kinetic parameters as less as possible. Weimmobilized the enzymatic preparation with protease activity produced by a Bacilluslicheniformis B 40 local strain by physical bonding on ceramics and entrapment into solgel-derived glasses obtained from tetraethyl orthosilicate (TEOS, deposited in thin layeron a ceramic support (entrapment/deposition. Both physically adsorbed andentrapped/deposited enzymes follow Michaelis-Menten kinetics, similar with the solubleenzyme. In the case of immobilized enzymes, the apparent Michaelis constant, Km, wasgreater than that of the native one, as it was expected. The kinetic parameters indicatethat the enzymatic preparations adsorbed on ceramic support and entrapped/depositedshow less affinity for the substrate, Km being 1.3 and 2.1 times higher than that of thenative enzyme, respectively. The maximum velocity increased also by 3.5 and 7.9 timesrespectively, compared with the free counterpart (according to Lineweaver-Burklinearization.

  7. Kinetics of Oxidation of Metochlopramide withChloramine-T in HClO4 Medium

    Directory of Open Access Journals (Sweden)

    K. M. Meenakshi

    2009-01-01

    Full Text Available The kinetics of oxidation of metochlopramide hydrochloride (MCP with sodium N-chloro p-toluenesulfonamide (CAT in perchloric acid solution has been studied at 313K. The reaction rate shows a first order dependence on [CAT], fractional order on [MCP] and inverse fractional order on [H+]. There is a negative effect of dielectric constant of the solvent. The addition of the reduction product of CAT has no significant effect on the rate. The rate remained unchanged with the variation in the ionic strength of the medium. The reaction fails to induce the polymerization of acrylonitrile. Thermodynamic parameters have been computed by Arrhenius plot. The stoichiometry of the reaction was found to be 1:2 and oxidation products were identified. The Michaelis-Menten type of kinetics has been proposed. CH3C6H4SO2NHCl have been assumed to be the reactive oxidizing species. Thermodynamic parameters were computed by studying reactions at different temperatures. A mechanism consistent with observed kinetics is proposed.

  8. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    Science.gov (United States)

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  9. Study on biofiltration capacity and kinetics of nutrient uptake by Gracilaria cervicornis (Turner J. Agardh (Rhodophyta, Gracilariaceae

    Directory of Open Access Journals (Sweden)

    Marcella A. A. Carneiro

    2011-04-01

    Full Text Available The absorption efficiency and kinetic parameters (Vmax, Ks and Vmax:Ks of the seaweed Gracilaria cervicornis for the nutrients NH4+, NO3- and PO4(3- were evaluated. Absorption efficiency was measured by monitoring nutrient concentrations for 5 h in culture media with initial concentrations of 5, 10, 20 and 30µM. Kinetic parameters were determined by using the Michaelis-Menten formula. Absorption efficiencies for this algae were greater in treatments with lower concentrations, as evidenced by a reduction of 85.3, 97.5 and 81.2% for NH4+, NO3- and PO4(3-, respectively. Kinetic parameters show that G. cervicornis exhibits greater ability to take up high concentrations of NH4+ (Vmax=158.5µM g dw-1 h-1 and low concentrations of PO4(3- (Ks=5µM and Vmax:Ks=10.3. These results suggest that this algal species has good absorption capacity for the nutrients tested and may be a promising candidate as a bioremediator of eutrophized environments.

  10. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  11. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    Science.gov (United States)

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  13. Kinetics of glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Vinten, Jørgen

    1987-01-01

    The effects of insulin and prior muscle contractions, respectively, on 3-O-methylglucose (3-O-MG) transport in skeletal muscle were studied in the perfused rat hindquarter. Initial rates of entry of 3-O-MG in red gastrocnemius, soleus, and white gastrocnemius muscles as a function of perfusate 3-O-MG...... concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  14. Kinetic parameters from thermogravimetric analysis

    Science.gov (United States)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  15. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Science.gov (United States)

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath

    2012-08-01

    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  16. Parameter estimation in tree graph metabolic networks.

    Science.gov (United States)

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  17. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state

    Science.gov (United States)

    Min, Wei; Xie, X. Sunney; Bagchi, Biman

    2009-08-01

    Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

  18. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    Science.gov (United States)

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  19. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Science.gov (United States)

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model

    International Nuclear Information System (INIS)

    Tornero-Velez, Rogelio; Mirfazaelian, Ahmad; Kim, Kyu-Bong; Anand, Sathanandam S.; Kim, Hyo J.; Haines, Wendy T.; Bruckner, James V.; Fisher, Jeffrey W.

    2010-01-01

    Immature rats are more susceptible than adults to the acute neurotoxicity of pyrethroid insecticides like deltamethrin (DLM). A companion kinetics study (Kim et al., in press) revealed that blood and brain levels of the neuroactive parent compound were inversely related to age in rats 10, 21, 40 and 90 days old. The objective of the current study was to modify a physiologically based pharmacokinetic (PBPK) model of DLM disposition in the adult male Sprague-Dawley rat (Mirfazaelian et al., 2006), so blood and target organ dosimetry could be accurately predicted during maturation. Age-specific organ weights and age-dependent changes in the oxidative and hydrolytic clearance of DLM were modeled with a generalized Michaelis-Menten model for growth and the summary equations incorporated into the PBPK model. The model's simulations compared favorably with empirical DLM time-courses in plasma, blood, brain and fat for the four age-groups evaluated (10, 21, 40 and 90 days old). PND 10 pups' area under the 24-h brain concentration time curve (AUC 0-24h ) was 3.8-fold higher than that of the PND 90 adults. Our maturing rat PBPK model allows for updating with age- and chemical-dependent parameters, so pyrethroid dosimetry can be forecast in young and aged individuals. Hence, this model provides a methodology for risk assessors to consider age-specific adjustments to oral Reference Doses on the basis of PK differences.

  1. Rapid Determination of Enzyme Kinetics from Fluorescence: Overcoming the Inner Filter Effect

    Science.gov (United States)

    Palmier, Mark O.; Van Doren, Steven R.

    2007-01-01

    Fluorescence change is convenient for monitoring enzyme kinetics. Unfortunately, it looses linearity as the absorbance of the fluorescent substrate increases with concentration. When the sum of absorbance at excitation and emission wavelengths exceeds 0.08, this inner filtering effect (IFE) alters apparent initial velocities, Km, and kcat. The IFE distortion of apparent initial velocities can be corrected without doing fluorophore dilution assays. Using the substrate’s extinction coefficients at excitation and emission wavelengths, the inner filter effect can be modeled during curve fitting for more accurate Michaelis-Menten parameters. A faster and simpler approach is to derive kcat and Km from progress curves. Strategies to obtain reliable and reproducible estimates of kcat and Km from only two or three progress curves are illustrated using matrix metalloproteinase-12 and alkaline phosphatase. Accurate estimates of concentration of enzyme active sites and specificity constant kcat/Km (from one progress curve with [S] ≪ Km) confer accuracy, freedom of choices of [S], and robustness to kcat and Km globally fitted to a few progress curves. The economies of the progress curve approach make accurate kcat and Km more accessible from fluorescence measurements. PMID:17706587

  2. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  3. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  4. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  5. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism.

    Science.gov (United States)

    Rogers, Zoe; Hiruy, Hiwot; Pasipanodya, Jotam G; Mbowane, Chris; Adamson, John; Ngotho, Lihle; Karim, Farina; Jeena, Prakash; Bishai, William; Gumbo, Tawanda

    2016-09-01

    N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (V max ) and affinity (K m ) in children 0-10years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2 V max and K m by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both V max and K m and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  6. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism

    Directory of Open Access Journals (Sweden)

    Zoe Rogers

    2016-09-01

    Full Text Available N-acetyltransferase 2 (NAT2 catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax and affinity (Km in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS, to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm.

  7. Evaluation of sources of variation on in vitro fermentation kinetics of feedstuffs in a gas production system.

    Science.gov (United States)

    Keim, Juan P; Alvarado-Gilis, Christian; Arias, Rodrigo A; Gandarillas, Mónica; Cabanilla, Jaime

    2017-10-01

    The aim of this study was to evaluate the effect of different sources of variation in gas production technique on the in vitro gas production kinetics of feedstuffs. Triplicates of commercial concentrate, grass silage, grass hay and grass pasture were incubated in three experiments: experiment 1 assessed two agitation methods; experiment 2 evaluated different rumen inocula (pooled or different donor cows for each incubation run); and experiment 3 used Goering-Van Soest or Mould buffers for media preparation. Gas production data were fitted into the Michaelis-Menten model and then subjected to analysis of variance. Gas production (GP) at 48 h and asymptote gas production (A) were lower when bottles were continuously under horizontal movement. Time to produce half and 75% of A, and A were affected by rumen inocula, while buffer type affected time to produce half and 25% of A and GP. No interactions between substrates and sources of variation were observed, suggesting that the effects of substrates on GP parameters were not modified. It is concluded that comparison of numerical data from in vitro experiments that follow different protocols must be done carefully. However, the ranking of different substrates is more robust and less affected by the sources of variation. © 2017 Japanese Society of Animal Science.

  8. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  9. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  10. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  11. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  12. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity.

    Science.gov (United States)

    Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe

    2018-06-01

    In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.

  13. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  14. A graphical user interface for a method to infer kinetics and network architecture (MIKANA).

    Science.gov (United States)

    Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago

    2011-01-01

    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).

  15. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    Science.gov (United States)

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  16. Some parameters of radionuclide kinetics

    International Nuclear Information System (INIS)

    Prokof'ev, O.N.; Smirnov, V.A.; Belen'kij, E.I.

    1978-01-01

    Numerical values of the rates of radionuclide absorption into, and elimination from, bovine organs were determined. Kinetic rate constants of radionuclides such as 89 Sr, 99 Mo, 131 I, 132 Tl, and 140 Be were calculated. The calculations were done for muscle, liver, and kidney

  17. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  18. A century of enzyme kinetic analysis, 1913 to 2013.

    Science.gov (United States)

    Johnson, Kenneth A

    2013-09-02

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. The kinetics of denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-01-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments...... on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent K...... in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O-2 consumption to V-max was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. As a consequence, models implemented...

  20. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    Science.gov (United States)

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Science.gov (United States)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  2. Uncertainty analyses of the calibrated parameter values of a water quality model

    Science.gov (United States)

    Rode, M.; Suhr, U.; Lindenschmidt, K.-E.

    2003-04-01

    For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.

  3. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  4. Stability in a diffusive food chain model with Michaelis-Menten functional response

    DEFF Research Database (Denmark)

    Lin, Zhigui; Pedersen, Michael

    2004-01-01

    This paper deals with the behavior of positive solutions to a reaction-diffusion system with homogeneous Neumann boundary conditions describing a three species food chain. A sufficient condition for the local asymptotical stability is given by linearization and also a sufficient condition...... for the global asymptotical stability is given by a Lyapunov function. Our result shows that the equilibrium solution is globally asymptotically stable if the net birth rate of the first species is big enough and the net death rate of the third species is neither too big nor too small. (C) 2004 Elsevier Ltd. All...

  5. Variational estimates of point-kinetics parameters

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M. Jr.

    1995-01-01

    Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores

  6. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  7. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Fellner, Matthias; Aloi, Sekotilani; Tchesnokov, Egor P; Wilbanks, Sigurd M; Jameson, Guy N L

    2016-03-08

    Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.

  8. Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective.

    Science.gov (United States)

    Amin, Faiza; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2017-09-01

    An extracellular exo-polygalacturonase (exo-PG) produced by Penicillium notatum was purified (3.07-folds) by ammonium sulfate fractionation, ion exchange, and gel filtration chromatography. Two distinct isoforms of the enzyme, namely exo-PGI and exo-PGII, were identified during column purification with molecular weights of 85 and 20 kDa, respectively, on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme displayed its optimum activity at pH 6.0 and 50 °C and was found to be stable in the slightly acidic pH (ranging from 4.5 to 6.0). Michaelis-Menten parameters, i.e., K m (app) and V max for pectin hydrolysis, were calculated to be 16.6 mg/mL and 20 μmol/mL/min, respectively. The enzyme followed biphasic deactivation kinetics. Phase I of the exo-PGI showed half-lives of 6.83 and 2.39 min at 55 and 80 °C, respectively, whereas phase II of the enzyme exhibited a half-life of 63.57 and 22.72 min at 55 and 80 °C, respectively. The activation energy for denaturation was 51.66 and 44.06 kJ/mol for phase I and phase II of the exo-PGI, respectively. The enzyme activity was considerably enhanced by Mn 2+ , whereas exposure to a hydrophobic environment (urea and sodium azide solution) drastically suppressed the enzyme activity. Results suggest that exo-PGI might be considered as a potential candidate for various applications, particularly in the food and textile industries.

  9. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Science.gov (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  10. Kinetic Studies on Trichoderna Viride Cellulase

    International Nuclear Information System (INIS)

    Saw Aung; Oo Aung; Aung Myint

    2002-02-01

    Studies on cellulase enzyme (EC 3.2.1.4), which catalyzes the hydrolysis of. cellulose to yield glucose, were made. Cellulase from a fungus source, Trichoderma viride was cultivated on Czapek's agar medium and enzyme production broth medium was employed for parameter tests. The microscopic examination and cellulase hydrolysis test on subcultured fungi were applied to confirm the T. viride species. A calibration curve for standard glucose was plotted by using visible spectroscopy. Dinitrosalicylic acid was used as enzyme reaction inhibitor and the colour intensity was measured in a UV-visible spectrophotometer at a λ max of 570 nm. The parameters such as optimum pH, optimum temperature, effect of substrate concentration, effect, of enzyme concentration, enzyme unit (EU), reaction order (n), maximum velocity (V max ), Michaelis-Menten constant (K m ) using various substrates, viz., carboxy methylcellulose, cotton fibre and filter paper determined. (author)

  11. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  12. OPTIMIZATION OF ENZYME PARAMETERS FOR FERMENTATIVE PRODUCTION OF BIORENEWABLE FUELS AND CHEMICALS

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  13. Kinetics of the norepinephrine analog [76Br]-meta-bromobenzylguanidine in isolated working rat heart

    International Nuclear Information System (INIS)

    Raffel, David; Loc'h, Christian; Mardon, Karine; Maziere, Bernard; Syrota, Andre

    1998-01-01

    A related set of kinetic studies of the norepinephrine analog [ 76 Br]-meta-bromobenzylguanidine (MBBG) were performed with an isolated working rat heart preparation. A series of constant infusion studies over a wide range of MBBG concentrations allowed estimation of the Michaelis-Menten constants for transport by the neuronal norepinephrine transporter (uptake 1 ) and the extraneuronal uptake system (uptake 2 ). Pharmacological blocking studies with inhibitors of uptake 1 , uptake 2 and vesicular uptake were performed to delineate the relative importance of these norepinephrine handling mechanisms on the kinetics of MBBG in the rat heart. Bolus injection studies were done to assess the ability of compartmental modeling techniques to characterize the kinetics of MBBG. These studies demonstrate that MBBG shares many of the same uptake mechanisms as norepinephrine in the rat heart. PET imaging studies with MBBG would be useful for assessing sympathetic nerve status in the living human heart

  14. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  15. Determining "small parameters" for quasi-steady state

    Science.gov (United States)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2015-08-01

    For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.

  16. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Calculation of Kinetic Parameters of TRIGA Reactor

    International Nuclear Information System (INIS)

    Snoj, Luka; Kavcic, Andrej; Zerovnik, Gasper; Ravnik, Matjaz

    2008-01-01

    Modern Monte Carlo transport codes in combination of fast computer clusters enable very accurate calculations of the most important reactor kinetic parameters. Such are the effective delayed neutron fraction, β eff , and mean neutron generation time, Λ. We calculated the β eff and Λ for various realistic and hypothetical annular TRIGA Mark II cores with different types and amount of fuel. It can be observed that the effective delayed neutron fraction strongly depends on the number of fuel elements in the core or on the core size. E.g., for 12 wt. % uranium standard fuel with 20 % enrichment, β eff varies from 0.0080 for a small core (43 fuel rods) to 0.0075 for a full core (90 fuel rods). It is interesting to note that calculated value of β eff strongly depends also on the delayed neutron nuclear data set used in calculations. The prompt neutron life-time mainly depends on the amount (due to either content or enrichment) of 235 U in the fuel as it is approximately inversely proportional to the average absorption cross-section of the fuel. E.g., it varies from 28 μs for 30 wt. % uranium content fuelled core to 48 μs for 8.5 wt. % uranium content LEU fuelled core. The results are especially important for pulse mode operation and analysis of the pulses. (authors)

  18. NUMERICAL SOLUTION OF STEADY STATE DISPERSION FLOW MODEL FOR LACTOSE-LACTASE HYDROLYSIS WITH DIFFERENT KINETICS IN FIXED BED

    Directory of Open Access Journals (Sweden)

    OLAOSEBIKAN ABIDOYE OLAFADEHAN

    2010-06-01

    Full Text Available A detailed computational procedure for evaluating lactose hydrolysis with immobilized enzyme in a packed bed tubular reactor under dispersion flow conditions is presented. The dispersion flow model for lactose hydrolysis using different kinetics, taking cognizance of external mass transfer resistances, was solved by the method of orthogonal collocation. The reliability of model simulations was tested using experimental data from a laboratory packed bed column, where the -galactosidase of Kluyveromyces fragilis was immobilized on spherical chitosan beads. Comparison of the simulated results with experimental exit conversion shows that the dispersion flow model and using Michaelis-Menten kinetics with competitive product (galactose inhibition are appropriate to interpret the experimental results and simulate the process of lactose hydrolysis in a fixed bed.

  19. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants.

    Science.gov (United States)

    Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose

  20. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002.

    Science.gov (United States)

    Goltsov, Alexey; Tashkandi, Ghassan; Langdon, Simon P; Harrison, David J; Bown, James L

    2017-01-15

    The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC 50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC 50 on ATP concentration that allows prediction of the IC 50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K

  1. Kinetic parameter estimation from attenuated SPECT projection measurements

    International Nuclear Information System (INIS)

    Reutter, B.W.; Gullberg, G.T.

    1998-01-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters

  2. Tomato root growth and phosphorus absorption kinetics by tomato plants as affected by phosphorus concentration in nutrient solution

    International Nuclear Information System (INIS)

    Fontes, P.C.R.; Barber, S.A.

    1984-01-01

    To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt

  3. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A path-independent integral for the characterization of solute concentration and flux at biofilm detachments

    Science.gov (United States)

    Moran, B.; Kulkarni, S.S.; Reeves, H.W.

    2007-01-01

    A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.

  5. Correlating thermodynamic and kinetic parameters with amorphous stability

    DEFF Research Database (Denmark)

    Graeser, Kirsten A; Patterson, James E; Zeitler, J Axel

    2009-01-01

    Poor physical stability is one of the single most important factors limiting the widespread use of the amorphous state in pharmaceutics. The purpose of this study is to move away from the case study approach by investigating thermodynamic and kinetic parameters as potential predictors of physical...

  6. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    Science.gov (United States)

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  7. Collective behaviours: from biochemical kinetics to electronic circuits

    Science.gov (United States)

    Agliari, Elena; Barra, Adriano; Burioni, Raffaella; di Biasio, Aldo; Uguzzoni, Guido

    2013-12-01

    In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.

  8. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10 9 –10 12 s −1 and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies

  9. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Sridevi, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India); Venkatraman, B. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India)

    2014-03-15

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10{sup 9}–10{sup 12} s{sup −1} and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies.

  10. Kinetic parameter estimation from SPECT cone-beam projection measurements

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Zeng, G. Larry; Gullberg, Grant T.

    1998-01-01

    Kinetic parameters are commonly estimated from dynamically acquired nuclear medicine data by first reconstructing a dynamic sequence of images and subsequently fitting the parameters to time-activity curves generated from regions of interest overlaid upon the image sequence. Biased estimates can result from images reconstructed using inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system. If the SPECT data are acquired using cone-beam collimators wherein the gantry rotates so that the focal point of the collimators always remains in a plane, additional biases can arise from images reconstructed using insufficient, as well as truncated, projection samples. To overcome these problems we have investigated the estimation of kinetic parameters directly from SPECT cone-beam projection data by modelling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated chest image volume, kinetic parameters were estimated for simple one-compartment models for four myocardial regions of interest. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated cone-beam data had biases ranging between 3-26% and 0-28%, respectively. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Statistical uncertainties of parameter estimates for 10 000 000 events ranged between 0.2-9% for the uptake parameters and between 0.3-6% for the washout parameters. (author)

  11. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    Science.gov (United States)

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Activity, stability and kinetic parameters for α-chymotrypsin catalysed ...

    Indian Academy of Sciences (India)

    Three typical surfactants were selected based on their head group charges: a non-ionic surfactant Triton-X 100 and two zwitterionic sulphobetaine surfactants of the type CH2+1N+Me2 (CH2)3 SO 3 − (n = 10; SB3-10, n = 16; SB3-16). The kinetic parameters (such as cat and M) of the -CT at 27°C were determined ...

  13. Cell kinetic parameters of a solid mammary adenocarcinoma

    International Nuclear Information System (INIS)

    Porschen, R.; Feinendegen, L.E.

    1978-01-01

    Several cell kinetic parameters of the mammary adenocarcinoma EO 771 were evaluated by means of tumor volume measurements and of 125 I-UdR. The in-situ measured activity loss rate is disturbed by a slow elimination of labelled necrotic cells and by reutilization of 125 I-UdR. The restrictions of the I-UdR method are mentioned and the measured activity loss rates are compared with calculated volume loss rates. (orig./MG) [de

  14. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  15. Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics

    Directory of Open Access Journals (Sweden)

    Elena Agliari

    2018-01-01

    Full Text Available Complex biochemical pathways can be reduced to chains of elementary reactions, which can be described in terms of chemical kinetics. Among the elementary reactions so far extensively investigated, we recall the Michaelis-Menten and the Hill positive-cooperative kinetics, which apply to molecular binding and are characterized by the absence and the presence, respectively, of cooperative interactions between binding sites. However, there is evidence of reactions displaying a more complex pattern: these follow the positive-cooperative scenario at small substrate concentration, yet negative-cooperative effects emerge as the substrate concentration is increased. Here, we analyze the formal analogy between the mathematical backbone of (classical reaction kinetics in Chemistry and that of (classical mechanics in Physics. We first show that standard cooperative kinetics can be framed in terms of classical mechanics, where the emerging phenomenology can be obtained by applying the principle of least action of classical mechanics. Further, since the saturation function plays in Chemistry the same role played by velocity in Physics, we show that a relativistic scaffold naturally accounts for the kinetics of the above-mentioned complex reactions. The proposed formalism yields to a unique, consistent picture for cooperative-like reactions and to a stronger mathematical control.

  16. A physiologically based kinetic model for bacterial sulfide oxidation.

    Science.gov (United States)

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    Science.gov (United States)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  18. Reactivity and kinetic parameters determination in a multiplicative non-stationary system

    International Nuclear Information System (INIS)

    Minguez, E.

    1982-01-01

    A revision of several methods used for solving kinetic equations of a neutronic system is considered. Firstly, kinetic equations in general form are analized, before to revise more important aproximations: point-kinetic method; adiabatic; cuasistatic; eigenvalue equations; nodal, modal and systhesis methods; and variational principles for obtaining kinetic equations. Perturbation theory is used to obtain these parameters, with differents eigenvalue equations representatives of the parameter to be calculated. Also, experimental methods have been included in this work, because of importance the parameters can be measured, and related with those obtained by calculations. Finally, adjoint kinetic equations are resolved to obtain the importance function used in weighted reactivity and kinetic parameters determinations. (author)

  19. Determination of kinetic parameters of heterogeneous isotopic exchange reaction

    International Nuclear Information System (INIS)

    Huang, Ting-Chia; Tsai, Fuan-Nan

    1977-01-01

    A mathematical model has been proposed for a heterogeneous isotopic exchange reaction which involves film diffusion, surface chemical reaction and intraparticle diffusion. The exchange equation to predict the exchange fraction as a function of time for the spherical particles immersed in a solution of finite volume has been derived. The relations between the exchange fraction and dimensionless time are plotted with xi(=ak sub(f)/KD sub(e)), xi 1 (=K 1 a 2 /D sub(e)) and final fractional uptake as parameters. From the values of the kinetic parameters xi and xi 1 , the relative importance of each limiting step is discussed. Experimental results of the isotopic exchange reaction of calcium ion in both system CaCO 3 (s)/Ca 2+ (aq) and system calcium type resin Dowex 50W-X8/Ca 2+ (aq) are coincident with the theoretical equation proposed in this study. (auth.)

  20. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism--case study of Faecalibacterium prausnitzii.

    Science.gov (United States)

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B A; Lannebère, Sylvain; Van de Wiele, Tom; Rabaey, Korneel

    2015-07-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 μM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.

  1. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum*

    Science.gov (United States)

    Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.

    2016-01-01

    Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471

  2. Modified mean generation time parameter in the neutron point kinetics equations

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S., E-mail: alessandro@nuclear.ufrj.br, E-mail: frosa@if.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  3. Modified mean generation time parameter in the neutron point kinetics equations

    International Nuclear Information System (INIS)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S.

    2017-01-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  4. A simple theory of motor protein kinetics and energetics. II.

    Science.gov (United States)

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  5. Kinetic parameters of silicon uptake by rice cultivars

    Directory of Open Access Journals (Sweden)

    Priscila Oliveira Martins

    2012-02-01

    Full Text Available Silicon is considered an important chemical element for rice, because it can improve tolerance to biotic and abiotic stress. However, in many situations no positive effect of silicon was observed, probably due to genetic factors. The objective of this research was to monitor Si uptake kinetics and identify responses of rice cultivars in terms of Si uptake capacity and use. The experiment was carried out in a greenhouse of the São Paulo State University (UNESP, Brazil. The experiment was arranged in a completely randomized, factorial design with three replications. that consisted of two rice cultivars and two Si levels. Kinetic parameters (Vmax, Km, and Cmin, root morphology variables, dry matter yield, Si accumulation and levels in shoots and roots, uptake efficiency, utilization efficiency, and root/shoot ratio were evaluated. Higher Si concentrations in the nutrient solution did not increase rice dry matter. The development of the low-affinity silicon uptake system of the rice cultivar 'Caiapó' was better than of 'Maravilha'.

  6. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  7. Generation of a library of two-group diffusion and kinetics parameters for DYN3D

    International Nuclear Information System (INIS)

    Petkov, P.T.; Christoskov, I.D.; Kamenov, K.; Antov, A.

    2002-01-01

    A library of two-group diffusion and kinetics parameters has been generated for the neutron kinetics code DYN3D for analysis of reactivity initiated accidents for the WWER-440 reactors, based on the MAGRU approximation methodology for the diffusion and kinetics parameters. The accuracy of this methodology has been tested and the conclusion is that it is not adequate. A new approximation methodology, based on interpolation for the most widely varying parameters, i.e. the moderator temperature and density, and on approximation for all other independent parameters, is presented. The methodology of calculation of the kinetics parameters using primary data from ENDF-B/VI is described in detail (Authors)

  8. Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes.

    Science.gov (United States)

    Anne, Agnès; Chovin, Arnaud; Demaille, Christophe

    2012-06-12

    In this work, we experimentally address the issue of optimizing gold electrode attached ferrocene (Fc)-peptide systems for kinetic measurements of protease action. Considering human α-thrombin and bovine trypsin as proteases of interest, we show that the recurring problem of incomplete cleavage of the peptide layer by these enzymes can be solved by using ultraflat template-stripped gold, instead of polished polycrystalline gold, as the Fc-peptide bearing electrode material. We describe how these fragile surfaces can be mounted in a rotating disk configuration so that enzyme mass transfer no longer limits the overall measured cleavage kinetics. Finally, we demonstrate that, once the system has been optimized, in situ real-time cyclic voltammetry monitoring of the protease action can yield high-quality kinetic data, showing no sign of interfering effects. The cleavage progress curves then closely match the Langmuirian variation expected for a kinetically controlled surface process. Global fit of the progress curves yield accurate values of the peptide cleavage rate for both trypsin and thrombin. It is shown that, whereas trypsin action on the surface-attached peptide closely follows Michaelis-Menten kinetics, thrombin displays a specific and unexpected behavior characterized by a nearly enzyme-concentration-independent cleavage rate in the subnanomolar enzyme concentration range. The reason for this behavior has still to be clarified, but its occurrence may limit the sensitivity of thrombin sensors based on Fc-peptide layers.

  9. Stoichiometry and kinetics of single and mixed substrate uptake in Aspergillus niger.

    Science.gov (United States)

    Lameiras, Francisca; Ras, Cor; Ten Pierick, Angela; Heijnen, Joseph J; van Gulik, Walter M

    2018-02-01

    In its natural environment, the filamentous fungus Aspergillus niger grows on decaying fruits and plant material, thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose, and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose, and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios, and specific conversion rates. Interestingly, in combination, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose, and mannose could be described with a Michaelis-Menten-type kinetics; however, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid, and rhamnose appeared to be repressed by the presence of other substrates.

  10. Exploring between the extremes: conversion-dependent kinetics of phosphite-modified hydroformylation catalysis.

    Science.gov (United States)

    Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin

    2012-07-09

    The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition, and nitrification

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; Schulze, M S; Stark, R W; Barmeier, J C

    1983-01-01

    In order to test for nitrogen limitation and examine ammonium uptake by stream sediments, ammonium hydroxide was added continuously at concentrations averaging 100 /sup +/gl/sup -1/ for 70 days to a second-order reach of Walker Branch, an undisturbed woodland stream in Tennessee. Ammonium uptake during the first 4 h of addition corresponded to adsorption kinetics rather than to first-order uptake or to Michaelis-Menten kinetics. However, the calculated adsorption partition coefficient was two to four orders of magnitude greater than values reported for physical adsorption of ammonium, suggesting that the uptake was largely biotic. Mass balance indicated that the uptake of ammonium from the water could be accounted for by increased nitrogen content in benthic organic detritus. Nitrification, inferred from longitudinal gradients in NO/sub 3/, began soon after enrichment and increased dramatically near the end of the experiment. Both ammonium and nitrate concentrations dropped quickly to near background levels when input ceased, indicating little desorption or nitrification of excess nitrogen stored in the reach. There was no evidence of nitrogen limitation as measured by weight loss, oxygen consumption, phosphorus content, and macroinvertebrate density of red oak leaf packs, or by chlorophyll content and aufwuchs biomass on plexiglass slides. A continuous phosphorus enrichment 1 year earlier had demonstrated phosphorus limitation in Walker Branch. 38 references, 6 figures, 3 tables.

  12. Measurement of kinetic parameters in the fast subcritical core MASURCA

    International Nuclear Information System (INIS)

    Baeten, Peter; Abderrahim, Hamid Aiet

    2004-01-01

    In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS

  13. Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.

    Science.gov (United States)

    Zaiat, M; Vieira, L G; Foresti, E

    1997-01-20

    This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.

  14. application of ascorbic acid 2-phosphate as a new voltammetric

    African Journals Online (AJOL)

    a

    acid 2-phosphate (AAP) as a new voltammetric substrate has been described in this paper. In the alkaline buffer .... ALP labeled goat anti-rabbit ..... Classical Michaelis-Menten kinetic experiments were carried out to measure the maximum.

  15. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Tracer kinetics: Modelling of tracer behaviour in nonlinear and nonsteady state systems exemplified by the evaluation of protein turnover in plant organs

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    If nonlinear biological processes are investigated by means of tracer experiments they can be modelled with linear kinetic equations (compartment equations) as long as the total system is in a stationary state. But if nonstationary behaviour is included considerations on the kinetics of the individual processes are necessary. Within the range of biological and agricultural investigations especially first order reactions (constant fraction processes), zero order reactions (constant amount process) and saturation reactions (Michaelis-Menten-kinetics) are to be taken into account. A rigorous treatment of data based on system theory can be preceeded by graphic-algebraic procedure which may be more or less uncertain in its results but which can easily be handled. An example is given of methodological considerations concerning the combination of evaluation procedures and the discrimination between different reaction mechanisms. It treats protein turnover in 2 different parts of growing wheat plants investigated by means of an 15 N-tracer experiment. Whereas in a stationary system (upper stalk section) linear tracer equations were sufficient irrespective of the true reaction mechanism, for protein synthesis in the upper leaf as a nonstationary system it was necessary to decide between the hypotheses of a zero order and a first order reaction. In accordance with statements in the literature the unambiguous result was a combination of protein synthesis as a zero order process and of protein degradation as a first order process. (orig.) [de

  17. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  18. Development of simple kinetic models and parameter estimation for ...

    African Journals Online (AJOL)

    In order to describe and predict the growth and expression of recombinant proteins by using a genetically modified Pichia pastoris, we developed a number of unstructured models based on growth kinetic equation, fed-batch mass balance and the assumptions of constant cell and protein yields. The growth of P. pastoris on ...

  19. In vivo measurements of brain glucose transport using the reversible michaelis-menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia

    OpenAIRE

    Choi, I.-Y.; Lee, S.-P.; Kim, S.-G.; Gruetter, R.

    2001-01-01

    Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in α-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma ...

  20. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose

    DEFF Research Database (Denmark)

    Jensen, Michael Gejl; Rungby, Jørgen; Brock, Birgitte

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with pancreatic and extrapancreatic effects. Studies reveal significant effects in regions of brain tissue that regulate appetite and satiety. The effects cause that mimetics of GLP-1 serves as treatment of type 2 diabete...

  1. Generic Schemes for Single-Molecule Kinetics. 3: Self-Consistent Pathway Solutions for Nonrenewal Processes.

    Science.gov (United States)

    Piephoff, D Evan; Cao, Jianshu

    2018-04-23

    We recently developed a pathway analysis framework (paper 1) for describing single-molecule kinetics for renewal (i.e., memoryless) processes based on the decomposition of a kinetic scheme into generic structures. In our approach, waiting time distribution functions corresponding to such structures are expressed in terms of self-consistent pathway solutions and concatenated to form measurable probability distribution functions (PDFs), affording a simple way to decompose and recombine a network. Here, we extend this framework to nonrenewal processes, which involve correlations between events, and employ it to formulate waiting time PDFs, including the first-passage time PDF, for a general kinetic network model. Our technique does not require the assumption of Poissonian kinetics, permitting a more general kinetic description than the usual rate approach, with minimal topological restrictiveness. To demonstrate the usefulness of this technique, we provide explicit calculations for our general model, which we adapt to two generic schemes for single-enzyme turnover with conformational interconversion. For each generic scheme, wherein the intermediate state(s) need not undergo Poissonian decay, the functional dependence of the mean first-passage time on the concentration of an external substrate is analyzed. When conformational detailed balance is satisfied, the enzyme turnover rate (related to the mean first-passage time) reduces to the celebrated Michaelis-Menten functional form, consistent with our previous work involving a similar scheme with all rate processes, thereby establishing further generality to this intriguing result. Our framework affords a general and intuitive approach for evaluating measurable waiting time PDFs and their moments, making it a potentially useful kinetic tool for a wide variety of single-molecule processes.

  2. The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study.

    Science.gov (United States)

    Schnell, Santiago; Chappell, Michael J; Evans, Neil D; Roussel, Marc R

    2006-01-01

    A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.

  3. Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter.

    Science.gov (United States)

    Mathur, Anil K; Sundaramurthy, J; Balomajumder, C

    2006-10-11

    The performance of a trickle bed air biofilter (TBAB) in the removal of mono-chlorobenzene (MCB) was evaluated in concentrations varying from 0.133 to 7.187 g m(-3) and at empty bed residence time (EBRT) varying from 37.7 to 188.52 s. More than 90% removal efficiency in the trickle bed air biofilter was achieved for the inlet MCB concentration up to 1.069 g m(-3) and EBRT less than 94.26 s. The trickle bed air biofilter was constructed with coal packing material, inoculated with a mixed consortium of activated sludge obtained from sewage treatment plant. The continuous performance of the removal of MCB in the trickle bed air biofilter was monitored for various gas concentrations, gas flow rates, and empty bed residence time. The experiment was conducted for a period of 75 days. The trickle bed air biofilter degrading MCB with an average elimination capacity of 80 g m(-3) h(-1) was obtained. The effect of starvation was also studied. After starvation period of 8 days, the degradation was low but recovered within a short period of time. Using macrokinetic determination method, the Michaelis-Menten kinetic constant K(m) and maximum reaction rate, r(max) evaluated as 0.121 g m(-3) s(-1) and 7.45 g m(-3), respectively.

  4. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  5. The kinetics of phagocytosis of 198Au colloids ''in vitro''

    International Nuclear Information System (INIS)

    Astorri, N.L.; Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.

    1982-01-01

    The kinetics of the phagocytosis of 198-Au colloids by macrophages ''in vitro'' was studied by incubating during 5 hours phagocytic cells from the liver and the spleen of Wistar rats with colloidal radiogold particles, in the presence of an adequate culture medium (TC-199 with 10 per cent of Bovine Fetal Serum). In each experiment, the number of colloidal gold particles offered to each phatocytic cell, (Au) 0 and the mean rate of phagocytosis v, were calculated. The latter value was determined by measuring the radioactivity incorporated into the phagocytic cells during the incubation; it was expressed as the number of phagocytized colloidal gold particles per cell per minute. The values of log v = f [log (Au) 0 ] were plotted. The Lineweaver-Burk analysis of the results demonstrates that the kinetics of the phagocytosis of colloidal radiogold particles ''in vitro'' follows a model similar to Michaelis-Menten equations for enzyme reactions. The values of the substratum constant Ks and maximun velocity Vm were obtained by the regression analysis of the 1/v vs. 1/(Au) 0 graph. Vm was equal to 9.44 x 10 and 1.63 x 10 phagocytized colloidal gold particles per cell per minute for liver and spleen macrophages, respectively. Ks was equal to 6.01 x 10 9 and 8.02 x 10 8 colloidal gold particles per cell for liver and spleen macrophages, respectively. The significance of these differences is discussed and attributed mainly to a change of the specific engulfment rate constant. (author) [es

  6. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae.

    Science.gov (United States)

    Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong

    2017-03-01

    Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The repair-fixation model: general aspects and the influence of radiation quality

    International Nuclear Information System (INIS)

    Kiefer, J.; Loebrich, M.

    1992-01-01

    To explain the shape of cell survival curves after radiation action it is assumed that initial lesions are transient in nature and subject to repair or fixation. Since the underlying processes are controlled by enzymes, Michaelis-Menten kinetics are assumed. No qualitative differences between repair and fixation are postulated, the only differences being the kinetic parameters. This model yields a mathematical expression which is formally equivalent to the ''lethal-potentially-lethal'' (LPL) model. It is demonstrated that both mammalian as well as microbial survival data can be fitted. The inclusion of linear energy transfer (LET) effects is shown to be possible and is discussed qualitatively. (author)

  8. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.

    Science.gov (United States)

    Deganutti, Giuseppe; Moro, Stefano

    2017-04-01

    Kinetic and thermodynamic ligand-protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand-protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand-protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand-protein binding.

  9. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  10. Parameter Estimation for Simultaneous Saccharification and Fermentation of Food Waste Into Ethanol Using Matlab Simulink

    Science.gov (United States)

    Davis, Rebecca Anne

    The increase in waste disposal and energy costs has provided an incentive to convert carbohydrate-rich food waste streams into fuel. For example, dining halls and restaurants discard foods that require tipping fees for removal. An effective use of food waste may be the enzymatic hydrolysis of the waste to simple sugars and fermentation of the sugars to ethanol. As these wastes have complex compositions which may change day-to-day, experiments were carried out to test fermentability of two different types of food waste at 27° C using Saccharomyces cerevisiae yeast (ATCC4124) and Genencor's STARGEN™ enzyme in batch simultaneous saccharification and fermentation (SSF) experiments. A mathematical model of SSF based on experimentally matched rate equations for enzyme hydrolysis and yeast fermentation was developed in Matlab Simulink®. Using Simulink® parameter estimation 1.1.3, parameters for hydrolysis and fermentation were estimated through modified Michaelis-Menten and Monod-type equations with the aim of predicting changes in the levels of ethanol and glycerol from different initial concentrations of glucose, fructose, maltose, and starch. The model predictions and experimental observations agree reasonably well for the two food waste streams and a third validation dataset. The approach of using Simulink® as a dynamic visual model for SSF represents a simple method which can be applied to a variety of biological pathways and may be very useful for systems approaches in metabolic engineering in the future.

  11. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2016-01-01

    be used directly for accurate full-scale transient simulations. The model was validated against full-scale data with an engine following the European Transient Cycle. The validation showed that the predictive capability for nitrogen oxides (NOx) was satisfactory. After re-estimation of the adsorption...... and desorption parameters with full-scale transient data, the fit for both NOx and NH3-slip was satisfactory....

  12. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method

    Directory of Open Access Journals (Sweden)

    Pedro L. Valencia

    2017-04-01

    Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].

  13. Comparison Of A Neutron Kinetics Parameter For A Polyethylene Moderated Highly Enriched Uranium System

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, IV, George Espy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-17

    This paper examines the comparison of MCNP® code’s capability to calculate kinetics parameters effectively for a thermal system containing highly enriched uranium (HEU). The Rossi-α parameter was chosen for this examination because it is relatively easy to measure as well as easy to calculate using MCNP®’s kopts card. The Rossi-α also incorporates many other parameters of interest in nuclear kinetics most of which are more difficult to precisely measure. The comparison looks at two different nuclear data libraries for comparison to the experimental data. These libraries are ENDF/BVI (.66c) and ENDF/BVII (.80c).

  14. Investigation of transfer parameters from the radiochromium on erythrocyte kinetic

    International Nuclear Information System (INIS)

    Tavares, J.L.M.

    1980-01-01

    This study analyzes and interprets results of destruction and survival data from 51 Cr labeled red cells to the more common and realistic situations for diagnostic applications in clinical and nuclear hematology. The destructive process and the deviation of the cell system from the equilibrium state can be conveniently studied in terms of the disappearance rate of labeled red blood cells, using some transfer parameters. The investigation was concentrated on selection and study of a mathematical model to describe significantly the elimination process and to improve and simplify the computational analysis of data in chromium erythrokinetics from patients and normal individuals for control. (author)

  15. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism - case study of Faecalibacterium prausnitzii

    Science.gov (United States)

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B. A.; Lannebère, Sylvain; van de Wiele, Tom; Rabaey, Korneel

    2015-07-01

    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL-1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM kcat = 5.3×105 s-1, at 37 °C) and glucose (KM = 6 μM kcat = 2.4 × 105 s-1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.

  16. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    Science.gov (United States)

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  17. RIA system programming by means of kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Silberring, J; Golda, W [Akademia Medyczna, Krakow (Poland). Dept. of Endocrinology and Metabolism

    1979-12-01

    Insulin-/sup 125/I antibody reaction was optimized by physical-chemical parameters. After the activation energies Esub(a) and Esub(d)-for association and association, respectively were calculated from the experimental data, the theoretical values of the reaction rate constants ksub(a) and ksub(d) were determined as well as equilibrium constants K. By means of the empirical formulae, the approximate incubation time for the RIA kit and maximal percent of insulin-/sup 125/I binding to antibody (%B) in relation to temperature were computed. The proposed method may be applied to the new antigen-binder systems preparation (new antibodies, shortening of the incubation time, temperature changes, influence of different ions and kind of buffer). (orig.) 891 MG/orig. 892 MBE.

  18. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae.

    Science.gov (United States)

    Sato, Vanessa Sayuri; Galdiano Júnior, Renato F; Rodrigues, Gisele Regina; Lemos, Eliana G M; Pizauro Junior, João Martins

    2016-02-01

    Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/10(8) cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4 °C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows "Michaelis-Menten" kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.

  19. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  20. EQUILIBRIUM AND KINETIC PARAMETERS FOR THE SEDIMENTATION OF TARTARIC SALTS IN YOUNG WINES

    Directory of Open Access Journals (Sweden)

    Ecaterina Covaci

    2015-06-01

    Full Text Available In young wines potassium hydrogen tartrate is always present in supersaturating concentration and crystallizes spontaneously. The aim of this study is to obtain kinetic parameters, which explain the stability of young wines during the stabilization treatments. The kinetic and equilibrium parameters were evaluated and discussed. The heating factor has a decisive influence on the reaction rate of potassium hydrogen tartrate precipitation in young wines. An increase of temperature leads to a decrease in efficiency of stabilization process and to an enhancement of the activation energy of the system. According to the obtained experimental results, the optimal regime for production and stabilization of young wines has been established.

  1. Kinetics parameter measurements on RSG-GAS, a low-enriched fuel reactor

    International Nuclear Information System (INIS)

    Jujuratisbela, U; Arbie, B; Pinem, S.; Tukiran; Suparlina, L.; Singh, O.P.

    1995-01-01

    Kinetics parameter measurements, such as reactivity worths of control rods and fuel elements, beam tube void reactivity, power reactivity coefficient and xenon poisoning reactivity have been performed on different cores of Reaktor Serba Guna G.A. Siwabessy (RSG-GAS). In parallel, a programme was also initiated to measure the other kinetics parameters like effective delayed neutron life time, prompt neutron decay constant, validation of period reactivity relationship and zero power frequency response function. The paper provides the results of these measurements. (author)

  2. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  3. Assessing the impact of azadirachtin application to soil on ureaseactivity and its kinetic parameters

    OpenAIRE

    KIZILKAYA, RIDVAN; SAMOFALOVA, IRAIDA; MUDRYKH, NATALYA; MİKAİLSOY, FARİZ; AKÇA, İZZET; SUSHKOVA, SVETLANA; MINKINA, TATIANA

    2015-01-01

    Abstract: The kinetic parameters of soil urease have attracted considerable attention; however, little information is available on its kinetic parameters and behaviors in response to azadirachtin application to the soil. A short (14-day) field experiment was conducted using Albic Luvisol soil (loam texture; pH 6.70; electrical conductivity 0.81 dS m-1; CaCO3 content 0.04%; total organic carbon 0.99%) as the experimental soil in the Perm region of the Russian Federation to investigate the effe...

  4. Two-detector cross-correlation noise technique and its application in measuring reactor kinetic parameters

    International Nuclear Information System (INIS)

    Lu Guiping; Peng Feng; Yi Jieyi

    1988-01-01

    The two-detector cross-correlation noise technique is a new method of measuring reactor kinetic parameters developed in the sixties. It has the advantages of non-perturbation in core, high signal to noise ratio, low space dependent effect, and simple and reliable in measurement. A special set of cross-correlation analyzer has been prepared for measuring kinetic parameters of several reactor assemblies, such as the High Flux Engineering Test Reactor, its zero power mock up facility and a low enriched uranium light water lattice zero power facility

  5. Kinetics parameters of a slurry remediation process in rotating drum bioreactors

    International Nuclear Information System (INIS)

    Esquivel-Rios, I.; Rodriguez-Meza, M. A.; Barrera-Cortes, J.

    2009-01-01

    The knowledge of biotransformation pollution dynamics in any systems is important for design and optimization purposes of biochemical processes involved. this is focus to the determination of kinetics parameters such as the maximum specific growth rate (μMAX), saturation constant (Ks), biomass yield (YX/S; X: biomass, S: substrate) and oxygen consumption (YO 2 /S; O 2 : oxygen). Several approximations, based on Monod equation, have been developed for estimating kinetics parameters in terms of concentration and type of substrate, bioprocess type and microflora available. (Author)

  6. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  7. Estimation of apparent kinetic parameters of polymer pyrolysis with complex thermal degradation behavior

    International Nuclear Information System (INIS)

    Srimachai, Taranee; Anantawaraskul, Siripon

    2010-01-01

    Full text: Thermal degradation behavior during polymer pyrolysis can typically be described using three apparent kinetic parameters (i.e., pre-exponential factor, activation energy, and reaction order). Several efficient techniques have been developed to estimate these apparent kinetic parameters for simple thermal degradation behavior (i.e., single apparent pyrolysis reaction). Unfortunately, these techniques cannot be directly extended to the case of polymer pyrolysis with complex thermal degradation behavior (i.e., multiple concurrent reactions forming single or multiple DTG peaks). In this work, we proposed a deconvolution method to determine the number of apparent reactions and estimate three apparent kinetic parameters and contribution of each reaction for polymer pyrolysis with complex thermal degradation behavior. The proposed technique was validated with the model and experimental pyrolysis data of several polymer blends with known compositions. The results showed that (1) the number of reaction and (2) three apparent kinetic parameters and contribution of each reaction can be estimated reasonably. The simulated DTG curves with estimated parameters also agree well with experimental DTG curves. (author)

  8. Estimation of Adjoint-Weighted Kinetics Parameters in Monte Carlo Wieland Calculations

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Shim, Hyung Jin

    2013-01-01

    The effective delayed neutron fraction, β eff , and the prompt neutron generation time, Λ, in the point kinetics equation are weighted by the adjoint flux to improve the accuracy of the reactivity estimate. Recently the Monte Carlo (MC) kinetics parameter estimation methods by using the self-consistent adjoint flux calculated in the MC forward simulations have been developed and successfully applied for the research reactor analyses. However these adjoint estimation methods based on the cycle-by-cycle genealogical table require a huge memory size to store the pedigree hierarchy. In this paper, we present a new adjoint estimation in which the pedigree of a single history is utilized by applying the MC Wielandt method. The effectiveness of the new method is demonstrated in the kinetics parameter estimations for infinite homogeneous two-group problems and the Godiva critical facility

  9. Measurements for kinetic parameters estimation in the RA-0 research reactor

    International Nuclear Information System (INIS)

    Gomez, A; Bellino, P A

    2012-01-01

    In the present work, measurements based on the neutron noise technique and the inverse kinetic method were performed to estimate the different kinetic parameters of the reactor in its critical state. By means of the neutron noise technique, we obtained the current calibration factor of the ionization chamber M6 belonging to the power range channels of the reactor instrumentation. The maximum current allowed compatible with the maximum power authorized by the operation license was also obtained. Using the neutron noise technique, the reduced mean reproduction time (Λ*) was estimated. This parameter plays a fundamental role in the deterministic analysis of criticality accidents. Comparison with previous values justified performing new measurements to study systematic trends in the value of Λ*. Using the inverse kinetics method, the reactivity worth of the control rods was estimated, confirming the existence of spatial effects and trends previously observed (author)

  10. On the analysis of glow curves with the general order kinetics: Reliability of the computed trap parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, F. [Facultad de Ingeniería (UNCPBA) and CIFICEN (UNCPBA – CICPBA – CONICET), Av. del Valle 5737, 7400 Olavarría (Argentina); Santiago, M.; Martinez, N.; Marcazzó, J.; Molina, P.; Caselli, E. [Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA – CICPBA – CONICET), Pinto 399, 7000 Tandil (Argentina)

    2017-04-15

    Nowadays the most employed kinetics for analyzing glow curves is the general order kinetics (GO) proposed by C. E. May and J. A. Partridge. As shown in many articles this kinetics might yield wrong parameters characterizing trap and recombination centers. In this article this kinetics is compared with the modified general order kinetics put forward by M. S. Rasheedy by analyzing synthetic glow curves. The results show that the modified kinetics gives parameters, which are more accurate than that yield by the original general order kinetics. A criterion is reported to evaluate the accuracy of the trap parameters found by deconvolving glow curves. This criterion was employed to assess the reliability of the trap parameters of the YVO{sub 4}: Eu{sup 3+} compounds.

  11. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson

    2012-01-01

    lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches...... parameters, which are strongly correlated with each other. State-of-the-art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver-Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely...

  12. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.

  13. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    Science.gov (United States)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  14. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1.

    Science.gov (United States)

    Zhou, Jin; Tracy, Timothy S; Remmel, Rory P

    2010-11-01

    Bilirubin, an end product of heme catabolism, is primarily eliminated via glucuronic acid conjugation by UGT1A1. Impaired bilirubin conjugation, caused by inhibition of UGT1A1, can result in clinical consequences, including jaundice and kernicterus. Thus, evaluation of the ability of new drug candidates to inhibit UGT1A1-catalyzed bilirubin glucuronidation in vitro has become common practice. However, the instability of bilirubin and its glucuronides presents substantial technical challenges to conduct in vitro bilirubin glucuronidation assays. Furthermore, because bilirubin can be diglucuronidated through a sequential reaction, establishment of initial rate conditions can be problematic. To address these issues, a robust high-performance liquid chromatography assay to measure both bilirubin mono- and diglucuronide conjugates was developed, and the incubation conditions for bilirubin glucuronidation by human embryonic kidney 293-expressed UGT1A1 were carefully characterized. Our results indicated that bilirubin glucuronidation should be assessed at very low protein concentrations (0.05 mg/ml protein) and over a short incubation time (5 min) to assure initial rate conditions. Under these conditions, bilirubin total glucuronide formation exhibited a hyperbolic (Michaelis-Menten) kinetic profile with a K(m) of ∼0.2 μM. In addition, under these initial rate conditions, the relative proportions between the total monoglucuronide and the diglucuronide product were constant across the range of bilirubin concentration evaluated (0.05-2 μM), with the monoglucuronide being the predominant species (∼70%). In conclusion, establishment of appropriate incubation conditions (i.e., very low protein concentrations and short incubation times) is necessary to properly characterize the kinetics of bilirubin glucuronidation in a recombinant UGT1A1 system.

  15. An Integrated Circuit for Chip-Based Analysis of Enzyme Kinetics and Metabolite Quantification.

    Science.gov (United States)

    Cheah, Boon Chong; Macdonald, Alasdair Iain; Martin, Christopher; Streklas, Angelos J; Campbell, Gordon; Al-Rawhani, Mohammed A; Nemeth, Balazs; Grant, James P; Barrett, Michael P; Cumming, David R S

    2016-06-01

    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 2(16) sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2-12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM-231 mM, encompassing glucose's physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine.

  16. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  17. Determination of the kinetic parameters of BeO thermoluminescent samples using different methods

    Energy Technology Data Exchange (ETDEWEB)

    Algarve, Fábio J.; Caldas, Linda V.E., E-mail: fjalgarve@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The objective of this work was to determine the kinetic parameters of BeO thermoluminescent (TL) samples. The knowledge of the kinetic parameters is important for the general description of the physical characteristics of a thermoluminescent material. Using a linear heating rate of 5K/s{sup -1}, the BeO peak temperatures obtained were (474.7 ± 1.2) K and (620.5 ± 1.2) K, respectively, for the first and second TL peaks. The peak shape and the glow curve area measurement methods and the Urbach formula have been used for the trap parameter determination. A kinetic order of about two was determined for the first peak, whereas the second peak followed the first-order kinetics according to the geometrical factor. The energy activation values obtained using different kinds of measurements are in good agreement, including the Kitis method for deconvolution of the glow curve. Furthermore the results agree with those presented by other authors. (author)

  18. A novel optimization approach to estimating kinetic parameters of the enzymatic hydrolysis of corn stover

    Directory of Open Access Journals (Sweden)

    Fenglei Qi

    2016-01-01

    Full Text Available Enzymatic hydrolysis is an integral step in the conversion of lignocellulosic biomass to ethanol. The conversion of cellulose to fermentable sugars in the presence of inhibitors is a complex kinetic problem. In this study, we describe a novel approach to estimating the kinetic parameters underlying this process. This study employs experimental data measuring substrate and enzyme loadings, sugar and acid inhibitions for the production of glucose. Multiple objectives to minimize the difference between model predictions and experimental observations are developed and optimized by adopting multi-objective particle swarm optimization method. Model reliability is assessed by exploring likelihood profile in each parameter space. Compared to previous studies, this approach improved the prediction of sugar yields by reducing the mean squared errors by 34% for glucose and 2.7% for cellobiose, suggesting improved agreement between model predictions and the experimental data. Furthermore, kinetic parameters such as K2IG2, K1IG, K2IG, K1IA, and K3IA are identified as contributors to the model non-identifiability and wide parameter confidence intervals. Model reliability analysis indicates possible ways to reduce model non-identifiability and tighten parameter confidence intervals. These results could help improve the design of lignocellulosic biorefineries by providing higher fidelity predictions of fermentable sugars under inhibitory conditions.

  19. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate

    International Nuclear Information System (INIS)

    Jose, M.T.; Anishia, S.R.; Annalakshmi, O.; Ramasamy, V.

    2011-01-01

    For the first time kinetic parameters of thulium doped Lithium calcium borate (LCB) Thermoluminescence (TL) material are reported here. Irradiated LCB:Tm 3+ powder has revealed two intense TL glow peaks one at 510 (peak 1) and the other at 660 K (peak 2). Activation energy (E), frequency factor (s) and order of kinetics (b) of these peaks were determined by various heating rate (VHR), initial rise (IR), and peak shape (PS) methods. The trap depth and frequency factor determined for peaks 1 and 2 of LCB:Tm phosphor using VHR and IR methods are in good agreement. The average activation energy of peaks 1 and 2 obtained by these methods is 1.62 and 1.91 eV respectively. The frequency factors of peaks 1 and 2 are in the range of 10 13-16 and 10 12-14 sec -1 respectively. The E and s values estimated using the glow peak shape dependent parameters are relatively less compared to the values obtained from other methods. The large difference in these values is due to the complex nature of the glow curves. The order of the kinetics process for complex glow curve peaks could not be assigned on the basis of shape parameters alone but T m response on absorbed dose is to be considered for final confirmation. Glow peaks 1 and 2 of LCB:Tm 3+ obey first and general order kinetics respectively. - Highlights: → Trap depth and frequency factor are determined for the peaks at 510 and 660 K of LCB:Tm. → Parameters obtained by various heating rate and initial rise methods are in good agreement. → Trap depth of peak 1 and peak 2 is 1.61 eV and 1.91 eV respectively. → T m response to absorbed dose is used to distinguish a first order or non-first order kinetics.

  20. Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters

    International Nuclear Information System (INIS)

    Frias, Moises; Villar-Cocina, E.; Valencia-Morales, E.

    2007-01-01

    This paper reports on the influence of calcining temperature (800 and 1000 deg. C) on the pozzolanic activation of sugar cane straw (SCS). The reaction kinetics of SCS ash-lime mixtures were inferred from physicochemical characteristics (X-ray diffraction patterns and thermogravimetry analysis. The fitting of a kinetic-diffusive model to the experimental data (fixed lime versus time) allowed the computing of the kinetic parameters (reaction rate constant) of the pozzolanic reaction. Results obtained confirm that the sugar cane straw ash (SCSA) calcined at 800 and 1000 deg. C have properties indicative of very high pozzolanic activity. No influence of calcining temperature on the pozzolanic activity was observed. Also, no crystalline compounds during the pozzolanic reaction were identified up to 90 days of reaction. Environmental durability and strength of the consequential mortars remain to be assessed

  1. Studies on the kinetics of absorption of phosphorus by rice (Orysa sativa L.) and beans (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Baraibar, A.; Villamil, J.; Fiore, M.F.; Marcondes, R.F.; Muraoka, T.; Cabral, C.P.; Malavolta, M.L.; Malavolta, E.

    1987-01-01

    Three experiments were conducted under controlled conditions with the objectives of evaluating the effect of different concentrations of phosphorus and on the presence of other ions on the kinetic of absorption. Excised roots of rice and bean were placed in aereated solutions containing increasing concentrations of NaH 2 PO 4 (10 -7 M to 5x10 -2 M) during 90 minutes. The rate of absorption (v = umols P/g dry matter) and the kinetic constants Vmax and Km were determined. Similar procedure was used to to evaluate the interaction of Mg +2 , Al +3 , K + , N-NH 4 + , N-NO 3 - and N-ureia in the uptake of phosphorus during 120 minutes. In another experiment, the effect of the presence of Mg +2 and/for Al +3 in the uptake and redistribution of phosphorus, was evaluated by varying the external concentration (1 ppm, 5 ppm, 10 ppm and 20 ppm) during a period of 17 hours, and utilizing whole rice plants. It was observed a dual mechanism, with two phases following the Michaelis-Menten kinetics and with transition phase 1 - 50 x 10 -5 M. The best explanation of the experimental data was obtained, by transforming the data in accordance with HOFSTEE (1952). Bean was more efficient than rice in the first phase of uptake (higher Vmax). Al 3 had a clear stimulatory effect on the uptake of phosphorus, promoting, however, the anion fixation in the root at lower concentrations. At the highest concentrations (20 ppm) of phosphorus this effect was not evident. No effect on the uptake was observed with Mg +2 , K + and different forms of nitrogen. Urea could have a depressive effect although, not significant. Possible mechanisms involved are discussed. (author) [pt

  2. Biodegradation of BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) composites present in the petrochemical effluents industries; Biodegradacao dos compostos BTX (Benzeno, Tolueno e Xilenos) presentes em efluentes petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Minatti, Gheise; Mello, Josiane M.M. de; Souza, Selene M.A. Guelli Ulson de; Ulson de, Antonio Augusto [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2008-07-01

    The compounds BTX inside of the petrochemical effluent have presented a high potential of pollution, representing a serious risk to the environment and to the human. The great improvements in the field of biological treatment of liquid effluent were reached through the process using biofilm capable of degrading toxic compounds. The objective of this paper is to determine the degradation kinetics of BTX using biofilm. The experimental data were compared with two kinetic models, kinetic of first order and model of Michaelis-Menten. The kinetic parameters of BTX compounds were experimentally obtained in a bioreactor in batch with biomass immobilized in activated-carbon, being fed daily with solution of nutrients and BTX. For the kinetic models studied in this paper, the best performance was achieved with the model of Michaelis-Menten showing a good correlation coefficient for the three compounds. The biomass amount in these bioreactors was 49.18, 28.35 and 5.15 mg of SSV per gram of support for the toluene, benzene and o-xylene, respectively. The experimental tests showed that the biomass inside of bioreactor is capable to degrade all compounds in a time of approximately 300 minutes. (author)

  3. Determination of the kinetic parameters of BeO using isothermal decay method

    International Nuclear Information System (INIS)

    Nieto, Juan Azorin; Vega, Claudia Azorin; Montalvo, Teodoro Rivera; Cabrera, Eugenio Torijano

    2016-01-01

    Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay (ILD) method. The trapping parameters associated with the prominent glow peak of BeO (280 °C) are reported using ILD method. As a check, the trap parameters are also calculated by glow curve shape (Chen's) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. ILD method was used for determining the trapping parameters of BeO. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor. - Highlights: • Kinetic parameters of BeO were determined. • Isothermal decay method was used. • Frecuency factor not agree with those obtained by other methods.

  4. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling

    Science.gov (United States)

    Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2016-04-01

    Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.

  5. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    Science.gov (United States)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  6. Kinetic parameters evaluation of PWRs using static cell and core calculation codes

    International Nuclear Information System (INIS)

    Jahanbin, Ali; Malmir, Hessam

    2012-01-01

    Highlights: ► In this study, we have calculated effective delayed neutron fraction and prompt neutron lifetime in PWRs. ► New software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. ► This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. ► The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. - Abstract: In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. Benchmarking of the results against the final safety analysis report (FSAR) of the aforementioned reactors shows very good agreements with these published documents.

  7. State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells

    OpenAIRE

    Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail

    2013-01-01

    In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...

  8. Thermoluminescent kinetic parameters of the perovskite, KMgF3, activated with lanthanum

    International Nuclear Information System (INIS)

    Sepulveda M, F.; Azorin N, J.; Rivera M, T.; Furetta, C.; Sanipoli, C.

    2004-01-01

    The thermoluminescent curves induced by the beta radiation in the perovskite KMgF 3 were investigated activated with lanthanum. The classic methods were used to determine the kinetic parameters (the kinetic order b, the activation energy E and the frequency of escape intent s) associated with the peaks of the thermoluminescent curve (Tl) in the KMgF 3 activated with lanthanum after the irradiation with beta rays. The method is based on the position of the thermoluminescent peaks, obtained of the temperature change of the peak in the maximum emission caused by the change in the heating rapidity to which the samples were measured. In this work, the samples in form of pellets were re cooked previously at 400 C during one hour before irradiating them with beta particles. The Tl measures were made with a Tl reader system using three different heating rapidities and storing the glow curves. To calculate the depth of the E traps and the frequency factor s, the parameters of the glow curve were determined experimentally of the shame of the glow curve by means of the mensuration of the shame of the maximum temperature of the peak, T M like a function of the heating rapidity. The results indicate that the values of the kinetic parameters are very near among if when they are obtained indistinctly of anyone of the different methods. (Author)

  9. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  10. Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)

    2009-03-15

    The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.

  11. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  12. Effect of long-term physical aging on the kinetic parameters in a common pharmaceutical drug: Flutab

    International Nuclear Information System (INIS)

    Abu-Sehly, A.A.; Elabbar, A.A.

    2011-01-01

    Differential scanning calorimetry (DSC) measurements were performed to investigate the effects of long-term physical aging on kinetic parameters of the pharmaceutical drug (Flutab). Kinetics parameters such as activation energy (E) and fragility parameter (m) of the glass transition for aged and rejuvenated glasses were determined using different kinetic models. Evidence of variation of E with temperature is presented. It is shown in this work that natural storage of the drug introduced significant physical aging as indicated by changes in the glass transition temperature, activation energy and fragility parameter.

  13. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Application of the exact distribution pjk in the determination of kinetic parameters in a reactor

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1982-01-01

    In this report one distribution of neutron counts obtained by a detector placed in a reactor is studied in order to be used in the determination of reactor kinetic parameters such as β/Λ and reactivities. The parameters accuracy from this new method is compared with the Feynman and Mogilner method, based too in Reactor Neutron Noise Analysis. These three methods have been applied to JEN-2 reactor and the better accuracy and faster collection of experimental data give some interest to the new method which only requires a good footing code. (Author) 68 refs

  15. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.

  16. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  17. Microbial ureolysis in the seawater-catalysed urine phosphorus recovery system: Kinetic study and reactor verification.

    Science.gov (United States)

    Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao

    2015-12-15

    Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thermoluminescence kinetic parameters of different amount La-doped ZnB2O4

    International Nuclear Information System (INIS)

    Kucuk, Nil; Gozel, Aziz Halit; Yüksel, Mehmet; Dogan, Tamer; Topaksu, Mustafa

    2015-01-01

    The kinetic parameters of 1%, 2%, 3% and 4% La-doped ZnB 2 O 4 phosphors (i.e. ZnB 2 O 4 :0.01La, ZnB 2 O 4 :0.02La, ZnB 2 O 4 :0.03La and ZnB 2 O 4 :0.04La) synthesized by nitric acid method have been calculated. Thermoluminescence (TL) glow curves of ZnB 2 O 4 :La phosphors after beta-irradiation showed a very well defined main peak having the maximum temperature at around 200 °C and a shoulder peak at around 315 °C with a constant heating rate of 5 °C/s. The kinetic parameters of ZnB 2 O 4 :La phosphors TL glow peaks (i.e. order of kinetics (b), activation energies (E a ) and frequency factors (s)) have been determined and evaluated by Computerized Glow Curve Deconvolution (CGCD), and Peak Shape (PS) methods using the glow curve data. From the results, it can conclude that the values of E a obtained with these methods for ZnB 2 O 4 :La phosphors are consistent with each other, but the s values differ considerably. - Highlights: • Calculation of TL kinetic parameters for La-doped ZnB 2 O 4 . • La-doped ZnB 2 O 4 was synthesized by nitric acid method. • Well defined main peak at about 200 °C

  19. A KDE-Based Random Walk Method for Modeling Reactive Transport With Complex Kinetics in Porous Media

    Science.gov (United States)

    Sole-Mari, Guillem; Fernà ndez-Garcia, Daniel; Rodríguez-Escales, Paula; Sanchez-Vila, Xavier

    2017-11-01

    In recent years, a large body of the literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.

  20. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  1. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2018-02-01

    Full Text Available A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO, Kissinger-Akahira-Sonuse (KAS and Kissinger, and model-fitting (Coats Redfern. The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.

  2. Determination of kinetic parameters for 123-I thyroid uptake in healthy Japanese

    Science.gov (United States)

    Kusuhara, Hiroyuki; Maeda, Kazuya

    2017-09-01

    The purpose of this study was to compare the kinetic parameters for iodide thyroid accumulation in Japanese today with previously reported values. We determined the thyroid uptake of 123-I at 24 hours after the oral administration in healthy male Japanese without any diet restriction. The mean value was 16.1±5.4%, which was similar or rather lower than those previously reported in Japan (1958-1972). Kinetic model analysis was conducted to obtain the clearance for thyroid uptake from the blood circulation. The thyroid uptake clearance of 123-I was 0.540±0.073 ml/min, which was almost similar to those reported previously. There is no obvious difference in the thyroid uptake for 24 hours, and kinetic parameters in healthy Japanese for these 50 years. The fraction of distributed to the thyroid gland is lower than the ICRP reference man, and such difference must be taken into consideration to estimate the radiation exposure upon Fukushima accident in Japan.

  3. Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    1989-01-01

    Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)

  4. Removal kinetics of organic compounds and sum parameters under field conditions for managed aquifer recharge.

    Science.gov (United States)

    Wiese, Bernd; Massmann, Gudrun; Jekel, Martin; Heberer, Thomas; Dünnbier, Uwe; Orlikowski, Dagmar; Grützmacher, Gesche

    2011-10-15

    Managed aquifer recharge (MAR) provides efficient removal for many organic compounds and sum parameters. However, observed in situ removal efficiencies tend to scatter and cannot be predicted easily. In this paper, a method is introduced which allows to identify and eliminate biased samples and to quantify simultaneously the impact of (i) redox conditions (ii) kinetics (iii) residual threshold values below which no removal occurs and (iv) field site specifics. It enables to rule out spurious correlations between these factors and therefore improves the predictive power. The method is applied to an extensive database from three MAR field sites which was compiled in the NASRI project (2002-2005, Berlin, Germany). Removal characteristics for 38 organic parameters are obtained, of which 9 are analysed independently in 2 different laboratories. Out of these parameters, mainly pharmaceutically active compounds (PhAC) but also sum parameters and industrial chemicals, four compounds are shown to be readily removable whereas six are persistent. All partly removable compounds show a redox dependency and most of them reveal either kinetic dependencies or residual threshold values, which are determined. Differing removal efficiencies at different field sites can usually be explained by characteristics (i) to (iii). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Measures of the zero power nuclear reactor's kinetic parameters with application of noise analysis

    International Nuclear Information System (INIS)

    Martins, F.R.

    1992-01-01

    The purpose of this work was to establish an experimental technique based on noise analysis for measuring the ratio of kinetic parameters β/ Λ and the power of the Zero Power Nuclear Reactor IPEN-MB 01. A through study of the microscopic and macroscopic noise analysis techniques has been carried out. The Langevin technique and the point kinetic model were chosen to describe the stochastic phenomena that occur in the zero power reactor. Measurements have been made using two compensated ionization chambers localized in the water reflector at symmetric positions in order to minimize spatial effects on the neutron flux fluctuation. Power calibrations based on the low frequency plateau of the cross-power spectral density has also been carried out. (author)

  6. Modelling and determination of the kinetic parameters of the pyrolysis of Dichrostachys cinerea

    International Nuclear Information System (INIS)

    Abreu Naranjo, Reinier; Romero Romero, Osvaldo

    2011-01-01

    In the present study were analyzed biomass samples of Dichrostachys cinerea, commonly known in Cuba as marabou, by thermogravimetric method at various heating rates of devolatilization in nitrogen atmosphere at 5, 10 and 20 C min-1. On the kinetic analysis was used a mechanism of three independent reactions of order 1, generally attributed to three chief components of this kind of lignocellulose materials, hemicelluloses, cellulose and lignin. The values of activation energy, pre-exponential factor and contribution factor were similar to those reported in previous research for this type of biomass. The proposed model predicts with acceptable correlation the experimental and calculated curves of the decomposition of D. cinerea, with a deviation factor less than 5% for the temperature range studied. On the other hand, the kinetic parameters of the thermal decomposition coupled at equations of transport phenomena are essential to optimize the design and use of biomass thermochemical conversion processes, hence the importance of the research. (author)

  7. RA reactor kinetic parameters - Progress report; Kineticki parametri reaktora RA - Izvestaj o napredovanju -

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Obradovic, D; Jevtovic, V; Velickovic, Lj [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    The objective of nuclear reactor kinetics study is to analyze the stability of reactor operation in practice. The obtained parameters should define the needed properties of automatic control system relevant for the stability of the designed reactor system. Refining the analytical models is done by using the analysis and interpretation of experimental data. Results of measured the reactor response obtained by using the reactor oscillator ROB-1 are explained by using the space independent model of the zero power reactor, by power reactor model with one feedback circuit, and by a complex model. It was assumed that the perturbations of the system are small and that linearized kinetic equations could be used. Linearized kinetic equation of the reactor system are transformed into the frequency region in order to analyze the measured values directly. The objective of this paper is to measure the RA reactor kinetics parameters, and analyze the stability of reactor operation at power levels high than nominal. Istrazivanja u oblasti kinetike nuklearnih reaktora imaju za cilj da dovedu analizu stabilnosti rada reaktora na nivo 'radne tehnologije'. Dobijeni pararametri treba da specificiraju potrebne karakteristike sistema automatske kontrole za odgovarajucu stabilnost projektovanog reaktorskog sistema. Doterivanjem analitickih modela do takvog nivoa da se zapazeni fenomeni mogu anailitcki predvideti ide preko analize i interpretacije eksperimentalnih podataka. Eksperimentalni rezultati merenja odziva reaktora, izvedeni reaktorskim oscilatorom ROB-1, interpretirani su na osnovu prostorno nezavisnog modela za reaktor nulte snage, modelom reaktora snage sa jednim kolom povratne sprege, kao i kompleksnim modelom. U ovom radu se poslo od toga da su perturbacije parametara sistema male, pa se mogu upotrebiti linearizovane kineticke jednacine. Linearizovane kineticke jednacine reaktorskog sistema transformirane su u frekventno podrucje s ciljem direktne analize mernih rezultata

  8. Closed-form kinetic parameter estimation solution to the truncated data problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Kadrmas, Dan J; Gullberg, Grant T

    2010-01-01

    In a dedicated cardiac single photon emission computed tomography (SPECT) system, the detectors are focused on the heart and the background is truncated in the projections. Reconstruction using truncated data results in biased images, leading to inaccurate kinetic parameter estimates. This paper has developed a closed-form kinetic parameter estimation solution to the dynamic emission imaging problem. This solution is insensitive to the bias in the reconstructed images that is caused by the projection data truncation. This paper introduces two new ideas: (1) it includes background bias as an additional parameter to estimate, and (2) it presents a closed-form solution for compartment models. The method is based on the following two assumptions: (i) the amount of the bias is directly proportional to the truncated activities in the projection data, and (ii) the background concentration is directly proportional to the concentration in the myocardium. In other words, the method assumes that the image slice contains only the heart and the background, without other organs, that the heart is not truncated, and that the background radioactivity is directly proportional to the radioactivity in the blood pool. As long as the background activity can be modeled, the proposed method is applicable regardless of the number of compartments in the model. For simplicity, the proposed method is presented and verified using a single compartment model with computer simulations using both noiseless and noisy projections.

  9. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  10. Determination of kinetics parameters using stochastic methods in a 252Cf system

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1988-01-01

    Safety analysis and control system design of nuclear systems require the knowledge of neutron kinetics related parameters like effective delayed neutron fraction, neutron lifetime, time between neutron generations and subcriticality margins. Many methods, deterministic and stochastic, are being used, some since the beginning of nuclear power, to measure these important parameters. The method based on the use of the 252 Cf neutron source has been under intense study at the Oak Ridge National Laboratory, both experimentally and theoretically, during the last years. The increasing demand for this isotope in industrial and medical applications and new designs of advanced high flux reactors to produce it make the isotope available as neutron source (only few micrograms are necessary). A thin layer of 252 Cf is deposited in one of the electrodes of a fission chamber which produces pulses each time the 252 Cf disintegrates via α or spontaneous fission decay; the smaller pulses associated with the α decay can be easily discriminated with the important result that we known the time when v/sub c/ neutrons are injected into the system (number of neutrons per fission of 252 Cf). Thus, a small (few cm 3 ) and nonintrusive device can be used as a random pulsed neutron source with known natural properties that do no depend on biases associated with more complex interrogating devices like accelerators. This paper presents a general formalism that relates the kinetics parameters with stochastic descriptors that naturally appear because of the random nature of the production and transport of neutrons

  11. Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones

    Science.gov (United States)

    Mao, X.; Gerhard, J. I.; Barry, D. A.

    2005-12-01

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical

  12. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  13. Plyometric Long Jump Training With Progressive Loading Improves Kinetic and Kinematic Swimming Start Parameters.

    Science.gov (United States)

    Rebutini, Vanessa Z; Pereira, Gleber; Bohrer, Roberta C D; Ugrinowitsch, Carlos; Rodacki, André L F

    2016-09-01

    Rebutini, VZ, Pereira, G, Bohrer, RCD, Ugrinowitsch, C, and Rodacki, ALF. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res 30(9): 2392-2398, 2016-This study was aimed to determine the effects of a plyometric long jump training program on torque around the lower limb joints and kinetic and kinematics parameters during the swimming jump start. Ten swimmers performed 3 identical assessment sessions, measuring hip and knee muscle extensors during maximal voluntary isometric contraction and kinetic and kinematics parameters during the swimming jump start, at 3 instants: INI (2 weeks before the training program, control period), PRE (2 weeks after INI measurements), and POST (24-48 hours after 9 weeks of training). There were no significant changes from INI to PRE measurements. However, the peak torque and rate of torque development increased significantly from PRE to POST measurements for both hip (47 and 108%) and knee (24 and 41%) joints. There were significant improvements to the horizontal force (7%), impulse (9%), and angle of resultant force (19%). In addition, there were significant improvements to the center of mass displacement (5%), horizontal takeoff velocity (16%), horizontal velocity at water entrance (22%), and peak angle velocity for the knee (15%) and hip joints (16%). Therefore, the plyometric long jump training protocol was effective to enhance torque around the lower limb joints and to control the resultant vector direction, to increase the swimming jump start performance. These findings suggest that coaches should use long jump training instead of vertical jump training to improve swimming start performance.

  14. Verification of kinetic parameters of coupled fast-thermal core HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Milosevic, M.; Nikolic, D.; Zavaljevski, N.; Milovanovic, S.; Ljubenov, V.

    1997-03-01

    The HERBE system is a new coupled fast-thermal core constructed in 1989 at the RB critical heavy water assembly at the VINCA Institute. It was designed with the aim to improve experimental possibilities in fast neutron fields and for experimental verification of reactor design-oriented methods. This paper overviews experiments for kinetic parameters verification carried out at HERBE system. Their short description and comparison of experimental and calculation results are included. A brief introduction to the computer codes used in the calculations is presented too. (author)

  15. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  16. The strong prognostic value of KELIM, a model-based parameter from CA 125 kinetics in ovarian cancer

    DEFF Research Database (Denmark)

    You, Benoit; Colomban, Olivier; Heywood, Mark

    2013-01-01

    Unexpected results were recently reported about the poor surrogacy of Gynecologic Cancer Intergroup (GCIG) defined CA-125 response in recurrent ovarian cancer (ROC) patients. Mathematical modeling may help describe CA-125 decline dynamically and discriminate prognostic kinetic parameters....

  17. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2013-03-01

    Full Text Available Whey is the liquid remaining after milk has been curdled and strained. It is a by-product of the manufacture of cheese or casein and has several commercial uses. In environmental point of view, whey is kind of waste which has high pollution level due to it’s contain high organic compound with BOD and COD value 50 and 80 g/L respectively. On the other side, whey also contain an amount of lactose (4.5%-5%; lactose can be used as carbon source and raw material for producing ethanol via fermentation using yeast strain Kluyveromyces marxianus. The objective of this research is to investigate the ethanol production kinetics from crude whey through fermentation using Kluyveromyces marxianus and to predict the model kinetics parameter. The yeast was able to metabolize most of the lactose within 16 h to give 8.64 g/L ethanol, 4.43 g/L biomass, and remain the 3.122 g/L residual lactose. From the results presented it also can be concluded that common kinetic model for microbial growth, substrate consumption, and product formation is a good alternative to describe an experimental batch fermentation of Kluyveromyces marxianus grown on a medium composed of whey. The model was found to be capable of reflecting all batch culture phases to a certain degree of accuracy, giving the parameter value: μmax, Ks, YX/S, α, β : 0.32, 10.52, 0.095, 1.52, and 0.11 respectively. © 2013 BCREC UNDIP. All rights reserved(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 27th September 2012; Revised: 29th November 2012; Accepted: 7th December 2012[How to Cite: D. Ariyanti, H. Hadiyanto, (2013. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 179-184. (doi:10.9767/bcrec.7.3.4044.179-184][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4044.179-184 ] View in  |

  18. Determination of kinetic parameters during the thermal decomposition of epoxy/carbon fiber composite material

    International Nuclear Information System (INIS)

    Lee, Jae Hun; Kim, Kwang Seok; Kim, Hyo

    2013-01-01

    An in-depth study to determine the thermal decomposition kinetics parameters such as the activation energy E_a, the reaction order n, and the pre-exponential factor A of epoxy/carbon fiber composite material has been conducted. We employ not only the modified peak property method that is proposed here, but also the conventional method in analyzing the experimental data, and compare the results to show the performance of the proposed model. The pyrolysis tests for the epoxy/carbon fiber composite materials are conducted by using thermogravimetric analyser at various heating rates. As a result, the best prediction to the experimental data can be obtained by the modified peak property method. Besides, among the methods applied here, the modified peak property method provides most convenient way to recover the parameters: it does not require a curve fitting of the data nor a long iterative computation

  19. The importance of variables and parameters in radiolytic chemical kinetics modeling

    International Nuclear Information System (INIS)

    Piepho, M.G.; Turner, P.J.; Reimus, P.W.

    1989-01-01

    Many of the pertinent radiochemical reactions are not completely understood, and most of the associated rate constants are poorly characterized. To help identify the important radiochemical reactions, rate constants, species, and environmental conditions, an importance theory code, SWATS (Sensitivitiy With Adjoint Theory-Sparse version)-LOOPCHEM, has been developed for the radiolytic chemical kinetics model in the radiolysis code LOOPCHEM. The LOOPCHEM code calculates the concentrations of various species in a radiolytic field over time. The SWATS-LOOPCHEM code efficiently calculates: the importance (relative to a defined response of interest) of each species concentration over time, the sensitivity of each parameter of interest, and the importance of each equation in the radiolysis model. The calculated results will be used to guide future experimental and modeling work for determining the importance of radiolysis on waste package performance. A demonstration (the importance of selected concentrations and the sensitivities of selected parameters) of the SWATS-LOOPCHEM code is provided for illustrative purposes

  20. Experimental kinetic parameters in the thermo-fluid-dynamic modelling of coal combustion

    International Nuclear Information System (INIS)

    Migliavacca, G.; Perini, M.; Parodi, E.

    2001-01-01

    The designing and the optimisation of modern and efficient combustion systems are nowadays frequently based on calculation tools for mathematical modelling, which are able to predict the evolution of the process starting from the first principles of physics. Otherwise, in many cases, specific experimental parameters are needed to describe the specific nature of the materials considered in the calculations. It is especially true in the modelling of coal combustion, which is a complex process strongly dependent on the chemical and physical features of the fuel. This paper describes some experimental techniques used to estimate the fundamental kinetic parameters of coal combustion and shows how this data may be introduced in a model calculation to predict the pollutant emissions from a real scale combustion plant [it

  1. Experimental estimations of the kinetics parameters of the IBR-2M reactor by stochastic noises

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tajybov, L.A.; Garibov, A.A.; Mekhtieva, R.N.

    2012-01-01

    Experimental investigations of stochastic fluctuations of pulse energy of the IBR-2M reactor have been carried out which allowed us to obtain some of the parameters of the reactor kinetics. At different levels of average power a sequence of values of pulse energy was recorded with the calculation of the distribution parameters. An ionization chamber with boron installed near the active zone was used as a neutron detector. The research results allowed us to estimate the average lifetime of prompt neutrons τ = (6.53±0.2)·10 -8 s, absolute power of the reactor and intensity of the source of spontaneous neutrons S sp ≤(6.72±0.12)·10 6 s -1 . It was shown that the experimental results are close to the calculated ones

  2. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    Science.gov (United States)

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.

  3. Determination of the kinetic parameters of Be O using isothermal decay method

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J.; Torijano C, E. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Azorin V, C.; Rivera M, T., E-mail: azorin@xanum.uam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay method. The trapping parameters associated with the prominent glow peak of Be O (280 degrees C) are reported using isothermal luminescence decay method. As a check, the trap parameters are also calculated by glow curve shape (Chen s) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. Isothermal luminescence decay method was used for determining the trapping parameters of Be O. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor. (Author)

  4. Variability and reproducibility of rubidium-82 kinetic parameters in the myocardium of the anesthetized canine

    International Nuclear Information System (INIS)

    Coxson, P.G.; Brennan, K.M.; Huesman, R.H.

    1995-01-01

    Kinetic analysis of 82 Rb (I) dynamic PET data produces quantitative measures which could be used to evaluate ischemic heart disease. These measures have the potential to generate objective comparisons of different patients or the same patient at different times. To achieve this potential, it is essential to determine the variability and reproducibility of the kinetic parameters. A total of 48 I dynamic PET datasets were acquired from two pure bred beagles. Each animal underwent eight I PET studies with essentially the same protocol for three successive weeks. Data were acquired with the Donner 600-Crystal Positron Tomograph (PET600). In each week, single-slice dynamic I PET datasets were collected with the animal at rest at three different gantry positions separated by 5 mm. Additional dataset were collected after dipyridamole infusion and after administration of aminophylline to induce a return to rest. A two-compartment kinetic model with correction for myocardial vasculature and spillover from the left ventricular blood pool was used to analyze the dynamic datasets. Model parameters for uptake (k 1 ), washout (k 2 ) and vascular fraction (f v ) were estimated in 11-14 myocardial regions of interest (ROIs) using a weighted least-squares criterion. Statistical fluctuation due to the PET acquisition process was minimized by using a relatively high I dose (about 30 mCi) to take advantage of the high count rate capacity of the PET600. The variation in mean k 1 , where the mean is taken over the myocardial ROIs was 10%-20% (Dog 1) and 15%-50% (Dog 2) among the rest studies conducted on the same data. Similar variation was evident in comparing studies in the same animal for different weeks. Spatial and temporal variation in estimates of the uptake rate (k 1 ) of I in the resting myocardium of the anesthetized canine are small in relation to the functional increase in k 1 , following dipyridamole stress. 17 refs., 14 figs

  5. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.

    Science.gov (United States)

    Schrewe, Manfred; Julsing, Mattijs K; Lange, Kerstin; Czarnotta, Eik; Schmid, Andreas; Bühler, Bruno

    2014-09-01

    The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions. © 2014 Wiley Periodicals, Inc.

  6. Study of the kinetics parameters for subcritical media driven by source

    International Nuclear Information System (INIS)

    Lee, S.M.; Maiorino, J.R.

    2009-01-01

    This paper presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on sub criticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two group diffusion model, considering, in both case only one precursor's family. For reason of simplicity, several additional assumptions were made for calculation of two group method: no up-scattering, fission reaction occurring only in thermal group, etc. The solutions for subcritical systems were obtained using the expansion method, and for critical systems, the methods presented in classical textbooks of reactor physics were applied. The numerical results presented their dependence on sub criticality level and perturbation. (author)

  7. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  8. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    Science.gov (United States)

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.

  9. Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism.

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Vrablik, Tracy L; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A

    2010-12-14

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic

  10. Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.

    Science.gov (United States)

    Fang, Fang; Ni, Bing-Jie; Yu, Han-Qing

    2009-06-01

    In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

  11. Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition

    Science.gov (United States)

    Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph

    2018-05-01

    This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.

  12. Kinetic parameter estimation and fluctuation analysis of CO at SnO 2 single nanowires

    KAUST Repository

    Tulzer, Gerhard; Baumgartner, Stefan; Brunet, Elise; Mutinati, Giorgio C; Steinhauer, Stephan; Kö ck, Anton; Barbano, Paolo E; Heitzinger, Clemens

    2013-01-01

    In this work, we present calculated numerical values for the kinetic parameters governing adsorption/desorption processes of carbon monoxide at tin dioxide single-nanowire gas sensors. The response of such sensors to pulses of 50 ppm carbon monoxide in nitrogen is investigated at different temperatures to extract the desired information. A rate-equation approach is used to model the reaction kinetics, which results in the problem of determining coefficients in a coupled system of nonlinear ordinary differential equations. The numerical values are computed by inverse-modeling techniques and are then used to simulate the sensor response. With our model, the dynamic response of the sensor due to the gas-surface interaction can be studied in order to find the optimal setup for detection, which is an important step towards selectivity of these devices. We additionally investigate the noise in the current through the nanowire and its changes due to the presence of carbon monoxide in the sensor environment. Here, we propose the use of a wavelet transform to decompose the signal and analyze the noise in the experimental data. This method indicates that some fluctuations are specific for the gas species investigated here. © 2013 IOP Publishing Ltd.

  13. Kinetic parameter estimation and fluctuation analysis of CO at SnO 2 single nanowires

    KAUST Repository

    Tulzer, Gerhard

    2013-07-12

    In this work, we present calculated numerical values for the kinetic parameters governing adsorption/desorption processes of carbon monoxide at tin dioxide single-nanowire gas sensors. The response of such sensors to pulses of 50 ppm carbon monoxide in nitrogen is investigated at different temperatures to extract the desired information. A rate-equation approach is used to model the reaction kinetics, which results in the problem of determining coefficients in a coupled system of nonlinear ordinary differential equations. The numerical values are computed by inverse-modeling techniques and are then used to simulate the sensor response. With our model, the dynamic response of the sensor due to the gas-surface interaction can be studied in order to find the optimal setup for detection, which is an important step towards selectivity of these devices. We additionally investigate the noise in the current through the nanowire and its changes due to the presence of carbon monoxide in the sensor environment. Here, we propose the use of a wavelet transform to decompose the signal and analyze the noise in the experimental data. This method indicates that some fluctuations are specific for the gas species investigated here. © 2013 IOP Publishing Ltd.

  14. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    Science.gov (United States)

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis.

    Science.gov (United States)

    Yahiaoui, Meriem; Hadoun, Hocine; Toumert, Idir; Hassani, Aicha

    2015-11-01

    This paper reports the pyrolysis study of Phlomis bovei biomass by thermogravimetric experiments in order to determine the thermal degradation behavior and kinetic parameters. The weight losses were found to occur in three stages. In the DTG thermograms, an increase of the heating rate tended to delay thermal degradation processes towards higher temperatures. The average values of activation energy and pre-exponential factor calculated from Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Kissinger methods are 134.83, 134.06, 223.31kJ/mol and 4.1610(13), 1.1810(10), 2.8110(11)/s, respectively. The three-pseudo-component method shows that the activation energy increases with increasing the heating rate for hemicellulose and cellulose while the activation energy of the lignin decreased with an increase of the heating rate. Predicted results and experimental data exhibit similar tendencies and the three pseudo-components model with n different from unity 1 is recommended as the most suitable for prediction of kinetic behavior of Phlomis bovei de Noé. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.

  17. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  18. Determination Of Enzyme Kinetic Parameters on Sago Starch Hydrolysis By Linearized Graphical Methods

    International Nuclear Information System (INIS)

    Lai, L.W.; Teo, C.L.; Suzana Wahidin; Mohamad Suffian Mohamad Annuar

    2014-01-01

    Amyloglucosidase (E.C. 3.2.1.3) from Aspergillus niger was used to hydrolyze the sago (Metro xylon sagu) starch into reducing sugars. The experiment was conducted at constant temperature, 55 degree Celsius; pH, 4.5 and enzyme amount, 0.2 U/ ml, respectively. In this investigation, the substrate concentration was varied ranging from 1.0 - 7.0 g/ L. The obtained data were then fixed into linearized plots namely Lineweaver-Burk and Langmuir models to calculate enzyme kinetic parameters, K m and V max . Both of the K m and V max (mM, mol/min) values from each plot were: Lineweaver-Burk (26.53, 3.31) and Langmuir (13.52, 2.35). Among the linearized models, K m and V max values acquired from Langmuir plot was chosen. (author)

  19. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.

    Science.gov (United States)

    Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan

    2018-01-01

    The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Non-isothermal degradation and evaluation of kinetic parameters of some Schiff base metal complexes

    International Nuclear Information System (INIS)

    Mishra, A.P.; Soni, Monika

    2008-01-01

    Thermal decomposition of VO (II)-methyl isobutyl ketone-nicotinamide, VO (II)-2-furfurylidine-3,4-dichloroaniline, Co(II)-4-dimethyl amino benzylidine-3-chloro-4-fluoroaniline, VO(II)-2-pyridine carboxylidine-4-aminobenzoic acid complexes have been carried out by thermogravimetric method. The TG curves of complexes were recorded at a uniform rate of 20 deg C/min in nitrogen. The thermogram of the three VO(II) complexes exhibit single stage decomposition whereas the Co(II) complex shows a double stage decomposition. Various kinetic parameters i. e., energy of activation (E), entropy (AS) and frequency factor (Z) have been evaluated by using Coats-Redfern and Piloyan-Novikova equations and their comparable values are reported. The order of thermal stability of first decomposition stage is as: 4=2>1>3. (author)

  1. Evaluation of the kinetic parameters of CaF2:Tm (TLD-300) thermoluminescence dosemeters

    International Nuclear Information System (INIS)

    Azorin, Juan; Gutierrez, Alicia; Furetta, Claudio

    1989-01-01

    The kinetic parameters of the first, third and fifth peaks of CaF 2 :Tm (TLD-300) dosemeters were determined experimentally using methods based on initial rise, peak shape, different heating rates, isothermal decay and numerical fitting method and a comparison was made between the results obtained. The average activation energy values determined by the methods used here were 0.72, 1.16 and 1.77 eV, with mean values for the frequency factor of 2.58 x 10 8 , 2.89 x 10 13 and 6.16 x 10 16 s -1 for the first, third and fifth peaks respectively. The values of activation energy obtained for each peak using the different methods covered a spread of about 4%. However, the spread for each of the frequency factors was very high. (author)

  2. A critical look at the kinetic parameter values used in simulating the thermoluminescence glow-curve

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, A.M., E-mail: dr_amrsadek@hotmail.com [Ionizing Radiation Metrology Department, National Institute for Standards, El-Haram, Giza (Egypt); Kitis, G. [Nuclear Physics and Elementary Particles Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia (Greece)

    2017-03-15

    Objections against utilizing the peak fitting method in computing the kinetics parameters of thermoluminescence (TL) glow-peaks were discussed previously in the literature. These objections came through testing the accuracy of the peak fitting by applying on simulated peaks. The results showed that in some cases the simulated peaks may have unusual geometrical properties and do not reflect the real properties of TL peaks. Thereby, estimating the accuracy of the peak fitting by applying on such peaks would be misleading. Two main reasons may lead to unrealistic simulated peaks; the improper selection of the simulation inputs, and performing the TL simulation process via the heating stage only. It has been proved that considering the irradiation and the relaxation stages in the simulation process is crucial. However, there are other cases in which the analytical methods were not able to reveal the real values of the simulated peaks. These cases were successfully resolved using analytical expressions derived from the one trap-one recombination (OTOR) level model and the non-interactive multiple trap system (NMTS) model. A general conclusion can be drawn that the accuracy of the peak fitting method is critically dependent on the TL analytical expressions utilized in this method. The failure of this method in estimating the TL kinetic parameters should be attributed to the TL model equation utilized in fitting process. - Highlights: • Objections against using the TL peak fitting method are discussed. • Improper selection of simulation inputs may lead to non realistic TL peaks. • Considering the irradiation and the relaxation stages in simulation is crucial. • TL expressions could not describe TL peaks with unrealistic geometrical properties. • The accuracy of the peak fitting method depends on the model used in the fitting.

  3. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    Science.gov (United States)

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  4. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    Directory of Open Access Journals (Sweden)

    İsmail Tosun

    2012-03-01

    Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  5. The determination of kinetic parameters of LiF : Mg,Ti from thermal decaying curves of optical absorption bands

    CERN Document Server

    Yazici, A N

    2003-01-01

    In this paper, the thermal bleaching curves (TBCs) of specific optical absorption bands of LiF : Mg,Ti were measured as a function of temperature. The TBCs obtained were analysed to extract the kinetic parameters (the thermal activation energy (E) and the frequency factor (s)) of some TL glow peaks of LiF : Mg,Ti on the basis of the developed first-order kinetic model over a specified temperature region.

  6. Effect of lattice-level adjoint-weighting on the kinetics parameters of CANDU reactors

    International Nuclear Information System (INIS)

    Nichita, Eleodor

    2009-01-01

    Space-time kinetics calculations for CANDU reactors are routinely performed using the Improved Quasistatic (IQS) method. The IQS method calculates kinetics parameters such as the effective delayed-neutron fraction and generation time using adjoint weighting. In the current implementation of IQS, the direct flux, as well as the adjoint, is calculated using a two-group cell-homogenized reactor model which is inadequate for capturing the effect of the softer energy spectrum of the delayed neutrons. Additionally, there may also be fine spatial effects that are lost because the intra-cell adjoint shape is ignored. The purpose of this work is to compare the kinetics parameters calculated using the two-group cell-homogenized model with those calculated using lattice-level fine-group heterogeneous adjoint weighting and to assess whether the differences are large enough to justify further work on incorporating lattice-level adjoint weighting into the IQS method. A second goal is to evaluate whether the use of a fine-group cell-homogenized lattice-level adjoint, such as is the current practice for Light Water Reactors (LWRs), is sufficient to capture the lattice effects in question. It is found that, for CANDU lattices, the generation time is almost unaffected by the type of adjoint used to calculate it, but that the effective delayed-neutron fraction is affected by the type of adjoint used. The effective delayed-neutron fraction calculated using the two-group cell-homogenized adjoint is 5.2% higher than the 'best' effective delayed-neutron fraction value obtained using the detailed lattice-level fine-group heterogeneous adjoint. The effective delayed-neutron fraction calculated using the fine-group cell-homogenized adjoint is only 1.7% higher than the 'best' effective delayed-neutron fraction value but is still not equal to it. This situation is different from that encountered in LWRs where weighting by a fine-group cell-homogenized adjoint is sufficient to calculate the

  7. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection

    International Nuclear Information System (INIS)

    Duong, Hong Dinh; Rhee, Jong Il

    2008-01-01

    In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10 mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K m =2.0745 mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K m =0.549 mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K m =0.1698 mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications

  8. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection.

    Science.gov (United States)

    Duong, Hong Dinh; Rhee, Jong Il

    2008-09-19

    In this work, urea detection techniques based on the pH sensitivity of CdSe/ZnS QDs were developed using three types of sol-gel membranes: a QD-entrapped membrane, urease-immobilized membrane and double layer consisting of a QD-entrapped membrane and urease-immobilized membrane. The surface morphology of the sol-gel membranes deposited on the wells in a 24-well microtiter plate was investigated. The linear detection range of urea was in the range of 0-10mM with the three types of sol-gel membranes. The urea detection technique based on the double layer consisting of the QD-entrapped membrane and urease-immobilized membrane resulted in the highest sensitivity to urea due to the Michaelis-Menten kinetic parameters. That is, the Michaelis-Menten constant (K(m)=2.0745mM) of the free urease in the QD-entrapped membrane was about 4-fold higher than that (K(m)=0.549mM) of the immobilized urease in the urease-immobilized membrane and about 12-fold higher than that (K(m)=0.1698mM) of the immobilized urease in the double layer. The good stability of the three sol-gel membranes for urea sensing over 2 months showed that the use of sol-gel membranes immobilized with QDs or an enzyme is suitable for biomedical and environmental applications.

  9. Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements

    Directory of Open Access Journals (Sweden)

    S. Kremser

    2011-06-01

    Full Text Available Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E. During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl, profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the

  10. A study of calculation methodology and experimental measurements of the kinetic parameters for source driven subcritical systems

    International Nuclear Information System (INIS)

    Lee, Seung Min

    2009-01-01

    This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)

  11. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure

    DEFF Research Database (Denmark)

    Gaster, M; Schrøder, H D; Handberg, A

    2001-01-01

    results show that chronic exposure of human myotubes to high insulin with or without high glucose did not affect the basal kinetic parameters but abolished the reactivity of GS to acute insulin stimulation. We suggest that insulin induced insulin resistance of GS is caused by a failure of acute insulin......There is no consensus regarding the results from in vivo and in vitro studies on the impact of chronic high insulin and/or high glucose exposure on acute insulin stimulation of glycogen synthase (GS) kinetic parameters in human skeletal muscle. The aim of this study was to evaluate the kinetic...... parameters of glycogen synthase activity in human myotube cultures at conditions of chronic high insulin combined or not with high glucose exposure, before and after a subsequent acute insulin stimulation. Acute insulin stimulation significantly increased the fractional activity (FV(0.1)) of GS, increased...

  12. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.

    Science.gov (United States)

    Mehta, S K; Singh, Alpana; Gaur, J P

    2002-03-01

    Adsorption and uptake of Cu2+ by Chlorella vulgaris were distinguished by extracting the surface-bound Cu2+ with EDTA. The uptake of Cu2+ followed Michaelis Menten kinetics. The maximum rate of Cu2+ uptake (0.362fmolcell(-1) h(-1)) was obtained at pH 6.0. The rate of Cu2+ uptake was greater for cultures in the exponential phase of growth, and increased with a rise in temperature from 6 to 25 degrees C, thus pointing towards an active mechanism. The maximum number of Cu2+ binding sites was 3.245 fmol cell(-1) at pH 4.5. Adsorption of Cu2+ was strongly pH-dependent thereby indicating that the number and nature of metal binding sites on the cell surface change with changing chemistry of the solution. Unlike uptake, the adsorption remained unaffected by small changes in temperature. Older cultures displayed a higher Cu2+ adsorption capacity than the exponentially growing ones thus suggesting generation of new and/or additional Cu2+ binding sites on older cells of C. vulgaris. By pH titration, the cation-exchange capacity of Chlorella, measured in terms of H+/ Na+ exchange, was about 17 fmol cell(-1) at pH 10.5. Negligible cation exchange capacity at and below pH 5.0 indicated that ion exchange was not the sole mechanism of Cu2+ adsorption by Chlorella. The uptake and adsorption of Cu2+ were inhibited by 100 microM of various cations including other heavy metal ions. The general concept that cations competitively inhibit accumulation of metals in living organisms does not hold for C. vulgaris. Non-competitive, uncompetitive and mixed inhibition of Cu2+ uptake and adsorption by various cations were more common than competitive inhibition.

  14. Moisture removal of paddy by agricultural residues: basic physical parameters and drying kinetics modeling

    Directory of Open Access Journals (Sweden)

    Saniso, E.

    2007-05-01

    Full Text Available The objectives of this research were to study basic physical parameters of three agricultural residues that could be used for prediction of paddy drying kinetics using desiccants, to investigate a suitable methodfor moisture reduction of fresh paddy using 3 absorbents, and to modify the drying model of Inoue et al. for determining the evolution of moisture transfer during the drying period. Rice husk, sago palm rachis andcoconut husk were used as moisture desiccants in these experiments. From the results, it was concluded that the apparent density of all adsorbents was a linear function of moisture content whilst an equilibriummoisture content equation following Hendersonís model gave the best fit to the experimental results. From studying the relationship between moisture ratio and drying time under the condition of drying temperaturesof 30, 50 and 70oC, air flow rate of 1.6 m/s and initial moisture content of absorbents of 15, 20 and 27% dry-basis, it was shown that the moisture ratio decreased when drying time increased. In addition, thethin-layer desiccant drying equation following of the Page model can appropriately explain the evolution of moisture content of paddy over the drying time. The diffusion coefficient of all absorbents, which was in therange of 1x10-8 to 6x10-8 m2/h, was relatively dependent on drying temperature and inversely related to drying time. The diffusivity of coconut husk had the highest value compared to the other absorbents.The simulating modified mathematical model to determine drying kinetics of paddy using absorption technique and the simulated results had good relation to the experimental results for all adsorbents.

  15. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    Science.gov (United States)

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  16. Computer controlled automated assay for comprehensive studies of enzyme kinetic parameters.

    Directory of Open Access Journals (Sweden)

    Felix Bonowski

    Full Text Available Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of realistic models of biological systems necessitates quantitative information on the response to changes of external conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most research groups. We implemented a computer-aided experimenting framework ("robot lab assistant" that allows us to parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly developed R-packages translates the instructions into machine commands, executes them, collects the data and processes it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate, allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK. A diprotic model of enzyme kinetics was used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-predictions and experimental observations at low pH suggest additional protonation

  17. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  18. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  19. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP

    Directory of Open Access Journals (Sweden)

    Claudio Milton Montenegro Campos

    2014-10-01

    Full Text Available This study evaluated the treatment of wastewater from coffee wet processing (WCWP in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET, a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB, a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters measured during the anaerobic biodegradation of the WCWP, with a minimal concentration of phenolic compounds of 50 mg L - ¹, were: Y = 0.37 mgTVS (mgCODremoved -1 , Kd = 0.0075 d-1 , Ks = 1.504mg L -1 , μmax = 0.2 d -1 . The profile of sludge in the reactor showed total solids (TS values from 22,296 to 55,895 mg L -1 and TVS 11,853 to 41,509 mg L -1 , demonstrating a gradual increase of biomass in the reactor during the treatment, even in the presence of phenolic compounds in the concentration already mentioned.

  20. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    Science.gov (United States)

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH 4 oxidation potential and biological characteristics with CH 4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH 4 oxidation reached 32.40 mol d -1 m -2 by providing sufficient O 2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH 4 and O 2 . The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kg soil-DW -1 ·s -1 ) increased with CH 4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10 -5 to 9.0 × 10 -3 nmol mL -1 h -1 ) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH 4 concentration. These findings provide information for assessing CH 4 oxidation potential and changing of biological characteristics in landfill cover soil.

  1. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Chapelle, A. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA, DAM, F-21120 Is sur Tille (France)

    2012-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  3. Adsorption kinetic parameters of Fe3+ and Ni2+ ions by gyrolite

    Directory of Open Access Journals (Sweden)

    Kestutis Baltakys

    2015-03-01

    Full Text Available In this work the adsorption kinetic parameters for Fe3+ and Ni2+ ions by gyrolite are presented. Additionally, the adsoption mechanism was described by using pseudo first order and pseudo second order  equations. It was determined that the adsorption capacity of gyrolite and intrusion of heavy metals ions in its structure depends on reaction time and the pH value of adsorptive. It was observed that the incorporation of Fe3+ ions occurs more intensive than Ni2+ ions. It was found that in the acidic solution the intrusion of Fe3+ ions into gyrolite structure proceeds by two types of chemical reaction mechanisms: substitution and addition. Meanwhile, nickel ions were participated only in substitution reaction: gyrolite-Ca0 + Mex+ ↔ gyrolite-Me0 + Ca2+. It was observed that the pseudo second order model fit well for iron and nickel ions adsorption mechanism. It was estimated that the adsorption reactions are not reversible process and the crystal structure of gyrolite is stable. Moreover, synthetic adsorbent and the products of sorption were characterized by XRD, STA and FT-IR methods.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5735

  4. Kinetic parameters of protein metabolism in rats during protein-free feeding

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.

    1987-01-01

    16 male rats of 100 g live weight were given 50 mg of a mixture containing 15 N-labelled amino acids as a single dose within a protein-free feeding period. Following this the 15 N excretion in feces and urine as well as the development of the 15 N excess in different organs and tissues were estimated over 3 days by slaughtering the animals within given 7 time intervals. Using a 3 pool model and the computer program for the interpretation of 15 N tracer experiments by Toewe et al. (1984), kinetic parameters such as the rate of protein synthesis, protein breakdown and the rate of reutilization were calculated. Despite a negative N balance (- 41.8 mg N/d) under protein-free conditions the protein metabolism of the rat shows high dynamics characterized by a high flux rate (225 mg N/d) and a high rate of body protein synthesis (181 mg/d). The reutilization was 85 %. Depending on time the 15 N excess in the tested organs and tissues showed significant differences and seems to demonstrate that under these conditions protein synthesis mainly takes place in the most important organs (e.g. intestinal tract, liver). Under protein-free feeding conditions protein synthesis and protein breakdown of the whole body seems to be slightly increased in comparison to N balanced feeding conditions. (author)

  5. Simulating kinetic parameters in transporter mediated permeability across Caco-2 cells. A case study on estrange-3-sulphate

    DEFF Research Database (Denmark)

    Rolsted, Kamilla; Rapin, Nicolas; Steffansen, Bente

    2011-01-01

    Substances that compete for the same saturable intestinal transporters may when dosed together lead to altered permeability and hence influence bioavailability. The aim was to simulate kinetic parameters, i.e. K(m) and J(max), for transporter mediated E(1)S permeability across Caco-2 cells...

  6. AIR POLLUTION FROM ANIMAL AND MUNICIPAL WASTEWATER: ASSESSMENT OF PRODUCTION AND RELEASE OF NOXIOUS GASES

    DEFF Research Database (Denmark)

    Dai, Xiaorong

    from animal manure (mixture of urine and feces) by hydrolysis of urinary urea catalyzed by microbial urease present in feces. To better understand the enzymatic process of ammonia formation in manure, experiments based on Michaelis-Menten kinetics were conducted to obtain accurate estimates...... of the kinetic parameters of urease activity of feces and manure from pig and cattle, and to investigate the effects of pH on animal fecal urease by individual ammonium generation rate determination at five pH levels. Investigating the gas production and release mechanisms is important not only for estimating...... characteristics of different types of wastes (e.g., the total nitrogen, total ammoniacal nitrogen, dry matter, and pH) had great influence on the releases of NH3, CO2, H2S, and SO2. The investigation of kinetic parameter showed that the maximum urease activity for pig feces is at around pH 7, while...

  7. Analysis of mathematical modelling on potentiometric biosensors.

    Science.gov (United States)

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  8. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  9. Analysis of blind identification methods for estimation of kinetic parameters in dynamic medical imaging

    Science.gov (United States)

    Riabkov, Dmitri

    Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of

  10. Effect of resonance decays on extracted kinetic freeze-out parameters in heavy ion collisions at RHIC

    International Nuclear Information System (INIS)

    Molnar, Levente; Barannikova, Olga; Wang, Fuqiang

    2006-01-01

    Statistical model fit to particle ratios in Au+Au collisions at RHIC suggests chemical freeze-out near phase transition boundary. Model interpretations of evolution from chemical to kinetic freeze-out vary. Results of the blast-wave fit to the STAR experimental data, where resonance contributions are not accounted for, suggest significant cooling and expansion between the freezeouts for central Au+Au collisions. Other models including resonances, argue for instant single freezeout with temperature close to the phase transition temperature. By combined thermal and blast-wave model parametrization including resonances, we systematically investigate the effect of resonance decays on the extracted kinetic freeze-out parameters. (authors)

  11. Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization.

    Science.gov (United States)

    Gahlawat, Geeta; Srivastava, Ashok K

    2012-11-01

    Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24 g/L, respectively in bioreactor with an overall PHB production rate of 0.75 g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29 g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production.

  12. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    Science.gov (United States)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... behaves as an effective catalyst towards oxidation of 3,5-ditertiarybutyl catechol (3,5-DTBC) in acetonitrile to its corresponding quinone derivative in air. The reaction follows first-order reaction kinetics with rate constant 4.28 × 10−5 min-1. The reaction follows Michaelis-Menten enzymatic kinetics with a turnover number of ...

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants.

  15. Picolinic acid promoted oxidative decarboxylation of ...

    African Journals Online (AJOL)

    The kinetics and mechanism of picolinic acid promoted reaction of phenylsulfinylacetic acid (PSAA) with Cr(VI) was carried out in aqueous acetonitrile medium under pseudo first order conditions. The reaction follows Michaelis-Menten type of kinetics with respect to PSAA. The catalytic activity by picolinic acid can be ...

  16. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  17. An Assessment of Factors Affecting Reactive Transport of Biodegradable BTEX in an Unconfined Aquifer System, Tehran Oil Refinery, Iran

    Directory of Open Access Journals (Sweden)

    A. Agah

    2012-12-01

    Full Text Available Risk-based assessment methods are commonly used at the contaminated sites by hydrocarbon pollutants. This paper presents the results of a two-dimensional finite volume model of reactive transport of biodegradable BTEX which have been developed for the saturated zone of an unconfined aquifer in the Pump station area of Tehran oil refinery, Iran. The model governing equations were numerically solved by modification of a general commercial software called PHOENICS. To reduce costs in general, many input parameters of a model are often approximated based on the used values in the contaminated sites with same conditions. It was not fully recognised the effect of errors in these inputs on modelling outputs. Thus, a sensitivity analysis was carried out to determine the influence of parameters variability on the results of model. For this analysis, the sensitivity of the model to changes in the dispersivity, distribution coefficient, parameters of Monod, Michaelis-Menten, first- and zero- order kinetics modes on the BTEX contaminant plume were examined by performing several simulations. It was found that the model is sensitive to changes in dispersivity and parameters of Michaelis-Menten, first- and zero- order kinetics model. On the other hand, the predictions for plumes assuming Monod kinetics are similar, even if different values for parameterization are chosen. The reason for this insensibility is that degradation is not limited by microbial kinetics in the simulation, but by dispersive mixing. Quantifying the effect of changes in model input parameters on the modelling results is essential when it is desired to recognise which model parameters are more vital on the fate and transport of reactive pollutants. Furthermore, this process can provide an insight into understanding pollutant transportation mechanisms.

  18. Correlation analysis of reactivity in the oxidation of some organic diols by tripropylammonium fluorochromate in non-aqueous media

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2016-09-01

    Full Text Available The kinetics of oxidation of some organic diols by tripropylammonium fluorochromate (TriPAFC have been studied in dimethylsulfoxide (DMSO. The main product of oxidation is the corresponding hydroxy aldehydes. The reaction is first order with respect to TriPAFC and exhibited Michaelis-Menten type kinetics with respect to organic diols. The reaction is catalyzed by hydrogen ions. The hydrogen ion dependence has the form: kobs = a + b[H+]. Various thermodynamic parameters for the oxidation have been reported and discussed along with the validity of isokinetic relationship. Oxidation of diols was studied in 18 different organic solvents. The rate data are showing satisfactory correlation with Kamlet–Taft solvotochromic parameters (α, β and π∗. A suitable mechanism of oxidation has been proposed.

  19. Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine.

    Science.gov (United States)

    Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf

    2006-10-01

    Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.

  20. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen.

    Science.gov (United States)

    Gliozzi, T M; Turri, F; Manes, S; Cassinelli, C; Pizzi, F

    2017-11-01

    Within recent years, there has been growing interest in the prediction of bull fertility through in vitro assessment of semen quality. A model for fertility prediction based on early evaluation of semen quality parameters, to exclude sires with potentially low fertility from breeding programs, would therefore be useful. The aim of the present study was to identify the most suitable parameters that would provide reliable prediction of fertility. Frozen semen from 18 Italian Holstein-Friesian proven bulls was analyzed using computer-assisted semen analysis (CASA) (motility and kinetic parameters) and flow cytometry (FCM) (viability, acrosomal integrity, mitochondrial function, lipid peroxidation, plasma membrane stability and DNA integrity). Bulls were divided into two groups (low and high fertility) based on the estimated relative conception rate (ERCR). Significant differences were found between fertility groups for total motility, active cells, straightness, linearity, viability and percentage of DNA fragmented sperm. Correlations were observed between ERCR and some kinetic parameters, and membrane instability and some DNA integrity indicators. In order to define a model with high relation between semen quality parameters and ERCR, backward stepwise multiple regression analysis was applied. Thus, we obtained a prediction model that explained almost half (R 2=0.47, P<0.05) of the variation in the conception rate and included nine variables: five kinetic parameters measured by CASA (total motility, active cells, beat cross frequency, curvilinear velocity and amplitude of lateral head displacement) and four parameters related to DNA integrity evaluated by FCM (degree of chromatin structure abnormality Alpha-T, extent of chromatin structure abnormality (Alpha-T standard deviation), percentage of DNA fragmented sperm and percentage of sperm with high green fluorescence representative of immature cells). A significant relationship (R 2=0.84, P<0.05) was observed between

  1. Comparison of safflower oil extraction kinetics under two characteristic moisture conditions: statistical analysis of non-linear model parameters

    Directory of Open Access Journals (Sweden)

    E. Baümler

    2014-06-01

    Full Text Available In this study the kinetics of oil extraction from partially dehulled safflower seeds under two moisture conditions (7 and 9% dry basis was investigated. The extraction assays were performed using a stirred batch system, thermostated at 50 ºC, using n-hexane as solvent. The data obtained were fitted to a modified diffusion model in order to represent the extraction kinetics. The model took into account a washing and a diffusive step. Fitting parameters were compared statistically for both moisture conditions. The oil yield increased with the extraction time in both cases, although the oil was released at different rates. A comparison of the parameters showed that both the portion extracted in the washing phase and the effective diffusion coefficient were moisture-dependent. The effective diffusivities were 2.81 10-12 and 8.06 10-13 m²s-1 for moisture contents of 7% and 9%, respectively.

  2. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis.

    Science.gov (United States)

    Chandrasekaran, Arunkumar; Ramachandran, Sethumadhavan; Subbiah, Senthilmurugan

    2017-06-01

    This paper deals with the pyrolysis of Prosopis juliflora fuelwood using thermogravimetric analysis to determine the kinetic parameters at six different heating rates of 2, 5, 10, 15, 20 and 25°C/min. The activation energy of pyrolysis was calculated using different methods, namely Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall and Friedman model and corresponding calculated activation energy were found to be 164.6, 204, 203.2, and 219.3kJ/mol, respectively for each method. The three-pseudo component model was applied to calculate the following three kinetic parameters: activation energy, pre-exponential factor and order of reaction. The experimental results were validated with model prediction for all the six heating rates. The three-pseudo component model is able to predict experimental results much accurately while considering variable order reaction model (n≠1). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pile noise experiment in MINERVE reactor to estimate kinetic parameters using various data processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, Benoit; Gruel, Adrien; Pepino, Alexandra; Di Salvo, Jacques; Izarra, Gregoire de; Jammes, Christian; Destouches, Christophe; Blaise, Patrick [CEA, DEN, DER/SPEx, Cadarache, F-13108 St Paul Lez Durance (France)

    2015-07-01

    MINERVE is a two-zone pool type zero power reactor operated by CEA (Cadarache, France). Kinetic parameters of the core (prompt neutron decay constant, delayed neutron fraction, generation time) have been recently measured using various pile noise experimental techniques, namely Feynman-α, Rossi-α and Cohn-α. Results are discussed and compared to each other's. The measurement campaign has been conducted in the framework of a tri-partite collaboration between CEA, SCK.CEN and PSI. Results presented in this paper were obtained thanks to a time-stamping acquisition system developed by CEA. PSI performed simultaneous measurements which are presented in a companion paper. Signals come from two high efficiency fission chambers located in the graphite reflector next to the core driver zone. Experiments were conducted at critical state with a reactor power of 0.2 W. The core integral fission rate is obtained from a calibrated miniature fission chamber located at the center of the core. Other results obtained in two sub-critical configurations will be presented elsewhere. Best estimate delayed neutron fraction comes from the Cohn-α method: 747 ± 15 pcm (1σ). In this case, the prompt decay constant is 79 ± 0.5 s{sup -1} and the generation time is 94.5 ± 0.7 μs. Other methods give consistent results within the confidence intervals. Experimental results are compared to calculated values obtained from a full 3D core modeling with the CEA-developed Monte Carlo code TRIPOLI4.9 associated with its continuous energy JEFF3.1.1-based library. A very good agreement is observed for the calculated delayed neutron fraction (748.7 ± 0.4 pcm at 1σ), that is a difference of -0.3% with the experiment. On the contrary, a 10% discrepancy is observed for the calculated generation time (104.4 ± 0.1 μs at 1σ). (authors)

  4. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  5. Determination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium.

    Science.gov (United States)

    Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash

    2012-09-01

    1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.

  6. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling

    Science.gov (United States)

    2004-03-01

    Eggleston C. M. (2002) Dissolution kinetics of magnesite in acidic solutions: A hydrothermal atomic force microscopy study assessing step kinetics and...glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at...Stillings L. L., Drever J. I., Brantley S. L., Sun Y., and Oxburgh R. (1996) Rates of feldspar dissolution at pH 3-7 with 0-8mM oxalic acid . Chem

  7. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled `Nanozyme

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courntey J.; Fiedler, Dorothea; Bergman, Robert G.; Raymond, Kenneth N.

    2008-02-27

    The tetrahedral [Ga{sub 4}L{sub 6}]{sup 12-} assembly (L = N,N-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) encapsulates a variety of cations, including propargyl enammonium cations capable of undergoing the aza Cope rearrangement. For propargyl enammonium substrates that are encapsulated in the [Ga{sub 4}L{sub 6}]{sup 12-} assembly, rate accelerations of up to 184 are observed when compared to the background reaction. After rearrangement, the product iminium ion is released into solution and hydrolyzed allowing for catalytic turnover. The activation parameters for the catalyzed and uncatalyzed reaction were determined, revealing that a lowered entropy of activation is responsible for the observed rate enhancements. The catalyzed reaction exhibits saturation kinetics; the rate data obey the Michaelis-Menten model of enzyme kinetics, and competitive inhibition using a non-reactive guest has been demonstrated.

  8. Modelling and simulation of a transketolase mediated reaction: Sensitivity analysis of kinetic parameters

    DEFF Research Database (Denmark)

    Sayar, N.A.; Chen, B.H.; Lye, G.J.

    2009-01-01

    In this paper we have used a proposed mathematical model, describing the carbon-carbon bond format ion reaction between beta-hydroxypyruvate and glycolaldehyde to synthesise L-erythrulose, catalysed by the enzyme transketolase, for the analysis of the sensitivity of the process to its kinetic...

  9. Kinetic Monte Carlo study of sensitiviy of OLED efficiency and lifetime to materials parameters

    NARCIS (Netherlands)

    Coehoorn, R.; Eersel, van H.; Bobbert, P.A.; Janssen, R.A.J.

    2015-01-01

    The performance of organic light-emitting diodes (OLEDs) is determined by a complex interplay of the optoelectronic processes in the active layer stack. In order to enable simulation-assisted layer stack development, a three-dimensional kinetic Monte Carlo OLED simulation method which includes the

  10. Determination of Kinetic Parameters of Coal Pyrolysis to Simulate the Process of Underground Coal Gasification (UCG

    Directory of Open Access Journals (Sweden)

    Beata Urych

    2014-01-01

    Originality/value: The devolatilization of a homogenous lump of coal is a complex issue. Currently, the CFD technique (Computational Fluid Dynamics is commonly used for the multi-dimensional and multiphase phenomena modelling. The mathematical models, describing the kinetics of the decomposition of coal, proposed in the article can, therefore, be an integral part of models based on numerical fluid mechanics.

  11. Using the computerized glow curve deconvolution method and the R package tgcd to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Nguyen Duy, E-mail: ndsang@ctu.edu.vn [College of Rural Development, Can Tho University, Can Tho 270000 (Viet Nam); Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh 700000 (Viet Nam); Van Hung, Nguyen [Nuclear Research Institute, VAEI, Dalat 670000 (Viet Nam); Van Hung, Tran; Hien, Nguyen Quoc [Research and Development Center for Radiation Technology, VAEI, Ho Chi Minh 700000 (Viet Nam)

    2017-03-01

    Highlights: • TL analysis aims to calculate the kinetic parameters of the chilli powder. • There is difference of the kinetic parameters caused by the difference of radiation doses. • There is difference of the kinetic parameters due to applying GOK model or OTOR one. • The software R is apllied for the first time in TL glow curve analysis of the chilli powder. - Abstract: The kinetic parameters of thermoluminescence (TL) glow peaks of chilli powder irradiated by gamma rays with the different doses of 0, 4 and 8 kGy have been calculated and estimate by computerized glow curve deconvolution (CGCD) method and the R package tgcd by using the TL glow curve data. The kinetic parameters of TL glow peaks (i.e. activation energies (E), order of kinetics (b), trapping and recombination probability coefficients (R) and frequency factors (s)) are fitted by modeled general-orders of kinetics (GOK) and one trap-one recombination (OTOR). The kinetic parameters of the chilli powder are different toward the difference of the sample time-storage, radiation doses, GOK model and OTOR one. The samples spending the shorter period of storage time have the smaller the kinetic parameters values than the samples spending the longer period of storage. The results obtained as comparing the kinetic parameters values of the three samples show that the value of non-irradiated samples are lowest whereas the 4 kGy irradiated-samples’ value are greater than the 8 kGy irradiated-samples’ one time.

  12. Kinetics of alcoholic fermentation during the culturing of bakers' yeast

    Energy Technology Data Exchange (ETDEWEB)

    Franz, B

    1961-01-01

    A synthesis was made of the effects of various factors on the rate of fermentation by Saccharomyces cerevisiae. The rate obeyed the Michaelis-Menten equation, was independent of the concentration of yeast, was maximal at 20/sup 0/ (0.61 ml ethanol/g dry yeast/h), was not significantly affected between pH 6.5 and 3.0 but declined at 3.0, was inhibited by ethanol at a rate proportional to the concentration squared (at ethanol = 12 volume %, the fermentation rate was practically zero), and was enhanced by the addition of phosphorus when a P-poor yeast was employed.

  13. Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Knudsen, Michael; Wiuf, Carsten Henrik

    2012-01-01

    We study signaling cascades with an arbitrary number of layers of one-site phosphorylation cycles. Such cascades are abundant in nature and integrated parts of many pathways. Based on the Michaelis-Menten model of enzyme kinetics and the law of mass-action, we derive explicit analytic expressions...

  14. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  15. Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin : In silico predictions and experimental validation

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Vasilev, Nikolay P.; Schneidman-Duhovny, Dina; Muntendarn, Remco; Woerdenbag, Herman J.; Quax, Wim J.; Wolfson, Haim J.; Ionkova, Iliana; Kayser, Oliver

    Deoxypodophyllotoxin is stereoselectively converted into epipodophyllotoxin by recombinant human cytochrome P450 3A4 (CY-P3A4). Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for hydroxylation of deoxypodophyllotoxin by CYP3A4 at C7 position were 1.93 mu M and 1.48

  16. Wang and Li Afr J Tradit Complement Altern Med. (2016) 13(1):99 ...

    African Journals Online (AJOL)

    PROF ADEWUNMI

    It possesses antiseptic, anti-inflammatory, analgesic, anti-cancer and antioxidant ... All experiments on animals were conducted in accordance with and after approval by the ... With the content of gallic acid control as horizontal coordinate and the ... The kinetic constants were calculated based on Michaelis-Menten equation ...

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The oxidation of eleven amino acids by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid results in the formation of the corresponding carbonyl compounds and ammonia. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with some of the amino acids while others ...

  18. Interactions of NH4+ and L-glutamate with NO3- transport processes of non-mycorrhizal Fagus sylvatica roots

    NARCIS (Netherlands)

    Kreuzwieser, J; Herschbach, C; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    The processes of NO3- uptake and transport and the effects of NH4+ or L-glutamate on these processes were investigated with excised non-mycorrhizal beech (Fagus sylvatica L,) roots, NO3- net uptake followed uniphasic Michaelis-Menten kinetics in a concentration range of 10 mu M to 1 mM with an

  19. Purification and characterization of a chlorite dismutase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Mehboob, F.; Wolterink, A.F.W.M.; Vermeulen, A.J.; Jiang, B.; Hagedoorn, P.L.; Stams, A.J.M.; Kengen, S.W.M.

    2009-01-01

    The chlorite dismutase (Cld) of Pseudomonas chloritidismutans was purified from the periplasmic fraction in one step by hydroxyapatite chromatography. The enzyme has a molecular mass of 110 kDa and consists of four 31-kDa subunits. Enzyme catalysis followed Michaelis-Menten kinetics, with Vmax and

  20. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  1. Nitrate transport processes in Fagus-Laccaria-mycorrhizae

    NARCIS (Netherlands)

    Kreuzwieser, J; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    2000-01-01

    The contribution of influx and efflux of NO3- on NO3- net uptake has been studied in excised mycorrhizae of 18-20 week old beech (Fagus sylvatica L.) trees. Net uptake rates of NO3- followed uniphasic Michaelis-Menten kinetics in the concentration range between 10 mu M and 1.0 mM external NO3-, with

  2. Cyclodextrin Aldehydes are Oxidase Mimics

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Bjerre, Jeannette; Bols, Mikael

    2009-01-01

    Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin aldeh...

  3. International Meeting on Cholinesterases (5th) Held in Madras, India on 24-28 September, 1994.

    Science.gov (United States)

    1994-09-01

    found that hydrolysis of thioesters deviated from simple Michaelis-Menten model. Kinetics was triphasic , displaying complexities of both BuChE and ACHE...of recombinant human acetylcholinesterase (rHuAChE) produced by human embryonic kidney cell line (293) in a fixed-bed reactor (1) was investigated at

  4. Time of erythema onset after application of methyl nicotinate ointments as response parameter: influence of penetration kinetics and enhancing agents.

    Science.gov (United States)

    Remane, Y; Leopold, C S

    2006-01-01

    The time of erythema onset may be used as a response parameter for quantification of the cutaneous erythema response induced by methyl nicotinate. The vehicles light mineral oil (LMO; test) and medium chain triglycerides (MCT; standard) were compared with regard to the pharmacodynamic response. Moreover, the influence of penetration enhancers on the time of erythema onset was investigated under zero order penetration kinetics. The enhancers dimethyl sulfoxide, diethylene glycol monoethyl ether and three different glycerides in different concentrations were added to MCT as a standard vehicle. All preparations were applied to the forearms of volunteers under infinite dose conditions at different thermodynamic drug activity levels (0.2-3.2% of the saturation level) and different drug concentrations (0.051-0.816%), respectively. Different penetration kinetics do not influence data of erythema onset, as these data are comparable to those obtained under finite dose conditions (first order penetration kinetics). With regard to the penetration enhancers, a significantly enhanced penetration of methyl nicotinate could be observed only for diethylene glycol monoethyl ether and dimethyl sulfoxide. However, no significant difference between light mineral oil and MCT could be found with regard to penetration enhancement. The time of erythema onset is an easy and efficient parameter for quantification of the pharmacodynamic response caused by nicotinates.

  5. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  6. Photocurrents in retinal rods of pigeons (Columba livia): kinetics and spectral sensitivity.

    Science.gov (United States)

    Palacios, A G; Goldsmith, T H

    1993-01-01

    1. Membrane photocurrents were recorded from outer segments of isolated retinal rods of pigeons (Columba livia), the first such measurements on the photoreceptors of a bird. The amplitude of the response to 20 ms flashes of narrow wavelength bands of light increases linearly with intensity at low photon fluxes and saturates at higher intensities. The maximum (saturating) photocurrent observed in forty-nine rod cells was 50 pA. Larger responses with less variability in the intensity for half-maximal responses were observed when the physiological saline contained 20 mM bicarbonate (in addition to Hepes buffer). 2. The dependence of peak amplitude on intensity is well fitted by an exponential function; it is usually less well fitted by the Michaelis-Menten (Naka-Rushton) equation. 3. In the presence of bicarbonate, the average sensitivity of pigeon rods to dim flashes was 0.56 pA photon-1 microns -2. The effective collecting area per photon was 1.8 microns 2. About 83 +/- 26 (mean +/- S.D.) photoisomerizations were required for a half-saturating response. 4. The response kinetics of rods to dim flashes can be reasonably well described by a series of four to five either Poisson or independent filters. The time to peak, measured from the mid-point of a 20 ms flash, was 319 +/- 83 ms (mean +/- S.D.). The integration time of the response was 851 +/- 86 ms (mean +/- S.D.) with bicarbonate present and 572 +/- 126 ms in the absence of bicarbonate. The responses of pigeon rods appear to be slower than those of mammals at the same temperature. The fraction of current suppressed by a single photoisomerization is smaller in pigeon than in mammalian rods by a factor of at least two. 5. The spectral sensitivity function was measured between 680 and 330 nm. The maximum at about 505 nm (range 497-508 nm) corresponds to the alpha-band of a vertebrate rhodopsin and agrees with previous behavioural measurements of scotopic sensitivity of pigeons as well as the absorption spectrum of

  7. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    Science.gov (United States)

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Inference from some pharmacokinetic and pharmacodynamic parameters of busulfan through the analysis of its induction kinetics of micronuclei polychromated erythrocytes

    International Nuclear Information System (INIS)

    Lopez I, M.R.; Vallarino K, T.; Morales R, P.

    2001-01-01

    The induction kinetics of micronuclei polychromated eritrocites (EPC-MN) which is produced by busulfan and compared with that produced by the ionizing radiation, allows to make inferences over the pharmacokinetics and pharmacodynamics of busulfan. Observing two induction mechanisms of MN, this one early at low doses and other later at high doses, this last is presented to a critical dose being very sheer and associated with an increase of the cytotoxicity. The data suggest the transformation or dependence between these two types of leisures, which to determine the narrow therapeutical margin of busulfan. The pharmacokinetic parameters determined in the early mechanisms kinetics indicate a latency period, a time of effective activity and of half life 5.7, 5.2 and 2.6 h respectively. (Author)

  9. Influence of external mass transfer limitation on apparent kinetic parameters of penicillin G acylase immobilized on nonporous ultrafine silica particles.

    Science.gov (United States)

    Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein

    2002-01-01

    Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.

  10. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    Science.gov (United States)

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  11. Kinetic parameters for plasma β-endorphin in lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Rodd, D.; Farrell, P.A.; Caston, A.L.; Green, M.H.

    1991-01-01

    To determine plasma clearance kinetics for β-endorphin (BE) by empirical compartmental analysis, a bolus of radioactive labeled 125I-BE was rapidly injected into a carotid artery catheter of unanesthetized lean (L) and obese (O) Zucker rats. The plasma disappearance of 125I was followed over a 3-h period. A 3-component exponential equation provided the best fit for plasma data. Plasma transit times were very short (10 s); however, plasma fractional catabolic rate was much slower. Plasma mean residence time was similar for both groups (50 min) as was recycle time (1.3 min). These data suggest that BE plasma disappearance kinetics are similar in L and O rats

  12. Kinetic parameters for plasma. beta. -endorphin in lean and obese Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodd, D.; Farrell, P.A.; Caston, A.L.; Green, M.H. (Department of Exercise and Sport Science, Pennsylvania State University, University Park (USA))

    1991-03-01

    To determine plasma clearance kinetics for {beta}-endorphin (BE) by empirical compartmental analysis, a bolus of radioactive labeled 125I-BE was rapidly injected into a carotid artery catheter of unanesthetized lean (L) and obese (O) Zucker rats. The plasma disappearance of 125I was followed over a 3-h period. A 3-component exponential equation provided the best fit for plasma data. Plasma transit times were very short (10 s); however, plasma fractional catabolic rate was much slower. Plasma mean residence time was similar for both groups (50 min) as was recycle time (1.3 min). These data suggest that BE plasma disappearance kinetics are similar in L and O rats.

  13. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis.

    Science.gov (United States)

    Kaur, Ravneet; Gera, Poonam; Jha, Mithilesh Kumar; Bhaskar, Thallada

    2018-02-01

    Castor plant is a fast-growing, perennial shrub from Euphorbiaceae family. More than 50% of the residue is generated from its stems and leaves. The main aim of this work is to study the pyrolytic characteristics, kinetics and thermodynamic properties of castor residue. The TGA experiments were carried out from room temperature to 900 °C under an inert atmosphere at different heating rates of 5, 10, 15, 20, 30 and 40 °C/min. The kinetic analysis was carried using different models namely Kissinger, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). The average E ɑ calculated by FWO and KAS methods were 167.10 and 165.86 kJ/mole respectively. Gibbs free energy varied from 150.62-154.33 to 150.59-154.65 kJ/mol for FWO and KAS respectively. The HHV of castor residue was 14.43 MJ/kg, considered as potential feedstock for bio-energy production. Kinetic and thermodynamic results will be useful input for the design of pyrolytic process using castor residue as feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Study on the Pyrolysis of Peanut Shells at Different Isothermal Conditions and Determination of the Kinetic Parameters

    Directory of Open Access Journals (Sweden)

    Şeyda Taşar

    2015-12-01

    Full Text Available The pyrolysis process, which is applied for the aim of producing energy and raw materials which are implemented for the chemical industry from biomass sources, is a thermal conversion process. Determination of the pyrolysis kinetic parameters are important In order to suitable equipment and process design. In this target, in the study the pyrolysis of peanut shells was conducted in a muffle furnace at static atmosphere with temperatures ranging from 300-700 °C. The effects of various parameters on the rate of thermal decomposition rate and the solid yield were determined. The parameters of interest were temperature 300-700 °C, particle size 4-50 mesh, pelletizing, and pelletizing pressure 1.103-5.103 kgf/cm2. Regression coefficients for the total decomposition step were obtained using the thermographs were obtained as a result of the pyrolysis of the peanut shells, and 20 different theoretical model equations that represented the degradation by the Coast-Redfern method. According to regression coefficients of the theoretical model equations, we determined the kinetic model that best represented the degradation. Using this model to represent the degradation, the activation energy (Ea and Arhenius frequency factor ln(A for the total reaction were calculated to be 38.245 kJ/mol and 8.124, respectively.

  15. A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis

    Science.gov (United States)

    Grisan, E.; Raffeiner, B.; Coran, A.; Rizzo, G.; Ciprian, L.; Stramare, R.

    2014-03-01

    Inflammatory rheumatic diseases are leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity and increased mortality. The gold-standard for diagnosing and differentiating arthritis is based on patient conditions and radiographic findings, as joint erosions or decalcification. However, early signs of arthritis are joint effusion, hypervascularization and synovial hypertrophy. In particular, vascularization has been shown to correlate with arthritis' destructive behavior, more than clinical assessment. Contrast Enhanced Ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. The evaluation of perfusion pattern rely on subjective semi-quantitative scales, that are able to capture the macroscopic degree of vascularization, but are unable to detect the subtler differences in kinetics perfusion parameters that might lead to a deeper understanding of disease progression and a better management of patients. Quantitative assessment is mostly performed by means of the Qontrast software package, that requires the user to define a region of interest, whose mean intensity curve is fitted with an exponential function. We show that using a more physiologically motivated perfusion curve, and by estimating the kinetics parameters separately pixel per pixel, the quantitative information gathered is able to differentiate more effectively different perfusion patterns. In particular, we will show that a pixel-based analysis is able to provide significant markers differentiating rheumatoid arthritis from simil-rheumatoid psoriatic arthritis, that have non-significant differences in clinical evaluation (DAS28), serological markers, or region-based parameters.

  16. Effect of Temperature and pH on Formulating the Kinetic Growth Parameters and Lactic Acid Production of Lactobacillus bulgaricus

    Directory of Open Access Journals (Sweden)

    Marzieh Aghababaie

    2014-09-01

    Results: Second order model for Xmax, μmax, P and K was significant but product formation parameters were almost constant. The optimum values of temperature and pH for attaining maximum biomass, maximum specific growth rate, and maximum acid production were obtained at 44 °C and 5.7, respectively. Conclusions: The attained empirical mathematical correlations of RSM alongside the kinetic equations could be used to determine growth conditions under predefined temperature and pH in the fermentation process. Keywords: Lactobacillus bulgaricus, Richards model, Response surface methodology, Lactic acid production, Luedeking-Piret model

  17. Evaluation of reaction mechanisms and the kinetic parameters for the transesterification of castor oil by liquid enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    of the transesterification of castor oil with methanol using the enzyme Eversa® Transform as catalyst were investigated. Reactions were carried out for 8 hours at 35 °C with: an alcohol-to-oil molar ratio equal to 6:1, a 5 wt% of liquid enzyme solution and addition of 5 wt% of water by weight of castor oil. From...... methanolysis rates of glycerides obtained, indicated that transesterification dominates over hydrolysis. The mechanism among the four models proposed that gave the best fit could be simplified, eliminating the kinetic parameters with negligible effects on the reaction rates. This model was able to fit...

  18. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols

    DEFF Research Database (Denmark)

    Tofts, P.S.; Brix, G; Buckley, D.L.

    1999-01-01

    We describe a standard set of quantity names and symbols related to the estimation of kinetic parameters from dynamic contrast-enhanced T(1)-weighted magnetic resonance imaging data, using diffusable agents such as gadopentetate dimeglumine (Gd-DTPA). These include a) the volume transfer constant K......-limited conditions K(trans) equals the blood plasma flow per unit volume of tissue; under permeability-limited conditions K(trans) equals the permeability surface area product per unit volume of tissue. We relate these quantities to previously published work from our groups; our future publications will refer...

  19. Kinetic parameters of grinding media in ball mills with various liner design and mill speed based on DEM modeling

    Science.gov (United States)

    Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.

    2018-03-01

    The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.

  20. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  1. Mathematical modeling of CA125 kinetics in recurrent ovarian cancer (ROC) patients treated with chemotherapy and predictive value of early modeled kinetic parameters in CALYPSO trial: A GCIG study

    DEFF Research Database (Denmark)

    You, Benoit; Colomban, Olivier; Heywood, Mark

    2011-01-01

    Background: Although CA125 kinetic profiles may be related with relapse risk in ovarian cancer patients treated with chemotherapy, no reliable kinetic parameters have been reported. Mathematical modeling may help describe CA125 decline dynamically and determine parameters predictive of relapse....... Methods: Data from CALYPSO phase III trial data comparing 2 carboplatin-based regimens in ROC patients were analyzed. Based on population kinetic approach (Monolix software), a semi-mechanistic model was used to fit serum log (CA125) concentration-time profiles with following parameters: tumor growth rate...... the first 50 treatment days were tested regarding progression free survival (PFS) against other reported prognostic factors using Cox-models: treatment arm; platinum-free interval (PFI), metastatic site number, largest tumor size, elevated WBC and measurable disease. Results: The CA125 kinetics from 898...

  2. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    Science.gov (United States)

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.

  3. Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    International Nuclear Information System (INIS)

    Petrovic, Z Lj; Suvakov, M; Nikitovic, Z; Dujko, S; Sasic, O; Jovanovic, J; Malovic, G; Stojanovic, V

    2007-01-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron-molecule cross section sets along with recent examples such as NO, CF 4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. (topical review)

  4. Derivation of cell population kinetic parameters from clinical statistical data (program RAD3)

    International Nuclear Information System (INIS)

    Cohen, L.

    1978-01-01

    Cellular lethality models generally require up to 6 parameters to simulate a clinical course of fractionated radiation therapy and to derive an estimate of the cellular surviving fraction for a given treatment scheme. These parameters are the mean cellular lethal dose, the extrapolation number, the ratio of sublethal to irreparable events, the regeneration rate, the repopulation limit (cell cycles), and a field-size or tumor-volume factor. A computer program (RAD3) was designed to derive best-fitting values for these parameters in relation to available clinical data based on the assumption that if a number of different fractionation schemes yield similar reactions, the cellular surviving fractions will be about equal in each instance. Parameters were derived for a variety of human tissues from which realistic iso-effect functions could be generated

  5. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay

    International Nuclear Information System (INIS)

    Greaves, Alana K.; Su, Guanyong; Letcher, Robert J.

    2016-01-01

    The in vitro biotransformation and kinetics of six organophosphate triester (OPE) flame retardants were investigated in herring gulls (Larus argentatus) from the Great Lakes using a hepatic microsomal metabolism assay. Administration of each individual OPE (tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), triethyl phosphate (TEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP)) to the in vitro assay (concentration range 0.01 to 10 μM) resulted in rapid depletion with the exception of TEP. Following the Michaelis-Menten enzyme kinetics model, a preliminary 2-minute incubation period was used to estimate the V max (± SE) values (i.e., the maximal rate of reaction for a saturated enzyme system), which ranged from 5.0 ± 0.4 (TPHP) to 29 ± 18 pmol/min/mg protein (TBOEP), as well as the K M (± SE) values (i.e., the OPE concentration corresponding to one half of the V max ), which ranged from 9.8 ± 1 (TPHP) to 189 ± 135 nM (TBOEP). Biotransformation assays over a 100-minute incubation period revealed that TNBP was metabolized most rapidly (with a depletion rate of 73 ± 4 pmol/min/mg protein), followed by TBOEP (53 ± 8 pmol/min/mg), TCIPP (27 ± 1 pmol/min/mg), TPHP (22 ± 2 pmol/min/mg) and TDCIPP (8 ± 1 pmol/min/mg). In vitro biotransformation of OP triesters was clearly structure-dependent where non-halogenated alkyl OP triesters were metabolized more rapidly than halogenated alkyl triesters. Halogenated OP triesters were transformed to their respective diesters more efficiently relative to non-halogenated OP triesters. To our knowledge, this is the first study to investigate OP triester metabolism and OP diester formation in an avian or wildlife model system, which is important to understand the fate and biological activity of OPEs in an exposed organism. - Highlights: • The metabolism and kinetics of 6 OPEs were examined in herring gull liver microsomes. • The

  6. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, Alana K. [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada); Su, Guanyong, E-mail: guanyong.su85@gmail.com [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada); Letcher, Robert J., E-mail: robert.letcher@canada.ca [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada)

    2016-10-01

    The in vitro biotransformation and kinetics of six organophosphate triester (OPE) flame retardants were investigated in herring gulls (Larus argentatus) from the Great Lakes using a hepatic microsomal metabolism assay. Administration of each individual OPE (tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), triethyl phosphate (TEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP)) to the in vitro assay (concentration range 0.01 to 10 μM) resulted in rapid depletion with the exception of TEP. Following the Michaelis-Menten enzyme kinetics model, a preliminary 2-minute incubation period was used to estimate the V{sub max} (± SE) values (i.e., the maximal rate of reaction for a saturated enzyme system), which ranged from 5.0 ± 0.4 (TPHP) to 29 ± 18 pmol/min/mg protein (TBOEP), as well as the K{sub M} (± SE) values (i.e., the OPE concentration corresponding to one half of the V{sub max}), which ranged from 9.8 ± 1 (TPHP) to 189 ± 135 nM (TBOEP). Biotransformation assays over a 100-minute incubation period revealed that TNBP was metabolized most rapidly (with a depletion rate of 73 ± 4 pmol/min/mg protein), followed by TBOEP (53 ± 8 pmol/min/mg), TCIPP (27 ± 1 pmol/min/mg), TPHP (22 ± 2 pmol/min/mg) and TDCIPP (8 ± 1 pmol/min/mg). In vitro biotransformation of OP triesters was clearly structure-dependent where non-halogenated alkyl OP triesters were metabolized more rapidly than halogenated alkyl triesters. Halogenated OP triesters were transformed to their respective diesters more efficiently relative to non-halogenated OP triesters. To our knowledge, this is the first study to investigate OP triester metabolism and OP diester formation in an avian or wildlife model system, which is important to understand the fate and biological activity of OPEs in an exposed organism. - Highlights: • The metabolism and kinetics of 6 OPEs were examined in herring gull liver

  7. Determination of kinetic parameters in Tl dosemeters of LiF: Mg, Cu, P + PTFE developed in the ININ

    International Nuclear Information System (INIS)

    Basurto G, B.S.

    2002-01-01

    The objective of this work, is the one of determining the kinetic parameters of the dosemeter of LiF: Mg, Cu, P + Ptfe; starting from the curves Tl obtained at being irradiated with alpha radiation (α), beta (β) and gamma (γ). As like to compare its sensitivity with each radiation type, considering the sensitivity of the TLD-100 as the unit. In the Chapter 1, the fundamental structure of the matter is described, making emphasis in the different radiation types, and their interaction with this. In the Chapter 2, the units are described but used in the dosimetry of the radiation. In the Chapter 3, the basic concepts of the phenomenon of Tl are described and those are explained characteristic of the deconvolution method to determine the kinetics of the one phenomenon. In the Chapter 4, the methodology is detailed that was used in the elaboration of this thesis work, describing the material Tl that were considered like reference, as well as the sources of ionizing radiation, with those that the dosemeters were irradiated and the equipment in the one that the curves Tl was obtained. Reference is made to the software used to carry out the deconvolution of the curves Tl that were obtained in the one experimental development. In the Chapter 5, the obtained results of this study are presented, showing the tables of homogenization of dosemeters and the reading of the same one; they are observed the curves Tl obtained to different radiation doses (alpha, beta and gamma), the intensity Tl in function of the dose. Also they are tabulated, the obtained results in the kinetic parameters of the three different study materials (TLD-100H, USA; TLD-100, USA and LiF: Mg, Cu, P + Ptfe developed in the l.N.l.N). They are analyzed shortly for each material Tl their sensitivity to the ionizing radiation as well as their kinetic parameters. The obtained results showed that the Tl dosemeters of LiF: Mg,Cu,P + Ptfe, they presented a bigger sensitivity that the TLD-100 when being

  8. Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode

    International Nuclear Information System (INIS)

    Cheng, H.; Scott, K.

    2006-01-01

    Borohydride oxidation has been investigated using a rotating disk electrode technique. The parameters, such as apparent rate constant, Tafel slope, Levich slope, number of electrons exchanged and reaction order, have been determined. The borohydride ion is oxidised on the gold electrode with an electrochemical rate constant of around 1 cm s -1 at intermediate potentials where side reactions had less effect. Influences of temperature, concentrations of borohydride and supporting electrolyte (NaOH) on the parameters were evaluated

  9. Adsorption of a cationic dye (Yellow Basic 28 ontothe calcined mussel shells: Kinetics, Isotherm and Thermodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Imane EL Ouahabi

    2015-11-01

    Full Text Available The aim of this study is to valorise the mussel shells and evaluate the adsorption capacity of calcined mussel shells for the cationic dyes.  The adsorbent was characterized by DRX, FTIR, BET and SEM, respectively. The adsorption of Yellow Basic28 on calcined mussel shells was investigated using the parameters such as concentrations (10-50mg/L, pH (3-10, ionic strength (0-2 mol / L and temperature (288 - 318 °C.  The adsorption rate data were analysed according to the first and second-order kinetic models.  The adsorption kinetics was found to be best represented by the pseudo-second-order kinetic model.  The experimental isotherm data were analyzed using Langmuir, Freundlich, Temkin, Elovich and Dubinin–Radushkevich isotherm equations on the dye-adsorbent system. The experimental data yielded excellent fits with Freundlich isotherm equation (R² = 0.966. It was indicative of the heterogeneity of the adsorption sites on the CMS particles.  Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG°and entropy ΔS° were estimated.  The positive value of ΔH°(30.321 kJ/mol and negative values of ΔG° (from -5.392 to -2.873 kJ/mol show the process is endothermic and spontaneous.  The negative value of entropy ΔS° (-87.172 J/mol K suggest the decreased randomness at the solid-liquid interface during the adsorption of dyes onto calcined mussel shells.

  10. Measurements of kinetic parameters by noise techniques on the MINERVE reactor

    International Nuclear Information System (INIS)

    Carre, J.C.; Da Costa Oliveira, J.

    1975-01-01

    Noise measurements were determined on ERMINE a fast thermal coupled reactor built in MINERVE. A reactor without feedback, and a reactor with an automatic control rod were both considered. The first case concerned the measurements of auto and cross power spectral density obtained with one or two neutron detectors, and the determination of: neutron lifetime; efficiency for one ion chamber; power level of the reactor; maximal speed and acceleration of the control rod for the design of an automatic reactor control actuator. The second case was concerned with measurements of the auto power spectral density in reactivity for the control rod, and the estimation of: the transfer function of the automatic pilot; the neutron lifetime; and the standard error affecting the results obtained by the oscillation method. The results proved that the pile noise theory with a point kinetic model is sufficient for application on zero power reactors. (U.K.)

  11. Higher adsorption capacity of Spirulina platensis alga for Cr(VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions.

    Science.gov (United States)

    Gunasundari, Elumalai; Senthil Kumar, Ponnusamy

    2017-04-01

    This study discusses about the biosorption of Cr(VI) ion from aqueous solution using ultrasonic assisted Spirulina platensis (UASP). The prepared UASP biosorbent was characterised by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmet-Teller, scanning electron spectroscopy and energy dispersive X-ray and thermogravimetric analyses. The optimum condition for the maximum removal of Cr(VI) ions for an initial concentration of 50 mg/l by UASP was measured as: adsorbent dose of 1 g/l, pH of 3.0, contact time of 30 min and temperature of 303 K. Adsorption isotherm, kinetics and thermodynamic parameters were calculated. Freundlich model provided the best results for the removal of Cr(VI) ions by UASP. The adsorption kinetics of Cr(VI) ions onto UASP showed that the pseudo-first-order model was well in line with the experimental data. In the thermodynamic study, the parameters like Gibb's free energy, enthalpy and entropy changes were evaluated. This result explains that the adsorption of Cr(VI) ions onto the UASP was exothermic and spontaneous in nature. Desorption of the biosorbent was done using different desorbing agents in which NaOH gave the best result. The prepared material showed higher affinity for the removal of Cr(VI) ions and this may be an alternative material to the existing commercial adsorbents.

  12. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States); Dulla, Sandra; Ravetto, Piero [Politecnico di Torino (Italy)

    2011-07-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  13. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2011-01-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  14. [Molecular-kinetic parameters of thiamine enzymes and the mechanism of antivitamin action of hydroxythiamine in animal organisms].

    Science.gov (United States)

    Ostrovskiĭ KuM; Voskoboev, A I; Gorenshtenĭn, B I; Dosta, G A

    1979-09-01

    The molecula-kinetic parameters (Km, Ki) of three thiamine enzymes, e. g. thiamine pyrophosphokinase (EC 2.7.6.2), pyruvate dehydrogenase (EC 1.2.4.1) and transketolase (EC 2.2.1.1) with respect to the effects of the thiamine antimetabolite hydroxythiamine in the whole animal organism have been compared. It has been shown that only the first two enzymes, which interact competitively with the vitamin, antivitamin or their pyrophosphate ethers, obey the kinetic parameters obtained for the purified enzymes in vitro. The anticoenzymic effect of hydroxythiamine pyrophosphate with respect to transketolase is not observed in vivo at maximal concentration of the anticoenzyme in tissues due to the absence of competitive interactions with thiamine pyrophosphate. The incorporation of the true and false coenzymes into transketolase occurs only during de novo transketolase synthesis (the apoform is absent in tissues, with the exception of erythrocytes) and proceeds slowly with a half-life time equal to 24--30 hrs. After a single injection of hydroxythiamine at a large dose (70--400 mg/kg) the maximal inhibition of the transketolase activity in tissues (liver, heart, kidney, muscle, spleen, lungs adrenal grands) manifests itself by the 48th--72nd hour, when the concentration of free hydroxythiamine and its pyrophosphate is minimal and the whole anticoenzyme is tightly bound to the protein, forming the false holoenzyme. The use of hydroxythiamine for inhibition of pyruvate dehydrogenase or transketolase in animal organism is discussed.

  15. A benchmark on the calculation of kinetic parameters based on reactivity effect experiments in the CROCUS reactor

    International Nuclear Information System (INIS)

    Paratte, J.M.; Frueh, R.; Kasemeyer, U.; Kalugin, M.A.; Timm, W.; Chawla, R.

    2006-01-01

    Measurements in the CROCUS reactor at EPFL, Lausanne, are reported for the critical water level and the inverse reactor period for several different sets of delayed supercritical conditions. The experimental configurations were also calculated by four different calculation methods. For each of the supercritical configurations, the absolute reactivity value has been determined in two different ways, viz.: (i) through direct comparison of the multiplication factor obtained employing a given calculation method with the corresponding value for the critical case (calculated reactivity: ρ calc ); (ii) by application of the inhour equation using the kinetic parameters obtained for the critical configuration and the measured inverse reactor period (measured reactivity: ρ meas ). The calculated multiplication factors for the reference critical configuration, as well as ρ calc for the supercritical cases, are found to be in good agreement. However, the values of ρ meas produced by two of the applied calculation methods differ appreciably from the corresponding ρ calc values, clearly indicating deficiencies in the kinetic parameters obtained from these methods

  16. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film

    International Nuclear Information System (INIS)

    Singh, S. P.; Arya, Sunil K.; Pandey, Pratibha; Malhotra, B. D.; Saha, Shibu; Sreenivas, K.; Gupta, Vinay

    2007-01-01

    Cholesterol oxidase (ChOx) has been immobilized onto zinc oxide (ZnO) nanoporous thin films grown on gold surface. A preferred c-axis oriented ZnO thin film with porous surface morphology has been fabricated by rf sputtering under high pressure. Optical studies and cyclic voltammetric measurements show that the ChOx/ZnO/Au bioelectrode is sensitive to the detection of cholesterol in 25-400 mg/dl range. A relatively low value of enzyme's kinetic parameter (Michaelis-Menten constant) ∼2.1 mM indicates enhanced enzyme affinity of ChOx to cholesterol. The observed results show promising application of nanoporous ZnO thin film for biosensing application without any functionalization

  17. Depuración aerobia de los efluentes resultantes del proceso de biometanización del alpechín

    Directory of Open Access Journals (Sweden)

    Borja Padilla, R.

    1992-02-01

    Full Text Available A study of aerobic treatment in batch regime of the effluents produced in the olive mill wastewater biomethanation process was carried out. An 83% of effluents organic substances was removal after the third day of fermentation. The substrate removal rate follows a zero-order kinetic for high concentrations, and a first-order kinetic for low organic matter concentration, during the last days of fermentation. The kinetic parameters (qmáx and K were obtained from Michaelis- Menten model.

    Se ha efectuado un estudio del proceso de depuración aerobia, en régimen discontinuo, de los efluentes procedentes del proceso de depuración anaerobia o biometanización del alpechín. Se comprueba que el 83% de la materia orgánica presente en este efluente se elimina a partir del tercer día de fermentación. La eliminación de sustrato sigue una cinética de orden cero para altas concentraciones del mismo y una cinética de primer orden para bajas concentraciones de materia orgánica, es decir, durante los últimos días de fermentación. Se aplica el modelo de Michaelis-Menten de eliminación de sustrato para la obtención de los parámetros cinéticos qmáx y Ks que rigen este proceso.

  18. Sensitivity analysis of large system of chemical kinetic parameters for engine combustion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, H; Sanz-Argent, J; Petitpas, G; Havstad, M; Flowers, D

    2012-04-19

    In this study, the authors applied the state-of-the art sensitivity methods to downselect system parameters from 4000+ to 8, (23000+ -> 4000+ -> 84 -> 8). This analysis procedure paves the way for future works: (1) calibrate the system response using existed experimental observations, and (2) predict future experiment results, using the calibrated system.

  19. Analytical Expressions for the Mixed-Order Kinetics Parameters of TL Glow Peaks Based on the two Heating Rates Method.

    Science.gov (United States)

    Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad

    2018-03-24

    The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.

  20. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  1. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties.

    Science.gov (United States)

    Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack

    2006-07-27

    The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.

  2. Kinetics Parameters of VVER-1000 Core with 3 MOX Lead Test Assemblies To Be Used for Accident Analysis Codes

    International Nuclear Information System (INIS)

    Pavlovitchev, A.M.

    2000-01-01

    The present work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactor and presents the neutronics calculations of kinetics parameters of VVER-1000 core with 3 introduced MOX LTAs. MOX LTA design has been studied in [1] for two options of MOX LTA: 100% plutonium and of ''island'' type. As a result, zoning i.e. fissile plutonium enrichments in different plutonium zones, has been defined. VVER-1000 core with 3 introduced MOX LTAs of chosen design has been calculated in [2]. In present work, the neutronics data for transient analysis codes (RELAP [3]) has been obtained using the codes chain of RRC ''Kurchatov Institute'' [5] that is to be used for exploitation neutronics calculations of VVER. Nowadays the 3D assembly-by-assembly code BIPR-7A and 2D pin-by-pin code PERMAK-A, both with the neutronics constants prepared by the cell code TVS-M, are the base elements of this chain. It should be reminded that in [6] TVS-M was used only for the constants calculations of MOX FAs. In current calculations the code TVS-M has been used both for UOX and MOX fuel constants. Besides, the volume of presented information has been increased and additional explications have been included. The results for the reference uranium core [4] are presented in Chapter 2. The results for the core with 3 MOX LTAs are presented in Chapter 3. The conservatism that is connected with neutronics parameters and that must be taken into account during transient analysis calculations, is discussed in Chapter 4. The conservative parameters values are considered to be used in 1-point core kinetics models of accident analysis codes

  3. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  4. Characterization of Nicotinamidases: Steady-State Kinetic Parameters, Class-wide Inhibition by Nicotinaldehydes and Catalytic Mechanism†

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Vrablik, Tracy L.; Xu, Ping; Allen, Eleanor; Hanna-Rose, Wendy; Sauve, Anthony A.

    2010-01-01

    Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast and invertebrates but there are none found in mammals. Although recent structural work has improved understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data shows that nicotinamidases are required for growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans regulate lifespan in their respective organisms, consistent with proposed roles in the regulation of NAD+ metabolism and organismal aging. In this manuscript, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, S. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme Disease) and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state kcat values typically exceeding 1 s−1. The Km values for nicotinamide are low and are in the range from 2 – 110 µM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low µM to low nM range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex which is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyse exchange of 18O into the carboxy oxygens of nicotinic acid with 18O-water. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains

  5. Phosphorus Uptake Kinetics of Different Types of Duckweed.%不同品种浮萍磷素吸收动力学特征

    Institute of Scientific and Technical Information of China (English)

    蔡树美; 刘文桃; 张震; 柏彦超; 钱晓晴

    2011-01-01

    以长江三角洲地区常见的3种浮萍--稀脉浮萍(Lemna aequinoctialis)、少根紫萍(Spirodela oligorrhiza)和紫萍(Spriodela polyrrhiza)为对象,研究不同品种浮萍对HPO42-的吸收动力学影响.结果表明,3种浮萍对无机磷的吸收动力学特征基本可采用Michaelis-Menten方程描述,3种浮萍无机磷吸收速率V对磷浓度S双倒数曲线的拟合关系均在α=0.01水平上显著.稀脉浮萍对无机磷的亲和力较强,适宜应用于对低磷浓度污水的净化;紫萍对无机磷的最大吸收速率Vmax较高,适宜应用于对高磷浓度污水的净化.%An increasing attention has been paid to the use of duckweed in treating eutrophicated water as a tool of bio-remediation of domestic wastewater.Phosphorus uptake kinetics was studied,of different species of duckweeds, i.e.Lemna aequinoctialis, Spirodela oligorrhiza and Spriodela polyrrhiza, which are common in the Yangtze River Delta area.Results show that the phosphorus uptake kinetics of the duckweeds could be expressed with the Michaelis-Menten equation; and the relation between phosphorus uptake rate (V) of the duckweeds and inorganic phosphorus(Pi) concentration (S), was well fitted with a double-reciprocal curve with at =0.01; the Km value for Pi uptake of Lemna aequinoctialis was lower than that of Spirodela oligorrhiza and Spriodela polyrrhiza, making it a better candidate for treating wastewater low in Pi concentration.The maximum phosphorus uptake rate of Spriodela polyrrhiza was higher than that of the other two species, which allows Spriodela polyrrhiza better performance in purifying wastewater higher in Pi concentration.

  6. Evaluation of kinetic parameters of 1, 1'-dibenzoylferrocene in non aqueous methanol solution by cyclic voltammetry (abstract)

    International Nuclear Information System (INIS)

    Parveen, R.; Kirmani, M.Z.; Naqvi, I.I.

    2011-01-01

    The electrochemical Kinetic study of 1, 1/sup '/- Dibenzoylferrocene (DBF) at a platinum working electrode in 0.1 mol dm/sup -3/ NaClO/sub 4/ non aqueous medium has been studied by Cyclic voltammetry. The heterogeneous electron transfer rate constants (ks) and the diffusion coefficients (Do) of DBF were estimated at various temperatures (283 - 323 K) and at different scan rates (0.05 - 0.5 V s/sup -1/). A calibration curve, linear over the range of 1 X 10/sup -3/ - 9 X 10/sup -3/ mol dm/sup -3/ ,was plotted at the scan rate of 0.25 Vs/sup -1/. This plot can be used to analyze an unknown sample of the compound. The kinetic data was also used to evaluate the Activation energy (Ea). The thermodynamic parameters such as enthalpy change of activation (delta H/sup */), Entropy change (delta S/sup */) and Gibbs free energy change (delta GH/sup */) were also investigated during the study. (author)

  7. Co-pyrolysis of biomass and plastic wastes: investigation of apparent kinetic parameters and stability of pyrolysis oils

    Science.gov (United States)

    Fekhar, B.; Miskolczi, N.; Bhaskar, T.; Kumar, J.; Dhyani, V.

    2018-05-01

    This work is dedicated to the co-pyrolysis of real waste high density polyethylene (HDPE) and biomass (rice straw) obtained from agriculture. Mixtures of raw materials were pyrolyzed in their 0%/100%, 30%/70%, 50%/50%, 70%/30%, 100%/0% ratios using a thermograph. The atmosphere was nitrogen, and a constant heating rate was used. Based on weight loss and DTG curves, the apparent reaction kinetic parameters (e.g., activation energy) were calculated using first-order kinetic approach and Arrhenius equation. It was found that decomposition of pure plastic has approximately 280 kJ/mol activation energy, while that of was considerably less in case of biomass. Furthermore, HDPE decomposition takes by one stage, while that of biomass was three stages. The larger amount of raw materials (100 g) were also pyrolyzed in the batch rig at 550°C to obtain products for analysis focussing to their long-term application. Pyrolysis oils were investigated by Fourier transformed infrared spectroscopy and standardized methods, such as density, viscosity, boiling range determination. It was concluded, that higher plastic ratio in raw material had the advantageous effect to the pyrolysis oil long-term application. E.g., the concentration of oxygenated compounds, such as aldehydes, ketones, carboxylic acids or even phenol and its derivate could be significantly decreased, which had an advantageous effect to their corrosion property. Lower average molecular weight, viscosity, and density were measured as a function of plastic content.

  8. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    Science.gov (United States)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  9. Calculation of kinetic parameters of amino-formaldehyde polymers formation in the presence of calcium ions

    Directory of Open Access Journals (Sweden)

    V.V. Arhipova

    2016-05-01

    Full Text Available Calcium carbonate is on of widely used fillers of composite materials. The area of its application depend on disperse structure, particle shape and other. The modification of calcium carbonate by high-molecular polymers allows changing its characteristics and surface properties in a wide range. The modification of calcium carbonate often carried out with use of amino-formaldehyde polymers (AFP. Aim: The aim of this work is to determine the kinetic characteristics of amino-formaldehyde polymers polycondensation process in the presence of calcium ions. Materials and Methods: The mechanism of AFP polycondensation is complex and depends on various factors. Polycondensation of AFP took place under following conditions: the temperature is 20, 30, 60°C; the molar ratio of carbamide to formaldehyde is 1:1.25; the polycondensation duration is 2 hours; the mass ratio of CaCO3:AFP = 1:1. The polycondensation process was carried out in calcium chloride solution with рН=2…5.5. The concentration of formaldehyde and metilol groups determined during the experiment using chemical titrimetric method. Results: It is shown that polycondensation process of AFP in the presence of Сa2+ ions at their concentration from 0 to 2,25 mol/l (0…90 g/l leads to acceleration of process more than by 1.8 times at temperature of 20°C. Further increase of Сa2+ concentration leads to reduction of process speed. At temperature of 30°C the speed of process almost does not change in the range of Сa2+ concentration from 0 to 2,25 mol/l and further decreases slightly. For all range of Сa2+ concentration at temperature of 60°C the reduction of process speed is observed. Influence of Сa2+ on process of polycondensation confirms assumption made earlier of formation of weak bonds between AFP and calcium ions which at low temperatures interfere with hydrolysis of methyleneurea and collapse at increasing of process temperature.

  10. Inference of some pharmacokinetic parameters of the C mitomycin, through the analysis of its micro nucleate polychromatic erythrocytes induction kinetics

    International Nuclear Information System (INIS)

    Morales R, P.; Vallarino K, T.; Cruz V, V.; Delgadillo H, A.

    2003-01-01

    The objective of the present work was to establish pharmacokinetic parameters of the C Mitomycin (MMC) in vivo, comparing its kinetics of induction of polychromatic micro nucleate erythrocytes (EPGMN) with that of the gamma radiation. The used doses were of 0.75; 1.5 and 3. 0 μmoles/kg of MMC. It was observed that the MMC produces MN in the first cycle of cellular division and it is independent of the cytotoxic effect. This agent requires of a relatively long period of latency that is not compatible with her great reactivity, for what the pharmacokinetic values obtained in fact reflect the time that takes the processing of leisure in the DNA and the subsequent induction of ruptures that produce MN. (Author)

  11. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration.

    Science.gov (United States)

    Bouarab, L; Dauta, A; Loudiki, M

    2004-06-01

    The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.

  12. Determination of kinetic parameters and Hammett ρ from the synthesis of triaryl phosphites using reaction calorimetry

    International Nuclear Information System (INIS)

    Seiceira, Rafael C.; Higa, Camila M.; Barreto, Amaro G.; Cajaiba da Silva, Joao F.

    2005-01-01

    Triaryl phosphites bearing electron donating and electron withdrawing substituents were prepared through the reaction of sodium phenoxides with phosphorus trichloride. The reactions were performed in a Mettler RC1 reaction calorimeter. The main purpose of this work was the determination of Hammett ρ from the synthesis of substituted triaryl phosphites through the interpretation of calorimetric data. The phenoxide bearing a methoxide group was the most reactive, and the one bearing the nitro group was the least reactive. It was demonstrated that the reaction rate depends mainly on the addition rate of phosphorus trichloride solution. A good correlation between the Hammet parameters (σ p + ) was obtained, indicating a reaction mechanism in which a decrease of the negative charge occurs in the transition state

  13. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  14. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters.

    Science.gov (United States)

    Sáez, Patricia L; Bravo, León A; Cavieres, Lohengrin A; Vallejos, Valentina; Sanhueza, Carolina; Font-Carrascosa, Marcel; Gil-Pelegrín, Eustaquio; Javier Peguero-Pina, José; Galmés, Jeroni

    2017-05-17

    Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa.

    Science.gov (United States)

    Ashrafi, Iraj; Kohram, Hamid; Ardabili, Farhad Farrokhi

    2013-06-01

    Reactive oxygen species generated during the freeze-thawing process may reduce sperm quality. This study evaluates the effects of melatonin supplementation as an antioxidant in the semen extender on post-thaw parameters of bull spermatozoa. Melatonin was added to the citrate-egg yolk extender to yield six different final concentrations: 0, 0.1, 1, 2, 3 and 4mM. Ejaculates were collected from six proven Holstein bulls. Semen was diluted in the extender packaged in straws, which was frozen with liquid nitrogen. The semen extender supplemented with various doses of melatonin increased (peffective concentration of melatonin in microscopic evaluations of the bull sperm freezing extender was 2mM. The highest (pconcentration of melatonin in the semen extender and the highest activity of catalase (0.7±0.1) was obtained by 2mM melatonin. Four millimolar concentration of melatonin were reduced (pconcentration of melatonin in the semen extender improved the quality of post-thawed semen, which may associate with a reduction in lipid peroxidation as well as an increase in the total antioxidant capacity and antioxidant enzyme activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    Energy Technology Data Exchange (ETDEWEB)

    Poznyak, Tatyana [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico)]. E-mail: tpoznyak@ipn.mx; Garcia, Alejandro [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Chairez, Isaac [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Gomez, Miriam [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico); Poznyak, Alexander [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico)]. E-mail: apoznyak@ctrl.cinvestav.mx

    2007-07-31

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.

  17. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    International Nuclear Information System (INIS)

    Poznyak, Tatyana; Garcia, Alejandro; Chairez, Isaac; Gomez, Miriam; Poznyak, Alexander

    2007-01-01

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method

  18. Study on kinetics of glucose uptake by some species of plankton

    Science.gov (United States)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  19. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    International Nuclear Information System (INIS)

    Raposo, Maria; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-01-01

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior

  20. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, Maria, E-mail: mfr@fct.unl.pt; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A. [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, UNL, Campus de Caparica, 2829-516 Caparica (Portugal); Ferreira, Quirina [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, UNL, Campus de Caparica, 2829-516 Caparica (Portugal); Instituto de Telecomunicações, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Botelho do Rego, Ana Maria [Centro de Química-Física Molecular and IN, Complexo Interdisciplinar, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa (Portugal)

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  1. Combustion and gasification of coal and straw under pressurized conditions. Task 2: Determination of kinetic parameters in PTGA

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O; Hald, P; Bak, J; Boll Illerup, J; Gjernes, E; Fjellerup, J; Olsen, A

    1995-10-01

    The reactivities of pulverized coal and straw fuels were investigated regarding pyrolysis, combustion and gasification with CO{sub 2} and H{sub 2}O by thermogravimetric analysis under pressurized conditions. The fuels were a Colombian coal, pulverized to 45-90 {mu}m particles, and wheat straw pulverized to 0-200 {mu}m particles. The pyrolysis studies were performed at 150-1000 deg. C in pure N{sub 2} at 1.5 to 40 bar. The combustion studies were performed at 300-550 deg. C, 1.5-40 bar total pressure with 0.08-0.8 bar of O{sub 2} partial pressure. The CO{sub 2} gasification studies were performed at 850-1200 deg. C, 4-40 bar of total pressure with 0.7-4 bar of CO{sub 2} partial pressure, also including studies with CO in combination with CO{sub 2}. A minor H{sub 2}O gasification study with straw was performed at 900-1050 deg. C at 1.5-2.0 bar of total pressure in an atmosphere containing partial pressures up to 0.32 bar of H{sub 2}O, o.2 bar of CO{sub 2}, 0.28 bar of CO and 0.12 bar of H{sub 2}. For combustion and CO{sub 2} gasification the results were analyzed with regard to reaction kinetics, and kinetic parameters that represent the experimental results were found. (AU) 11 tabs., 26 ills., 10 refs.

  2. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)

    International Nuclear Information System (INIS)

    El-Sayed, Saad A.; Mostafa, M.E.

    2014-01-01

    Highlights: • The sugarcane bagasse powder has better energy value compared to the cotton stalks. • Bagasse moisture is entrained in its cell walls and its evaporation needs more energy. • The cotton stalks is more reactive and readily combustible than the bagasse powders. • A lower E and A 0 has been found for bagasse compared with cotton stalks powders. • Calculated E of bagasse and cotton stalks by direct and integral methods are different. - Abstract: The kinetics of the thermal decomposition of the two biomass materials (sugarcane bagasse and cotton stalks powders) were evaluated using a differential thermo-gravimetric analyzer under a non-isothermal condition. Two distinct reaction zones were observed for the two biomasses. The direct Arrhenius plot method and the integral method were applied for determination of kinetic parameters: activation energy, pre-exponential factor, and order of reaction. The weight loss curve showed that pyrolysis of sugarcane bagasse and cotton stalks took place mainly in the range of 200–500 °C. The activation energy of the sugarcane bagasse powder obtained by the direct Arrhenius plot method ranged between 43 and 53.5 kJ/mol. On the other side, the integral method shows larger values of activation energy (77–87.7 kJ/mol). The activation energy of the cotton stalks powder obtained by the direct Arrhenius plot method was ranged between 98.5 and 100.2 kJ/mol, but the integral method shows larger values of activation energy (72.5–127.8 kJ/mol)

  3. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  4. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.

    2014-12-01

    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  5. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    Science.gov (United States)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  6. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    La Fontaine, M; Bradshaw, T [University of Wisconsin, Madison, Wisconsin (United States); Kubicek, L [University of Florida, Gainesville, Florida (United States); Forrest, L [University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, R [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial}) on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding

  7. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  8. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    Science.gov (United States)

    Farazdaghi, Hadi

    2011-02-01

    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  9. A new general method for simultaneous fitting of temperature and concentration dependence of reaction rates yields kinetic and thermodynamic parameters for HIV reverse transcriptase specificity.

    Science.gov (United States)

    Li, An; Ziehr, Jessica L; Johnson, Kenneth A

    2017-04-21

    Recent studies have demonstrated the dominant role of induced fit in enzyme specificity of HIV reverse transcriptase and many other enzymes. However, relevant thermodynamic parameters are lacking, and equilibrium thermodynamic methods are of no avail because the key parameters can only be determined by kinetic measurement. By modifying KinTek Explorer software, we present a new general method for globally fitting data collected over a range of substrate concentrations and temperatures and apply it to HIV reverse transcriptase. Fluorescence stopped-flow methods were used to record the kinetics of enzyme conformational changes that monitor nucleotide binding and incorporation. The nucleotide concentration dependence was measured at temperatures ranging from 5 to 37 °C, and the raw data were fit globally to derive a single set of rate constants at 37 °C and a set of activation enthalpy terms to account for the kinetics at all other temperatures. This comprehensive analysis afforded thermodynamic parameters for nucleotide binding ( K d , Δ G , Δ H , and Δ S at 37 °C) and kinetic parameters for enzyme conformational changes and chemistry (rate constants and activation enthalpy). Comparisons between wild-type enzyme and a mutant resistant to nucleoside analogs used to treat HIV infections reveal that the ground state binding is weaker and the activation enthalpy for the conformational change step is significantly larger for the mutant. Further studies to explore the structural underpinnings of the observed thermodynamics and kinetics of the conformational change step may help to design better analogs to treat HIV infections and other diseases. Our new method is generally applicable to enzyme and chemical kinetics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  11. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage.

    Science.gov (United States)

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2017-04-01

    Color degradation in cranberry juice during storage is the most common consumer complaint. To enhance nutritional quality, juice is typically fortified with vitamin C. This study determined effect of gallic acid, a natural antioxidant, for the preservation of anthocyanins (ACYs) and color, and estimated kinetics of ACYs and color degradation. Juice, fortified with 40-80mg/100mL vitamin C and 0-320mg/100mL gallic acid, was pasteurized at 85°C for 1min and stored at 23°C for 16days. Total monomeric anthocyanins and red color intensity were evaluated spectrophotometrically and data were used to determine degradation rate constants (k values) and order of reaction (n) of ACYs and color. Due to high correlation, k and n could not be estimated simultaneously. To overcome this difficulty, both n and k were held at different constant values in separate analyses to allow accurate estimation of each. Parameters n and k were modeled empirically as functions of vitamin C, and of vitamin C and gallic acid, respectively. Reaction order n ranged from 1.2 to 4.4, and decreased with increasing vitamin C concentration. The final model offers an effective tool that could be used for predicting ACYs and color retention in cranberry juice during storage. Copyright © 2017. Published by Elsevier Ltd.

  12. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    Science.gov (United States)

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  13. Evaluation of the kinetic and thermodynamic parameters of oxidation reaction in biodiesel from a quaternary mixture of raw material

    Directory of Open Access Journals (Sweden)

    Karina Gomes Angilelli

    2017-05-01

    Full Text Available A mixture of vegetable oil and animal fat as raw materials was optimized by simplex-centroid mixture design to produce a type of biodiesel with good oxidative stability, flow properties and reaction yield. Further, kinetic and thermodynamic parameters of oxidation reaction were determined by the accelerated method at different temperatures. Biodiesel produced with sodium methoxide as catalyst presented 6.5°C of cloud point, 2.0°C of pour point, and oxidative stability at 110°C equal to 8.98h, with a reaction yield of 96.04%. Activation energy of the oxidation reaction was 81.03 kJ mol-1 for biodiesel produced with sodium hydroxide and 90.51 kJ mol-1 for sodium methoxide. The positive values for DH‡ and DG‡ indicate that the oxidation process is endothermic and endergonic. The less negative DS‡ for biodiesel produced with sodium methoxide (-28.87 JK-1 mol-1 showed that the process of degradation of this biofuel was slower than that produced with NaOH. The mixture of raw materials proposed, transesterified with the methoxide catalyst, resulted in a biofuel that resisted oxidation for longer periods, making unnecessary the addition of antioxidant

  14. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides

    International Nuclear Information System (INIS)

    Hashim, S.; Alajerami, Y.S.M.; Ramli, A.T.; Ghoshal, S.K.; Saleh, M.A.; Abdul Kadir, A.B.; Saripan, M.I.; Alzimami, K.; Bradley, D.A.; Mhareb, M.H.A.

    2014-01-01

    Lithium potassium borate (LKB) glasses co-doped with TiO 2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of 60 Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z eff =8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10 3 Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. - Highlights: • Lithium potassium borate glass doped with Ti and Mg was prepared. • The material is close to soft tissues in terms of Zeff. • The radiation sensitivity is about 12 times lower than that of TLD-100. • The signal fades about 8% in 10 days and 17% in 3 months

  15. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  16. Enzyme Kinetics Experiment with the Multienzyme Complex Viscozyme L and Two Substrates for the Accurate Determination of Michaelian Parameters

    Science.gov (United States)

    Guerra, Nelson Pérez

    2017-01-01

    A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…

  17. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  18. Photoluminescence and thermoluminescence of K2 Mg(SO4 )2 :Eu and evaluation of its kinetic parameters.

    Science.gov (United States)

    Deshpande, Archana; Dhoble, N S; Gedam, S C; Dhoble, S J

    2017-08-01

    The K 2 Mg(SO 4 ) 2 :Eu phosphor, synthesized by a solid-state diffusion method, was studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The X-ray diffraction (XRD) pattern of the material was matched with the standard JCPDF No. 36-1499. For PL characteristics, K 2 Mg(SO 4 ) 2 :Eu 2 + showed an emission peak at 474 nm when excited at 340 nm, while it showed Eu 3 + emission at 580 nm, and 594 nm splitting at 613 nm and 618 nm for an excitation of 396 nm wavelength due to radiative transitions from 5 D 0 to 7 F j (j = 0, 1, 2, 3). The Commission International de I' Eclairage (CIE) chromaticity coordinates were also calculated for the K 2 Mg(SO 4 ) 2 :Eu phosphor, and were close to the NTSC standard values. For the TL study, the prepared sample was irradiated using a 60 Co source of γ-irradiation at the dose rate of 0.322 kGy/h for 2 min. The formation of traps in K 2 Mg (SO 4 ) 2 :Eu and the effects of γ-radiation dose on the glow curve are discussed. Well defined broad glow peaks were obtained at 186°C. With increasing γ-ray dose, the sample showed linearity in intensity. The presence of a single glow peak indicated that there was only one set of traps being activated within the particular temperature range. The presented phosphors were also studied for their fading, reusability and trapping parameters. There was just 2% fading during a period of 30 days, indicating no serious fading problem. Kinetic parameters were calculated using the initial rise method and Chen's half-width method. Activation energy and frequency factor were found to be 0.77 eV and 1.41 × 10 6  sec -1 . Copyright © 2016 John Wiley & Sons, Ltd.

  19. The merits of cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high linear energy transfer neutron irradiation

    International Nuclear Information System (INIS)

    Theron, Therina; Slabbert, Jacobus; Serafin, Antonio; Boehm, Lothar

    1997-01-01

    Purpose: Differences in tumor response and intrinsic cellular radiosensitivity make the selection of patients for specific radiation modalities very difficult. The reasons for these differences are still unclear, but are thought to be due to genomic and cellular characteristics. Because radiosensitivities vary between cell cycle stages and because S phase cells are very radioresistant, cell cycle kinetic parameters could be a candidate for predicting intrinsic radiosensitivity. Methods and Materials: A panel of 15 tumor cell lines was analyzed for S phase content and potential doubling times (T pot ), and the influence of these parameters on the intrinsic radiosensitivity to 60 Coγ- and p(66)/Be neutron irradiation was assessed. Results: S phase content and T pot show a statistically significant correlation with the mean inactivation dose for photons. The correlation between cell kinetic parameters and the mean inactivation dose for neutrons showed the same trend as photon sensitivity but this was not found to be statistically significant. Conclusions: S phase content and T pot were identified as suitable criteria for predicting photon sensitivity. It is suggested that cell kinetic parameters could play a role in identifying neutron sensitive tumors if both tumor and normal cells are analyzed

  20. Kinetic Parameters during Bis-GMA and TEGDMA Monomer Polymerization by ATR-FTIR: The Influence of Photoinitiator and Light Curing Source

    Directory of Open Access Journals (Sweden)

    Aline B. Denis

    2016-01-01

    Full Text Available This study aimed to analyze the kinetic parameters of two monomers using attenuated total reflectance Fourier transform infrared (ATR-FTIR: 2,2-bis-[4-(2-hydroxy-3-methacryloxypropyl-1-oxy-phenyl] propane (Bis-GMA and triethylene glycol dimethacrylate (TEGDMA. The following were calculated to evaluate the kinetic parameters: maximum conversion rate (Rpmax, time at the maximum polymerization rate (tmax, conversion at Rpmax, and total conversion recorded at the maximum conversion point after 300 s. Camphorquinone (CQ and phenyl propanedione (PPD were used in this study as photoinitiators, whereas N,N-dimethyl-p-toluidine (DMPT amine was used as a coinitiator. LED apparatus and halogen lamp were used in turn to evaluate the effect that light source had on the monomer kinetics. The mass concentration ratio for the three resin preparations was 0.7 : 0.3 for Bis-GMA and TEGDMA: R1 (CQ + DMPT, R2 (PPD + DMPT, and R3 (PPD + CQ + DMPT. The PPD association with the CQ photoinitiator altered the polymerization kinetics compared to a resin containing only the CQ photoinitiator. The light sources exhibited no significant differences for tmax of R1 and R3. Resins containing only the PPD initiator exhibited a higher tmax than those containing only CQ. However, the Rpmax decreased for resins containing the PPD photoinitiator.

  1. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    Science.gov (United States)

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Extraction of Crude Chitinase from Higher Plants and their Chitin-Hydrolysis Activities; Kotosyokubutu yurai kichinaze no chusyutu to kichin bunkai kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Harada, K.; Shibata, M.; Maeda, R. [Doshisha Univ., Kyoto (Japan). Faculty of Engineering

    1997-07-10

    To prepare a purified chitinase from higher plants, firstly, crude enzymes were extracted from six higher plants, namely, radish seeds, sunflower seeds, watermelon seeds, bamboo leaves, orange skin, and persimmon skin. Using these crude enzymes, pH dependencies of hydrolysis reaction of colloidal chitin are investigated. For radish seeds and bamboo leaves, which have relatively high activities, the kinetics of enzymatic reaction are studies. It is clear that these reactions obey Michaelis-Menten kinetics. 7 refs., 3 figs., 2 tabs.

  3. A way for evaluating parameters of electron transport in non-polar molecular liquids derived from analysis of the trapped electron recombination kinetics

    International Nuclear Information System (INIS)

    Lukin, L.V.

    2012-01-01

    The geminate recombination kinetics of electron-ion pairs produced by high energy radiation in liquid hydrocarbons is considered in the two state model of electron transport. The purpose of the study is to relate the trapped electron transient optical absorption, observed in the pulse radiolysis experiments, to fundamental parameters of electron transport in liquid. It is shown that measurements of the half-life time and amplitude of the trapped electron decay curve allow one to find the electron life time in a localized state. - Highlights: ► A two state electron model is applied to geminate charge recombination. ► Time dependence of trapped electrons is computed for liquid isooctane and squalane. ► Electron decay kinetics depends on electron life time in a localized state. ► Key parameters of electron transport are found from the pulse radiolysis studies.

  4. The measurement and calculation of the kinetic parameter {beta}{sub eff}/{Lambda} of a small high-temperature like, critical system

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands)

    1998-01-01

    This paper demonstrates that it is well possible to determine the kinetic parameter {beta}{sub eff}/{Lambda} in a neutronically very slow system by means of noise measurements in the critical state. The advantages of this technique are that it can be conducted in a critical reactor directly, and that no special measurement equipment is needed. The comparison to calculated values for four configurations, which differ in the amount of moderation in the core region, shows a satisfactory agreement. (author)

  5. Thermoluminescent kinetic parameters of the perovskite, KMgF{sub 3}, activated with lanthanum; Parametros cineticos termoluminiscentes de la perovskita, KMgF{sub 3}, activada con lantano

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda M, F. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Azorin N, J.; Rivera M, T. [UAM-I, 09340 Mexico D.F. (Mexico); Furetta, C.; Sanipoli, C. [Physics Department, Universita di Roma ' ' La Sapienza' ' , Piazzale A. Moro 2, 00185 Roma (Italy)

    2004-07-01

    The thermoluminescent curves induced by the beta radiation in the perovskite KMgF{sub 3} were investigated activated with lanthanum. The classic methods were used to determine the kinetic parameters (the kinetic order b, the activation energy E and the frequency of escape intent s) associated with the peaks of the thermoluminescent curve (Tl) in the KMgF{sub 3} activated with lanthanum after the irradiation with beta rays. The method is based on the position of the thermoluminescent peaks, obtained of the temperature change of the peak in the maximum emission caused by the change in the heating rapidity to which the samples were measured. In this work, the samples in form of pellets were re cooked previously at 400 C during one hour before irradiating them with beta particles. The Tl measures were made with a Tl reader system using three different heating rapidities and storing the glow curves. To calculate the depth of the E traps and the frequency factor s, the parameters of the glow curve were determined experimentally of the shame of the glow curve by means of the mensuration of the shame of the maximum temperature of the peak, T{sub M} like a function of the heating rapidity. The results indicate that the values of the kinetic parameters are very near among if when they are obtained indistinctly of anyone of the different methods. (Author)

  6. Comparison of morphological and kinetic parameters in distinction of benign and malignant breast lesions in dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Direnç Özlem Aksoy

    2013-12-01

    Full Text Available Objective: To evaluate the value of qualitative morphologicaland kinetic data and quantitative kinetic data indistinction of malignancy in dynamic contrast enhancedmagnetic resonance imaging (DCE-MRI of the breast.Methods: DCE-MRIs of 49 subjects were evaluated.Morphological and contrast enhancement parameters of95 lesions were recorded in these subjects. Post-contrastkinetic behavior of these lesions were also investigated.Among the quantitative parameters, relative enhancements(E1, E2, Epeak, time-to-peak (Tpeak, slope ofcurve (Slope, signal enhancement ratio (SER, and maximumintensity time ratio (MITR were calculated. Theseresults were compared with the pathological diagnosis.Results: Spiculated contour (100%, rim enhancement(97.87%, irregular shape (95.74%, and irregular margin(91.49% were the most specific morphological featuresof malignancy in mass lesions. In non-mass lesions, focalzone (91.49% was the most specific feature of malignancy.74.5% of the benign lesions showed type 1, 77.1%of the malignant lesions showed type 2 and 3 curves accordingto the kinetic curve evaluation. All quantitativeparameters except Epeak were found to be statisticallysignificant in distinction of malignancy.Conclusion: None of the morphological features of thebenign lesions were found to be significantly specific.More specific features can be described for malignantlesions. Early behavior of the kinetic curve is not usefulfor diagnosis of malignancy but the intermediate and latebehavior gives useful information. Quantitative data involvedin this study might be promising.Key words: Morphological, kinetic, breast lesions, magnetic resonance imaging, dynamic

  7. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    Object kinetic Monte Carlo (OKMC) simulations have been performed to investigate various aspects of cascade aging in bulk tungsten and to determine the sensitivity of the results to the kinetic parameters. The primary focus is on how the kinetic parameters affect the initial recombination of defects in the first few ns of a simulation. The simulations were carried out using the object kinetic Monte Carlo (OKMC) code KSOME (kinetic simulations of microstructure evolution), using a database of cascades obtained from results of molecular dynamics (MD) simulations at various primary knock-on atom (PKA) energies and directions at temperatures of 300, 1025 and 2050 K. The OKMC model was parameterized using defect migration barriers and binding energies from ab initio calculations. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters in tungsten, annealing is dominated by SIA migration even at temperatures as high as 2050 K. For 100 keV cascades initiated at 300 K recombination is dominated by annihilation of large defect clusters. But for all other PKA energies and temperatures most of the recombination is due to the migration and rotation of small SIA clusters, while all the large SIA clusters escape the cubic simulation cell. The inverse U-shape behavior exhibited by the annealing efficiency as a function of temperature curve, especially for cascades of large PKA energies, is due to asymmetry in SIA and vacancy clustering assisted by the large difference in mobilities of SIAs and vacancies. This annealing behavior is unaffected by the dimensionality of SIA migration persists over a broad range of relative mobilities of SIAs and vacancies.

  8. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space

    Science.gov (United States)

    Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.

    2018-02-01

    Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.

  9. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Vazquez, M.D.; Lopez, J.; Carballeira, A.

    2006-01-01

    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses

  10. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    Science.gov (United States)

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  11. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    A study has been performed using object kinetic Monte Carlo (OKMC) simulations to investigate various aspects of cascade aging in bulk tungsten (W) and to determine its sensitivity to the kinetic parameters. The primary focus is on how the kinetic parameters affect the intracascade recombination of defects. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters, annealing is dominated by SIA migration even at 2050 K. It was found that for 100 keV cascades initiated at 300 K, recombination is dominated by the annihilation of large defect clusters, while for all the other primary knock-on atom (PKA) energies and temperatures, recombination is primarily due to the migration and rotation of small SIA clusters, while the large SIA clusters escape the simulation cell. The annealing efficiency exhibits an inverse U-shaped curve behavior with increasing temperature, especially at large PKA energies, caused by the asymmetry in SIA and vacancy clustering assisted by the large differences in their mobilities. This behavior is unaffected by the dimensionality of SIA migration, and it persists over a broad range of relative mobilities of SIAs and vacancies.

  12. Effect of Utilization of Silicide Fuel with the Density 4.8 gU/cc on the Kinetic Parameters of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Setiyanto; Sembiring, Tagor M.; Pinem, Surian

    2007-01-01

    Presently, the RSG-GAS reactor using silicide fuel element of 2.96 gU/cc. For increasing reactor operation time, its planning to change to higher density fuel. The kinetic calculation of silicide core with density 4.8 gU/cc has been carried out, since it has an influence on the reactor operation safety. The calculated kinetic parameters are the effective delayed neutron fraction, the delayed neutron decay constant, prompt neutron lifetime and feedback reactivity coefficient very important for reactor operation safety. the calculation is performed in 2-dimensional neutron diffusion-perturbation method using modified Batan-2DIFF code. The calculation showed that the effective delayed neutron fraction is 7. 03256x10 -03 , total delay neutron time constant is 7.85820x10 -02 s -1 and the prompt neutron lifetime is 55.4900 μs. The result of prompt neutron lifetime smaller 10 % compare with silicide fuel of 4.8 gU/cc. The calculated results showed that all of the feedback reactivity coefficient silicide core 4.8 gU/cc is negative. Totally, the feedback reactivity coefficient of silicide fuel of 4.8 gU/cc is 10% less than that of silicide fuel of 2.96 gU/cc. The results shown that kinetic parameters result decrease compared with the silicide core with density 2.96 gU/cc, but no significant influence in the RSG-GAS reactor operation. (author)

  13. Reaction network modelling for kinetic parameters of pyrolytic reactions of CHON extractants in nuclear fuel processing waste management. Contributed Paper IT-07

    International Nuclear Information System (INIS)

    Gaikar, Vilas G.; Thaore, Vaishali

    2014-01-01

    The recovery and purification of plutonium (Pu) from uranium (U) and of U from Thorium (Th) in spent nuclear fuel reprocessing is accomplished by processes that employ organophosphorous compounds as extractants.The main objective of the present work was to develop a suitable kinetic model and to determine the kinetic parameters of the set of reactions involved in the pyrolysis of amides by fitting the experimental data in the reaction network model. The experimental data and analysis are expected to be useful in the steam pyrolysis of amide waste in fuel reprocessing in the nuclear industry. The basic approach was to understand the reaction mechanism of the steam pyrolysis of amides and then to estimate the reaction rate constants for the generation and consumption of different species by solving the model equations, allowing for the determination of important species in the reaction network

  14. Study of the decomposition of phase stabilized ammonium nitrate (PSAN) by simultaneous thermal analysis: determination of kinetic parameters

    OpenAIRE

    Simões, P. N.; Pedroso, L. M.; Portugal, A. A.; Campos, J. L.

    1998-01-01

    Ammonium nitrate (AN) has been extensively used both in explosive and propellant formulations. Unlike AN, there is a lack of information about the thermal decomposition and related kinetic analysis of phase stabilized ammonium nitrate (PSAN). Simultaneous thermal analysis (DSC-TG) has been used in the thermal characterisation of a specific type of PSAN containing 1.0% of NiO (stabilizing agent) and 0.5% of Petro (anti-caking agent) as additives. Repeated runs covering the nominal heating rate...

  15. Thermal Degradation and Kinetic Parameters of Polyester and Poly(Lactic Acid) Blends Used in Shopping Bags in Brazil

    OpenAIRE

    Araújo Junior, J.; Magalhães, D; Oliveira, N. A.; Wiebeck, Helio; Matos, J. R.

    2014-01-01

    In this work, synthetic polyester and poly(lactic acid) blends used as biodegradable shopping plastic bags were studied, together with control samples of polyethylene containing pro-oxidant catalysts (called “oxidegradable bags” in the market). Samples of these materials were weighed and buried in simulated soil for 3 months, and then studied by Thermal Analysis including a non-isothermal kinetic analysis. It was observed that although there was no significant mass loss in the period of the a...

  16. Comparison of adsorption equilibrium and kinetic models for a case study of pharmaceutical active ingredient adsorption from fermentation broths: parameter determination, simulation, sensitivity analysis and optimization

    Directory of Open Access Journals (Sweden)

    B. Likozar

    2012-09-01

    Full Text Available Mathematical models for a batch process were developed to predict concentration distributions for an active ingredient (vancomycin adsorption on a representative hydrophobic-molecule adsorbent, using differently diluted crude fermentation broth with cells as the feedstock. The kinetic parameters were estimated using the maximization of the coefficient of determination by a heuristic algorithm. The parameters were estimated for each fermentation broth concentration using four concentration distributions at initial vancomycin concentrations of 4.96, 1.17, 2.78, and 5.54 g l−¹. In sequence, the models and their parameters were validated for fermentation broth concentrations of 0, 20, 50, and 100% (v/v by calculating the coefficient of determination for each concentration distribution at the corresponding initial concentration. The applicability of the validated models for process optimization was investigated by using the models as process simulators to optimize the two process efficiencies.

  17. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  18. The merits of DNA content and cell kinetic parameters for the assessment of intrinsic cellular radiosensitivity to photon and high-LET neutron irradiation

    International Nuclear Information System (INIS)

    Theron, C.S.; Serafin, A.; Bohm, L.; Slabbert, J.P.

    1997-01-01

    Differences of the intrinsic cellular radiosensitivity between tumours make the selection of patients for specific radiation schedules very difficult. The reasons for these variations are still unclear, but are thought to be due to genomic and cellular characteristics. Radiosensitivities vary between cell cycle stages, with S-phase cells being most radioresistant and G2/M phase cells most radiosensitive. It is also well established that most tumour cells have an abnormal ploidy. DNA content and cellular proliferation kinetics therefore could influence the intrinsic radiosensitivity. This prompted us to assess the merits of these parameters as predictors of radiation response. (authors)

  19. Estrone-1-sulphate (E1S) has impact on the kinetics parameters of transporter mediated taurine and glutamate influx in Caco-2 cells

    DEFF Research Database (Denmark)

    Steffansen, Bente; El-Sayed, F

    Previously, we have suggested estrone-1-sulfate (E1S) to be intercalated into the phospholipid membrane 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC). The overall hypothesis of the present study was that E1S intercalation in the cell membrane of Caco-2 cells may changes the functionality...... of membrane transporters. The aim was therefore to investigate if addition of E1S to the growth medium of Caco-2 cells before but not during the influx study, change the kinetic parameters of transporter-mediated influx of taurine and glutamate by respective TAUT and EAAT transporters. The results show that 4...

  20. Investigation of thermoluminescence and kinetic parameters of CaMgB{sub 2}O{sub 5}: Dy{sup 3+} nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, M. [School of Physics, Shri Mata Vaishno Devi University, Katra-182320 J& K (India); Kumar, Vinay, E-mail: vinaykumar@smvdu.ac.in [School of Physics, Shri Mata Vaishno Devi University, Katra-182320 J& K (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O. M.; Swart, H. C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2016-05-06

    In this paper, thermoluminescence (TL) properties of Dy{sup 3+} (1.5 mol %) doped CaMgB{sub 2}O{sub 5} nanophosphor after being exposed to ultraviolet (UV) radiations (λ=254nm) were investigated. In UV exposed samples, the thermoluminescence glow curve consists of a broad glow peak located at 380 K with a small shoulder at 507 K. A shift in glow peak temperature from 367 K to 380 K after the UV exposure for 80 min was observed, which clearly shows that glow peaks follow the second order kinetics. The TL intensity of the peaks increases with an increase in the exposure time of UV rays (10-180 min). The TL Anal program was used to analyze the glow curve. The kinetic parameters such as activation energy (E), the frequency factor (s) and the order of kinetics (b) were calculated for CaMgB{sub 2}O{sub 5}: Dy{sup 3+} nanophosphors.

  1. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    Science.gov (United States)

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2018-01-01

    Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques.

    Science.gov (United States)

    Wilk, Małgorzata; Magdziarz, Aneta; Gajek, Marcin; Zajemska, Monika; Jayaraman, Kandasamy; Gokalp, Iskender

    2017-11-01

    A novel approach, linking both experiments and modelling, was applied to obtain a better understanding of combustion characteristics of torrefied biomass. Therefore, Pine, Acacia and Miscanthus giganteus have been investigated under 260°C, 1h residence time and argon atmosphere. A higher heating value and carbon content corresponding to a higher fixed carbon, lower volatile matter, moisture content, and ratio O/C were obtained for all torrefied biomass. TGA analysis was used in order to proceed with the kinetics study and Chemkin calculations. The kinetics analysis demonstrated that the torrefaction process led to a decrease in Ea compared to raw biomass. The average Ea of pine using the KAS method changed from 169.42 to 122.88kJ/mol. The changes in gaseous products of combustion were calculated by Chemkin, which corresponded with the TGA results. The general conclusion based on these investigations is that torrefaction improves the physical and chemical properties of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of the parameters of the point kinetics equation of a nuclear reactor by the quasilinearization technique

    International Nuclear Information System (INIS)

    Tanomaru, N.

    1979-12-01

    The problem of parameter identification in a pontual model for a thermal reactor is dealt with using the quasilinearization technique. The model considers one group of delayed neutrons and a heavily non-linear temperature feedback in the reactivity. The parameter prompt neutron generation time and a parameter of the fuel temperatura reactivity coefficient equation are identified simultaneously, considering discrete measurements of the reactor power, during the transient produced by a change in the external reactivity. The influences of the choice of the external reactivity disturbance, of the two parameters values initial guesses, of the interval between measurements and the measurement noise level in the method accuracy and rate of convergence are analysed. For noiseless or low level noise measurements, the method proved to be very effective. (Author) [pt

  4. Modelling the mid-infrared drying of sweet potato: kinetics, mass and heat transfer parameters, and energy consumption

    Science.gov (United States)

    Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-04-01

    This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.

  5. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  6. Influence of rete testis fluid deprivation on the kinetic parameters of goat epididymal 5 alpha-reductase.

    Science.gov (United States)

    Kelce, W R; Lubis, A M; Braun, W F; Youngquist, R S; Ganjam, V K

    1990-01-01

    A surgical technique to cannulate the rete testis of the goat was utilized to examine the effects of rete testis fluid (RTF) deprivation on the enzymatic activity of epididymal 5 alpha-reductase. Kinetic techniques were used to determine whether the regional enzymatic effect of RTF deprivation is to decrease the apparent number of 5 alpha-reductase active sites or the catalytic activity of each active site within the epididymal epithelium. Paired comparisons of (Vmax)app and (Km)app values between control and RTF-deprived epididymides indicated that RTF deprivation affected the value of (Vmax)app with no apparent change in the values of (Km)app in caput, corpus, and cauda epididymal regions. We conclude that RTF deprivation in the goat epididymis for 7 days results in a decreased number of apparent 5 alpha-reductase active sites within the epididymal epithelium.

  7. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    Science.gov (United States)

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.

    Science.gov (United States)

    Fouchard, Swanny; Pruvost, Jérémy; Degrenne, Benoit; Titica, Mariana; Legrand, Jack

    2009-01-01

    Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions.

  9. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Science.gov (United States)

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  10. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    International Nuclear Information System (INIS)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-01-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of 14 C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated in the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents

  11. New insights into the catalytic mechanism of human glycine N-acyltransferase.

    Science.gov (United States)

    van der Sluis, Rencia; Ungerer, Vida; Nortje, Carla; A van Dijk, Alberdina; Erasmus, Elardus

    2017-11-01

    Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi-substrate kinetic parameters of a recombinant human glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC-ESI-MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi-Bi and/or ping-pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl-CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis-Menten reaction mechanism. © 2017 Wiley Periodicals, Inc.

  12. Effect of hydrogen peroxide on the main kinetic parameters of ATP hydrolysis by ouabain sensitive Na+, K+-ATP-ase in spermatozoa of infertile men

    Directory of Open Access Journals (Sweden)

    Р. В. Фафула

    2017-12-01

    Full Text Available Background: It is known that Na+,K+-ATP-ase plays important role in physiology of spermatozoa including their motility. Na+,K+-ATP-ase is one of the targets for reactive oxygen species. Hyperproduction of reactive oxygen species can damage sperm cells and it is considered to be as one of the mechanisms of male infertility. Objectives: To evaluate the H2O2 effect on the main kinetic parameters of ATP hydrolysis by ouabain-sensitive Na+,K+-ATPase of spermatozoa of fertile (normozoospermia and infertility men (asthenozoospermia. Materials and methods: Na+, K+-ATP-ase activity was determined spectrophotometrically by production of Pi. Concentration dependencies ware linearized in Lineweaver-Burk plot. Results: Effective inhibitory effect of H2O2 on ouabain-sensitive Na+,K+-ATP-ase activity of sperm cells of fertile and infertile men was demonstrated. The effects of H2O2 on the main kinetic parameters of the ATP hydrolysis with the involvement of Na+, K+-ATP-ase was studied. In the whole range of studied concentrations of ATP the Na+, K+-ATP-ase activity of spermatozoa of fertile and infertile men was reduced in the presence of H2O2 in the incubation medium. However, the optimal activity of the Na+, K+-ATP-ase activity of sperm cells in both normozoospermic and asthenozoospermic men was observed in the presence of 5 mM ATP in the incubation medium. By linearization of concentration curves in Lineweaver-Burk plot the main kinetic parameters of Na+, K+-activated, Mg2+-dependent ATP hydrolysis in the sperm cells of fertile and infertile men were determined. Under the effect of H2O2, the affinity constant of enzyme to ATP in normozoospermic and asthenozoospermic men increases several times. The initial maximum rate of ATP hydrolysis was significantly reduced only in the spermatozoa of fertile men with normozoospermia. Conclusions: Under conditions of H2O2-induced oxidative stress the inhibition of ouabain-sensitive Na+,K+-ATP-ase activity in sperm cells

  13. Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase ε

    Science.gov (United States)

    Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai

    2015-01-01

    Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708

  14. Reply to Comments on 'Effect of heating rate on kinetic parameters of β-irradiated Li2B4O7:Cu,Ag,P in TSL measurements'

    International Nuclear Information System (INIS)

    Ege, A; Tekin, E; Karali, T; Can, N; Prokić, M

    2009-01-01

    We appreciate the opportunity to respond to comments regarding the paper published by Ege et al (2007 Effect of heating rate on kinetic parameters of β-irradiated Li 2 B 4 O 7 :Cu,Ag,P in TSL measurements Meas. Sci. Technol. 18 889). We would like to thank the authors for taking the time to tell us about their opinion, but unfortunately we do not agree with them completely. In the article presented by Kumar and Chourasiya some comment is advanced to the analysis of the glow curves measured with different heating rates, presented in our recent study. According to our study, the area under the glow curve decreases with increasing heating rate in TL–temperature plots due to the quenching effects. Contrary to this, Kumar and Chourasiya suggest that this decrease is due to the normalization process. Here we hope to clarify any confusion regarding our published study. (reply)

  15. Lactobacillus casei and Lactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions.

    Science.gov (United States)

    de Souza, Bruna Maria Salotti; Borgonovi, Taís Fernanda; Casarotti, Sabrina Neves; Todorov, Svetoslav Dimitrov; Penna, Ana Lúcia Barretto

    2018-03-14

    The objective of this study was to evaluate the probiotic properties of Lactobacillus casei and Lactobacillus fermentum strains, as well as to select novel and safe strains for future development of functional fermented products. The in vitro auto-aggregation, co-aggregation, hydrophobicity, β-galactosidase production, survival to gastrointestinal tract (GIT), and antibiotic susceptibility were evaluated. The selected strains were additionally tested by the presence of genes encoding adhesion, aggregation and colonization, virulence factors, antibiotic resistance, and biogenic amine production, followed by the evaluation of acidifying kinetic parameters in milk, and survival of the strains under simulated GIT conditions during refrigerated storage of fermented milk. Most strains of both species showed high auto-aggregation; some strains showed co-aggregation ability with other lactic acid bacteria (LAB) and/or pathogens, and both species showed low hydrophobicity values. Seven L. casei and six L. fermentum strains produced β-galactosidase enzymes, and ten strains survived well the simulation of the GIT stressful conditions evaluated in vitro. All strains were resistant to vancomycin, and almost all the strains were resistant to kanamycin. L. casei SJRP38 and L. fermentum SJRP43 were distinguished among the other LAB strains by their higher probiotic potential. L. fermentum SJRP43 presented fewer genes related to virulence factors and antibiotic resistance and needed more time to reach the maximum acidification rate (V max ). The other kinetic parameters were similar. Both strains survived well (> 8 log 10 CFU/mL) to the GIT-simulated conditions when incorporated in fermented milk. Therefore, these strains presented promising properties for further applications in fermented functional products.

  16. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    Science.gov (United States)

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  17. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  18. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.

    Science.gov (United States)

    Lai, K P K; Dolan, K D; Ng, P K W

    2009-06-01

    Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.

  19. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  20. Kinetic evaluation of an anaerobic fluidised-bed reactor treating slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    An anaerobic fluidised-bed reactor for purification of slaughterhouse wastewater was modelled as a continuous-flow, completely-mixed homogeneous microbial system, with the feed COD as the limiting-substrate concentration. The average microbial residence time in the reactor was defined in terms of conventional sludge-retention-time. The experimental data obtained indicated that the Michaelis-Menten expression was applicable to a description of substrate utilisation (i.e. COD removal) in the anaerobic fluidised-bed system. The maximum substrate utilisation rate, k, and the Michaelis constant, K{sub s}, were determined to be 1.2/day and 0.039 g/l. The observed biomass yield in the reactor decreased with increasing sludge-retention-time. The specific methane production rate observed was a linear function of the specific substrate-utilisation rate. (Author)

  1. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  2. Physiological Response of Plants Grown on Porous Ceramic Tubes

    Science.gov (United States)

    Tsao, David; Okos, Martin

    1997-01-01

    This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.

  3. Using a Mechanistic Reactive Transport Model to Represent Soil Organic Matter Dynamics and Climate Sensitivity

    Science.gov (United States)

    Guerry, N.; Riley, W. J.; Maggi, F.; Torn, M. S.; Kleber, M.

    2011-12-01

    The nature of long term Soil Organic Matter (SOM) dynamics is uncertain and the mechanisms involved are crudely represented in site, regional, and global models. Recent work challenging the paradigm that SOM is stabilized because of its sequential transformations to more intrinsically recalcitrant compounds motivated us to develop a mechanistic modeling framework that can be used to test hypotheses of SOM dynamics. We developed our C cycling model in TOUGHREACT, an established 3-dimensional reactive transport solver that accounts for multiple phases (aqueous, gaseous, sorbed), multiple species, advection and diffusion, and multiple microbial populations. Energy and mass exchange through the soil boundaries are accounted for via ground heat flux, rainfall, C sources (e.g., exudation, woody, leaf, root litter) and C losses (e.g., CO2 emissions and DOC deep percolation). SOM is categorized according to the various types of compounds commonly found in the above mentioned C sources and microbial byproducts, including poly- and monosaccharides, lignin, amino compounds, organic acids, nucleic acids, lipids, and phenols. Each of these compounds is accounted for by one or more representative species in the model. A reaction network was developed to describe the microbially-mediated processes and chemical interactions of these species, including depolymerization, microbial assimilation, respiration and deposition of byproducts, and incorporation of dead biomass into SOM stocks. Enzymatic reactions are characterized by Michaelis-Menten kinetics, with maximum reaction rates determined by the species' O/C ratio. Microbial activity is further regulated by soil moisture content, O2 availability, pH, and temperature. For the initial set of simulations, literature values were used to constrain microbial Monod parameters, Michaelis-Menten parameters, sorption parameters, physical protection, partitioning of microbial byproducts, and partitioning of litter inputs, although there is

  4. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    Science.gov (United States)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  5. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  6. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method

    International Nuclear Information System (INIS)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Sakamoto, S.; Fuwa, T.; Hanano, M.

    1988-01-01

    Hepatic elimination of epidermal growth factor (EGF) via receptor-mediated endocytosis was studied by a multiple-indicator dilution method in the isolated perfused rat liver, in which cell polarity and spatial organization are maintained. In this method EGF was given with inulin, an extracellular reference, as a bolus into the portal vein, and dilution curves of both compounds in the hepatic vein effluent were analyzed. Analysis of the dilution curve for EGF, compared with that for somatostatin, which showed no specific binding to isolated liver plasma membranes, resulted as follows: (i) both extraction ratio and distribution volume of 125 I-labeled EGF decreased as the injected amount of unlabeled EGF increased; (ii) the ratio plot of the dilution curve for EGF exhibited an upward straight line initially for a short period of time, whereas the ratio plot of somatostatin gradually decreased. The multiple-indicator dilution method was used for other peptides also. Insulin and glucagon, known to have hepatocyte receptors, behaved similarly to EGF in shape of their ratio plots. The kinetic parameters calculated by this analysis were comparable with reported values obtained by in vitro direct binding measurements at equilibrium using liver homogenates. They conclude that the multiple-indicator dilution method is a good tool for analyzing the dynamics of peptide hormones-cell-surface receptor interaction under a condition in which spatial architecture of the liver is maintained

  7. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    Science.gov (United States)

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    International Nuclear Information System (INIS)

    Plath, C.; Heine, W.; Wutzke, K.D.; Krienke, L.; Toewe, J.M.; Massute, G.; Windischmann, C.

    1987-01-01

    Reliable 15 N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [ 15 N]glycine, a commonly used 15 N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [ 15 N]amino acid mixture (Ia) and [ 15 N]glycine (Ib). In a second group of three infants with a post conceptual age of 15 N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15 N losses after a single 15 N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15 N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  9. Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite. Kinetics, mechanism and activation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yusan, Sabriye; Aslani, Mahmut A.A.; Aytas, Sule [Ege Univ., Izmir (Turkey). Inst. of Nuclear Sciences; Bampaiti, Anastasia; Noli, Fotini [Aristotle University of Thessaloniki (Greece). Dept. of Chemistry; Erenturk, Sema [Istanbul Technical Univ., Ayazaga Campus, Maslak-Istanbul (Turkey). Energy Inst.

    2016-11-01

    In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin- Radushkevich (D-R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham's models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R{sup 2} > 0.999), with an activation energy (E{sub a}) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.

  10. Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power

    Science.gov (United States)

    Tan, R. P.; Carrey, J.; Respaud, M.

    2014-12-01

    Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately

  11. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    Science.gov (United States)

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  12. Conversion of Cassava Starch to Produce Glucose and Fructose by Enzymatic Process Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available In this study, variation of glycosidase enzyme concentration and saccharification time on enzymatic hydrolysis using microwave have been investigated. Concentration and kinetic parameters rate of glucose and fructose were analyzed. Cassava starch was liquefied and gelatinized by microwave at 80°C. The gelatinized starch was saccharified at 60°C using (0.2;0.4;0.6;0.8;1% (w/v glycosidase enzyme for 24, 48 and 72 hours. The glucose which has been saccharified with 1% glycosidase enzyme for 72 hours gave highest conversion 66.23 %. The optimization process by multilevel reaction gave the highest conversion at enzyme concentrations 0.88 %and saccharification time 29 hours that 68.82%. The highest conversion of glucose was isomerized to fructose. The fructose which has been isomerized for 180 minutes gave highest conversion 20.05 %. The kinetics enzymatic reaction was approached and determined by Michaelis - Menten equation, Km and Vmax of reaction for glucose 22.94 g/L; 2.70 g/L hours and for fructose 3.39 g/L; 0.38 g/L. min respectively.

  13. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2017-12-01

    Full Text Available l-Arabinose isomerase (EC 5.3.1.4 (l-AI from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg−1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.

  14. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  15. Recovery of Whey Proteins and Enzymatic Hydrolysis of Lactose Derived from Casein Whey Using a Tangential Flow Ultrafiltration Module

    Science.gov (United States)

    Das, Bipasha; Bhattacharjee, Sangita; Bhattacharjee, Chiranjib

    2013-09-01

    In this study, ultrafiltration (UF) of pretreated casein whey was carried out in a cross-flow module fitted with 5 kDa molecular weight cut-off polyethersulfone membrane to recover whey proteins in the retentate and lactose in the permeate. Effects of processing conditions, like transmembrane pressure and pH on permeate flux and rejection were investigated and reported. The polarised layer resistance was found to increase with time during UF even in this high shear device. The lactose concentration in the permeate was measured using dinitro salicylic acid method. Enzymatic kinetic study for lactose hydrolysis was carried out at three different temperatures ranging from 30 to 50 °C using β-galactosidase enzyme. The glucose formed during lactose hydrolysis was analyzed using glucose oxidase-peroxidase method. Kinetics of enzymatic hydrolysis of lactose solution was found to follow Michaelis-Menten model and the model parameters were estimated by Lineweaver-Burk plot. The hydrolysis rate was found to be maximum (with Vmax = 5.5091 mmol/L/min) at 30 °C.

  16. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231.

    Science.gov (United States)

    Russo-Abrahão, Thais; Lacerda-Abreu, Marco Antônio; Gomes, Tainá; Cosentino-Gomes, Daniela; Carvalho-de-Araújo, Ayra Diandra; Rodrigues, Mariana Figueiredo; Oliveira, Ana Carolina Leal de; Rumjanek, Franklin David; Monteiro, Robson de Queiroz; Meyer-Fernandes, José Roberto

    2018-01-01

    Recent studies demonstrate that interstitial inorganic phosphate is significantly elevated in the breast cancer microenvironment as compared to normal tissue. In addition it has been shown that breast cancer cells express high levels of the NaPi-IIb carrier (SLC34A2), suggesting that this carrier may play a role in breast cancer progression. However, the biochemical behavior of inorganic phosphate (Pi) transporter in this cancer type remains elusive. In this work, we characterize the kinetic parameters of Pi transport in the aggressive human breast cancer cell line, MDA-MB-231, and correlated Pi transport with cell migration and adhesion. We determined the influence of sodium concentration, pH, metabolic inhibitors, as well as the affinity for inorganic phosphate in Pi transport. We observed that the inorganic phosphate is dependent on sodium transport (K0,5 value = 21.98 mM for NaCl). Furthermore, the transport is modulated by different pH values and increasing concentrations of Pi, following the Michaelis-Menten kinetics (K0,5 = 0.08 mM Pi). PFA, monensin, furosemide and ouabain inhibited Pi transport, cell migration and adhesion. Taken together, these results showed that the uptake of Pi in MDA-MB-231 cells is modulated by sodium and by regulatory mechanisms of intracellular sodium gradient. General Significance: Pi transport might be regarded as a potential target for therapy against tumor progression.

  17. Scleroglucan-borax hydrogel: a flexible tool for redox protein immobilization.

    Science.gov (United States)

    Frasconi, Marco; Rea, Sara; Matricardi, Pietro; Favero, Gabriele; Mazzei, Franco

    2009-09-15

    A highly stable biological film was prepared by casting an aqueous dispersion of protein and composite hydrogel obtained from the polysaccharide Scleroglucan (Sclg) and borax as a cross-linking agent. Heme proteins, such as hemoglobin (Hb), myoglobin (Mb), and horseradish peroxidase (HRP), were chosen as model proteins to investigate the immobilized system. A pair of well-defined quasi-reversible redox peaks, characteristics of the protein heme FeII/FeIII redox couples, were obtained at the Sclg-borax/proteins films on pyrolytic graphite (PG) electrodes, as a consequence of the direct electron transfer between the protein and the PG electrode. A full characterization of the electron transfer kinetic was performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The efficiency of our cross-linking approach was investigated by studying the influence of different borax groups percentage in the Sclg matrix, revealing the versatility of this hydrogel in the immobilization of redox proteins. The native conformation of the three heme proteins entrapped in the hydrogel films were proved to be unchanged, reflected by the unaltered Soret adsorption band and by the catalytic activity toward hydrogen peroxide (H2O2). The main kinetic parameters, such as the apparent Michaelis-Menten constant, for the electrocatalytic reaction were also evaluated. The peculiar characteristics of Sclg-borax matrix make it possible to find wide opportunities as proteins immobilizing agent for studies of direct electrochemistry and biosensors development.

  18. Utility of a Bayesian Mathematical Model to Predict the Impact of Immunogenicity on Pharmacokinetics of Therapeutic Proteins.

    Science.gov (United States)

    Kathman, Steven; Thway, Theingi M; Zhou, Lei; Lee, Stephanie; Yu, Steven; Ma, Mark; Chirmule, Naren; Jawa, Vibha

    2016-03-01

    The impact of an anti-drug antibody (ADA) response on pharmacokinetic (PK) of a therapeutic protein (TP) requires an in-depth understanding of both PK parameters and ADA characteristics. The ADA and PK bioanalytical assays have technical limitations due to high circulating levels of TP and ADA, respectively, hence, significantly hindering the interpretation of this assessment. The goal of this study was to develop a population-based modeling and simulation approach that can identify a more relevant PK parameter associated with ADA-mediated clearance. The concentration-time data from a single dose PK study using five monoclonal antibodies were modeled using a non-compartmental analysis (NCA), one-compartmental, and two-compartmental Michaelis-Menten kinetic model (MMK). A novel PK parameter termed change in clearance time of the TP (α) derived from the MMK model could predict variations in α much earlier than the time points when ADA could be bioanalytically detectable. The model could also identify subjects that might have been potentially identified as false negative due to interference of TP with ADA detection. While NCA and one-compartment models can estimate loss of exposures, and changes in clearance, the two-compartment model provides this additional ability to predict that loss of exposure by means of α. Modeling data from this study showed that the two-compartment model along with the conventional modeling approaches can help predict the impact of ADA response in the absence of relevant ADA data.

  19. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  20. Kinetic parameters of the GUINEVERE reference configuration in VENUS-F reactor obtained from a pile noise experiment using Rossi and Feynman methods

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, Benoit; Pepino, Alexandra; Blaise, Patrick; Mellier, Frederic [CEA, DEN, DER/SPEx, Cadarache, F-13108 St Paul Lez Durance (France); Lecouey, Jean-Luc [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, 6 Bd. Marechal Juin 14050 Caen cedex (France); Carta, Mario [ENEA, UTFISST-REANUC, C.R. Casaccia, S.P.040 via Anguillarese 301, 00123 S. Maria Di Galeria, Roma (Italy); Kochetkov, Anatoly; Vittiglio, Guido [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, BE-2400, Mol (Belgium); Billebaud, Annick [LPSC, CNRS, IN2P3/UJF/INPG, 53 Avenue des Martyrs, 38026 Grenoble cedex (France)

    2015-07-01

    A pile noise measurement campaign has been conducted by the CEA in the VENUS-F reactor (SCK-CEN, Mol Belgium) in April 2011 in the reference critical configuration of the GUINEVERE experimental program. The experimental setup made it possible to estimate the core kinetic parameters: the prompt neutron decay constant, the delayed neutron fraction and the generation time. A precise assessment of these constants is of prime importance. In particular, the effective delayed neutron fraction is used to normalize and compare calculated reactivities of different subcritical configurations, obtained by modifying either the core layout or the control rods position, with experimental ones deduced from the analysis of measurements. This paper presents results obtained with a CEA-developed time stamping acquisition system. Data were analyzed using Rossi-α and Feynman-α methods. Results were normalized to reactor power using a calibrated fission chamber with a deposit of Np-237. Calculated factors were necessary to the analysis: the Diven factor was computed by the ENEA (Italy) and the power calibration factor by the CNRS/IN2P3/LPC Caen. Results deduced with both methods are consistent with respect to calculated quantities. Recommended values are given by the Rossi-α estimator, that was found to be the most robust. The neutron generation time was found equal to 0.438 ± 0.009 μs and the effective delayed neutron fraction is 765 ± 8 pcm. Discrepancies with the calculated value (722 pcm, calculation from ENEA) are satisfactory: -5.6% for the Rossi-α estimate and -2.7% for the Feynman-α estimate. (authors)

  1. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics

    DEFF Research Database (Denmark)

    Saaby, Lasse; Brodin, Birger

    2017-01-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties...... and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may...... mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate...

  2. The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide

    International Nuclear Information System (INIS)

    He Ping; Greenway, Gillian; Haswell, Stephen J

    2008-01-01

    A simple microfluidic reactor system is described for the effective synthesis of enzyme functionalized nanoparticles which offers many advantages over batch reactions, including excellent enzyme efficiencies. Better control of the process parameters in the microfluidic reactor system over batch based methodology enables the production of silica nanoparticles with the optimum size for efficient enzyme immobilization with long-term stability. The synthetic approach is demonstrated with glucose oxidase (GOD) and two different nucleation catalysts of similar molecular mass: the natural R5 peptide, and polyethylenimine (PEI) polymer. Near-quantitative immobilization of GOD in the nanoparticles is obtained using PEI; the immobilization is attributed to electrostatic interaction between PEI and GOD. This interaction, however, limits the mobility of the immobilized enzyme, producing orientation hindrance of the enzyme's active sites as compared to free GOD in solution. In contrast, when the GOD is immobilized inside the silica nanoparticles using R5, lower enzyme immobilization efficiencies are obtained compared to using PEI polymers; however, similar Michaelis-Menten kinetic parameters (i.e. Michaelis constant and turnover number) to those of free GOD are observed. Reactions were monitored in situ using simple, rapid, separation-free amperometric detection

  3. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  4. Parameter Estimation

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Heitzig, Martina; Cameron, Ian

    2011-01-01

    of optimisation techniques coupled with dynamic solution of the underlying model. Linear and nonlinear approaches to parameter estimation are investigated. There is also the application of maximum likelihood principles in the estimation of parameters, as well as the use of orthogonal collocation to generate a set......In this chapter the importance of parameter estimation in model development is illustrated through various applications related to reaction systems. In particular, rate constants in a reaction system are obtained through parameter estimation methods. These approaches often require the application...... of algebraic equations as the basis for parameter estimation.These approaches are illustrated using estimations of kinetic constants from reaction system models....

  5. Kinetics of improved 1,4-alpha-D-glucan glucohydrolase biosynthesis from a newly isolated Aspergillus oryzae IIB-6 and parameter significance analysis by 2-factorial design.

    Science.gov (United States)

    Fatima, Bilqees; Ali, Sikander

    2012-01-01

    Sixteen different mould cultures viz. Aspergillus, Alternaria, Arthroderma, Trichoderma, Fusarium, Penicillium, Rhizopus and Chochliobolus were isolated from the soil samples of Qatar by serial dilution method. The preliminary screening of isolates was done by selecting initial colonies showing relatively bigger zones of starch hydrolysis on nutrient agar plates. The isolates were then subjected to secondary screening by submerged fermentation (SmF). The 1,4-α-D-glucan glucohydrolase (GGH) activity ranged from 1.906-12.675 U/ml/min. The product yield was analysed in dependence of mycelial morphology, biomass level and protein content. The isolate Aspergillus oryzae llB-6 which gave maximum enzyme production was incubated in M3 medium containing 20 g/l starch, 10 g/l lactose, 8.5 g/l yeast extract, 6 g/l corn steep liquor (CSL), 1.2 g/l MgSO4.7H2O, 1.3 g/l NH4Cl, 0.6 g/l CaCl2.2H2O, pH 5 at 30±2°C and 200 rpm. On the basis of kinetic variables, notably Qp (0.058±0.01(a) U/g/h), Yp/s (0.308±0.03(ab) U/g) and qp (0.210±0.032(abc) U/g fungal biomass/h), A. oryzae IIB-6 was found to be a hyper producer of GGH (LSD 0.0345) compared to A. kawachii IIB-2. A noticeable enhancement in enzyme activity of over 30% was observed (13.917±1.01 U/ml/min) when the process parameters viz. cultural conditions (pH 5, incubation period 72 h) and nutritional requirements (6 g/l CSL, 9.5 g/l yeast extract, 10 g/l starch, 20 g/l lactose) were further optimized using a 2-factorial Plackett-Burman design. The model terms were found to be highly significant (HS, p≤0.05), indicating the potential utility of the culture (dof~3).

  6. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  7. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  8. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  9. Modeling the drug transport in the anterior segment of the eye.

    Science.gov (United States)

    Avtar, Ram; Tandon, Deepti

    2008-10-02

    The aim of the present work is the development of a simple mathematical model for the time course concentration profile of topically administered drugs in the anterior chamber aqueous humor and investigation of the effects of various model parameters on the aqueous humor concentration of lipophilic and hydrophilic drugs. A simple pharmacokinetic model for the transient drug transport in the anterior segment has been developed by using the conservation of mass in the precorneal tear film, Fick's law of diffusion and Michaelis-Menten kinetics of drug metabolism in cornea, and the conservation of mass in the anterior chamber. An analytical solution describing the drug concentration in the anterior chamber has been obtained. The model predicts that an increase in the drug metabolic (consumption) rate in the corneal epithelium reduces the drug concentration in the anterior chamber for both lipophilic and hydrophilic molecules. A decrease in the clearance rate and distribution volume of the drug in the anterior chamber raises the aqueous humor concentration significantly. It is also observed that decay rate of drug concentration in the anterior chamber is higher for lipophilic molecules than that for hydrophilic molecules. The bioavailability of drugs applied topically to the eye may be improved by a rise in the precorneal tear volume, diffusion coefficient in corneal epithelium and distribution coefficient across the endothelium anterior chamber interface, and by reducing the drug metabolism, drug clearance rate and distribution volume in anterior chamber.

  10. Further In-vitro Characterization of an Implantable Biosensor for Ethanol Monitoring in the Brain

    Directory of Open Access Journals (Sweden)

    Gaia Rocchitta

    2013-07-01

    Full Text Available Ethyl alcohol may be considered one of the most widespread central nervous system (CNS depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats. The implanted biosensor, integrated in a low-cost telemetry system, was demonstrated to be a reliable device for the short-time monitoring of exogenous ethanol in brain ECF. In this paper we describe a further in-vitro characterization of the above-mentioned biosensor in terms of oxygen, pH and temperature dependence in order to complete its validation. With the aim of enhancing ethanol biosensor performance, different enzyme loadings were investigated in terms of apparent ethanol Michaelis-Menten kinetic parameters, viz. IMAX, KM and linear region slope, as well as ascorbic acid interference shielding. The responses of biosensors were studied over a period of 28 days. The overall findings of the present study confirm the original biosensor configuration to be the best of those investigated for in-vivo applications up to one week after implantation.

  11. Determination of the kinetic parameters of K{sub 2}Y F{sub 5}: Tb; Determinacion de los parametros cineticos de K{sub 2}Y F{sub 5}: Tb

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.A. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Khaidukov, N.M. [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work the K{sub 2}Y doped materials with percentages of 0.01 and 0.2 of F{sub 5} and, 0.8 and 0.99 of Tb{sup 3+} were studied to determine the kinetic parameters (activation energy and frequency factor) of TL peaks with the purpose of comparing those sensitive qualities of the materials at the doping with TR and their candidacy for tests of TL dosimetry (linearity of the response with the absorbed dose and the reproducibility of the measures of the dose). The samples were irradiated with a beta source of {sup 90} Sr/{sup 90} Y, to ambient temperature, giving its a dose of 236.6 mGy, later the kinetic parameters with different experimental procedures were determined: isothermal decay to ambient temperature and erased of peaks not desired to greater temperature than the ambient. The glow curves (TL curves) were obtained with an TL analyzer Harshaw 4000, with interface to CPU for the handling of the data of the curves, which were treated with the curve form method and the models of: Chen first approach and Chen modified, corrected Lushchik approach and Grossweiner approach, to calculate the kinetic parameters of the sample. (Author)

  12. Application of the exact distribution pj{sub k} in the determination of kinetic parameters in a reactor; Aplicacion de la distribucion exacta p{sub k} a la determinacion de parametros cineticos de un reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alca Ruiz, F

    1982-07-01

    In this report one distribution of neutron counts obtained by a detector placed in a reactor is studied in order to be used in the determination of reactor kinetic parameters such as {beta}/{lambda} and reactivities. The parameters accuracy from this new method is compared with the Feynman and Mogilner method, based too in Reactor Neutron Noise Analysis. These three methods have been applied to JEN-2 reactor and the better accuracy and faster collection of experimental data give some interest to the new method which only requires a good footing code. (Author) 68 refs.

  13. Effect of the Hamiltonian parameters on the hysteresis properties of the kinetic mixed spin (1/2, 1) Ising ferrimagnetic model on a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Batı, Mehmet, E-mail: mehmet.bati@erdogan.edu.tr [Department of Physics, Recep Tayyip Erdoğan University, 53100 Rize (Turkey); Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2017-05-15

    The hysteresis properties of a kinetic mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice are studied by means of the dynamic mean field theory. In the present study, the effects of the nearest-neighbor interaction, temperature, frequency of oscillating magnetic field and the exchange anisotropy on the hysteresis properties of the kinetic system are discussed in detail. A number of interesting phenomena such as the shape of hysteresis loops with one, two, three and inverted-hysteresis/proteresis (butterfly shape hysteresis) have been obtained. Finally, the obtained results are compared with some experimental and theoretical results and a qualitatively good agreement is found.

  14. Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments

    International Nuclear Information System (INIS)

    Francisco Junior, Wilmo E.; Universidade Estadual Paulista; Bevilaqua, Denise; Garcia Junior, Oswaldo

    2009-01-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe 3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  15. Estudo da dissolução oxidativa microbiológica de uma complexa amostra mineral contendo pirita (FeS2, Pirrotita (Fe1-xS e Molibdenita (MoS2 Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2, pyrrotite (Fe1-xS and molybdenite (MoS2

    Directory of Open Access Journals (Sweden)

    Wilmo E. Francisco Jr

    2007-10-01

    Full Text Available This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample.

  16. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2), pyrrotite (Fe1-xS) and molybdenite (MoS2)

    International Nuclear Information System (INIS)

    Francisco Junior, Wilmo E.; Bevilaqua, Denise; Garcia Junior, Oswaldo

    2007-01-01

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  17. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS{sub 2}), pyrrotite (Fe{sub 1-x}S) and molybdenite (MoS{sub 2}); Estudo da dissolucao oxidativa microbiologica de uma complexa amostra mineral contendo pirita (FeS{sub 2}), Pirrotita (Fe{sub 1-x}S) e Molibdenita (MoS{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Junior, Wilmo E.; Bevilaqua, Denise; Garcia Junior, Oswaldo [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica]. E-mail: wilmojr@bol.com.br

    2007-09-15

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  18. Oxidation study of the synthetic sulfides molybdenite (MoS{sub 2}) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments; Estudo da oxidacao dos sulfetos sinteticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Junior, Wilmo E. [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil). Dept. de Quimica; Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica], e-mail: wilmojr@bol.com.br; Bevilaqua, Denise; Garcia Junior, Oswaldo [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica

    2009-07-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe{sup 3+} did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  19. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2 e covelita (CuS por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2 and covellite (CuS by Acidithiobacillus ferrooxidans using respirometric experiments

    Directory of Open Access Journals (Sweden)

    Wilmo E. Francisco Junior

    2009-01-01

    Full Text Available This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.

  20. Simultaneous measurement of glucose transport and utilization in the human brain

    Science.gov (United States)

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  1. Asymptotic value of screening parameter as determined from the one-electron fragment of the kinetic energy or electrostatic potential at the nucleus

    International Nuclear Information System (INIS)

    Teruya, Hirohide; Anno, Tosinobu

    1985-01-01

    Numerical value of lim sub(Z → infinity) delta(i, j)/delta Zsub(i), where (i, j) stands for average interaction energy of a pair of electrons embedded in hydrogenic orbitals (HAO's) is presented for a wide range of HAO's. Data to be presented should be useful to calculate the asymptotic limit of screening effect seen by an electron embedded in a given kind of orbital for an isoelectronic series of atoms as determined from the ''one-electron component'' of the total kinetic energy of or of the electrostatic potential at the nucleus within an atom. (author)

  2. Asymptotic value of screening parameter as determined from the one-electron fragment of the kinetic energy or electrostatic potential at the nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Teruya, Hirohide; Anno, Tosinobu

    1985-09-01

    Numerical value of lim sub(Z ..-->.. infinity) delta(i, j)/delta Zsub(i), where (i, j) stands for average interaction energy of a pair of electrons embedded in hydrogenic orbitals (HAO's) is presented for a wide range of HAO's. Data to be presented should be useful to calculate the asymptotic limit of screening effect seen by an electron embedded in a given kind of orbital for an isoelectronic series of atoms as determined from the ''one-electron component'' of the total kinetic energy of or of the electrostatic potential at the nucleus within an atom.

  3. Determination of kinetic parameters of Fe sup 3+ reduction mediated by a polyaniline film using steady-state and impedance methods

    Energy Technology Data Exchange (ETDEWEB)

    Deslouis, C. (LP15 du CNRS, Physique des Liquides et Electrochimie, Lab. de l' Univ. Pierre et Marie Curie, 75252 Paris Cedex 05 (FR)); Musiani, M.M.; Pagura, C.; Tribollet, C. (Inst. di Polarografia de Elettrochimica Preparativa del CNR, Corso Stati Uniti, 4, 35020 Camin, Padova (IT))

    1991-09-01

    This paper discusses the Fe{sup 3+} reduction reaction studied at Pt and polyaniline rotating disk electrodes by steady-state and impedance methods with the aim of testing the possibility of achieving the charge transfer resistance (R{sub ts}) of a redox reaction mediated by a conducting polymer film by ac impedance R{sub ts} was obtained as a function of electrode potential and rotation rate by nonlinear least squares fitting of a previously developed kinetic equation to the experimental data. These R{sub ts} values were combined with steady-state ones to calculate b{sub c} and k{sup 0}.

  4. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  5. Metabolomics on integrated circuit

    OpenAIRE

    Cheah, Boon Chong; MacDonald, Alasdair I.; Barrett, Michael P.; Cumming, David R.S.

    2017-01-01

    We have demonstrated a chip-based diagnostics tool for the quantification of metabolites, using specific enzymes, to study enzyme kinetics and calculate the Michaelis-Menten constant. An array of 256×256 ion-sensitive field effect transistors (ISFETs) fabricated in a complementary metal oxide semiconductor (CMOS) process is used for this prototype. We have used hexokinase enzyme reaction on the ISFET CMOS chip with glucose concentration in the physiological range of 0.05 mM – 231 mM and succe...

  6. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Science.gov (United States)

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  7. Determination of kinetic parameters in Tl dosemeters of LiF: Mg, Cu, P + PTFE developed in the ININ; Determinacion de parametros cineticos en dosimetros Tl de LiF: Mg, Cu, P + PTFE desarrollados en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Basurto G, B.S

    2002-07-01

    The objective of this work, is the one of determining the kinetic parameters of the dosemeter of LiF: Mg, Cu, P + Ptfe; starting from the curves Tl obtained at being irradiated with alpha radiation ({alpha}), beta ({beta}) and gamma ({gamma}). As like to compare its sensitivity with each radiation type, considering the sensitivity of the TLD-100 as the unit. In the Chapter 1, the fundamental structure of the matter is described, making emphasis in the different radiation types, and their interaction with this. In the Chapter 2, the units are described but used in the dosimetry of the radiation. In the Chapter 3, the basic concepts of the phenomenon of Tl are described and those are explained characteristic of the deconvolution method to determine the kinetics of the one phenomenon. In the Chapter 4, the methodology is detailed that was used in the elaboration of this thesis work, describing the material Tl that were considered like reference, as well as the sources of ionizing radiation, with those that the dosemeters were irradiated and the equipment in the one that the curves Tl was obtained. Reference is made to the software used to carry out the deconvolution of the curves Tl that were obtained in the one experimental development. In the Chapter 5, the obtained results of this study are presented, showing the tables of homogenization of dosemeters and the reading of the same one; they are observed the curves Tl obtained to different radiation doses (alpha, beta and gamma), the intensity Tl in function of the dose. Also they are tabulated, the obtained results in the kinetic parameters of the three different study materials (TLD-100H, USA; TLD-100, USA and LiF: Mg, Cu, P + Ptfe developed in the l.N.l.N). They are analyzed shortly for each material Tl their sensitivity to the ionizing radiation as well as their kinetic parameters. The obtained results showed that the Tl dosemeters of LiF: Mg,Cu,P + Ptfe, they presented a bigger sensitivity that the TLD-100 when

  8. Kinetic Rate Law Parameter Measurements on a Borosilicate Waste Glass: Effect of Temperature, pH, and Solution Composition on Alkali Ion Exchange

    International Nuclear Information System (INIS)

    Pierce, Eric M.; McGrail, B PETER.; Icenhower, J P.; Rodriguez, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2004-01-01

    The reaction kinetics of glass is controlled by matrix dissolution and ion exchange (IEX). Dissolution of an alkali-rich simulated borosilicate waste glass was investigated using single-pass flow-through (SPFT) experiments. Experiments were conducted as a function of temperature, pH, and solution composition by varying the SiO 2 (aq) activity in the influent solution. Results showed that under dilute conditions matrix dissolution increased with increasing pH and temperature, and decreased with increasing SiO 2 (aq) activity. IEX rates decreased with increasing pH and temperature, and increased with increasing SiO 2 (aq) activity. Over the solution composition range interrogated in this study the dominant dissolution mechanism changed from matrix dissolution to IEX. These results suggest that ''secondary'' reactions may become dominant under certain environmental conditions and emphasize the need to incorporate these reactions into dissolution rate models

  9. THERMODYNAMIC AND KINETIC PARAMETERS OF MIXTURES DESULFURIZING THE MADE WITH CaO, MgO, SiO2 AND CaF2

    Directory of Open Access Journals (Sweden)

    Felipe Nylo de Aguiar

    2012-09-01

    Full Text Available This paper presents an analysis of the kinetics and thermodynamics of marble residue mixtures utilisation on desulfurization of pig iron. The desulfurization was carried out using lime, marble residue, fluorite and pig iron. Different mixtures of these materials were added into a bath of pig iron at 1,450°C. Metal samples were collected via vacuum samplers at times of 5, 10, 15, 20 and 30 minutes, in order to check the variation of sulfur content. Based on the results of chemical analysis of the metal and the desulfurizer mixture, the sulfide capacity of mixtures, the sulfur partition coefficient and the sulfur mass transport coefficient values were calculated.The results show the technical feasibility of using marble waste as desulfurizer agent.

  10. Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. I.; Homoki, Z. T. [Uzhgorod National University (Ukraine); Kalyuzhnaya, A. G.; Shchedrin, A. I. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2011-03-15

    A kinetic model of the processes occurring in the plasma of a high-power low-pressure gas-discharge lamp is presented, and the output characteristics of the lamp are described. The lamp is excited by a longitudinal glow discharge and emits the I{sub 2}(D Prime -A Prime ) 342-nm and XeI(B-X) 253-nm bands and the 206.2-nm spectral line of atomic iodine. When the emitter operates in a sealed-off mode on the p(He): p(Xe): p(I{sub 2}) = 400: 120: (100-200) Pa mixture, the fractions of the UV radiation power of iodine atoms, exciplex molecules of xenon iodide, and iodine molecules comprise 55, 10, and 35%, respectively. At the optimal partial pressure, the maximum total radiation power of the lamp reaches 37 W, the energy efficiency being about 15%.

  11. Metronidazole removal in powder-activated carbon and concrete-containing graphene adsorption systems: Estimation of kinetic, equilibrium and thermodynamic parameters and optimization of adsorption by a central composite design.

    Science.gov (United States)

    Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan

    2017-12-06

    Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.

  12. Effect of kinetic parameters on simultaneous ramp reactivity insertion plus beam tube flooding accident in a typical low enriched U{sub 3}Si{sub 2}-Al fuel-based material testing reactor-type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Rubina; Mirza, Nasir M. [Dept. of, Physics, Air University, Islamabad (Pakistan); Mirza, Sikander M. [Dept. of, Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Post Office Nilore, Islamabad (Pakistan)

    2017-06-15

    This work looks at the effect of changes in kinetic parameters on simultaneous reactivity insertions and beam tube flooding in a typical material testing reactor-type research reactor with low enriched high density (U{sub 3}Si{sub 2}-Al) fuel. Using a modified PARET code, various ramp reactivity insertions (from $0.1/0.5 s to $1.3/0.5 s) plus beam tube flooding ($0.5/0.25 s) accidents under uncontrolled conditions were analyzed to find their effects on peak power, net reactivity, and temperature. Then, the effects of changes in kinetic parameters including the Doppler coefficient, prompt neutron lifetime, and delayed neutron fractions on simultaneous reactivity insertion and beam tube flooding accidents were analyzed. Results show that the power peak values are significantly sensitive to the Doppler coefficient of the system in coupled accidents. The material testing reactor-type system under such a coupled accident is not very sensitive to changes in the prompt neutron life time; the core under such a coupled transient is not very sensitive to changes in the effective delayed neutron fraction.

  13. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.

    Science.gov (United States)

    Thorn, Graeme J; King, John R

    2016-01-01

    The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.

    Science.gov (United States)

    Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R

    2009-12-01

    A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.

  15. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Directory of Open Access Journals (Sweden)

    Andrea Ciliberto

    2007-03-01

    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  16. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  17. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  18. Kinetic parameters as determinants of vertical jump performance. DOI: 10.5007/1980-0037.2012v14n1p41

    Directory of Open Access Journals (Sweden)

    Saray Giovana dos Santos

    2012-01-01

    Full Text Available The aim of this study was to identify force and velocity parameters related to vertical jump performance in counter movement jump (CMJ and squat jump (SJ, and to compare these parameters between sprint runners and volleyball players. Twenty-four male athletes (12 regional/national-level sprint runners and 12 national-level volleyball players participated in this study. The athletes performed CMJ and SJ on a force platform. The following variables were analyzed: jump performance (jump height and power, peak velocity (PV, absolute and relative maximum force (Fmax, rate of force development (RFD, and time to reach maximum force (TFmax. In CMJ, jump height was correlated with PV (r=0.97 and normalized Fmax (r=0.47, whereas jump power was significantly correlated with all variables, except for Fmax (r=0.12. In SJ, PV and normalized Fmax were significantly correlated with jump height (r=0.95 and r=0.51, respectively and power (r=0.80 and r=0.87, respectively. In addition, TFmax was inversely correlated with power (r=-0.49. Runners presented higher performance variables (height and power, normalized Fmax and PV than volleyball players in both CMJ and SJ. In conclusion, velocity and maximum force were the main determinants of height and power in the two types of vertical jump. However, explosive force (RFD and TFmax was also important for power production in vertical jumps. Finally, runners presented a better vertical jump performance than volleyball players.

  19. Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks

    Science.gov (United States)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2011-11-01

    It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.

  20. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  1. The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in α-Al{sub 2}O{sub 3}:C,Mg

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, J.M.; Chithambo, M.L., E-mail: m.chithambo@ru.ac.za

    2017-03-01

    Highlights: • Influence of dose on thermoluminescence features of α-Al{sub 2}O{sub 3}:C,Mg have been studied. • Kinetic parameters of the main peak are independent of dose (0.1–100 Gy). • Dose response of the main peak: 0.1–30 Gy, superlinear; 30–100 Gy, sublinear. • Fading of the main peak: ∼22% within 2400 s. • Reproducibility: coefficient of variation in the results of 10 re-cycles: >0.071%. - Abstract: The influence of dose (0.1–100 Gy) on the kinetic parameters and the dosimetric features of the main glow peak of α-Al{sub 2}O{sub 3}:C,Mg have been investigated. Thermoluminescence (TL) measured at 1 °C/s shows a very high intensity glow peak at 161 °C and six secondary peaks at 42, 72, 193, 279, 330, 370 °C respectively. Analysis shows that the main peak follows first order kinetics irrespective of the irradiation dose. The activation energy is found to be consistent at 1.37 eV and the frequency factor is of the order of 10{sup 14} s{sup −1} for any dose between 0.1 and 100 Gy. Further, the analysis for thermal quenching of the main peak of 0.1 Gy irradiated sample shows that the activation energy for thermal quenching is (0.94 ± 0.04) eV. Regarding the dosimetric features of α-Al{sub 2}O{sub 3}:C,Mg, the dose response of the main peak is superlinear within 0.1 to 30 Gy of beta dose and then it becomes sublinear up to 100 Gy. Fading analysis shows that the intensity of the main peak drops to ∼22% of its initial value within 2400 s after irradiation and thereafter to ∼14% within 64,800 s. Analysis of the reproducibility shows that the coefficient of variation in the results for 10 identical TL measurements show that reproducibility improves with increase in dose.

  2. Use of inverse modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-fed corn production systems.

    Directory of Open Access Journals (Sweden)

    Hoyoung Kwon

    Full Text Available We evaluated the accuracy and precision of the CENTURY soil organic matter model for predicting soil organic carbon (SOC sequestration under rainfed corn-based cropping systems in the US. This was achieved by inversely modeling long-term SOC data obtained from 10 experimental sites where corn, soybean, or wheat were grown with a range of tillage, fertilization, and organic matter additions. Inverse modeling was accomplished using a surrogate model for CENTURY's SOC dynamics sub-model wherein mass balance and decomposition kinetics equations from CENTURY are coded and solved by using a nonlinear regression routine of a standard statistical software package. With this approach we generated statistics of CENTURY parameters that are associated with the effects of N fertilization and organic amendment on SOC decay, which are not as well quantified as those of tillage, and initial status of SOC. The results showed that the fit between simulated and observed SOC prior to inverse modeling (R2 = 0.41 can be improved to R2 = 0.84 mainly by increasing the rate of SOC decay up to 1.5 fold for the year in which N fertilizer application rates are over 200 kg N ha-1. We also observed positive relationships between C inputs and the rate of SOC decay, indicating that the structure of CENTURY, and therefore model accuracy, could be improved by representing SOC decay as Michaelis-Menten kinetics rather than first-order kinetics. Finally, calibration of initial status of SOC against observed levels allowed us to account for site history, confirming that values should be adjusted to account for soil condition during model initialization. Future research should apply this inverse modeling approach to explore how C input rates and N abundance interact to alter SOC decay rates using C inputs made in various forms over a wider range of rates.

  3. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  4. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  5. Studies on the effect of different operational parameters on the crystallization kinetics of α-lactose monohydrate single crystals in aqueous solution

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2014-09-01

    Supersaturation dependent nucleation, size and morphology of alpha-lactose monohydrate (α-LM) crystals from aqueous solution were investigated by adopting two different crystallization methods, slow evaporation and fast evaporation, in the supersaturation range between σ=0.05 and 1.30. The induction period of nucleation is comparatively long in case of slow evaporation and is very short in case of fast evaporation process as the interconversion between α-L and β-L is uncontrollable in the former and is under control in the latter case. Moreover α-LM crystals with tomahawk morphology were obtained throughout the supersaturation range by slow evaporation method whereas crystals with tomahawk, triangular and needle-like morphologies were obtained in supersaturation ranges σ=0.05-0.5, σ=0.5-0.9 and σ=0.9-1.30 respectively by fast evaporation method. Experimentally observed nucleation parameters were verified with theoretically deuced values. It is realized that the fast evaporation method employed in the present study is found to be highly efficient in controlling the interconversion between α-L and β-L as well as in suppressing the inhibitory activity of β molecule on the nucleation and growth of α-LM crystals when compared to conventional slow evaporation method and is successful in producing the industrially preferred needle-like crystals at high supersaturation ranges.

  6. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  7. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  8. Different Mechanisms of Soil Microbial Response to Global Change Result in Different Outcomes in the MIMICS-CN Model

    Science.gov (United States)

    Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.

    2017-12-01

    Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric

  9. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree; Crowell, Susan R.; Corley, Richard A.

    2017-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase I metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 µM), and higher intrinsic clearance at lower substrate concentrations (<0.07 µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.

  10. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Science.gov (United States)

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  11. Predictive value of modeled AUC(AFP-hCG), a dynamic kinetic parameter characterizing serum tumor marker decline in patients with nonseminomatous germ cell tumor.

    Science.gov (United States)

    You, Benoit; Fronton, Ludivine; Boyle, Helen; Droz, Jean-Pierre; Girard, Pascal; Tranchand, Brigitte; Ribba, Benjamin; Tod, Michel; Chabaud, Sylvie; Coquelin, Henri; Fléchon, Aude

    2010-08-01

    The early decline profile of alpha-fetoprotein (AFP) and human chorionic gonadotropin (hCG) in patients with nonseminomatous germ cell tumors (NSGCT) treated with chemotherapy may be related to the risk of relapse. We assessed the predictive values of areas under the curve of hCG (AUC(hCG)) and AFP (AUC(AFP)) of modeled concentration-time equations on progression-free survival (PFS). Single-center retrospective analysis of hCG and AFP time-points from 65 patients with IGCCCG intermediate-poor risk NSGCT treated with 4 cycles of bleomycin-etoposide-cisplatin (BEP). To determine AUC(hCG) and AUC(AFP) for D0-D42, AUCs for D0-D7 were calculated using the trapezoid rule and AUCs for D7-D42 were calculated using the mathematic integrals of equations modeled with NONMEM. Combining AUC(AFP) and AUC(hCG) enabled us to define 2 predictive groups: namely, patients with favorable and unfavorable AUC(AFP-hCG). Survival analyses and ROC curves assessed the predictive values of AUC(AFP-hCG) groups regarding progression-free survival (PFS) and compared them with those of half-life (HL) and time-to-normalization (TTN). Mono-exponential models best fit the patterns of marker decreases. Patients with a favorable AUC(AFP-hCG) had a significantly better PFS (100% vs 71.5%, P = .014). ROC curves confirmed the encouraging predictive accuracy of AUC(AFP-hCG) against HL or TTN regarding progression risk (ROC AUCs = 79.6 vs 71.9 and 70.2 respectively). Because of the large number of patients with missing data, multivariate analysis could not be performed. AUC(AFP-hCG) is a dynamic parameter characterizing tumor marker decline in patients with NSGCT during BEP treatment. Its value as a promising predictive factor should be validated. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  13. Experimental validation of a kinetic multi-component mechanism in a wide HCCI engine operating range for mixtures of n-heptane, iso-octane and toluene: Influence of EGR parameters

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2008-01-01

    The parameters that are present in exhaust gas recirculation (EGR) are believed to provide an important contribution to control the auto-ignition process of the homogeneous charge compression ignition (HCCI) in an engine. For the investigation of the behaviour of the auto-ignition process, a kinetic multi-component mechanism has been developed in former work, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene. This paper presents an experimental validation of this mechanism, comparing the calculated pressure, heat release, ignition delays and CO 2 emissions with experimental data performed on a HCCI engine. The validation is performed in a broad range of EGR parameters by varying the dilution by N 2 and CO 2 from 0 to 46 vol.%, changing the EGR temperature from