Sample records for michaelis-menten kinetic model

  1. Relation between pulmonary clearance and particle burden: a Michaelis-Menten-like kinetic model.

    Yu, R. C.; Rappaport, S.M.


    OBJECTIVES: To test the validity of a Michaelis-Menten-like kinetic model of pulmonary clearance of insoluble dusts. METHODS: Data were investigated from studies of pulmonary clearance in F344 rats exposed to antimony trioxide (Sb2O3), photocopy test toner, polyvinyl chloride powder (PVC), and diesel exhaust particles. The Michaelis-Menten-like model was used to develop a relation in which the pulmonary clearance half time was a linear function of lung burden. After combining all data, linear...

  2. Extending the kinetic solution of the classic Michaelis-Menten model of enzyme action

    BISPO, Jose Ailton Conceicao; Bonafe, Carlos Francisco Sampaio; SOUZA, Volnei Brito de; SILVA, Joao Batista de Almeida e; CARVALHO, Giovani Brandao Mafra de


    The principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K (M) ) and the maximum velocity of reaction (V (max) ). Subsequently, a detailed treatment of the mechanisms ...

  3. On the relationships between the Michaelis-Menten kinetics, reverse Michaelis-Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    Tang, J. Y


      The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would...

  4. One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach.

    Tang, Sanyi; Xiao, Yanni


    The purpose of this article is to provide the analytical solutions of one-compartment models with Michaelis-Menten elimination kinetics for three different inputs (single intravenous dose, multiple-dose bolus injection and constant). All analytical solutions obtained in present paper can be described by the well defined Lambert W function which can be easily implemented in most mathematical softwares such as Matlab and Maple. These results will play an important role in fitting the Michaelis-Menten parameters and in designing a dosing regimen to maintain steady-state plasma concentrations. In particular, the analytical periodic solution for multi-dose inputs is also given, and we note that the maximum and minimum values of the periodic solution depends on the Michaelis-Menten parameters, dose and time interval of drug administration. In practice, it is important to maintain a concentration above the minimum therapeutic level at all times without exceeding the minimum toxic concentration. Therefore, the one-compartment model with therapeutic window is proposed, and further the existence of periodic solution, analytical expression and its period are analyzed. The analytical formula of period plays a key role in designing a dose regimen to maintain the plasma concentration within a specified range over long periods of therapy. Finally, the completely analytical solution for the constant input rate is derived and discussed which depends on the relations between constant input rate and maximum rate of change of concentration.

  5. Non-cyclic Geometric Phase In Stochastic Processes: Corrections To Michaelis-menten Kinetics And Applications To A Cell Growth Model

    Sinitsyn, Nikolai A [Los Alamos National Laboratory


    We generalize the concept of the geometric phase in stochastic kinetics to a noncyclic evolution. Its application is demonstrated on kinetics of the Michaelis-Menten reaction. It is shown that the noncyclic geometric phase is responsible for the correction to the Michaelis-Menten law when parameters, such as a substrate concentration, are changing with time. We also discuss a model, where this correction qualitatively changes the outcome of reaction kinetics.

  6. Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function

    Wong, Weng Kee; Melas, Viatcheslav B.; Dette, Holger


    We construct efficient designs for the Michaelis-Menten enzyme kinetic model capable of checking model assumption. An extended model, called EMAX model is also considered for this purpose. This model is widely used in pharmacokinetics and reduces to the Michaelis- Menten model for a specific choice of the parameter setting. Our strategy is to find efficient designs for estimating the parameters in the EMAX model and at the same time test the validity of the Michaelis-Menten model against the ...

  7. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.

    Costa, Rafael S; Machado, Daniel; Rocha, Isabel; Ferreira, Eugénio C


    The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis-Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action, convenience kinetics, lin-log and power-law). Using the mechanistic model for Escherichia coli central carbon metabolism as a benchmark, we investigate the alternative modeling approaches through comparative simulations analyses. The good dynamic behavior and the powerful predictive capabilities obtained using the hybrid model composed of Michaelis-Menten and the approximate lin-log kinetics indicate that this is a possible suitable approach to model complex large-scale networks where the exact rate laws are unknown. 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Michaelis-Menten Kinetics in Transient State: Proposal for Reversible Inhibition Model and its Application on Enzymatic Hydrolysis of Disaccharides

    André Rosa Martins


    Full Text Available The enzymatic processes according Michaelis-Menten kinetics have been studied from various approaches to describe the inhibition state. Proposals for inhibition were compared from a generic process, where kinetic constants have received unitary values, and the numeric value of the concentration of substrate was ten (10 times higher than the numerical value of the concentration of enzyme. For each inhibition model proposed, numerical solutions were obtained from nonlinear system of ordinary differential equations, generating results presents by graphs showing the variation of the enzyme and enzyme complexes, also the variation of substrate and product of the reaction. Also, was designed a model with performance, indicating similar behavior to that seen in the Michaelis-Menten kinetics, where complex of reaction is rapidly formed and throughout the process, tends to decay to zero. Thus, in this new proposed model, the effect of inhibition starts at zero and, throughout the process, tends to the nominal value of the initial enzyme concentration. Such responses have proved to be valid for different values of enzyme concentration and process time, showing robustness. The proposed model was applied to the hydrolysis of disaccharides, providing a setting with conservation of mass of the model at the end of the process regarding the responses of the carbohydrate concentration.

  9. Oscillatory enzyme reactions and Michaelis-Menten kinetics.

    Goldbeter, Albert


    Oscillations occur in a number of enzymatic systems as a result of feedback regulation. How Michaelis-Menten kinetics influences oscillatory behavior in enzyme systems is investigated in models for oscillations in the activity of phosphofructokinase (PFK) in glycolysis and of cyclin-dependent kinases in the cell cycle. The model for the PFK reaction is based on a product-activated allosteric enzyme reaction coupled to enzymatic degradation of the reaction product. The Michaelian nature of the product decay term markedly influences the period, amplitude and waveform of the oscillations. Likewise, a model for oscillations of Cdc2 kinase in embryonic cell cycles based on Michaelis-Menten phosphorylation-dephosphorylation kinetics shows that the occurrence and amplitude of the oscillations strongly depend on the ultrasensitivity of the enzymatic cascade that controls the activity of the cyclin-dependent kinase. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model.

    Houston, J B; Kenworthy, K E


    Strategies for the prediction of in vivo drug clearance from in vitro drug metabolite kinetic data are well established for the rat. In this animal species, metabolism rate-substrate concentration relationships can commonly be described by the classic hyperbola consistent with the Michaelis-Menten model and simple scaling of the parameter intrinsic clearance (CL(int) - the ratio of V(max) to K(m)) is particularly valuable. The in vitro scaling of kinetic data from human tissue is more complex, particularly as many substrates for cytochrome P450 (CYP) 3A4, the dominant human CYP, show nonhyperbolic metabolism rate-substrate concentration curves. This review critically examines these types of data, which require the adoption of an enzyme model with multiple sites showing cooperative binding for the drug substrate, and considers the constraints this kinetic behavior places on the prediction of in vivo pharmacokinetic characteristics, such as metabolic stability and inhibitory drug interaction potential. The cases of autoactivation and autoinhibition are discussed; the former results in an initial lag in the rate-substrate concentration profile to generate a sigmoidal curve whereas the latter is characterized by a convex curve as V(max) is not maintained at high substrate concentrations. When positive cooperativity occurs, we suggest the use of CL(max), the maximal clearance resulting from autoactivation, as a substitute for CL(int). The impact of heteroactivation on this approach is also of importance. In the case of negative cooperativity, care in using the V(max)/K(m) approach to CL(int) determination must be taken. Examples of substrates displaying each type of kinetic behavior are discussed for various recombinant CYP enzymes, and possible artifactual sources of atypical rate-concentration curves are outlined. Finally, the consequences of ignoring atypical Michaelis-Menten kinetic relationships are examined, and the inconsistencies reported for both different

  11. Amyloid-like fibril elongation follows michaelis-menten kinetics

    Milto, Katazyna; Botyriute, Akvile; Smirnovas, Vytautas


    ... are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation...

  12. On the reducible character of Haldane-Radić enzyme kinetics to conventional and logistic Michaelis-Menten models.

    Putz, Mihai V


    The conceptual and practical issues regarding the reduction of the Haldane-Radić enzymic mechanism, specific for cholinesterase kinetics, to the consecrated or logistically modified Michaelis-Menten kinetics, specific for some mutant enzymes, are here clarified as due to the limited initial substrate concentration, through detailed initial rate and progress curve analysis, even when other classical conditions for such equivalence are not entirely fulfilled.

  13. On the Reducible Character of Haldane-Radić Enzyme Kinetics to Conventional and Logistic Michaelis-Menten Models

    Mihai V. Putz


    Full Text Available The conceptual and practical issues regarding the reduction of the Haldane-Radić enzymic mechanism, specific for cholinesterase kinetics, to the consecrated or logistically modified Michaelis-Menten kinetics, specific for some mutant enzymes, are here clarified as due to the limited initial substrate concentration, through detailed initial rate and progress curve analysis, even when other classical conditions for such equivalence are not entirely fulfilled.

  14. Simultaneous modelling of the Michaelis-Menten kinetics of paracetamol sulphation and glucuronidation.

    Reith, David; Medlicott, Natalie J; Kumara De Silva, Rohana; Yang, Lin; Hickling, Jeremy; Zacharias, Mathew


    1. The aim of the present study was to perform an in vivo estimation of the Michaelis-Menten constants of the major metabolic pathways of paracetamol (APAP). 2. A two-occasion, single-dose cross-over trial was performed using 60 and 90 mg/kg doses of APAP in healthy patients undergoing third molar dental extraction. Plasma samples were collected over 24 h and urine was collected for 8 h after dosing. Twenty patients were enrolled in the study and complete data for plasma and urine were available for both doses for 13 volunteers who were included in the analysis; seven of the volunteers were men, the median age (range) was 22 years (19-31) and the median weight (range) was 68 kg (50-86). 3. The mean (95% CI) k(m) for APAP glucuronidation was 6.89 mmol/L (3.57-10.22) and the V(max) was 0.97 mmol/h per kg (0.65-1.28). The k(m) for APAP sulphation was 0.097 mmol/L (0.041-0.152) and the V(max) was 0.011 mmol/h per kg (0.009-0.013). For the combined excretion of APAP-cysteine and APAP-mercapturate, the k(m) was 0.303 mmol/L (0.131-0.475) and the V(max) was 0.004 mmol/h per kg (0.002-0.005). 4. The estimates for in vivo Michaelis-Menten constants for APAP glucuronidation and sulphation were in the order of those reported previously using in vitro methods.

  15. Time-dependent corrections to effective rate and event statistics in Michaelis-Menten kinetics

    Sinitsyn, N. A.; Nemenman, I.


    We generalize the concept of the geometric phase in stochastic kinetics to a noncyclic evolution. Its application is demonstrated on kinetics of the Michaelis-Menten reaction. It is shown that the nonperiodic geometric phase is responsible for the correction to the Michaelis-Menten law when parameters, such as a substrate concentration, are changing with time. We apply these ideas to a model of chemical reactions in a bacterial culture of a growing size, where the geometric correction qualita...

  16. A note on the reverse Michaelis-Menten kinetics

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL


    We theoretically derive a general equation describing the enzyme kinetics that can be further simplified to the typical Michaelis-Menten (M-M) kinetics and the reverse M-M equation (RM-M) proposed by Schimel and Weintraub (2003). We discuss the conditions under which the RM-M is valid with this theoretical derivation. These conditions are contrary to the assumptions of Schimel and Weintraub (2003) and limit the applicability of the model in field soil environments. Nonetheless, Schimel and Weintraub s RM-M model is useful and has the ability to produce a non-linear response of SOM decomposition to enzyme concentration consistent with observations. Regardless of the theoretical basis, if we assume that the M-M and the RM-M could be equivalent, our sensitivity analysis indicates that enzyme plays a more sensitive role in the M-M kinetics compared with in the RM-M kinetics.

  17. Non-Michaelis-Menten kinetics model for conductance of low-conductance potassium ion channels.

    Tolokh, Igor S; Tolokh, Illya I; Cho, Hee Cheol; D'Avanzo, Nazzareno; Backx, Peter H; Goldman, Saul; Gray, C G


    A reduced kinetics model is proposed for ion permeation in low-conductance potassium ion channels with zero net electrical charge in the selectivity filter region. The selectivity filter is assumed to be the only conductance-determining part of the channel. Ion entry and exit rate constants depend on the occupancy of the filter due to ion-ion interactions. The corresponding rates are assumed slow relative to the rates of ion motion between binding sites inside the filter, allowing a reduction of the kinetics model of the filter by averaging the entry and exit rate constants over the states with a particular occupancy number. The reduced kinetics model for low-conductance channels is described by only three states and two sets of effective rate constants characterizing transitions between these states. An explicit expression for the channel conductance as a function of symmetrical external ion concentration is derived under the assumption that the average electrical mobility of ions in the selectivity filter region in a limited range of ion concentrations does not depend on these concentrations. The simplified conductance model is shown to provide a good description of the experimentally observed conductance-concentration curve for the low-conductance potassium channel Kir2.1, and also predicts the mean occupancy of the selectivity filter of this channel. We find that at physiological external ion concentrations this occupancy is much lower than the value of two ions observed for one of the high-conductance potassium channels, KcsA.

  18. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Bassingthwaighte, James B.; Chinn, Tamara M.


    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  19. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Bassingthwaighte, James B.; Chinn, Tamara M.


    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  20. Optimal designs for Michaelis-Menten kinetic studies.

    Matthews, J N S; Allcock, G C


    Many reactions in enzymology are governed by the Michaelis-Menten equation. Characterising these reactions requires the estimation of the parameters K(M) and V(max) which determine the Michaelis-Menten equation and this is done by observing rates of reactions at a set of substrate concentrations. The choice of substrate concentrations is investigated by determining Bayesian D-optimal designs for a model in which residuals have a normal distribution with constant variance. Designs which focus on alternative quantities, such as K(M) or the ratio V(max)/K(M) are also considered. The effect on the optimal designs of alternative error distributions is also considered.

  1. Amyloid-like fibril elongation follows michaelis-menten kinetics.

    Milto, Katazyna; Botyriute, Akvile; Smirnovas, Vytautas


    A number of proteins can aggregate into amyloid-like fibrils. It was noted that fibril elongation has similarities to an enzymatic reaction, where monomers or oligomers would play a role of substrate and nuclei/fibrils would play a role of enzyme. The question is how similar these processes really are. We obtained experimental data on insulin amyloid-like fibril elongation at the conditions where other processes which may impact kinetics of fibril formation are minor and fitted it using Michaelis-Menten equation. The correlation of the fit is very good and repeatable. It speaks in favour of enzyme-like model of fibril elongation. In addition, obtained [Formula: see text] and [Formula: see text] values at different conditions may help in better understanding influence of environmental factors on the process of fibril elongation.

  2. Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics.

    Ristenpart, William D; Wan, Jiandi; Stone, Howard A


    Kinetic rate constants for enzymatic reactions are typically measured with a series of experiments at different substrate concentrations in a well-mixed container. Here we demonstrate a microfluidic technique for measuring Michaelis-Menten rate constants with only a single experiment. Enzyme and substrate are brought together in a coflow microfluidic device, and we establish analytically and numerically that the initial concentration of product scales with the distance x along the channel as x5/2. Measurements of the initial rate of product formation, combined with the quasi-steady rate of product formation further downstream, yield the rate constants. We corroborate the x5/2 scaling result experimentally using the bioluminescent reaction between ATP and luciferase/luciferin as a model system.

  3. Michaelis-Menten kinetics under non-isothermal conditions.

    Lervik, Anders; Kjelstrup, Signe; Qian, Hong


    We extend the celebrated Michaelis-Menten kinetics description of an enzymatic reaction taking into consideration the presence of a thermal driving force. A coupling of chemical and thermal driving forces is expected from the principle of non-equilibrium thermodynamics, and specifically we obtain an additional term to the classical Michaelis-Menten kinetic equation, which describes the coupling in terms of a single parameter. A companion equation for the heat flux is also derived, which actually can exist even in the absence of a temperature difference. Being thermodynamic in nature, this result is general and independent of the detailed mechanism of the coupling. Conditions for the experimental verification of the new equation are discussed.

  4. Explicit reformulations of the Lambert W-omega function for calculations of the solutions to one-compartment pharmacokinetic models with Michaelis-Menten elimination kinetics.

    Goličnik, Marko


    The exact closed-form solutions to the integrated rate equations for one-compartment pharmacokinetic models that obey Michaelis-Menten elimination kinetics were derived recently (Tang and Xiao in J Pharmacokin Pharmacodyn 34:807-827, 2007). These solutions are expressed in terms of the Lambert W(x)-omega function; however, unfortunately, most of the available computer programs are not set up to handle equations that involve the W(x) function. Therefore, in this article, I provide alternative explicit analytical equations expressed in terms of elementary mathematical functions that accurately approximate exact solutions and can be simply calculated using any optional standard software.

  5. Time-dependent corrections to effective rate and event statistics in Michaelis-Menten kinetics.

    Sinitsyn, N A; Nemenman, I


    The authors generalise the concept of the geometric phase in stochastic kinetics to a non-cyclic evolution. Its application is demonstrated on kinetics of the Michaelis-Menten reaction. It is shown that the non-periodic geometric phase is responsible for the correction to the Michaelis-Menten law when parameters, such as a substrate concentration, are changing with time. The authors apply these ideas to a model of chemical reactions in a bacterial culture of a growing size, where the geometric correction qualitatively changes the outcome of the reaction kinetics.

  6. Introducing Michaelis-Menten Kinetics through Simulation

    Halkides, Christopher J.; Herman, Russell


    We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…

  7. Introducing Michaelis-Menten Kinetics through Simulation

    Halkides, Christopher J.; Herman, Russell


    We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…

  8. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis-Menten Equation.

    Piephoff, D Evan; Wu, Jianlan; Cao, Jianshu


    In a conformational nonequilibrium steady state (cNESS), enzyme turnover is modulated by the underlying conformational dynamics. On the basis of a discrete kinetic network model, we use an integrated probability flux balance method to derive the cNESS turnover rate for a conformation-modulated enzymatic reaction. The traditional Michaelis-Menten (MM) rate equation is extended to a generalized form, which includes non-MM corrections induced by conformational population currents within combined cyclic kinetic loops. When conformational detailed balance is satisfied, the turnover rate reduces to the MM functional form, explaining its general validity. For the first time, a one-to-one correspondence is established between non-MM terms and combined cyclic loops with unbalanced conformational currents. Cooperativity resulting from nonequilibrium conformational dynamics can be achieved in enzymatic reactions, and we provide a novel, rigorous means of predicting and characterizing such behavior. Our generalized MM equation affords a systematic approach for exploring cNESS enzyme kinetics.

  9. Michaelis-Menten kinetics of stiripentol in normal humans.

    Levy, R H; Loiseau, P; Guyot, M; Blehaut, H M; Tor, J; Moreland, T A


    Michaelis-Menten kinetic parameters for stiripentol, and anticonvulsant, were assessed in six normal volunteers. Stiripentol was administered orally three times a day in dosage increments of 600, 1,200, and 1,800 mg/day for consecutive periods of 3, 4, and 7 days, respectively. Stiripentol steady-state levels at the three dosing rates increased more than proportionally with dose. The mean +/- SD oral clearance of stiripentol at 600 mg/day (1,090 +/- 624 L/day) was significantly greater (p less than 0.01) than at 1,200 (506 +/- 219 L/day) or 1,800 (405 +/- 151 L/day) mg/day. Average steady-state concentrations predicted from individually determined Vm and Km parameters were in good agreement with experimentally observed levels, indicating that the kinetics of stiripentol are of the Michaelis-Menten type. The mean Vm, Km, and Vm/Km ratio were 2,299 +/- 490 mg/day, 2.20 +/- 1.28 mg/L, and 1,241 +/- 837 L/day, respectively. Neuropsychological tests carried out before and after 14 days of stiripentol treatment showed a significant decline in verbal learning ability (p = 0.038) and a significant improvement in a test of memory and attention (p less than 0.01).

  10. An innovative lattice Boltzmann model for simulating Michaelis-Menten-based diffusion-advection kinetics and its application within a cartilage cell bioreactor.

    Moaty Sayed, A A; Hussein, M A; Becker, T


    Lattice Boltzmann models (LBM) are rapidly showing their ability to simulate a lot of fluid dynamics problems that previously required very complex approaches. This study presents a LBM for simulating diffusion-advection transport of substrate in a 2-D laminar flow. The model considers the substrate influx into a set of active cells placed inside the flow field. A new innovative method was used to simulate the cells activity using the LBM by means of Michaelis-Menten kinetics. The model is validated with some numerical benchmark problems and proved highly accurate results. After validation the model was used to simulate the transport of oxygen substrates that diffuse in water to feed a set of active cartilage cells inside a new designed bioreactor.

  11. Design issues for the Michaelis-Menten model.

    López-Fidalgo, J; Wong, Weng Kee


    We discuss design issues for the Michaelis-Menten model and use geometrical arguments to find optimal designs for estimating a subset of the model parameters, or a linear combination of the parameters. We propose multiple-objective optimal designs when the parameters have different levels of interest to the researcher. In addition, we compare six commonly used sequence designs in the biological sciences for estimating parameters and, propose optimal choices for the parameters for geometric designs using closed-form efficiency formulas.

  12. Optimal designs for the Michaelis Menten model with correlated observations

    Dette, Holger; Kunert, Joachim


    In this paper we investigate the problem of designing experiments for weighted least squares analysis in the Michaelis Menten model. We study the structure of exact D-optimal designs in a model with an autoregressive error structure. Explicit results for locally D-optimal are derived for the case where 2 observations can be taken per subject. Additionally standardized maximin D-optimal designs are obtained in this case. The results illustrate the enormous difficulties to find e...

  13. Robust and efficient designs for the Michaelis-Menten model

    Dette, Holger; Biedermann, Stefanie


    For the Michaelis-Menten model, we determine designs that maximize the minimum of the D-efficiencies over a certain interval for the nonlinear parameter. The best two point designs can be found explicitly, and a characterization is given when these designs are optimal within the class of all designs. In most cases of practical interest, the determined designs are highly efficient and robust with respect to misspecification of the nonlinear parameter. The results are illustrated and applied in...

  14. Seven competing ways to recover the Michaelis-Menten equation reveal the alternative approaches to steady state modeling

    Michel, Denis


    The Michaelis-Menten enzymatic reaction is sufficient to perceive many subtleties of network modeling, including the concentration and time scales separations, the formal equivalence between bulk phase and single-molecule approaches, or the relationships between single-cycle transient probabilities and steady state rates. Seven methods proposed by different authors and yielding the same famous Michaelis-Menten equation, are selected here to illustrate the kinetic and probabilistic use of rate constants and to review basic techniques for handling them. Finally, the general rate of an ordered multistep reaction, of which the Michaelis-Menten reaction is a particular case, is deduced from a Markovian approach.

  15. Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios: inhibition by cellobiose.

    Bezerra, Rui M F; Dias, Albino A


    The kinetics of exoglucanase (Cel7A) from Trichoderma reesei was investigated in the presence of cellobiose and 24 different enzyme/Avicel ratios for 47 h, in order to establish which of the eight available kinetic models best explained the factors involved. The heterogeneous catalysis was studied and the kinetic parameters were estimated employing integrated forms of Michaelis-Menten equations through the use of nonlinear least squares. It was found that cellulose hydrolysis follows a model that takes into account competitive inhibition by cellobiose (final product) with the following parameters: Km = 3.8 mM, Kic = 0.041 mM, kcat = 2 h-1 (5.6 x 10-4 s-1). Other models, such as mixed type inhibition and those incorporating improvements concerning inhibition by substrate and parabolic inhibition, increased the modulation performance very slightly. The results support the hypothesis that nonproductive enzyme substrate complexes, parabolic inhibition, and enzyme inactivation (Selwyn test) are not the principal constraints in enzymatic cellulose hydrolysis. Under our conditions, the increment in hydrolysis was not significant for substrate/enzyme ratios <6.5.

  16. Seven competing ways to recover the Michaelis-Menten equation reveal the alternative approaches to steady state modeling

    Michel, Denis; Ruelle, Philippe


    International audience; The Michaelis-Menten enzymatic reaction is sufficient to perceive many subtleties of network modeling, including the concentration and time scales separations, the formal equivalence between bulk phase and single-molecule approaches, or the relationships between single-cycle transient probabilities and steady state rates. Seven methods proposed by different authors and yielding the same famous Michaelis-Menten equation, are selected here to illustrate the kinetic and p...

  17. Electrogravimetric real-time and in situ michaelis-menten enzymatic kinetics: progress curve of acetylcholinesterase hydrolysis.

    Bueno, Paulo R; Watanabe, Ailton M; Faria, Ronaldo C; Santos, Márcio L; Riccardi, Carla S


    A piezoelectric detection of enzyme-modified surface was performed under Michaelis-Menten presumptions of steady-state condition. The approach herein presented showed promise in the study of enzymatic kinetics by measuring the frequency changes associated with mass changes at the piezoelectric crystal surface. Likewise, real-time frequency shifts, that is, dΔf/dt, indicated the rate of products formation from enzymatic reaction. In this paper, acetylcholinesterase was used as the enzymatic model and acetylcholine as substrate. The enzymatic rate has its maximum value for a short time during the kinetic reaction, for instance, during the first ten minutes of the reaction time scale. The values found for the kinetic constant rate and Michaelis-Menten constant were (1.4 ± 0.8) 10(5) s(-1) and (5.2 ± 3) 10(-4) M, respectively, in agreement with the values found in classical Michaelis-Menten kinetic experiments.

  18. Thiopentone elimination in newborn infants: exploring Michaelis-Menten kinetics.

    Larsson, P; Anderson, B J; Norman, E; Westrin, P; Fellman, V


    Thiopentone elimination has been described using Michaelis-Menten pharmacokinetics in adults after prolonged infusion or overdose, but there are few reports of elimination in neonates. Time-concentration profiles for neonates (n=37) given single-dose thiopentone were examined using both first-order (constant clearance) and mixed-order (Michaelis-Menten) elimination processes using nonlinear mixed effects models. These profiles included a 33-week post-menstrual age (PMA) neonate given an overdose. A two-compartment mamillary model was used to fit data. Parameter estimates were standardized to a 70 kg person using allometric models. There were 197 observations available for analysis from neonates with a mean post-menstrual age of 35 (SD 4.5) weeks and a mean weight of 2.5 (SD 0.9) kg. They were given a mean thiopentone dose of 3 (SD 0.4) mg/kg as a rapid bolus. Clearance at 26 weeks PMA was 0.015 l/min/70 kg and increased to 0.119 l/min/70 kg by 42 weeks PMA. The maximum rate of elimination (V(max)) at 26 weeks PMA was 0.22 mg/min/70 kg and increased to 4.13 mg/min/70 kg by 42 weeks PMA. These parameter estimates are approximately 40% adult values at term gestation. The Michaelis constant (K(m)) was 28.3 [between subject variability (BSV) 46.4%, 95% confidence interval (CI) 4.49-99.2] mg/l; intercompartment clearance was 0.44 (BSV 97.5%, 95% CI 0.27-0.63) l/min/70 kg; central volume of distribution was 46.4 (BSV 29.2%, 95% CI 41.7-59.8) l/70 kg; peripheral volume of distribution was 95.7 (BSV 70.3%, 95% CI 61.3-128) l/70 kg. Both first-order and mixed-order processes satisfactorily described elimination. First-order elimination adequately described the time-concentration profile in the premature neonate given an overdose. Clearance is immature in the pre-term neonate although there is rapid maturation around 40 weeks PMA, irrespective of post-natal age. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  19. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes

    Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara


    At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d - 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d - 1 . Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d - 1 . The stable isotope-based biodegradation rate constant of 0.0027 d - 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d - 1 . With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor ɛfield of - 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.

  20. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes.

    Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara


    At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.

  1. Robustness of optimal designs for the Michaelis-Menten model under a variation of criteria

    Dette, Holger; Kiss, Christine; Wong, Weng Kee


    The Michaelis-Menten model has and continues to be one of the most widely used models in many diverse fields. In the biomedical sciences, the model continues to be ubiquitous in biochemistry, enzyme kinetics studies, nutrition science and in the pharmaceutical sciences. Despite its wide ranging applications across disciplines, design issues for this model are given short shrift. This paper focuses on design issues and provides a variety of optimal designs of this model. In addition, we ...

  2. A new Michaelis-Menten-based kinetic model for transport and phosphorylation of glucose and its analogs in skeletal muscle.

    Huang, Hsuan-Ming; Ismail-Beigi, Faramarz; Muzic, Raymond F


    A new model is introduced that individually resolves the delivery, transport, and phosphorylation steps of metabolism of glucose and its analogs in skeletal muscle by interpreting dynamic positron emission tomography (PET) data. The model uniquely utilizes information obtained from the competition between glucose and its radiolabeled analogs. Importantly, the model avoids use of a lumped constant which may depend on physiological state. Four basic physiologic quantities constitute our model parameters, including the fraction of total tissue space occupied by interstitial space (f(IS)), a flow-extraction product and interstitial (IS(g)) and intracellular (IC(g)) glucose concentrations. Using the values of these parameters, cellular influx (CI) and efflux (CE) of glucose, glucose phosphorylation rate (PR), and maximal transport (V(G)) and phosphorylation capacities (V(H)) can all be determined. Herein, the theoretical derivation of our model is addressed and characterizes its properties via simulation. Specifically, the model performance is evaluated by simulation of basal and euglycemic hyperinsulinemic (EH) conditions. In fitting the model-generated, synthetic data (including noise), mean estimates of all but IC(g) of the parameter values are within 5% of their values for both conditions. In addition, mean errors of CI, PR, and V(G) are less than 5% whereas those of VH and CE are not. It is concluded that under the conditions tested, the novel model can provide accurate parameter estimates and physiological quantities, except IC(g) and two quantities that are dependent on IC(g), namely CE and VH. However, the ability to estimate IC(g) seems to improve with increases in intracellular glucose concentrations as evidenced by comparing IC(g) estimates under basal vs EH conditions.

  3. Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions.

    Atkins, William M


    The cytochrome P450 monooxygenases (CYPs) are the dominant enzyme system responsible for xenobiotic detoxification and drug metabolism. Several CYP isoforms exhibit non-Michaelis-Menten, or "atypical," steady state kinetic patterns. The allosteric kinetics confound prediction of drug metabolism and drug-drug interactions, and they challenge the theoretical paradigms of allosterism. Both homotropic and heterotropic ligand effects are now widely documented. It is becoming apparent that multiple ligands can simultaneously bind within the active sites of individual CYPs, and the kinetic parameters change with ligand occupancy. In fact, the functional effect of any specific ligand as an activator or inhibitor can be substrate dependent. Divergent approaches, including kinetic modeling and X-ray crystallography, are providing new information about how multiple ligand binding yields complex CYP kinetics.

  4. Parallel versus off-pathway Michaelis-Menten mechanism for single-enzyme kinetics of a fluctuating enzyme

    Kumar, Ashutosh; Dua, Arti


    Recent fluorescence spectroscopy measurements of the turnover time distribution of single-enzyme turnover kinetics of $\\beta$-galactosidase provide evidence of Michaelis-Menten kinetics at low substrate concentration. However, at high substrate concentrations, the dimensionless variance of the turnover time distribution shows systematic deviations from the Michaelis-Menten prediction. This difference is attributed to conformational fluctuations in both the enzyme and the enzyme-substrate complex and to the possibility of both parallel and off-pathway kinetics. Here, we use the chemical master equation to model the kinetics of a single fluctuating enzyme that can yield a product through either parallel or off-pathway mechanisms. An exact expression is obtained for the turnover time distribution from which the mean turnover time and randomness parameters are calculated. The parallel and off-pathway mechanisms yield strikingly different dependences of the mean turnover time and the randomness parameter on the su...

  5. A Simple Classroom Teaching Technique to Help Students Understand Michaelis-Menten Kinetics

    Runge, Steven W.; Hill, Brent J. F.; Moran, William M.


    A new, simple classroom technique helps cell biology students understand principles of Michaelis-Menten enzyme kinetics. A student mimics the enzyme and the student's hand represents the enzyme's active site. The catalytic event is the transfer of marbles (substrate molecules) by hand from one plastic container to another. As predicted, increases…

  6. A Simple Classroom Teaching Technique to Help Students Understand Michaelis-Menten Kinetics

    Runge, Steven W.; Hill, Brent J. F.; Moran, William M.


    A new, simple classroom technique helps cell biology students understand principles of Michaelis-Menten enzyme kinetics. A student mimics the enzyme and the student's hand represents the enzyme's active site. The catalytic event is the transfer of marbles (substrate molecules) by hand from one plastic container to another. As predicted, increases…

  7. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches.

    Hadeler, Karl Peter


    The Michaelis-Menten (MM) function is a fractional linear function depending on two positive parameters. These can be estimated by nonlinear or linear least squares methods. The non-linear methods, based directly on the defect of the MM function, can fail and not produce any minimizer. The linear methods always produce a unique minimizer which, however, may not be positive. Here we give sufficient conditions on the data such that the nonlinear problem has at least one positive minimizer and also conditions for the minimizer of the linear problem to be positive. We discuss in detail the models and equilibrium relations of a classical operator-repressor system, and we extend our approach to the MM problem with leakage and to reversible MM kinetics. The arrangement of the sufficient conditions exhibits the important role of data that have a concavity property (chemically feasible data).

  8. Michaelis-Menten kinetics of soil respiration feedbacks to nitrogen deposition and climate change in subtropical forests.

    Eberwein, Jennifer; Shen, Weijun; Jenerette, G Darrel


    China experiences some of the highest rates of anthropogenic nitrogen deposition globally, with further increases projected. Understanding of soil feedbacks to the combined anthropogenic influences of climate change and nitrogen deposition in these systems is critical to improve predictive abilities for future climate scenarios. Here we used a Michaelis-Menten substrate-based kinetics framework to explore how soil CO2 production (Rsoil) responds to changes in temperature and available soil nitrogen (N) by combining field experiments with laboratory manipulations from sites experiencing elevated rates of anthropogenic N deposition but varying in soil N availabiltiy. The temperature sensitivity of Rsoil was strongly influenced by labile C additions. Furthermore, estimation of the temperature response of the Michaelis-Menten parameters supports the use of substrate-based kinetics in modeling efforts. Results from both field and laboratory experiments demonstrated a general decrease in Rsoil with increasing soil available N that was variably dependent on carbon (C) availability. Both the field and the laboratory measurements demonstrated a consistent decrease in the Michaelis-Menten parameter kM with increasing soil available N, indicating an increase in the efficiency of soil C decomposition with increasing N. Furthermore, these results provide evidence of interactions between N deposition and temperature sensitivity, which could influence C storage under combined anthropogenic global change drivers.

  9. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.

    Liao, Fei; Zhu, Xiao-Yun; Wang, Yong-Mei; Zuo, Yu-Ping


    The estimation of enzyme kinetic parameters by nonlinear fitting reaction curve to the integrated Michaelis-Menten rate equation ln(S(0)/S)+(S(0)-S)/K(m)=(V(m)/K(m))xt was investigated and compared to that by fitting to (S(0)-S)/t=V(m)-K(m)x[ln(S(0)/S)/t] (Atkins GL, Nimmo IA. The reliability of Michaelis-Menten constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J 1973;135:779-84) with uricase as the model. Uricase reaction curve was simulated with random absorbance error of 0.001 at 0.075 mmol/l uric acid. Experimental reaction curve was monitored by absorbance at 293 nm. For both CV and deviation kinetic parameters and applicable for the characterization of enzyme inhibitors.

  10. Michaelis-Menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics.

    Kosmidis, Kosmas; Karalis, Vangelis; Argyrakis, Panos; Macheras, Panos


    Two different approaches were used to study the kinetics of the enzymatic reaction under heterogeneous conditions to interpret the unusual nonlinear pharmacokinetics of mibefradil. Firstly, a detailed model based on the kinetic differential equations is proposed to study the enzymatic reaction under spatial constraints and in vivo conditions. Secondly, Monte Carlo simulations of the enzyme reaction in a two-dimensional square lattice, placing special emphasis on the input and output of the substrate were applied to mimic in vivo conditions. Both the mathematical model and the Monte Carlo simulations for the enzymatic reaction reproduced the classical Michaelis-Menten (MM) kinetics in homogeneous media and unusual kinetics in fractal media. Based on these findings, a time-dependent version of the classic MM equation was developed for the rate of change of the substrate concentration in disordered media and was successfully used to describe the experimental plasma concentration-time data of mibefradil and derive estimates for the model parameters. The unusual nonlinear pharmacokinetics of mibefradil originates from the heterogeneous conditions in the reaction space of the enzymatic reaction. The modified MM equation can describe the pharmacokinetics of mibefradil as it is able to capture the heterogeneity of the enzymatic reaction in disordered media.

  11. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts.

    Lee, Hye Jin; Wark, Alastair W; Goodrich, Terry T; Fang, Shiping; Corn, Robert M


    Real-time surface plasmon resonance (SPR) imaging measurements of surface enzymatic reactions on DNA microarrays are analyzed using a kinetics model that couples the contributions of both enzyme adsorption and surface enzyme reaction kinetics. For the case of a 1:1 binding of an enzyme molecule (E) to a surface-immobilized substrate (S), the overall enzymatic reaction can be described in terms of classical Langmuir adsorption and Michaelis-Menten concepts and three rate constants: enzyme adsorption (k(a)), enzyme desorption (k(d)) and enzyme catalysis (k(cat)). In contrast to solution enzyme kinetics, the amount of enzyme in solution is in excess as compared to the amount of substrate on the surface. Moreover, the surface concentration of the intermediary enzyme-substrate complex (ES) is not constant with time, but goes to zero as the reaction is completed. However, kinetic simulations show that the fractional surface coverage of ES on the remaining unreacted sites does reach a steady-state value throughout the course of the surface reaction. This steady-state value approaches the Langmuir equilibrium value for cases where k(a)[E] > k(cat). Experiments using the 3' --> 5' exodeoxyribonuclease activity of Exonuclease III on double-stranded DNA microarrays as a function of temperature and enzyme concentration are used to demonstrate how this model can be applied to quantitatively analyze the SPR imaging data.

  12. Enzyme Kinetics and the Michaelis-Menten Equation

    Biaglow, Andrew; Erickson, Keith; McMurran, Shawnee


    The concepts presented in this article represent the cornerstone of classical mathematical biology. The central problem of the article relates to enzyme kinetics, which is a biochemical system. However, the theoretical underpinnings that lead to the formation of systems of time-dependent ordinary differential equations have been applied widely to…

  13. Enzyme Kinetics and the Michaelis-Menten Equation

    Biaglow, Andrew; Erickson, Keith; McMurran, Shawnee


    The concepts presented in this article represent the cornerstone of classical mathematical biology. The central problem of the article relates to enzyme kinetics, which is a biochemical system. However, the theoretical underpinnings that lead to the formation of systems of time-dependent ordinary differential equations have been applied widely to…

  14. Digital simulation of scanning electrochemical microscopy approach curves to enzyme films with Michaelis-Menten kinetics.

    Burchardt, Malte; Träuble, Markus; Wittstock, Gunther


    The formalism for simulating scanning electrochemical microscopy (SECM) experiments by boundary element methods in three space coordinates has been extended to allow consideration of nonlinear boundary conditions. This is achieved by iteratively refining the boundary conditions that are encoded in a boundary condition matrix. As an example, the simulations are compared to experimental approach curves in the SECM feedback mode toward samples modified with glucose oxidase (GOx). The GOx layer was prepared by the layer-by-layer assembly of polyelectrolytes using glucose oxidase as one of the polyelectrolytes. The comparison of the simulated and experimental curves showed that under a wide range of experimentally accessible conditions approximations of the kinetics at the sample by first order models yield misleading results. The approach curves differ also qualitatively from curves calculated with first order models. As a consequence, this may lead to severe deviations when such curves are fitted to first order kinetic models. The use of linear approximations to describe the enzymatic reaction in SECM feedback experiments is justified only if the ratio of the mediator and Michaelis-Menten constant is equal to or smaller than 0.1 (deviation less than 10%).

  15. Extracting signal from noise: kinetic mechanisms from a Michaelis-Menten-like expression for enzymatic fluctuations.

    Moffitt, Jeffrey R; Bustamante, Carlos


    Enzyme-catalyzed reactions are naturally stochastic, and precision measurements of these fluctuations, made possible by single-molecule methods, promise to provide fundamentally new constraints on the possible mechanisms underlying these reactions. We review some aspects of statistical kinetics: a new field with the goal of extracting mechanistic information from statistical measures of fluctuations in chemical reactions. We focus on a widespread and important statistical measure known as the randomness parameter. This parameter is remarkably simple in that it is the squared coefficient of variation of the cycle completion times, although it places significant limits on the minimal complexity of possible enzymatic mechanisms. Recently, a general expression has been introduced for the substrate dependence of the randomness parameter that is for rate fluctuations what the Michaelis-Menten expression is for the mean rate of product generation. We discuss the information provided by the new kinetic parameters introduced by this expression and demonstrate that this expression can simplify the vast majority of published models. © 2013 FEBS.

  16. Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions.

    Ristenpart, W D; Stone, H A


    Models for chemical reaction kinetics typically assume well-mixed conditions, in which chemical compositions change in time but are uniform in space. In contrast, many biological and microfluidic systems of interest involve non-uniform flows where gradients in flow velocity dynamically alter the effective reaction volume. Here, we present a theoretical framework for characterizing multi-step reactions that occur when an enzyme or enzymatic substrate is released from a flat solid surface into a linear shear flow. Similarity solutions are developed for situations where the reactions are sufficiently slow compared to a convective time scale, allowing a regular perturbation approach to be employed. For the specific case of Michaelis-Menten reactions, we establish that the transversally averaged concentration of product scales with the distance x downstream as x(5/3). We generalize the analysis to n-step reactions, and we discuss the implications for designing new microfluidic kinetic assays to probe the effect of flow on biochemical processes.

  17. A two-substrate Michaelis-Menten model for the growth of self-replicating polymers.

    Ferreira, R


    A two-substrate Michaelis-Menten model is proposed for the growth of autocatalytic self-replicating polymers. Selective growth depends on the existence of two complementary pairs of monomers. Discrimination among sequences results from different products of binding constants, KCGnKAUm. The results support an earlier renormalization group treatment (Ferreira & Tsallis, 1985).

  18. Parallel versus Off-Pathway Michaelis-Menten Mechanism for Single-Enzyme Kinetics of a Fluctuating Enzyme.

    Kumar, Ashutosh; Maity, Hiranmay; Dua, Arti


    Recent fluorescence spectroscopy measurements of the turnover time distribution of single-enzyme turnover kinetics of β-galactosidase provide evidence of Michaelis-Menten kinetics at low substrate concentration. However, at high substrate concentrations, the dimensionless variance of the turnover time distribution shows systematic deviations from the Michaelis-Menten prediction. This difference is attributed to conformational fluctuations in both the enzyme and the enzyme-substrate complex and to the possibility of both parallel- and off-pathway kinetics. Here, we use the chemical master equation to model the kinetics of a single fluctuating enzyme that can yield a product through either parallel- or off-pathway mechanisms. An exact expression is obtained for the turnover time distribution from which the mean turnover time and randomness parameters are calculated. The parallel- and off-pathway mechanisms yield strikingly different dependences of the mean turnover time and the randomness parameter on the substrate concentration. In the parallel mechanism, the distinct contributions of enzyme and enzyme-substrate fluctuations are clearly discerned from the variation of the randomness parameter with substrate concentration. From these general results, we conclude that an off-pathway mechanism, with substantial enzyme-substrate fluctuations, is needed to rationalize the experimental findings of single-enzyme turnover kinetics of β-galactosidase.

  19. The power of integrating kinetic isotope effects into the formalism of the Michaelis-Menten equation.

    Klinman, Judith P


    The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued until the present. This review discusses a family of eukaryotic copper proteins, including dopamine β-monooxygenase, tyramine β-monooxygenase and peptidylglycine α-amidating enzyme, which are responsible for the synthesis of neuroactive compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. The review highlights the results of studies showing how combining kinetic isotope effects with initial rate parameters permits the evaluation of: (a) the order of substrate binding to multisubstrate enzymes; (b) the magnitude of individual rate constants in complex, multistep reactions; (c) the identification of chemical intermediates; and (d) the role of nonclassical (tunnelling) behaviour in C-H activation. © 2013 FEBS.

  20. Standardization of α-L-iduronidase enzyme assay with Michaelis-Menten kinetics.

    Ou, Li; Herzog, Tyler L; Wilmot, Carrie M; Whitley, Chester B


    The lack of methodological uniformity in enzyme assays has been a long-standing difficulty, a problem for bench researchers, for the interpretation of clinical diagnostic tests, and an issue for investigational drug review. Illustrative of the problem, α-L-iduronidase enzyme catalytic activity is frequently measured with the substrate 4-methylumbelliferyl-α-L-iduronide (4MU-iduronide); however, final substrate concentrations used in different assays vary greatly, ranging from 25 μM to 1425 μM (Km ≈ 180 μM) making it difficult to compare results between laboratories. In this study, α-L-iduronidase was assayed with 15 different substrate concentrations. The resulting activity levels from the same specimens varied greatly with different substrate concentrations but, as a group, obeyed the expectations of Michaelis-Menten kinetics. Therefore, for the sake of improved comparability, it is proposed that α-L-iduronidase enzyme assays should be conducted either (1) under substrate saturating conditions; or (2) when concentrations are significantly below substrate saturation, with results standardized by arithmetic adjustment that considers Michaelis-Menten kinetics. The approach can be generalized to many other enzyme assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Optimal Designs for Discriminating Between some Extensions of the Michaelis-Menten Model

    Jesus Lopez Fidalgo; Chiara Tommasi; Camelia Trandafir


    In this paper some results on the problem of computing optimal designs for discriminating between rival models are provided. Using T-optimality for two rival models a compound criterion is developed to discriminate between more than two models. Surprising results arise when T-optimal designs are compared with classical c-optimal designs for nonlinear models. In particular, some practical deviations of the Michaelis-Menten model are considered in order to measure and compare efficiencies of di...

  2. Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics.

    Khanin, R; Vinciotti, V; Mersinias, V; Smith, C P; Wit, E


    The basic building block of a gene regulatory network consists of a gene encoding a transcription factor (TF) and the gene(s) it regulates. Considerable efforts have been directed recently at devising experiments and algorithms to determine TFs and their corresponding target genes using gene expression and other types of data. The underlying problem is that the expression of a gene coding for the TF provides only limited information about the activity of the TF, which can also be controlled posttranscriptionally. In the absence of a reliable technology to routinely measure the activity of regulators, it is of great importance to understand whether this activity can be inferred from gene expression data. We here develop a statistical framework to reconstruct the activity of a TF from gene expression data of the target genes in its regulatory module. The novelty of our approach is that we embed the deterministic Michaelis-Menten model of gene regulation in this statistical framework. The kinetic parameters of the gene regulation model are inferred together with the profile of the TF regulator. We also obtain a goodness-of-fit test to verify the fit of the model. The model is applied to a time series involving the Streptomyces coelicolor bacterium. We focus on the transcriptional activator cdaR, which is partly responsible for the production of a particular type of antibiotic. The aim is to reconstruct the activity profile of this regulator. Our approach can be extended to include more complex regulatory relationships, such as multiple regulatory factors, competition, and cooperativity.

  3. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.

    Bajzer, Zeljko; Strehler, Emanuel E


    For more than a century the simple single-substrate enzyme kinetics model and related Henri-Michaelis-Menten (HMM) rate equation have been thoroughly explored in various directions. In the present paper we are concerned with a possible generalization of this rate equation recently proposed by F. Kargi (BBRC 382 (2009) 157-159), which is assumed to be valid both in the case that the total substrate or enzyme is in excess and the quasi-steady-state is achieved. We demonstrate that this generalization is grossly inadequate and propose another generalization based on application of the quasi-steady-state condition and conservation equations for both enzyme and substrate. The standard HMM equation is derived by (a) assuming the quasi-steady-state condition, (b) applying the conservation equation only for the enzyme, and (c) assuming that the substrate concentration at quasi-steady-state can be approximated by the total substrate concentration [S](0). In our formula the rate is already expressed through [S](0), and we only assume that when quasi-steady-state is achieved the amount of product formed is negligible compared to [S](0). Numerical simulations show that our formula is generally more accurate than the HMM formula and also can provide a good approximation when the enzyme is in excess, which is not the case for the HMM formula. We show that the HMM formula can be derived from our expression by further assuming that the total enzyme concentration is negligible compared to [S](0). Copyright © 2011 Elsevier Inc. All rights reserved.

  4. An alternative explicit model expression equivalent to the integrated michaelis-menten equation and its application to nonlinear saturation pharmacokinetics.

    Goličnik, Marko


    Many pharmacodynamic processes can be described by the nonlinear saturation kinetics that are most frequently based on the hyperbolic Michaelis-Menten equation. Thus, various time-dependent solutions for drugs obeying such kinetics can be expressed in terms of the Lambert W(x)-omega function. However, unfortunately, computer programs that can perform the calculations for W(x) are not widely available. To avoid this problem, the replacement of the integrated Michaelis-Menten equation with an empiric integrated 1--exp alternative model equation was proposed recently by Keller et al. (Ther Drug Monit. 2009;31:783-785), although, as shown here, it was not necessary. Simulated concentrations of model drugs obeying Michaelis-Menten elimination kinetics were generated by two approaches: 1) calculation of time-course data based on an approximation equation W2*(x) performed using Microsoft Excel; and 2) calculation of reference time-course data based on an exact W(x) function built in to the Wolfram Mathematica. I show here that the W2*(x) function approximates the actual W(x) accurately. W2*(x) is expressed in terms of elementary mathematical functions and, consequently, it can be easily implemented using any of the widely available software. Hence, with the example of a hypothetical drug, I demonstrate here that an equation based on this approximation is far better, because it is nearly equivalent to the original solution, whereas the same characteristics cannot be fully confirmed for the 1--exp model equation. The W2*(x) equation proposed here might have an important role as a useful shortcut in optional software to estimate kinetic parameters from experimental data for drugs, and it might represent an easy and universal analytical tool for simulating and designing dosing regimens.

  5. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation.

    Liao, Fei; Tian, Kao-Cong; Yang, Xiao; Zhou, Qi-Xin; Zeng, Zhao-Chun; Zuo, Yu-Ping


    The reliability of kinetic substrate quantification by nonlinear fitting of the enzyme reaction curve to the integrated Michaelis-Menten equation was investigated by both simulation and preliminary experimentation. For simulation, product absorptivity epsilon was 3.00 mmol(-1) L cm(-1) and K(m) was 0.10 mmol L(-1), and uniform absorbance error sigma was randomly inserted into the error-free reaction curve of product absorbance A(i) versus reaction time t(i) calculated according to the integrated Michaelis-Menten equation. The experimental reaction curve of arylesterase acting on phenyl acetate was monitored by phenol absorbance at 270 nm. Maximal product absorbance A(m) was predicted by nonlinear fitting of the reaction curve to Eq. (1) with K(m) as constant. There were unique A(m) for best fitting of both the simulated and experimental reaction curves. Neither the error in reaction origin nor the variation of enzyme activity changed the background-corrected value of A(m). But the range of data under analysis, the background absorbance, and absorbance error sigma had an effect. By simulation, A(m) from 0.150 to 3.600 was predicted with reliability and linear response to substrate concentration when there was 80% consumption of substrate at sigma of 0.001. Restriction of absorbance to 0.700 enabled A(m) up to 1.800 to be predicted at sigma of 0.001. Detection limit reached A(m) of 0.090 at sigma of 0.001. By experimentation, the reproducibility was 4.6% at substrate concentration twice the K(m), and A(m) linearly responded to phenyl acetate with consistent absorptivity for phenol, and upper limit about twice the maximum of experimental absorbance. These results supported the reliability of this new kinetic method for enzymatic analysis with enhanced upper limit and precision.

  6. Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis-Menten kinetics.

    Wu, Xiaotian; Li, Jun; Nekka, Fahima


    The current study aims to provide the closed form solutions of one-compartment open models exhibiting simultaneous linear and nonlinear Michaelis-Menten elimination kinetics for single- and multiple-dose intravenous bolus administrations. It can be shown that the elimination half-time ([Formula: see text]) has a dose-dependent property and is upper-bounded by [Formula: see text] of the first-order elimination model. We further analytically distinguish the dominant role of different elimination pathways in terms of model parameters. Moreover, for the case of multiple-dose intravenous bolus administration, the existence and local stability of the periodic solution at steady state are established. The closed form solutions of the models are obtained through a newly introduced function motivated by the Lambert W function.

  7. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

    Pereira, Félix Monteiro; Oliveira, Samuel Conceição


    In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

  8. A critical analysis of kinetic data of 3-hexulosephosphate synthases. Michaelis-Menten or complex characteristics.

    Müller, R; Babel, W


    Investigations of the 3-hexulosephosphate synthase (HPS) from different methylotrophic bacteria have revealed apparent discrepancies in kinetic behaviour. In all methanol-utilizing species investigated by us the kinetic characteristics showed intermediary plateau regions. Therefore, this behaviour is assumed to be a general feature of the HPS from all non-methane-utilizing methylotrophic bacteria. However, this assumption is in contrast to the results of other authors. Both for Methylomonas M15 (SAHM et al. 1976) and Methylomonas aminofaciens 77a (KATO et al. 1977, 1978) MICHAELIS-MENTEN kinetics of the HPS were stated. To check the validity of our assumption we have analyzed the kinetic data given by others. Indications of the existence of intermediary plateau regions could be found with the enzyme from Arthrobacter globiformis (BYKOVSKAYA and VORONKOV 1977) and Methylomonas aminofaciens 77a (KATO et al. 1978). Furthermore, biphasic ARRHENIUS plots indicate a multiple character of the HPS from these species as could already be demonstrated with the enzyme from Bacterium MB 58 and Pseudomonas oleovorans. In addition, causes which may obscure the detection of intermediary plateau regions are demonstrated.

  9. Off-line form of the Michaelis-Menten equation for studying the reaction kinetics in a polymer microchip integrated with enzyme microreactor.

    Liu, Ai-Lin; Zhou, Ting; He, Feng-Yun; Xu, Jing-Juan; Lu, Yu; Chen, Hong-Yuan; Xia, Xing-Hua


    We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.

  10. Developing the enzyme-machine analogy: a non-mathematical approach to teaching Michaelis-Menten kinetics

    Simon Brown


    Full Text Available The behavior of enzyme-catalyzed reactions is not made clear to many students by the standard mathematical description of enzyme kinetics. An enzyme-machine analogy is described that has made the details of the Michaelis-Menten mechanism and the associated kinetics more accessible with minimal use of mathematics. Students taught using the analogy appear to have fewer of the misconceptions than those taught using a more mathematical approach.

  11. Developing the enzyme-machine analogy: a non-mathematical approach to teaching Michaelis-Menten kinetics

    Simon Brown


    The behavior of enzyme-catalyzed reactions is not made clear to many students by the standard mathematical description of enzyme kinetics. An enzyme-machine analogy is described that has made the details of the Michaelis-Menten mechanism and the associated kinetics more accessible with minimal use of mathematics. Students taught using the analogy appear to have fewer of the misconceptions than those taught using a more mathematical approach.

  12. Exact and approximate solutions for a century-old problem: A general treatment of Henri-Michaelis-Menten enzyme kinetics


    A different view of Henri-Michaelis-Menten (HMM) enzyme kinetics is presented. In the first part of the paper, a simplified but useful description that stresses the cyclic nature of the catalytic process is introduced. The time-dependence of the substrate concentration after the initial transient phase is derived in a simple way that dispenses the mathematical technique known as quasi-steady-state approximation. In the second part of the paper an exact one-dimensional formulation of HMM kinet...

  13. eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion

    Leonid V. Kalachev


    Full Text Available The Michaelis-Menten-Henri (MMH mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly with an enzyme, forming a complex which is transformed (irreversibly into a product and the enzyme. Given these basic kinetics, a dimension reduction has traditionally been achieved in two steps, by using conservation relations to reduce the number of species and by exploiting the inherent fast-slow structure of the resulting equations. In the present article, we investigate how the dynamics change if the species are additionally allowed to diffuse. We study the two extreme regimes of large diffusivities and of small diffusivities, as well as an intermediate regime in which the time scale of diffusion is comparable to that of the fast reaction kinetics. We show that reduction is possible in each of these regimes, with the nature of the reduction being regime dependent. Our analysis relies on the classical method of matched asymptotic expansions to derive approximations for the solutions that are uniformly valid in space and time.

  14. A comparison of the parameter estimating procedures for the Michaelis-Menten model.

    Tseng, S J; Hsu, J P


    The performance of four parameter estimating procedures for the estimation of the adjustable parameters in the Michaelis-Menten model, the maximum initial rate Vmax, and the Michaelis-Menten constant Km, including Lineweaver & Burk transformation (L-B), Eadie & Hofstee transformation (E-H), Eisenthal & Cornish-Bowden transformation (ECB), and Hsu & Tseng random search (H-T) is compared. The analysis of the simulated data reveals the followings: (i) Vmax can be estimated more precisely than Km. (ii) The sum of square errors, from the smallest to the largest, follows the sequence H-T, E-H, ECB, L-B. (iii) Considering the sum of square errors, relative error, and computing time, the overall performance follows the sequence H-T, L-B, E-H, ECB, from the best to the worst. (iv) The performance of E-H and ECB are on the same level. (v) L-B and E-H are appropriate for pricesly measured data. H-T should be adopted for data whose error level are high. (vi) Increasing the number of data points has a positive effect on the performance of H-T, and a negative effect on the performance of L-B, E-H, and ECB.

  15. Representação do efeito de inibição enzimática reversível para o modelo cinético de Michaelis-Menten no estado transiente/Representation of the reversible enzymatic inhibition effect for the kinetic model of Michelis-Menten in transient state

    André Rosa Martins


    .... One model was obtained, among the evaluated proposals, with performance indicating behavior similar to the classical Michaelis-Menten model, where the reaction complex is rapidly formed and, along...

  16. Theory and simulation of diffusion-controlled Michaelis-Menten kinetics for a static enzyme in solution.

    Park, Soohyung; Agmon, Noam


    We develop a uniform theory for the many-particle diffusion-control effects on the Michaelis-Menten scheme in solution, based on the Gopich-Szabo relaxation-time approximation (Gopich, I. V.; Szabo, A. J. Chem. Phys. 2002, 117, 507). We extend the many-particle simulation algorithm to the Michaelis-Menten case by utilizing the Green function previously derived for excited-state reversible geminate recombination with different lifetimes (Gopich, I. V.; Agmon, N. J. Chem. Phys. 2000, 110, 10433). Running the simulation for representative parameter sets in the time domain and under steady-state conditions, we find poor agreement with classical kinetics but excellent agreement with some of the modern theories for bimolecular diffusion-influenced reactions. Our simulation algorithm can be readily extended to the biologically interesting case of dense patches of membrane-bound enzymes.

  17. Reduction for Michaelis-Menten-Henri kinetics in the presence of diffusion.

    Kalachev, L.V.; Kaper, H.G.; Kaper, T.J.; Popovic, N.; Zagaris, A.


    Abstract: The Michaelis-Menten-Henri (MMH) mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly) with an enzyme, forming a complex which is transformed (irreversibly) into a product and the enzyme. Given

  18. Reduction for Michaelis-Menten-Henri kinetics in the presence of diffusion

    A. Zagaris (Antonios); L.V. Kalachev; H.G. Kaper; T.J. Kaper (Tasso Joost); N. Popovic


    textabstractThe Michaelis-Menten-Henri (MMH) mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly) with an enzyme, forming a complex which is transformed (irreversibly) into a product and the enzyme.

  19. Legitimacy of the stochastic Michaelis-Menten approximation.

    Sanft, K R; Gillespie, D T; Petzold, L R


    Michaelis-Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The Michaelis-Menten approximation has been thoroughly studied in the context of traditional differential equation models. The presence of small concentrations in biochemical systems, however, encourages the conversion to a discrete stochastic representation. It is shown that the Michaelis-Menten approximation is applicable in discrete stochastic models and that the validity conditions are the same as in the deterministic regime. The authors then compare the Michaelis-Menten approximation to a procedure called the slow-scale stochastic simulation algorithm (ssSSA). The theory underlying the ssSSA implies a formula that seems in some cases to be different from the well-known Michaelis-Menten formula. Here those differences are examined, and some special cases of the stochastic formulas are confirmed using a first-passage time analysis. This exercise serves to place the conventional Michaelis-Menten formula in a broader rigorous theoretical framework.

  20. Extended Parker-Sochacki method for Michaelis-Menten enzymatic reaction model.

    Abdelrazik, Ismail M; Elkaranshawy, Hesham A


    In this article, a new approach--namely, the extended Parker-Sochacki method (EPSM)--is presented for solving the Michaelis-Menten nonlinear enzymatic reaction model. The Parker-Sochacki method (PSM) is combined with a new resummation method called the Sumudu-Padé resummation method to obtain approximate analytical solutions for the model. The obtained solutions by the proposed approach are compared with the solutions of PSM and the Runge-Kutta numerical method (RKM). The comparison proves the practicality, efficiency, and correctness of the presented approach. It serves as a basis for solving other nonlinear biochemical reaction models in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation.

    Xie, Ping


    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30S and large 50S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  2. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.

    Yu, Xiao-Zhang; Gu, Ji-Dong


    Knowledge of the kinetic parameters, the half-saturation constant (K(m)) and the maximum metabolic capacity (v(max)), is very useful for the characterization of enzymes and biochemical processes. Little is known about rates of which vegetation metabolizes environmental chemicals. It is known, however, that vascular plants possess an enzyme system that detoxifies cyanide by converting it into the amino acid asparagine. This study investigated the differences in Michaelis-Menten kinetics of cyanide removal by different cultivars of maize. Detached leaves (1.0 g fresh weight) of seven different cultivars of maize (Zea mays L.) were kept in glass vessels with 100mL of aqueous solution spiked with potassium cyanide at 25+/-0.5 degrees C for 28 h. Four treatment concentrations of cyanide were used, ranging from 0.43 to 7.67 mgCNL(-1). The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. Realistic values of K(m) and v(max) were estimated by a computer program using non-linear regression treatment. Lineweaver-Burk plots were also used to estimate the kinetic parameters for comparison. Using non-linear regression treatments, values of v(max) and K(m) were found to be between 10.80 and 22.80 mgCNkg(-1)h(-1), and 2.57 and 7.09 mgCNL(-1), respectively. The highest v(max) was achieved by the cultivars HengFen 1, followed by NongDa 108. The lowest v(max) was demonstrated by JingKe 8. The highest K(m) was found in NongDa 108, followed by HengFen 1. The lowest K(m) was associated with JingKe 8. Results from this study indicated that significant removal of cyanide from an aqueous solution was observed in the presence of plant materials without apparent phytotoxicity, even at the high concentration of cyanide used in this study. All maize cultivars used in this study were able to metabolize cyanide efficiently, although with different metabolic capacities. Results also showed a small variation of metabolic rates between the different cultivars

  3. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia.

    Choi, I Y; Lee, S P; Kim, S G; Gruetter, R


    Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.

  4. Michaelis-Menten dynamics in protein subnetworks

    Rubin, Katy J


    To understand the behaviour of complex systems it is often necessary to use models that describe the dynamics of subnetworks. It has previously been established using projection methods that such subnetwork dynamics generically involves memory of the past, and that the memory functions can be calculated explicitly for biochemical reaction networks made up of unary and binary reactions. However, many established network models involve also Michaelis-Menten kinetics, to describe e.g. enzymatic reactions. We show that the projection approach to subnetwork dynamics can be extended to such networks, thus significantly broadening its range of applicability. To derive the extension we construct a larger network that represents enzymes and enzyme complexes explicitly, obtain the projected equations, and finally take the limit of fast enzyme reactions that gives back Michaelis-Menten kinetics. The crucial point is that this limit can be taken in closed form. The outcome is a simple procedure that allows one to obtain ...

  5. Michaelis-Menten elimination kinetics of etanercept, rheumatoid arthritis biologics, after intravenous and subcutaneous administration in rats.

    Lee, Byung-Yo; Kwon, Kwang-Il; Kim, Min-Soo; Baek, In-Hwan


    Etanercept was approved by the Food and Drug Administration (FDA) in 2010 as a biologic agent for the treatment of rheumatoid arthritis (RA). The aim of the study was to investigate the pharmacokinetic properties of etanercept after intravenous and subcutaneous injection in rats. The plasma concentration of etanercept was determined using an enzyme-linked immunosorbent assay (ELISA). Intravenous and subcutaneous administration of 2 mg/kg of etanercept to rats showed that etanercept was slowly absorbed (time to reach the peak drug concentration [T max] = 1.60 days, bioavailability [F] = 47.18 %) and slowly eliminated (half-life [t 1/2], 2.33 days after intravenous administration and 3.31 days after subcutaneous administration). The area under the curve values on day 13 (AUC13day) were 121.25 ± 14.37 and 48.56 ± 6.78 μg day/mL after intravenous and subcutaneous administration, respectively. A two-compartment model with Michaelis-Menten elimination kinetics (V max = 94.28 µg/day; K m = 10.88 µg/mL) was used to describe the pharmacokinetic profile of etanercept. Our results describe the pharmacokinetic profile of etanercept, and these results could be used for the development of etanercept biosimilars.

  6. Michaelis-Menten dynamics in protein subnetworks.

    Rubin, Katy J; Sollich, Peter


    To understand the behaviour of complex systems, it is often necessary to use models that describe the dynamics of subnetworks. It has previously been established using projection methods that such subnetwork dynamics generically involves memory of the past and that the memory functions can be calculated explicitly for biochemical reaction networks made up of unary and binary reactions. However, many established network models involve also Michaelis-Menten kinetics, to describe, e.g., enzymatic reactions. We show that the projection approach to subnetwork dynamics can be extended to such networks, thus significantly broadening its range of applicability. To derive the extension, we construct a larger network that represents enzymes and enzyme complexes explicitly, obtain the projected equations, and finally take the limit of fast enzyme reactions that gives back Michaelis-Menten kinetics. The crucial point is that this limit can be taken in closed form. The outcome is a simple procedure that allows one to obtain a description of subnetwork dynamics, including memory functions, starting directly from any given network of unary, binary, and Michaelis-Menten reactions. Numerical tests show that this closed form enzyme elimination gives a much more accurate description of the subnetwork dynamics than the simpler method that represents enzymes explicitly and is also more efficient computationally.

  7. Michaelis-Menten kinetic analysis of drugs of abuse to estimate their affinity to human P-glycoprotein.

    Meyer, Markus R; Orschiedt, Tina; Maurer, Hans H


    The pharmacokinetics of various important drugs are known to be significantly influenced by the human ABC transporter P-glycoprotein (P-gp), which may lead to clinically relevant drug-drug interactions. In contrast to therapeutic drugs, emerging drugs of abuse (DOA) are sold and consumed without any safety pharmacology testing. Only some studies on their metabolism were published, but none about their affinity to the transporter systems. Therefore, 47 DOAs from various classes were tested for their P-gp affinity using human P-gp (hP-gp) to predict possible drug-drug interactions. DOAs were initially screened for general hP-gp affinity and further characterized by modeling classic Michaelis-Menten kinetics and assessing their K(m) and V(max) values. Among the tested drugs, 12 showed a stimulation of ATPase activity. The most intensive stimulating DOAs were further investigated and compared with the known P-gp model substrates sertraline and verapamil. ATPase stimulation kinetics could be modeled for the entactogen 3,4-methylenedioxy-α-ethylphenethylamine (3,4-BDB), the hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), the abused alkaloid glaucine, the opioid-like drugs N-iso-propyl-1,2-diphenylethylamine (NPDPA), and N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA), with K(m) and V(max) values within the same range as for verapamil or sertraline. As a consequence interactions with other drugs being P-gp substrates might be considered to be very likely and further studies should be encouraged. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Dose correction for the Michaelis-Menten approximation of the target-mediated drug disposition model.

    Yan, Xiaoyu; Krzyzanski, Wojciech


    The Michaelis-Menten (M-M) approximation of the target-mediated drug disposition (TMDD) pharmacokinetic (PK) model was derived based on the rapid binding (RB) or quasi steady-state (QSS) assumptions that implied that the target and drug binding and dissociation were in equilibrium. However, the initial dose for an IV bolus injection for the M-M model did not account for a fraction bound to the target. We postulated a correction to an initial condition that was consistent with the assumptions underlying the M-M approximation. We determined that the difference between the injected dose and one that should be used for the initial condition is equal to the amount of drug bound to the target upon reaching the equilibrium. We also observed that the corrected initial condition made the internalization rate constant an identifiable parameter that was not for the original M-M model. Finally, we performed a simulation exercise to check if the correction will impact the model performance and the bias of the M-M parameter estimates. We used literature data to simulate plasma drug concentrations described by the RB/QSS TMDD model. The simulated data were refitted by both models. All the parameters estimated from the original M-M model were substantially biased. On the other hand, the corrected M-M is able to accurately estimate these parameters except for equilibrium constant K(m). Weighted sum of square residual and Akaike information criterion suggested a better performance of the corrected M-M model compared with the original M-M model. Further studies are necessary to determine the importance of this correction for the M-M model applications to analysis of TMDD driven PK data.

  9. Exact and user-friendly kinetic analysis of the two-step rapid equilibrium Michaelis-Menten mechanism.

    Garneau-Tsodikova, Sylvie; Shkel, Irina A; Tsodikov, Oleg V


    Most enzyme kinetic experiments are carried out under pseudo-first-order conditions, that is, when one of the reactant species (the enzyme or the substrate) is in a large excess of the other species. More accurate kinetic information about the system can be gained without the restrictions of the pseudo-first-order conditions. We present a practical and general method of analysis of the common two-step rapid equilibrium Michaelis-Menten mechanism. The formalism is exact in that it does not involve any other approximations such as the steady-state, limitations on the reactant concentrations or on reaction times. We apply this method to the global analysis of kinetic progress curves for bovine alkaline phosphatase assays carried out under both pseudo-first-order and pseudo-second-order conditions.

  10. Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.

    Yan, Xiaoyu; Mager, Donald E; Krzyzanski, Wojciech


    Target-mediated drug disposition (TMDD) models have been applied to describe the pharmacokinetics of drugs whose distribution and/or clearance are affected by its target due to high binding affinity and limited capacity. The Michaelis-Menten (M-M) model has also been frequently used to describe the pharmacokinetics of such drugs. The purpose of this study is to investigate conditions for equivalence between M-M and TMDD pharmacokinetic models and provide guidelines for selection between these two approaches. Theoretical derivations were used to determine conditions under which M-M and TMDD pharmacokinetic models are equivalent. Computer simulations and model fitting were conducted to demonstrate these conditions. Typical M-M and TMDD profiles were simulated based on literature data for an anti-CD4 monoclonal antibody (TRX1) and phenytoin administered intravenously. Both models were fitted to data and goodness of fit criteria were evaluated for model selection. A case study of recombinant human erythropoietin was conducted to qualify results. A rapid binding TMDD model is equivalent to the M-M model if total target density R ( tot ) is constant, and R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 where K ( D ) represents the dissociation constant and C is the free drug concentration. Under these conditions, M-M parameters are defined as: V ( max ) = k ( int ) R ( tot ) V ( c ) and K ( m ) = K ( D ) where k ( int ) represents an internalization rate constant, and V ( c ) is the volume of the central compartment. R ( tot ) is constant if and only if k ( int ) = k ( deg,) where k ( deg ) is a degradation rate constant. If the TMDD model predictions are not sensitive to k ( int ) or k ( deg ) parameters, the condition of R ( tot ) K ( D ) /(K ( D ) + C) ( 2 ) < 1 alone can preserve the equivalence between rapid binding TMDD and M-M models. The model selection process for drugs that exhibit TMDD should involve a full mechanistic model as well as reduced models. The best model

  11. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.

    Bezerra, Rui M F; Fraga, Irene; Dias, Albino A


    Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Alternative Analysis of the Michaelis-Menten Equations

    Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa


    Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…

  13. Alternative Analysis of the Michaelis-Menten Equations

    Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa


    Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…

  14. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model.

    Golicnik, Marko


    The exact closed-form solution to the Michaelis-Menten equation is expressed in terms of the Lambert W(x) function. However, the utility of this solution is limited because the W(x) function is not widely available in curve-fitting software. Based on various approximations to the W(x) function, different explicit equations expressed in terms of the elementary functions are proposed here as useful shortcuts to fit time depletion of substrate concentration directly to progress curves using commonly available nonlinear regression computer programs. The results are compared with those obtained by fitting other algebraic equations that have been proposed previously in the literature. 2010 Elsevier Inc. All rights reserved.

  15. Pharmacodynamic models: parameterizing the hill equation, Michaelis-Menten, the logistic curve, and relationships among these models.

    Reeve, Russell; Turner, J Rick


    The Hill equation is often used in dose-response or exposure-response modeling. Aliases for the Hill model include the Emax model, and the Michaelis-Menten model. There is confusion about the appropriate parameterization, how to interpret the parameters, what the meaning is of the various parameterizations found in the literature, and which parameterization best approximates the statistical inferences produced when fitting the Hill equation to data. In this paper, we present several equivalent versions of the Hill model; show that they are equivalent in terms of yielding the same prediction for a given dose, and are equivalent to the four-parameter logistic model in this same sense; and deduce which parameterization is optimal in the sense of having the least statistical curvature and preferable multicollinearity.

  16. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Flurkey, William H.; Inlow, Jennifer K.


    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  17. Utilization of Integrated Michaelis-Menten Equation to Determine Kinetic Constants

    Bezerra, Rui M. F.; Dias, Albino A.


    Students of biochemistry and related biosciences are urged to solve problems where kinetic parameters are calculated from initial rates obtained at different substrate concentrations. Troubles begin when they go to the laboratory to perform kinetic experiments and realize that usual laboratory instruments do not measure initial rates but only…

  18. Utilization of Integrated Michaelis-Menten Equation to Determine Kinetic Constants

    Bezerra, Rui M. F.; Dias, Albino A.


    Students of biochemistry and related biosciences are urged to solve problems where kinetic parameters are calculated from initial rates obtained at different substrate concentrations. Troubles begin when they go to the laboratory to perform kinetic experiments and realize that usual laboratory instruments do not measure initial rates but only…

  19. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.

    Chaudhury, Srabanti; Cherayil, Binny J


    Single-molecule equations for the Michaelis-Menten [Biochem. Z. 49, 333 (1913)] mechanism of enzyme action are analyzed within the Wilemski-Fixman [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)] approximation after the effects of dynamic disorder--modeled by the anomalous diffusion of a particle in a harmonic well--are incorporated into the catalytic step of the reaction. The solution of the Michaelis-Menten equations is used to calculate the distribution of waiting times between successive catalytic turnovers in the enzyme beta-galactosidase. The calculated distribution is found to agree qualitatively with experimental results on this enzyme obtained at four different substrate concentrations. The calculations are also consistent with measurements of correlations in the fluctuations of the fluorescent light emitted during the course of catalysis, and with measurements of the concentration dependence of the randomness parameter.

  20. The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications

    Silverstein, Todd


    Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…

  1. The Nuts and Bolts of Michaelis-Menten Enzyme Kinetics: Suggestions and Clarifications

    Silverstein, Todd


    Matthew Junker's recent article describes a useful and effective enzyme kinetics application and analogy in which students simulate enzyme activity by unscrewing nut-bolt "substrate molecules", thus, converting them into separate nuts and bolts "products". A number of suggestions and corrections are presented that improve the clarity and accuracy…

  2. Modeling of Bacillus spores: Inactivation and Outgrowth


    52 Michaelis - Menten Kinetics ...of repair mechanism [36]. These models were based on Michaelis - Menten kinetics , which is also the foundation of the work in this research Michaelis ...catalyzed reactions. Michaelis - Menten kinetics is a model of enzyme kinetics . The Michaelis - Menten equation describes the rates of enzymatic reactions by

  3. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D


    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  4. Single-molecule Michaelis-Menten equations.

    Kou, S C; Cherayil, Binny J; Min, Wei; English, Brian P; Xie, X Sunney


    This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.

  5. Low Potential of Basimglurant to Be Involved in Drug-Drug Interactions: Influence of Non-Michaelis-Menten P450 Kinetics on Fraction Metabolized.

    Fowler, Stephen; Guerini, Elena; Qiu, NaHong; Cleary, Yumi; Parrott, Neil; Greig, Gerard; Mallalieu, Navita L


    Basimglurant, a novel mGlu5-negative allosteric modulator under development for the treatment of major depressive disorder, is cleared via cytochrome P450 (P450)-mediated oxidative metabolism. Initial enzyme phenotyping studies indicated that CYP3A4/5 dominates basimglurant metabolism and highlights a risk for drug-drug interactions when it is comedicated with strong CYP3A4/5 inhibitors or inactivators; however, a clinical drug-drug interaction (DDI) study using the potent and selective CYP3A4/5 inhibitor ketoconazole resulted in an area under the curve (AUC) AUCi/AUC ratio of only 1.24. A further study using the CYP3A4 inducer carbamazepine resulted in an AUCi/AUC ratio of 0.69. More detailed in vitro enzyme phenotyping and kinetics studies showed that, at the low concentrations attained clinically, basimglurant metabolic clearance is catalyzed mainly by CYP1A2. The relative contributions of the enzymes were estimated as 70:30 CYP1A2:CYP3A4/5. Using this information, a clinical study using the CYP1A2 inhibitor fluvoxamine was performed, resulting in an AUCi/AUC ratio of 1.60, confirming the role of CYP1A2 and indicating a balanced DDI risk profile. Basimglurant metabolism kinetics show enzyme dependency: CYP1A2-mediated metabolism follows Michaelis-Menten kinetics, whereas CYP3A4 and CYP3A5 follow sigmoidal kinetics [with similar constant (KM) and S50 values]. The interplay of the different enzyme kinetics leads to changing fractional enzyme contributions to metabolism with substrate concentration, even though none of the metabolic enzymes is saturated. This example demonstrates the relevance of non-Michaelis-Menten P450 enzyme kinetics and highlights the need for a thorough understanding of metabolism enzymology to make accurate predictions for human metabolism in vivo. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Multi-system Nernst-Michaelis-Menten model applied to bioanodes formed from sewage sludge.

    Rimboud, Mickaël; Desmond-Le Quemener, Elie; Erable, Benjamin; Bouchez, Théodore; Bergel, Alain


    Bioanodes were formed under constant polarization at -0.2 V/SCE from fermented sewage sludge. Current densities reached were 9.3±1.2 A m(-2) with the whole fermented sludge and 6.2±0.9 A m(-2) with the fermented sludge supernatant. The bioanode kinetics was analysed by differentiating among the contributions of the three redox systems identified by voltammetry. Each system ensured reversible Nernstian electron transfer but around a different central potential. The global overpotential required to reach the maximum current plateau was not imposed by slow electron transfer rates but was due to the potential range covered by the different redox systems. The microbial communities of the three bioanodes were analysed by 16S rRNA gene pyrosequencing. They showed a significant microbial diversity around a core of Desulfuromonadales, the proportion of which was correlated with the electrochemical performance of the bioanodes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An alternative approach to Michaelis-Menten kinetics that is based on the Renormalization Group: Comparison with the perturbation expansion beyond the sQSSA

    Coluzzi, Barbara; Bersani, Enrico


    We recall the perturbation expansion for Michaelis-Menten kinetics, beyond the standard quasi-steady-state approximation (sQSSA). Against this background, we are able to appropriately apply the alternative approach to the study of singularly perturbed differential equations that is based on the renormalization group (SPDERG), by clarifying similarities and differences. In the present demanding situation, we directly renormalize the bare initial condition value for the substrate. Our main results are: i) the 2nd order SPDERG uniform approximations to the correct solutions contain, up to 1st order, the same outer components as the known perturbation expansion ones; ii) the differential equation to be solved for the derivation of the 1st order outer substrate component is simpler within the SPDERG approach; iii) the approximations better reproduce the numerical solutions of the original problem in a region encompassing the matching one, because of the 2nd order terms in the inner components, calculated here for ...

  8. The Impact of Deviation from Michaelis-Menten Saturation on Mathematical Model Stability Properties

    Blackwell, Charles; Kliss, Mark (Technical Monitor)


    Based on purely abstract ecological theory, it has been argued that a system composed of two or more consumers competing for the same resource cannot persist. By analysis on a Monod format mathematical model, Hubble and others demonstrated that this assertion is true for all but very special cases of such competing organisms which are determined by an index formed by a grouping of. the parameters which characterize the biological processes of the competing organisms. In the laboratory, using a bioreactor, Hansen and Hubble obtained confirmatory results for several cases of two competing species, and they characterized it as "qualitative confirmation" of the assertion. This result is amazing, since the analysis required the exact equality of the hey index, and it seems certain that no pair of organism species could have exactly equal values. It is quite plausible, however, that pairs of organism species could have approximately equal indices, and the question of how different they could be and still have coexistence of the two (or more) presents itself. In this paper, the pursuit of this question and a compatible resolution is presented.

  9. Stochastic mapping of the Michaelis-Menten mechanism.

    Dóka, Éva; Lente, Gábor


    The Michaelis-Menten mechanism is an extremely important tool for understanding enzyme-catalyzed transformation of substrates into final products. In this work, a computationally viable, full stochastic description of the Michaelis-Menten kinetic scheme is introduced based on a stochastic equivalent of the steady-state assumption. The full solution derived is free of restrictions on amounts of substance or parameter values and is used to create stochastic maps of the Michaelis-Menten mechanism, which show the regions in the parameter space of the scheme where the use of the stochastic kinetic approach is inevitable. The stochastic aspects of recently published examples of single-enzyme kinetic studies are analyzed using these maps.

  10. Electrocatalytic Mechanism Involving Michaelis-Menten Kinetics at the Preparative Scale: Theory and Applicability to Photocurrents from a Photosynthetic Algae Suspension With Quinones.

    Longatte, Guillaume; Guille-Collignon, Manon; Lemaître, Frédéric


    In the past years, many strategies have been implemented to benefit from oxygenic photosynthesis to harvest photosynthetic electrons and produce a significant photocurrent. Therefore, electrochemical tools were considered and have globally relied on the electron transfer(s) between the photosynthetic chain and a collecting electrode. In this context, we recently reported the implementation of an electrochemical set-up at the preparative scale to produce photocurrents from a Chlamydomonas reinhardtii algae suspension with an appropriate mediator (2,6-DCBQ) and a carbon gauze as the working electrode. In the present work, we wish to describe a mathematical modeling of the recorded photocurrents to better understand the effects of the experimental conditions on the photosynthetic extraction of electrons. In that way, we established a general model of an electrocatalytic mechanism at the preparative scale (that is, assuming a homogenous bulk solution at any time and a constant diffusion layer, both assumptions being valid under forced convection) in which the chemical step involves a Michaelis-Menten-like behaviour. Dependences of transient and steady-state corresponding currents were analysed as a function of different parameters by means of zone diagrams. This model was tested to our experimental data related to photosynthesis. The corresponding results suggest that competitive pathways beyond photosynthetic harvesting alone should be taken into account. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis-Menten paradigm of microbial kinetics.

    Button, D K; Robertson, Betsy; Gustafson, Elizabeth; Zhao, Xiaoming


    A theory for solute uptake by whole cells was derived with a focus on the ability of oligobacteria to sequester nutrients. It provided a general relationship that was used to obtain the kinetic constants for in situ marine populations in the presence of naturally occurring substrates. In situ affinities of 0.9 to 400 liters g of cells(-1) h(-1) found were up to 10(3) times smaller than those from a "Marinobacter arcticus " isolate, but springtime values were greatly increased by warming. Affinities of the isolate for usual polar substrates but not for hydrocarbons were diminished by ionophores. A kinetic curve or Monod plot was constructed from the best available data for cytoarchitectural components of the isolate by using the theory together with concepts and calculations from first principles. The order of effect of these components on specific affinity was membrane potential > cytoplasmic enzyme concentration > cytoplasmic enzyme affinity > permease concentration > area of the permease site > translation coefficient > porin concentration. Component balance was influential as well; a small increase in cytoplasmic enzyme concentration gave a large increase in the effect of permease concentration. The effect of permease concentration on specific affinity was large, while the effect on K(m) was small. These results are in contrast to the Michaelis-Menten theory as applied by Monod that has uptake kinetics dependent on the quality of the permease molecules, with K(m) as an independent measure of affinity. Calculations demonstrated that most oligobacteria in the environment must use multiple substrates simultaneously to attain sufficient energy and material for growth, a requirement consistent with communities largely comprising few species.

  12. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Yu, Xiao-Zhang; Zhang, Xue-Hong


    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  13. Why Carba-LNA-modified oligonucleotides show considerably improved 3'-exonuclease stability compared to that of the LNA modified or the native counterparts: A Michaelis-Menten kinetic analysis.

    Zhou, Chuanzheng; Chattopadhyaya, Jyoti


    In this study, 12 different native or LNA, carba-LNA-modified dinucleoside phosphates were designed as simple chemical models to study how carba-LNA modifications improve the 3'-exonuclease (SVPDE in this study) resistance of internucleotidic phosphate compared to those exhibited by LNA-modified and the native counterparts. Michaelis-Menten kinetic studies for dimers 3 - 7, in which the LNA or carba-LNA modifications are located at the 5'-end, showed that (i) increased 3'-exonuclease resistance of (5')[LNA-T](p)T (3) compared to the native (5')T(p)T (1) was mainly attributed to steric hindrance imposed by the LNA modification that retards the nuclease binding (K(M)) and (ii) digestion of (5')[carba-LNA-dT](p)T (4) and (5')[LNA-T](p)T (3), however, exhibit similar K(M)s, whereas the former shows a 100x decrease in K(cat) and is hence more stable than the latter. By studying the correlation between log k(cat) and pK(a) of the departing 3'(or 6')-OHs for 3-7, we found the pK(a) of 3'-OH of carba-LNA-T was 1.4 pK(a) units higher than that of LNA-T, and this relatively less acidic character of the 3'-OH in the former leads to the 100x decrease in the catalytic efficiency for the digestion of (5')[carba-LNA-T](p)T (4). In contrast, Michaelis-Menten kinetic studies for dimers 9-12, with the LNA or carba-LNA modifications at the 3'-end, showed that the digestion of (5')T(p)[LNA-T] (9) exhibited similar K(M) but k(cat) decreased around 40 times compared to that of the native (5')T(p)T (1). Similar k(cat) values have been observed for digestion of (5')T(p)[carba-LNA-T] (10) and (5')T(p)[LNA-T] (9). The higher stability of carba-LNA modified dimer 10 compared with LNA modified dimer 9 comes solely from the increased K(M).

  14. Michaelis-Menten relations for complex enzymatic networks.

    Kolomeisky, Anatoly B


    Most biological processes are controlled by complex systems of enzymatic chemical reactions. Although the majority of enzymatic networks have very elaborate structures, there are many experimental observations indicating that some turnover rates still follow a simple Michaelis-Menten relation with a hyperbolic dependence on a substrate concentration. The original Michaelis-Menten mechanism has been derived as a steady-state approximation for a single-pathway enzymatic chain. The validity of this mechanism for many complex enzymatic systems is surprising. To determine general conditions when this relation might be observed in experiments, enzymatic networks consisting of coupled parallel pathways are investigated theoretically. It is found that the Michaelis-Menten equation is satisfied for specific relations between chemical rates, and it also corresponds to a situation with no fluxes between parallel pathways. Our results are illustrated for a simple model. The importance of the Michaelis-Menten relationship and derived criteria for single-molecule experimental studies of enzymatic processes are discussed.


    张香成; 徐赵东; 王绍安; 沙凌峰


    为研究磁流变阻尼器(MRD)非线性滞回性能的影响因素,建立精确的MRD力学模型,对MRD进行力学性能试验,并基于米氏方程提出一个综合考虑电流、位移和频率影响的力学模型——米氏模型.对所提模型和传统经典力学模型进行数值模拟,并与试验结果进行对比分析,结果表明:该模型可以模拟MRD的非线性滞回性能、体现位移和频率对阻尼力及非线性滞回性能的影响.%To find the effect factors of the nonlinear hysteresis capability of a magnetorheological damper (MRD) and establish a precise mathematical model, a Michaelis-Menten (MM) Model was presented based on the MM equation which considers the effects of current, amplitude and frequency. Numerical simulations of the MM Model and traditional classical mathematic model were carried out to compare with the test results. Comparison results indicate that the MM Model could simulate the hysteresis capability of MRD and reflect the effects of current, amplitude and frequency on damping force and nonlinear hysteresis capability.

  16. The Michaelis-Menten-Stueckelberg Theorem

    Alexander N. Gorban


    Full Text Available We study chemical reactions with complex mechanisms under two assumptions: (i intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS and (ii they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE. Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events. This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

  17. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data.

    Sheiner, L B; Beal, S L


    Individual pharmacokinetic par parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual variability, and residual intraindividual variability plus measurement error. Individual pharmacokinetics are estimated by fitting individual data to a pharmacokinetic model. Population pharmacokinetic parameters are estimated either by fitting all individual's data together as though there was no individual kinetic differences (the naive pooled data approach), or by fitting each individual's data separately, and then combining the individual parameter estimates (the two-stage approach). A third approach, NONMEM, takes a middle course between these, and avoids shortcomings of each of them. A data set consisting of 124 steady-state phenytoin concentration-dosage pairs from 49 patients, obtained in the routine course of their therapy, was analyzed by each method. The resulting population parameter estimates differ considerably (population mean Km, for example, is estimated as 1.57, 5.36, and 4.44 micrograms/ml by the naive pooled data, two-stage, and NONMEN approaches, respectively). Simulations of the data were analyzed to investigate these differences. The simulations indicate that the pooled data approach fails to estimate variabilities and produces imprecise estimates of mean kinetics. The two-stage approach produces good estimates of mean kinetics, but biased and imprecise estimates of interindividual variability. NONMEN produces accurate and precise estimates of all parameters, and also reasonable confidence intervals for them. This performance is exactly what is expected from theoretical considerations and provides empirical support for the use of NONMEM when estimating population pharmacokinetics from routine type patient data.

  18. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.

    Sakoda, M; Hiromi, K


    The best-fit values of the Michaelis constant (Km) and the maximum velocity (V) in the Michaelis-Menten equation can be obtained by the method of least squares with the Taylor expansion for the sum of squares of the absolute residual, i.e., the difference between the observed velocity and the corresponding velocity by calculation. This method makes it possible to determine the values of Km and V not in a trial-and-error manner but in a deductive and unique manner after some iterative procedures starting from arbitrary approximate values of Km and V. These values can be said to be uniquely determined for a set of data as the finally converged values are no longer dependent upon the initial approximate values of Km and V. It is also very important to obtain initial approximate values of parameters for the application of the method described above. A simple method is proposed to estimate the approximate values of parameters involved in fractional functions. The method of rearrangement after canceling of denominator of a fractional function can be utilized to obtain approximate values, not only for cases of two unknown parameters such as the Michaelis-Menten equation, but also for cases with more than two unknowns.

  19. Integrating the production functions of Liebig, Michaelis-Menten, Mitscherlich and Liebscher into one system dynamics model

    Nijland, G.O.; Schouls, J.; Goudriaan, J.


    Any agricultural production process is characterized by input¿output relations. In this paper we show that the production functions of Liebig, Mitscherlich and Liebscher for the relation between nutrient supply and crop production can be regarded as special variants of one 'integrated model'. The

  20. Integrating the production functions of Liebig, Michaelis-Menten, Mitscherlich and Liebscher into one system dynamics model

    Nijland, G.O.; Schouls, J.; Goudriaan, J.


    Any agricultural production process is characterized by input¿output relations. In this paper we show that the production functions of Liebig, Mitscherlich and Liebscher for the relation between nutrient supply and crop production can be regarded as special variants of one 'integrated model'. The mo

  1. Fast estimation of Michaelis-Menten constant of arylesterase with a pair of medium concentrations of substrate

    廖飞; 杨晓; 周岐新; 曾昭淳; 左渝萍


    Objective: To investigate the reliability for fast estimation of Michaelis-Menten constant (Km) with calibrated specific activity at only two medium concentrations of substrate by both simulation and experimentation with arylesterase (ArE)as model. Methods: Initial rates were simulated by randomly inserting uniform absolute error, and the experimental initial rates of ArE were determined by measuring the increaser of product absorbance. Calibrated specific activities at two substrate concentrations were obtained by regression analysis, and Km was calculated according to Michaelis-Menten equation. Results: By simulation with calibrated specific activities at two medium substrate concentrations, Km could be calculated according to Michaelis-Menten equation with reasonable precision and accuracy. By experimentation with substrates of 2-naphthyl acetate, phenyl acetate, and p-nitrophenyl acetate, there were no differences between the mean and SD of Km of ArE for either substrate by this linear kinetic method and the Lineweaver-Burk plot. Conclusion: This linear kinetic method was reliable for fast estimation of the Km of some specified enzyme on its substrate of lower solubility or lower sensitivity for quantification by common methods.

  2. Extrinsic noise passing through a Michaelis-Menten reaction: a universal response of a genetic switch.

    Ochab-Marcinek, Anna


    The study of biochemical pathways usually focuses on a small section of a protein interactions network. Two distinct sources contribute to the noise in such a system: intrinsic noise, inherent in the studied reactions, and extrinsic noise generated in other parts of the network or in the environment. We study the effect of extrinsic noise entering the system through a nonlinear uptake reaction which acts as a nonlinear filter. Varying input noise intensity varies the mean of the noise after the passage through the filter, which changes the stability properties of the system. The steady-state displacement due to small noise is independent on the kinetics of the system but it only depends on the nonlinearity of the input function. For monotonically increasing and concave input functions such as the Michaelis-Menten uptake rate, we give a simple argument based on the small-noise expansion, which enables qualitative predictions of the steady-state displacement only by inspection of experimental data: when weak and rapid noise enters the system through a Michaelis-Menten reaction, then the graph of the system's steady states vs. the mean of the input signal always shifts to the right as noise intensity increases. We test the predictions on two models of lac operon, where TMG/lactose uptake is driven by a Michaelis-Menten enzymatic process. We show that as a consequence of the steady state displacement due to fluctuations in extracellular TMG/lactose concentration the lac switch responds in an asymmetric manner: as noise intensity increases, switching off lactose metabolism becomes easier and switching it on becomes more difficult. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Noise slows the rate of Michaelis-Menten reactions.

    Van Dyken, J David


    Microscopic randomness and the small volumes of living cells combine to generate random fluctuations in molecule concentrations called "noise". Here I investigate the effect of noise on biochemical reactions obeying Michaelis-Menten kinetics, concluding that substrate noise causes these reactions to slow. I derive a general expression for the time evolution of the joint probability density of chemical species in arbitrarily connected networks of non-linear chemical reactions in small volumes. This equation is a generalization of the chemical master equation (CME), a common tool for investigating stochastic chemical kinetics, extended to reaction networks occurring in small volumes, such as living cells. I apply this equation to a generalized Michaelis-Menten reaction in an open system, deriving the following general result: 〈p〉≤p¯ and 〈s〉≥s¯, where s¯ and p¯ denote the deterministic steady-state concentration of reactant and product species, respectively, and 〈s〉 and 〈p〉 denote the steady-state ensemble average over independent realizations of a stochastic reaction. Under biologically realistic conditions, namely when substrate is degraded or diluted by cell division, 〈p〉≤p¯. Consequently, noise slows the rate of in vivo Michaelis-Menten reactions. These predictions are validated by extensive stochastic simulations using Gillespie's exact stochastic simulation algorithm. I specify the conditions under which these effects occur and when they vanish, therefore reconciling discrepancies among previous theoretical investigations of stochastic biochemical reactions. Stochastic slowdown of reaction flux caused by molecular noise in living cells may have functional consequences, which the present theory may be used to quantify. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Uso de equações lineares na determinação dos parâmetros de Michaelis-Menten Use of linear equations to obtain Michaelis-Menten parameters

    Carvalho,Nakédia M. F.; Pires, Bianca M.; Antunes,Octavio A. C.; Roberto B Faria; Osório,Renata E. H. M. B.; Clovis Piovezan; Ademir Neves


    The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the va...

  5. Determination of individual cell Michaelis-Menten constants.

    Sunray, Merav; Zurgil, Naomi; Shafran, Yana; Deutsch, Mordechai


    A novel methodology for the measurement and analysis of apparent K(M) (Michaelis-Menten constant) and V(MAX) values of individual cells is suggested. It is based on a mathematical model that considers substrate influx into the cell, its intracellular enzymatic hydrolysis, and the product efflux. The mathematical formulation was approximated linearly in order to analyze intracellular substrate conversion characteristics via Michaelis-Menten theory. Utilizing static cytometry, the time dependence of the fluorescence intensity [FI(t)] emitted from prelocalized and defined FDA stained cells was recorded. This required frequent periodical measurements of the same cells, which are sequentially exposed to various fluorogenic substrate concentrations. Model simulations correlated with experimental results. Differences in distributions of individual K(M) and V(MAX) values of cells incubated with and without PHA were evident. Average K(M) and V(MAX) values of PHA-stimulated cells increased by 99% and 540%, respectively. This study may provide a tool for assessing intracellular enzymatic activity in individual intact cells under defined physiologic conditions. This may open new vistas in various areas, giving answers to critical questions arising in the field of cell and developmental biology, immunology, oncology, and pharmacology. Copyright 2001 Wiley-Liss, Inc.

  6. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation.

    Goličnik, Marko


    Various explicit reformulations of time-dependent solutions for the classical two-step irreversible Michaelis-Menten enzyme reaction model have been described recently. In the current study, I present further improvements in terms of a generalized integrated form of the Michaelis-Menten equation for computation of substrate or product concentrations as functions of time for more real-world, enzyme-catalyzed reactions affected by the product. The explicit equations presented here can be considered as a simpler and useful alternative to the exact solution for the generalized integrated Michaelis-Menten equation when fitted to time course data using standard curve-fitting software. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Stochastic Total Quasi-Steady-State Approximation for the Michaelis-Menten Scheme

    Galstyan, Vahe


    In biochemical systems the Michaelis-Menten (MM) scheme is one of the best-known models of the enzyme- catalyzed kinetics. In the academic literature the MM approximation has been thoroughly studied in the context of differential equation models. At the level of the cell, however, molecular fluctuations have many important consequences, and thus, a stochastic investigation of the MM scheme is often necessary. In their work Barik et al. [Biophysical Journal, 95, 3563-3574, (2008)] presented a stochastic approximation of the MM scheme. They suggested a substitution of the propensity function in the reduced master equation with the total quasi-steady- state approximation (tQSSA) rate. The justification of the substitution, however, was provided for a special case only and did not cover the whole parameter domain of the tQSSA. In this manuscript we present a derivation of the stochastic tQSSA that is valid for the entire tQSSA parameter domain.

  8. A generalized Michaelis-Menten type equation for the analysis of growth

    Lopez, S.; France, J.; Gerrits, W.J.J.; Dhanoa, M.S.; Humphries, D.J.; Dijkstra, J.


    The functional form W = (W0Kc Wf t(c)) /(Kc t(c)), where W is body size at age t, W0 and Wf are the zero- and infinite-time values of W, respectively, and K and c are constants, is derived. This new generalized Michaelis-Menten-type equation provides a flexible model for animal growth capable of

  9. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.


    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  10. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.


    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  11. Modeling of Complex Mixtures: JP-8 Toxicokinetics


    diffusion, including metabolic loss via the cytochrome P-450 system, described by non-linear Michaelis - Menten kinetics as shown in the following...point. Inhalation and iv were the dose routes for the rat study. The modelers used saturable ( Michaelis - Menten ) kinetics as well as a second... Michaelis - Menten liver metabolic constants for n-decane have been measured (Km = 1.5 mg/L and Vmax = 0.4 mg/hour) using rat liver slices in a vial

  12. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.

    Schnell, Santiago


    The Michaelis-Menten equation is generally used to estimate the kinetic parameters, V and K(M), when the steady-state assumption is valid. Following a brief overview of the derivation of the Michaelis-Menten equation for the single-enzyme, single-substrate reaction, a critical review of the criteria for validity of the steady-state assumption is presented. The application of the steady-state assumption makes the implicit assumption that there is an initial transient during which the substrate concentration remains approximately constant, equal to the initial substrate concentration, while the enzyme-substrate complex concentration builds up. This implicit assumption is known as the reactant stationary assumption. This review presents evidence showing that the reactant stationary assumption is distinct from and independent of the steady-state assumption. Contrary to the widely believed notion that the Michaelis-Menten equation can always be applied under the steady-state assumption, the reactant stationary assumption is truly the necessary condition for validity of the Michaelis-Menten equation to estimate kinetic parameters. Therefore, the application of the Michaelis-Menten equation only leads to accurate estimation of kinetic parameters when it is used under experimental conditions meeting the reactant stationary assumption. The criterion for validity of the reactant stationary assumption does not require the restrictive condition of choosing a substrate concentration that is much higher than the enzyme concentration in initial rate experiments. © 2013 FEBS.

  13. Uso de equações lineares na determinação dos parâmetros de Michaelis-Menten Use of linear equations to obtain Michaelis-Menten parameters

    Nakédia M. F. Carvalho


    Full Text Available The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the values obtained by the more reliable nonlinear least-square fit.

  14. Uso de equações lineares na determinação dos parâmetros de Michaelis-Menten

    Carvalho,Nakédia M. F.; Pires, Bianca M.; Antunes,Octavio A. C.; Roberto B Faria; Osório,Renata E. H. M. B.; Piovezan, Clovis; Neves,Ademir


    The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the va...

  15. Single molecule Michaelis-Menten equation beyond quasistatic disorder.

    Xue, Xiaochuan; Liu, Fei; Ou-Yang, Zhong-Can


    The classic Michaelis-Menten equation describes the catalytic activities for ensembles of enzyme molecules very well. But recent single-molecule experiments showed that the waiting time distribution and other properties of single enzyme molecules were not consistent with the prediction based on the ensemble viewpoint. They have contributed to the slow conformational changes of a single enzyme in the catalytic processes. In this work, we study the general dynamics of single enzymes in the presence of dynamic disorder. We find that, within the time separation regimes, i.e., the slow reaction and nondiffusion limits, the Michaelis-Menten equation holds exactly. In particular, by employing the decoupling approximation we demonstrate analytically that the classic Michaelis-Menten equation is still an excellent approximation in the presence of general dynamic disorder.

  16. Michaelis-Menten equation and detailed balance in enzymatic networks.

    Cao, Jianshu


    Many enzymatic reactions in biochemistry are far more complex than the celebrated Michaelis-Menten scheme, but the observed turnover rate often obeys the hyperbolic dependence on the substrate concentration, a relation established almost a century ago for the simple Michaelis-Menten mechanism. To resolve the longstanding puzzle, we apply the flux balance method to predict the functional form of the substrate dependence in the mean turnover time of complex enzymatic reactions and identify detailed balance (i.e., the lack of unbalanced conformational current) as a sufficient condition for the Michaelis-Menten equation to describe the substrate concentration dependence of the turnover rate in an enzymatic network. This prediction can be verified in single-molecule event-averaged measurements using the recently proposed signatures of detailed balance violations. The finding helps analyze recent single-molecule studies of enzymatic networks and can be applied to other external variables, such as force-dependence and voltage-dependence.

  17. Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays

    Wenzhen Gan


    Full Text Available This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results.

  18. Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays

    Wenzhen Gan; Canrong Tian; Qunying Zhang; Zhigui Lin


    This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show...

  19. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.

    Lawson, Michael J; Petzold, Linda; Hellander, Andreas


    Quantitative biology relies on the construction of accurate mathematical models, yet the effectiveness of these models is often predicated on making simplifying approximations that allow for direct comparisons with available experimental data. The Michaelis-Menten (MM) approximation is widely used in both deterministic and discrete stochastic models of intracellular reaction networks, owing to the ubiquity of enzymatic activity in cellular processes and the clear biochemical interpretation of its parameters. However, it is not well understood how the approximation applies to the discrete stochastic case or how it extends to spatially inhomogeneous systems. We study the behaviour of the discrete stochastic MM approximation as a function of system size and show that significant errors can occur for small volumes, in comparison with a corresponding mass-action system. We then explore some consequences of these results for quantitative modelling. One consequence is that fluctuation-induced sensitivity, or stochastic focusing, can become highly exaggerated in models that make use of MM kinetics even if the approximations are excellent in a deterministic model. Another consequence is that spatial stochastic simulations based on the reaction-diffusion master equation can become highly inaccurate if the model contains MM terms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. The Michaelis-Menten-Stueckelberg Theorem

    Gorban, Alexander N.; Muhammad Shahzad


    We study chemical reactions with complex mechanisms under two assumptions: (i) intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS) and (ii) they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE). Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without mic...

  1. Enzyme inhibition studies by integrated Michaelis-Menten equation considering simultaneous presence of two inhibitors when one of them is a reaction product.

    Bezerra, Rui M F; Pinto, Paula A; Fraga, Irene; Dias, Albino A


    To determine initial velocities of enzyme catalyzed reactions without theoretical errors it is necessary to consider the use of the integrated Michaelis-Menten equation. When the reaction product is an inhibitor, this approach is particularly important. Nevertheless, kinetic studies usually involved the evaluation of other inhibitors beyond the reaction product. The occurrence of these situations emphasizes the importance of extending the integrated Michaelis-Menten equation, assuming the simultaneous presence of more than one inhibitor because reaction product is always present. This methodology is illustrated with the reaction catalyzed by alkaline phosphatase inhibited by phosphate (reaction product, inhibitor 1) and urea (inhibitor 2). The approach is explained in a step by step manner using an Excel spreadsheet (available as a template in Appendix). Curve fitting by nonlinear regression was performed with the Solver add-in (Microsoft Office Excel). Discrimination of the kinetic models was carried out based on Akaike information criterion. This work presents a methodology that can be used to develop an automated process, to discriminate in real time the inhibition type and kinetic constants as data (product vs. time) are achieved by the spectrophotometer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Kinetic modelling of coupled transport across biological membranes.

    Korla, Kalyani; Mitra, Chanchal K


    In this report, we have modelled a secondary active co-transporter (symport and antiport), based on the classical kinetics model. Michaelis-Menten model of enzyme kinetics for a single substrate, single intermediate enzyme catalyzed reaction was proposed more than a hundred years ago. However, no single model for the kinetics of co-transport of molecules across a membrane is available in the literature We have made several simplifying assumptions and have followed the basic Michaelis-Menten approach. The results have been simulated using GNU Octave. The results will be useful in general kinetic simulations and modelling.

  3. Michaelis-Menten speeds up tau-leaping under a wide range of conditions.

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda


    This paper examines the benefits of Michaelis-Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics.

  4. Michaelis-Menten speeds up tau-leaping under a wide range of conditions

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda


    This paper examines the benefits of Michaelis-Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics.

  5. A Generalized Michaelis-Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon.

    Dutta, Annwesha; Chowdhury, Debashish


    The sequence of amino acid monomers in the primary structure of a protein is decided by the corresponding sequence of codons (triplets of nucleic acid monomers) on the template messenger RNA (mRNA). The polymerization of a protein, by incorporation of the successive amino acid monomers, is carried out by a molecular machine called ribosome. We develop a stochastic kinetic model that captures the possibilities of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination of analytical and numerical methods, we obtain the distribution of the times taken for incorporation of the successive amino acids in the growing protein in this mathematical model. The corresponding exact analytical expression for the average rate of elongation of a nascent protein is a 'biologically motivated' generalization of the Michaelis-Menten formula for the average rate of enzymatic reactions. This generalized Michaelis-Menten-like formula (and the exact analytical expressions for a few other quantities) that we report here display the interplay of four different branched pathways corresponding to selection of four different types of tRNA.

  6. Exact and Approximate Solutions for the Decades-Old Michaelis-Menten Equation: Progress-Curve Analysis through Integrated Rate Equations

    Golicnik, Marko


    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate "V", and the Michaelis constant "K"[subscript M]) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to…

  7. Exact and Approximate Solutions for the Decades-Old Michaelis-Menten Equation: Progress-Curve Analysis through Integrated Rate Equations

    Golicnik, Marko


    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate "V", and the Michaelis constant "K"[subscript M]) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to…

  8. Ever-fluctuating single enzyme molecules : Michaelis-Menten equation revisited

    English, Brian P.; Min, Wei; Oijen, Antoine M. van; Lee, Kang Taek; Luo, Guobin; Sun, Hongye; Cherayil, Binny J.; Kou, S.C.; Xie, X. Sunney


    Enzymes are biological catalysts vital to life processes and have attracted century-long investigation. The classic Michaelis-Menten mechanism provides a highly satisfactory description of catalytic activities for large ensembles of enzyme molecules. Here we tested the Michaelis-Menten equation at

  9. Analysis of noise-induced bistability in Michaelis Menten single-step enzymatic cycle

    Remondini, Daniel; Bazzani, Armando; Castellani, Gastone; Maritan, Amos


    In this paper we study noise-induced bistability in a specific circuit with many biological implications, namely a single-step enzymatic cycle described by Michaelis Menten equations with quasi-steady state assumption. We study the system both with a Master Equation formalism, and with the Fokker-Planck continuous approximation, characterizing the conditions in which the continuous approach is a good approximation of the exact discrete model. An analysis of the stationary distribution in both cases shows that bimodality can not occur in such a system. We discuss which additional requirements can generate stochastic bimodality, by coupling the system with a chemical reaction involving enzyme production and turnover. This extended system shows a bistable behaviour only in specific parameter windows depending on the number of molecules involved, providing hints about which should be a feasible system size in order that such a phenomenon could be exploited in real biological systems.

  10. Role of substrate unbinding in Michaelis-Menten enzymatic reactions.

    Reuveni, Shlomi; Urbakh, Michael; Klafter, Joseph


    The Michaelis-Menten equation provides a hundred-year-old prediction by which any increase in the rate of substrate unbinding will decrease the rate of enzymatic turnover. Surprisingly, this prediction was never tested experimentally nor was it scrutinized using modern theoretical tools. Here we show that unbinding may also speed up enzymatic turnover--turning a spotlight to the fact that its actual role in enzymatic catalysis remains to be determined experimentally. Analytically constructing the unbinding phase space, we identify four distinct categories of unbinding: inhibitory, excitatory, superexcitatory, and restorative. A transition in which the effect of unbinding changes from inhibitory to excitatory as substrate concentrations increase, and an overlooked tradeoff between the speed and efficiency of enzymatic reactions, are naturally unveiled as a result. The theory presented herein motivates, and allows the interpretation of, groundbreaking experiments in which existing single-molecule manipulation techniques will be adapted for the purpose of measuring enzymatic turnover under a controlled variation of unbinding rates. As we hereby show, these experiments will not only shed first light on the role of unbinding but will also allow one to determine the time distribution required for the completion of the catalytic step in isolation from the rest of the enzymatic turnover cycle.

  11. Global divergence in critical income for adult and childhood survival: analyses of mortality using Michaelis-Menten.

    Hum, Ryan J; Jha, Prabhat; McGahan, Anita M; Cheng, Yu-Ling


    Life expectancy has risen sharply in the last 50 years. We applied the classic Michaelis-Menten enzyme kinetics to demonstrate a novel mathematical relationship of income to childhood (aged 0-5 years) and adult (aged 15-60 years) survival. We treat income as a substrate that is catalyzed to increase survival (from technologies that income buys) for 180 countries from 1970 and 2007. Michaelis-Menten kinetics permit estimates of maximal survival and, uniquely, the critical income needed to achieve half of the period-specific maximum. Maximum child and adult survival rose by about 1% per year. Critical incomes fell by half for children, but doubled for men. HIV infection and smoking account for some, but not all, of the rising critical incomes for adult survival. Altering the future cost curve for adult survival will require more widespread use of current interventions, most notably tobacco control, but also research to identify practicable low-cost drugs, diagnostics, and strategies.DOI:

  12. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    Lechner, Joseph H.


    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  13. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    Lechner, Joseph H.


    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  14. On the estimation errors of KM and V from time-course experiments using the Michaelis-Menten equation.

    Stroberg, Wylie; Schnell, Santiago


    The conditions under which the Michaelis-Menten equation accurately captures the steady-state kinetics of a simple enzyme-catalyzed reaction is contrasted with the conditions under which the same equation can be used to estimate parameters, KM and V, from progress curve data. Validity of the underlying assumptions leading to the Michaelis-Menten equation are shown to be necessary, but not sufficient to guarantee accurate estimation of KM and V. Detailed error analysis and numerical "experiments" show the required experimental conditions for the independent estimation of both KM and V from progress curves. A timescale, tQ, measuring the portion of the time course over which the progress curve exhibits substantial curvature provides a novel criterion for accurate estimation of KM and V from a progress curve experiment. It is found that, if the initial substrate concentration is of the same order of magnitude as KM, the estimated values of the KM and V will correspond to their true values calculated from the microscopic rate constants of the corresponding mass-action system, only so long as the initial enzyme concentration is less than KM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited.

    English, Brian P; Min, Wei; van Oijen, Antoine M; Lee, Kang Taek; Luo, Guobin; Sun, Hongye; Cherayil, Binny J; Kou, S C; Xie, X Sunney


    Enzymes are biological catalysts vital to life processes and have attracted century-long investigation. The classic Michaelis-Menten mechanism provides a highly satisfactory description of catalytic activities for large ensembles of enzyme molecules. Here we tested the Michaelis-Menten equation at the single-molecule level. We monitored long time traces of enzymatic turnovers for individual beta-galactosidase molecules by detecting one fluorescent product at a time. A molecular memory phenomenon arises at high substrate concentrations, characterized by clusters of turnover events separated by periods of low activity. Such memory lasts for decades of timescales ranging from milliseconds to seconds owing to the presence of interconverting conformers with broadly distributed lifetimes. We proved that the Michaelis-Menten equation still holds even for a fluctuating single enzyme, but bears a different microscopic interpretation.

  16. Mechanistic interpretation of conventional Michaelis-Menten parameters in a transporter system.

    Vivian, Diana; Polli, James E


    The aim was to elucidate how steps in drug translocation by a solute carrier transporter impact Michaelis-Menten parameters Km, Ki, and Vmax. The first objective was to derive a model for carrier-mediated substrate translocation and perform sensitivity analysis with regard to the impact of individual microrate constants on Km, Ki, and Vmax. The second objective was to compare underpinning microrate constants between compounds translocated by the same transporter. Equations for Km, Ki, and Vmax were derived from a six-state model involving unidirectional transporter flipping and reconfiguration. This unidirectional model is applicable to co-transporter type solute carriers, like the apical sodium-dependent bile acid transporter (ASBT) and the proton-coupled peptide cotransporter (PEPT1). Sensitivity analysis identified the microrate constants that impacted Km, Ki, and Vmax. Compound comparison using the six-state model employed regression to identify microrate constant values that can explain observed Km and Vmax values. Results yielded some expected findings, as well as some unanticipated effects of microrate constants on Km, Ki, and Vmax. Km and Ki were found to be equal for inhibitors that are also substrates. Additionally, microrate constant values for certain steps in transporter functioning influenced Km and Vmax to be low or high. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The thioredoxin system and not the Michaelis-Menten equation should be fitted to substrate saturation datasets from the thioredoxin insulin assay.

    Padayachee, Letrisha; Pillay, Ché S


    The thioredoxin system, consisting of thioredoxin reductase, thioredoxin and NADPH, is present in most living organisms and reduces a large array of target protein disulfides. The insulin reduction assay is commonly used to characterise thioredoxin activity in vitro, but it is not clear whether substrate saturation datasets from this assay should be fitted and modeled with the Michaelis-Menten equation (thioredoxin enzyme model), or fitted to the thioredoxin system with insulin reduction described by mass-action kinetics (redox couple model). We utilized computational modeling and in vitro assays to determine which of these approaches yield consistent and accurate kinetic parameter sets for insulin reduction. Using computational modeling, we found that fitting to the redox couple model, rather than to the thioredoxin enzyme model, resulted in consistent parameter sets over a range of thioredoxin reductase concentrations. Furthermore, we established that substrate saturation in this assay was due to the progressive redistribution of the thioredoxin moiety into its oxidised form. We then confirmed these results in vitro using the yeast thioredoxin system. This study shows how consistent parameter sets for thioredoxin activity can be obtained regardless of the thioredoxin reductase concentration used in the insulin reduction assay, and validates computational systems biology modeling studies that have described the thioredoxin system with the redox couple modeling approach.

  18. Reformulation of the Michaelis-Menten Equation: How Enzyme-Catalyzed Reactions Depend on Gibbs Energy

    Bozlee, Brian J.


    The impact of raising Gibbs energy of the enzyme-substrate complex (G[subscript 3]) and the reformulation of the Michaelis-Menten equation are discussed. The maximum velocity of the reaction (v[subscript m]) and characteristic constant for the enzyme (K[subscript M]) will increase with increase in Gibbs energy, indicating that the rate of reaction…

  19. A handy approximation for a mediated bioelectrocatalysis process, related to Michaelis-Menten equation.

    Filobello-Nino, Uriel; Vazquez-Leal, Hector; Benhammouda, Brahim; Hernandez-Martinez, Luis; Khan, Yasir; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Castaneda-Sheissa, Roberto; Pereyra-Diaz, Domitilo; Cervantes-Perez, Juan; Agustin Perez-Sesma, Jose Antonio; Hernandez-Machuca, Sergio Francisco; Cuellar-Hernandez, Leticia


    In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.

  20. A handy approximation for a mediated bioelectrocatalysis process, related to Michaelis-Menten equation

    Filobello-Nino, Uriel; Vazquez-Leal, Hector; Benhammouda, Brahim; Hernandez-Martinez, Luis; Khan, Yasir; Jimenez-Fernandez, Victor Manuel; Herrera-May, Agustin Leobardo; Castaneda-Sheissa, Roberto; Pereyra-Diaz, Domitilo; Cervantes-Perez, Juan; Agustin Perez-Sesma, Jose Antonio; Hernandez-Machuca, Sergio Francisco; Cuellar-Hernandez, Leticia


    In this article, Perturbation Method (PM) is employed to obtain a handy approximate solution to the steady state nonlinear reaction diffusion equation containing a nonlinear term related to Michaelis-Menten of the enzymatic reaction. Comparing graphics between the approximate and exact solutions, it will be shown that the PM method is quite efficient.

  1. Application of a higher throughput approach to derive apparent Michaelis-Menten constants of isoform-selective p450-mediated biotransformation reactions in human hepatocytes.

    Li, Albert P; Schlicht, Kari E


    A higher throughput platform was developed for the determination of K(M) values for isoformselective P450 substrates in human hepatocytes via incubation of the hepatocytes with substrates in 384- well plates and metabolite quantification by RapidFire™ mass spectrometry. Isoform-selective P450 substrates were incubated at 8 concentrations in triplicate with cryopreserved human hepatocytes from 16 donors. The metabolic pathways examined were the CYP1A2-catalyzed tacrine 1-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, CYP2C8-catalyzed amodiaquine N-deethylation, CYP2C9- catalyzed diclofenac 4'-hydroxylation, CYP2D6-catalyzed dextromethorphan O-demethylation, and CYP3A4-catalyzed midazolam 1'-hydroxylation. Typical saturation enzyme kinetics was observed for all the pathways evaluated. Individual differences in the apparent V(max) and K(M) values were observed among the human hepatocytes from each of the 16 individual donors, with no statistically significant gender- or age-associated differences. A "composite" K(M) value was calculated for each of the pathways via normalizing the individual activities to their respective V(max) values to develop "relative activities" followed by Michaelis-Menten analysis of the mean relative activities of the 16 donors at each of the 8 substrate concentrations. The resulting "composite" K(M) values for the P450 substrates may be used to guide in vitro P450 inhibition and induction studies and kinetic modeling of in vivo drug-drug interaction.

  2. Prediction of Michaelis-Menten constant of beta-glucosidases using nitrophenyl-beta-D-glucopyranoside as substrate.

    Yan, Shaomin; Wu, Guang


    In this study, we attempted to use the neural network to model a quantitative structure-K(m) (Michaelis-Menten constant) relationship for beta-glucosidase, which is an important enzyme to cut the beta-bond linkage in glucose while K(m) is a very important parameter in enzymatic reactions. Eight feedforward backpropagation neural networks with different layers and neurons were applied for the development of predictive model, and twenty-five different features of amino acids were chosen as predictors one by one. The results show that the 20-1 feedforward backpropagation neural network can serve as a predictive model while the normalized polarizability index as well as the amino-acid distribution probability can serve as the predictors. This study threw lights on the possibility of predicting the K(m) in beta-glucosidases based on their amino-acid features.

  3. Single-molecule enzymology à la Michaelis-Menten.

    Grima, Ramon; Walter, Nils G; Schnell, Santiago


    Over the past 100 years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that begin to allow the measurement of enzyme-catalysed and other biopolymer-mediated reactions inside single cells at the single-molecule level. Time-course data obtained using these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single-cell data requires stochastic methods, rather than deterministic rate equations. Here, we concisely review both experimental and theoretical techniques that enable single-molecule analysis, with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-20th century to its modern-day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment, and how estimation of rate constants from single-cell data is possible using recently developed stochastic approaches. © 2013 FEBS.

  4. A Squared Michaelis-Menten Function of Substrate Concentration for Plant Mitochondrial Respiration 1

    James, Alan T.; Wiskich, Joseph T.; Dry, Ian B.


    Dry and Wiskich ([1987] Arch Biochem Biophys 257: 92-99) have published data showing the response of plant mitochondrial respiration to increasing additions of oxaloacetate or malate when these substrates have been depleted by inhibition of succinate dehydrogenase by malonate, and coenzyme A (CoA) has been sequestered as acetyl-CoA by pyruvate dehydrogenase. In the presence of 2-oxoglutarate, it is shown that the response is given by a Michaelis-Menten curve, but in its absence, when malate has to supply substrate for dehydrogenation as well as to liberate CoA via malate dehydrogenase and citrate synthase, the response is presumably the product of two Michaelis-Menten functions, which can be approximated by the square of a single function. PMID:16667257

  5. Global stability of enzymatic chains of full reversible Michaelis-Menten reactions.

    Belgacem, Ismail; Gouzé, Jean-Luc


    We consider a chain of metabolic reactions catalyzed by enzymes, of reversible Michaelis-Menten type with full dynamics, i.e. not reduced with any quasi-steady state approximations. We study the corresponding dynamical system and show its global stability if the equilibrium exists. If the system is open, the equilibrium may not exist. The main tool is monotone systems theory. Finally we study the implications of these results for the study of coupled genetic-metabolic systems.

  6. Solution of the Michaelis-Menten equation using the decomposition method.

    Sonnad, Jagadeesh R; Goudar, Chetan T


    We present a low-order recursive solution to the Michaelis-Menten equation using the decomposition method. This solution is algebraic in nature and provides a simpler alternative to numerical approaches such as differential equation evaluation and root-solving techniques that are currently used to compute substrate concentration in the Michaelis-Menten equation. A detailed characterization of the errors in substrate concentrations computed from decomposition, Runge-Kutta, and bisection methods over a wide range of s(0) : K(m) values was made by comparing them with highly accurate solutions obtained using the Lambert W function. Our results indicated that solutions obtained from the decomposition method were usually more accurate than those from the corresponding classical Runge-Kutta methods. Moreover, these solutions required significantly fewer computations than the root-solving method. Specifically, when the stepsize was 0.1% of the total time interval, the computed substrate concentrations using the decomposition method were characterized by accuracies on the order of 10(-8) or better. The algebraic nature of the decomposition solution and its relatively high accuracy make this approach an attractive candidate for computing substrate concentration in the Michaelis-Menten equation.

  7. Note: Parameter-independent bounding of the stochastic Michaelis-Menten steady-state intrinsic noise variance.

    Widmer, L A; Stelling, J; Doyle, F J


    Using the (slow-scale) linear noise approximation, we give parameter-independent bounds to the substrate and product intrinsic noise variance for the stochastic Michaelis-Menten approximation at steady state.



    In this paper,the existence of eight periodic solutions to a Michaelis-Menten-type predator-prey system with delay and harvesting in patch environment is established using the analytical techniques and Mawhin's coincidence degree theory.

  9. The steady-state Michaelis-Menten analysis of P-glycoprotein mediated transport through a confluent cell monolayer cannot predict the correct Michaelis constant Km.

    Bentz, Joe; Tran, Thuy Thanh; Polli, Joseph W; Ayrton, Andrew; Ellens, Harma


    Typically, the kinetics of membrane transport is analyzed using the steady-state Michaelis-Menten (or Eadie-Hofstee or Hanes) equations. This approach has been successful when the substrate is picked up from the aqueous phase, like a water-soluble enzyme, for which the Michaelis-Menten steady-state analysis was developed. For membrane transporters whose substrate resides in the lipid bilayer of the plasma membrane, like P-glycoprotein (P-gp), there has been no validation of the accuracy of the steady-state analysis because the elementary rate constants for transport were not known. Recently, we fitted the mass action elementary kinetic rate constants of P-gp transport of three different drugs through a confluent monolayer of MDCKII-hMDR1 cells. With these elementary rate constants in hand, we use computer simulations to assess the accuracy of the steady-state Michaelis-Menten parameters. This limits the simulation to parameter ranges known to be physiologically relevant. Using over 2,300 different vectors of initial elementary parameters spanning the space bounded by the three drugs, which defines 2,300 "virtual substrates", the concentrations of substrate transported were calculated and fitted to Eadie-Hofstee plots. Acceptable plots were obtained for 1,338 cases. The fitted steady-state Vmax values from the analysis correlated to within a factor of 2-3 with the values predicted from the elementary parameters. However, the fitted Km value could be generated by a wide range of underlying "molecular" Km values. This is because of the convolution of the drug passive permeability kinetics into the fitted Km. This implies that Km values measured in simpler systems, e.g., microsomes or proteoliposomes, even if accurate, would not predict the Km values for the confluent monolayer system or, by logical extension, in vivo. Reliable in vitro-in vivo extrapolation seems to require using the elementary rate constants rather than the Michaelis-Menten steady-state parameters.

  10. Cysteine endoprotease activity of human ribosomal protein S4 is entirely due to the C-terminal domain, and is consistent with Michaelis-Menten mechanism.

    Sudhamalla, Babu; Kumar, Mahesh; Roy, Karnati R; Kumar, R Sunil; Bhuyan, Abani K


    It is known that tandem domains of enzymes can carry out catalysis independently or by collaboration. In the case of cysteine proteases, domain sequestration abolishes catalysis because the active site residues are distributed in both domains. The validity of this argument is tested here by using isolated human ribosomal protein S4, which has been recently identified as an unorthodox cysteine protease. Cleavage of the peptide substrate Z-FR↓-AMC catalyzed by recombinant C-terminal domain of human S4 (CHS4) is studied by fluorescence-monitored steady-state and stopped-flow kinetic methods. Proteolysis and autoproteolysis were analyzed by electrophoresis. The CHS4 domain comprised of sequence residues 116-263 has been cloned and ovreexpressed in Escherichia coli. The purified domain is enzymatically active. Barring minor differences, steady-state kinetic parameters for catalysis by CHS4 are very similar to those for full-length human S4. Further, stopped-flow transient kinetics of pre-steady-state substrate binding shows that the catalytic mechanism for both full-length S4 and CHS4 obeys the Michaelis-Menten model adequately. Consideration of the evolutionary domain organization of the S4e family of ribosomal proteins indicates that the central domain (residues 94-170) within CHS4 is indispensable. The C-terminal domain can carry out catalysis independently and as efficiently as the full-length human S4 does. Localization of the enzyme function in the C-terminal domain of human S4 provides the only example of a cysteine endoprotease where substrate-mediated intramolecular domain interaction is irrelevant for catalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Hopf Bifurcation and Global Periodic Solutions in a Predator-Prey System with Michaelis-Menten Type Functional Response and Two Delays

    Yunxian Dai; Yiping Lin; Huitao Zhao


    We consider a predator-prey system with Michaelis-Menten type functional response and two delays. We focus on the case with two unequal and non-zero delays present in the model, study the local stability of the equilibria and the existence of Hopf bifurcation, and then obtain explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation when the delay...

  12. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M


    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  13. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose.

    Gejl, Michael; Rungby, Jørgen; Brock, Birgitte; Gjedde, Albert


    Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Atypical cytochrome p450 kinetics: implications for drug discovery.

    Tracy, Timothy S


    The Michaelis-Menten model is commonly used to estimate a drug's potential in vivo hepatic clearance based on in vitro data obtained during drug discovery and development. This paradigm assumes that the drug obeys 'typical' enzyme kinetics and thus can be described by this model. However, it is increasingly being recognised that a number of drugs metabolised not only by the cytochrome P450 enzymes but also by other enzymes and transporters can exhibit atypical kinetic profiles, and thus are not accurately modeled with the Michaelis-Menten model. Application of an incorrect model can then lead to mis-estimation of in vitro intrinsic clearance and thus affect the prediction of in vivo clearance. This review discusses several types of atypical kinetic profiles that may be observed, including examples of homotropic cooperativity (i.e. sigmoidal kinetics, biphasic kinetics and substrate inhibition kinetics) as well as heterotropic cooperativity (i.e. activation). Application of the incorrect kinetic model may profoundly affect estimations of intrinsic clearance. For example, incorrectly applying the Michaelis-Menten model to a kinetic profile exhibiting substrate inhibition kinetics will result in an underestimation of Km (Michaelis-Menten constant) and V(max) (maximal velocity), whereas application of the Michaelis-Menten model to sigmoidal kinetic data typically results in an overestimation of Km and V(max) at the lower substrate concentrations that are typically therapeutically relevant. One must also be careful of potential artefactual causes of atypical kinetic profiles, such as enzyme activation by solvents, buffer dependent kinetic profiles, or altered kinetic parameter estimates due to nonspecific binding of the substrate to proteins. Despite a plethora of data on the effects of atypical kinetic profiles in vitro, only modest effects have been noted in vivo (with the exception of substrate dependent inhibition). Thus, the clinical relevance of these phenomena

  15. Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.


    . These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws...... with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. Results: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation...

  16. Multistep generalized transformation method applied to solving equations of discrete and continuous time-fractional enzyme kinetics

    Vosika, Z.; Mitić, V. V.; Vasić, A.; Lazović, G.; Matija, L.; Kocić, Lj. M.


    In this paper, Caputo based Michaelis-Menten kinetic model based on Time Scale Calculus (TSC) is proposed. The main reason for its consideration is a study of tumor cells population growth dynamics. In the particular case discrete-continuous time kinetics, Michaelis-Menten model is numerically treated, using a new algorithm proposed by authors, called multistep generalized difference transformation method (MSGDETM). In addition numerical simulations are performed and is shown that it represents the upgrade of the multi-step variant of generalized differential transformation method (MSGDTM). A possible conditions for its further development are discussed and possible experimental verification is described.

  17. An alternative approach to determine oral bioavailability of drugs that follow Michaelis-Menten elimination: a case study with voriconazole.

    Verlindo de Araujo, Bibiana; Farias da Silva, Cristófer; Costa, Teresa Dalla


    the determination of oral bioavailability of drugs which follow nonlinear pharmacokinetics is difficult and few methods are available. In this work, an alternative approach to determine oral bioavailability of voriconazole (VRC), used as a model drug, is presented. VRC pharmacokinetics was investigated in Wistar rats after p.o. (40 mg/kg) and i.v. administration (2.5, 5 and 10 mg/kg). VRC elimination showed saturation in all doses investigated, except the lower i.v. dose in which case a 3-compartment model with linear elimination adequately fitted the data. Data for the 2 higher i.v. doses were best described by a 3-compartment model with Michaelis-Menten elimination. A 1-compartment disposition with a saturable metabolic elimination model described the oral profile. VRC absolute oral bioavailability was determined by simultaneous fitting of the i.v. and oral profiles. the Michaelis constant and the maximum velocity estimated after 5 and 10 mg/kg i.v. dosing were 0.54 +/- 0.25 microg/ml and 2.53 +/- 0.54 microg/h, and 0.62 +/- 0.12 microg/ml and 2.74 +/- 0.84 microg/h, respectively. VRC oral bioavailability was determined to be 82.8%. the approach presented is an alternative for determining the bioavailability of drugs with similar nonlinear behavior. 2010 S. Karger AG, Basel.

  18. The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?

    Goličnik, Marko


    A recent article of Johnson and Goody (Biochemistry, 2011;50:8264-8269) described the almost-100-years-old paper of Michaelis and Menten. Johnson and Goody translated this classic article and presented the historical perspective to one of incipient enzyme-reaction data analysis, including a pioneering global fit of the integrated rate equation in its implicit form to the experimental time-course data. They reanalyzed these data, although only numerical techniques were used to solve the model equations. However, there is also the still little known algebraic rate-integration equation in a closed form that enables direct fitting of the data. Therefore, in this commentary, I briefly present the integral solution of the Michaelis-Menten rate equation, which has been largely overlooked for three decades. This solution is expressed in terms of the Lambert W function, and I demonstrate here its use for global nonlinear regression curve fitting, as carried out with the original time-course dataset of Michaelis and Menten.

  19. Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles

    Sousa Jr R.


    Full Text Available Partial hydrolysis of whey proteins by enzymes immobilized on an inert support can either change or evidence functional properties of the produced peptides, thereby increasing their applications. The hydrolysis of sweet cheese whey proteins by alcalase, which is multipoint-immobilized on agarose gel, is studied here. A Michaelis-Menten model that takes into account competitive inhibition by the product was fitted to experimental data. The influence of pH on the kinetic parameters in the range 6.0 to 11.0 was assessed, at 50ºC. Initial reaction-rate assays in a pHstat at different concentrations of substrate were used to estimate kinetic and Michaelis-Menten parameters, k and K M. Experimental data from long-term batch assays were used to quantify the inhibition parameter, K I. The fitting of the model to the experimental data was accurate in the entire pH range.

  20. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.

    Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda


    Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms.

  1. A kinetic model for the penicillin biosynthetic pathway in

    Nielsen, Jens; Jørgensen, Henrik


    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  2. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt


    , during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20......-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis......-Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis-Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product...

  3. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Maggi, F.M.; Riley, W.J.


    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  4. Model-order reduction of biochemical reaction networks

    Rao, Shodhan; Schaft, Arjan van der; Eunen, Karen van; Bakker, Barbara M.; Jayawardhana, Bayu


    In this paper we propose a model-order reduction method for chemical reaction networks governed by general enzyme kinetics, including the mass-action and Michaelis-Menten kinetics. The model-order reduction method is based on the Kron reduction of the weighted Laplacian matrix which describes the gr

  5. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper.

    Michaelis, Leonor; Menten, Maud Leonora; Johnson, Kenneth A; Goody, Roger S


    Nearly 100 years ago Michaelis and Menten published their now classic paper [Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333-369] in which they showed that the rate of an enzyme-catalyzed reaction is proportional to the concentration of the enzyme-substrate complex predicted by the Michaelis-Menten equation. Because the original text was written in German yet is often quoted by English-speaking authors, we undertook a complete translation of the 1913 publication, which we provide as Supporting Information . Here we introduce the translation, describe the historical context of the work, and show a new analysis of the original data. In doing so, we uncovered several surprises that reveal an interesting glimpse into the early history of enzymology. In particular, our reanalysis of Michaelis and Menten's data using modern computational methods revealed an unanticipated rigor and precision in the original publication and uncovered a sophisticated, comprehensive analysis that has been overlooked in the century since their work was published. Michaelis and Menten not only analyzed initial velocity measurements but also fit their full time course data to the integrated form of the rate equations, including product inhibition, and derived a single global constant to represent all of their data. That constant was not the Michaelis constant, but rather V(max)/K(m), the specificity constant times the enzyme concentration (k(cat)/K(m) × E(0)).

  6. Critical body residues, Michaelis-Menten analysis of bioaccumulation, lethality and behaviour as endpoints of waterborne Ni toxicity in two teleosts.

    Leonard, Erin M; Marentette, Julie R; Balshine, Sigal; Wood, Chris M


    Traditionally, water quality guidelines/criteria are based on lethality tests where results are expressed as a function of waterborne concentrations (e.g. LC50). However, there is growing interest in the use of uptake and binding relationships, such as biotic ligand models (BLM), and in bioaccumulation parameters, such as critical body residue values (e.g. CBR50), to predict metal toxicity in aquatic organisms. Nevertheless, all these approaches only protect species against physiological death (e.g. mortality, failed recruitment), and do not consider ecological death which can occur at much lower concentrations when the animal cannot perform normal behaviours essential for survival. Therefore, we investigated acute (96 h) Ni toxicity in two freshwater fish species, the round goby (Neogobius melanostomus) and rainbow trout (Oncorhynchus mykiss) and compared LC, BLM, and CBR parameters for various organs, as well as behavioural responses (spontaneous activity). In general, round goby were more sensitive. Ni bioaccumulation displayed Michaelis-Menten kinetics in most tissues, and round goby gills had lower Kd (higher binding affinity) but similar Bmax (binding site density) values relative to rainbow trout gills. Round goby also accumulated more Ni than did trout in most tissues at a given exposure concentration. Organ-specific 96 h acute CBR values tended to be higher in round goby but 96 h acute CBR50 and CBR10 values in the gills were very similar in the two species. In contrast, LC50 and LC10 values were significantly higher in rainbow trout. With respect to BLM parameters, gill log KNiBL values for bioaccumulation were higher by 0.4-0.8 log units than the log KNiBL values for toxicity in both species, and both values were higher in goby (more sensitive). Round goby were also more sensitive with respect to the behavioural response, exhibiting a significant decline of 63-75 % in movements per minute at Ni concentrations at and above only 8 % of the LC50 value

  7. Kinetics of Hydrolyzing Isolated Soy Protein by an Endopeptidase and its Conceptual Application in Process Engineering

    Zebin Wang


    Full Text Available A response study and the effects of different parameters (pH, temperature and enzyme dose on kinetics of isolated soy protein hydrolysis by a trypsin-like endopeptidase (TL1 were conducted. Degree of hydrolysis (%DH data varied at different times under different hydrolysis conditions. Fitting the kinetics data to Michaelis-Menten kinetics model did not result in reasonable kinetic parameters, which implied that Michaelis-Menten kinetics was invalid for such a hydrolysis process. A kinetics model proposed by (Gonzalez-Tello, Camacho, Jurado, Paez, & Guadix, 1994 was found to fit the kinetics curve well and resulted in acceptable model parameters. A simple simulation example was performed to demonstrate the concept of how the kinetics equation could be applied in process engineering.

  8. Modeling uptake kinetics of cadmium by field-grown lettuce

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail:; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)


    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  9. Novel form of the Michaelis-Menten equation that enables accurate estimation of (kcat/KM)*KI with just two rate measurements; utility in directed evolution.

    Lu, Jian; Dong, Yuxia; Ng, Emily C; Siehl, Daniel L


    One of applications of directed evolution is to desensitize an enzyme to an inhibitor. kcat,1/KM and KI are three dimensions that when multiplied measure an enzyme's intrinsic capacity for catalysis in the presence of an inhibitor. The ideal values for the individual dimensions depend on substrate and inhibitor concentrations under the conditions of the application. When attempting to optimize those values by directed evolution, (kcat/KM)*KI can be an informative parameter for evaluating libraries of variants, but throughput is limited. We describe a manipulation of the Michaelis-Menten equation for competitive inhibition that isolates (kcat/KM)*KI on one side of the equation. If velocity is measured at constant enzyme and substrate concentrations with two different inhibitor concentrations (one of which can be 0), the data are sufficient to calculate (kcat/KM)*KI with just two rate measurements. The procedure is validated by correlating values obtained by the rapid method with those obtained by substrate saturation kinetics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  10. Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation

    Pulkkinen, O


    Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessi...

  11. Modeling chronic hepatitis B or C virus infection during antiviral therapy using an analogy to enzyme kinetics: long-term viral dynamics without rebound and oscillation.

    Takayanagi, Toshiaki


    The basic model for chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection during therapy enables us to analyze short-term viral kinetics. However, the model is not useful for analyzing long-term viral kinetics. Here, I suggest a new model that was obtained by introducing Michaelis-Menten kinetics into the basic model. The new model can exhibit long-term viral kinetics without rebound and oscillation, unlike the basic model. The value of the parameter K in the new model is analogous to the Michaelis constant Km and is predicted to be approximately less than 10(10)/ml.

  12. Impact of capillary flow hydrodynamics on carrier-mediated transport of opioid derivatives at the blood-brain barrier, based on pH-dependent Michaelis-Menten and Crone-Renkin analyses.

    Yusof, Siti R; Abbott, N Joan; Avdeef, Alex


    Most studies of blood-brain barrier (BBB) permeability and transport are conducted at a single pH, but more detailed information can be revealed by using multiple pH values. A pH-dependent biophysical model was applied to the mechanistic analysis of published pH-dependent BBB luminal uptake data from three opioid derivatives in rat: pentazocine (Suzuki et al., 2002a, 2002b), naloxone (Suzuki et al., 2010a), and oxycodone (Okura et al., 2008). Two types of data were processed: in situ brain perfusion (ISBP) and brain uptake index (BUI). The published perfusion data were converted to apparent luminal permeability values, Papp, and analyzed by the pCEL-X program (Yusof et al., 2014), using the pH-dependent Crone-Renkin equation (pH-CRE) to determine the impact of cerebrovascular flow on the Michaelis-Menten transport parameters (Avdeef and Sun, 2011). For oxycodone, the ISBP data had been measured at pH7.4 and 8.4. The present analysis indicates a 7-fold lower value of the cerebrovascular flow velocity, Fpf, than that expected in the original study. From the pyrilamine-inhibited data, the flow-corrected passive intrinsic permeability value was determined to be P0=398×10(-6)cm·s(-1). The uptake data indicate that the neutral form of oxycodone is affected by a transporter at pH8.4. The extent of the cation uptake was less certain from the available data. For pentazocine, the brain uptake by the BUI method had been measured at pH5.5, 6.5, and 7.4, in a concentration range 0.1-40mM. Under similar conditions, ISBP data were also available. The pH-CRE determined values of Fpf from both methods were nearly the same, and were smaller than the expected value in the original publication. The transport of the cationic pentazocine was not fully saturated at pH5.5 at 40mM. The transport of the neutral species at pH7.4 appeared to reach saturation at 40mM pentazocine concentration, but not at 12mM. In the case of naloxone, a pH-dependent Michaelis-Menten equation (p

  13. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.

    Igamberdiev, Abir U; Roussel, Marc R


    Rubisco, the most abundant protein serving as the primary engine generating organic biomass on Earth, is characterized by a low catalytic constant (in higher plants approx. 3s(-1)) and low specificity for CO(2) leading to photorespiration. We analyze here why this enzyme evolved as the main carbon fixation engine. The high concentration of Rubisco exceeding the concentration of its substrate CO(2) by 2-3 orders of magnitude makes application of Michaelis-Menten kinetics invalid and requires alternative kinetic approaches to describe photosynthetic CO(2) assimilation. Efficient operation of Rubisco is supported by a strong flux of CO(2) to the chloroplast stroma provided by fast equilibration of bicarbonate and CO(2) and forwarding the latter to Rubisco reaction centers. The main part of this feedforward mechanism is a thylakoidal carbonic anhydrase associated with photosystem II and pumping CO(2) from the thylakoid lumen in coordination with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. This steady flux of CO(2) limits photosynthesis at saturating CO(2) concentrations. At low ambient CO(2) and correspondingly limited capacity of the bicarbonate pool in the stroma, its depletion at the sites of Rubisco is relieved by utilizing O(2) instead of CO(2), i.e. by photorespiration, a process which supplies CO(2) back to Rubisco and buffers the redox state and energy level in the chloroplast. Thus, the regulation of Rubisco function aims to keep steady non-equilibrium levels of CO(2), NADPH/NADP and ATP/ADP in the chloroplast stroma and to optimize the condition of homeostatic photosynthetic flux of matter and energy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Modelling atypical CYP3A4 kinetics: principles and pragmatism.

    Houston, J Brian; Galetin, Aleksandra


    The Michaelis-Menten model, and the existence of a single active site for the interaction of substrate with drug metabolizing enzyme, adequately describes a substantial number of in vitro metabolite kinetic data sets for both clearance and inhibition determination. However, in an increasing number of cases (involving most notably, but not exclusively, CYP3A4), atypical kinetic features are observed, e.g., auto- and heteroactivation; partial, cooperative, and substrate inhibition; concentration-dependent effector responses (activation/inhibition); limited substrate substitution and inhibitory reciprocity necessitating sub-group classification. The phenomena listed above cannot be readily interpreted using single active site models and the literature indicates that three types of approaches have been adopted. First the 'nai ve' approach of using the Michaelis-Menten model regardless of the kinetic behaviour, second the 'empirical' approach (e.g., employing the Hill or uncompetitive inhibition equations to model homotropic phenomena of sigmoidicity and substrate inhibition, respectively) and finally, the 'mechanistic' approach. The later includes multisite kinetic models derived using the same rapid equilibrium/steady-state assumptions as the single-site model. These models indicate that 2 or 3 binding sites exist for a given CYP3A4 substrate and/or effector. Multisite kinetic models share common features, depending on the substrate kinetics and the nature of the effector response observed in vitro, which allow a generic model to be proposed. Thus although more complex than the other two approaches, they show more utility and can be comprehensively applied in relatively simple versions that can be readily generated from generic model. Multisite kinetic features, observed in isolated hepatocytes as well as in microsomes from hepatic tissue and heterologous expression systems, may be evident in substrate depletion-time profiles as well as in metabolite formation rates

  15. Stability in a diffusive food chain model with Michaelis-Menten functional response

    Lin, Zhigui; Pedersen, Michael


    This paper deals with the behavior of positive solutions to a reaction-diffusion system with homogeneous Neumann boundary conditions describing a three species food chain. A sufficient condition for the local asymptotical stability is given by linearization and also a sufficient condition...... for the global asymptotical stability is given by a Lyapunov function. Our result shows that the equilibrium solution is globally asymptotically stable if the net birth rate of the first species is big enough and the net death rate of the third species is neither too big nor too small. (C) 2004 Elsevier Ltd. All...

  16. Variance-corrected Michaelis-Menten equation predicts transient rates of single-enzyme reactions and response times in bacterial gene-regulation.

    Pulkkinen, Otto; Metzler, Ralf


    Many chemical reactions in biological cells occur at very low concentrations of constituent molecules. Thus, transcriptional gene-regulation is often controlled by poorly expressed transcription-factors, such as E.coli lac repressor with few tens of copies. Here we study the effects of inherent concentration fluctuations of substrate-molecules on the seminal Michaelis-Menten scheme of biochemical reactions. We present a universal correction to the Michaelis-Menten equation for the reaction-rates. The relevance and validity of this correction for enzymatic reactions and intracellular gene-regulation is demonstrated. Our analytical theory and simulation results confirm that the proposed variance-corrected Michaelis-Menten equation predicts the rate of reactions with remarkable accuracy even in the presence of large non-equilibrium concentration fluctuations. The major advantage of our approach is that it involves only the mean and variance of the substrate-molecule concentration. Our theory is therefore accessible to experiments and not specific to the exact source of the concentration fluctuations.

  17. Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex.

    Leonard, Erin M; Wood, Chris M


    We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L(-1) as CaCO(3) (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC(50) values 3-3.5× higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC(50) values within and across species by ~2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis-Menten kinetics in all organisms, with greater hardness tending to decrease B(max) with no consistent effect on K(d). Across species, acute Ni LC(50) values tended to increase with both K(d) and B(max) values - i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log K(NiBL) values derived from Ni bioaccumulation correlated well with log K(NiBL) values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Modeling Heavy Metal Removal in Wetlands.


    1976 a,b,c) and Pettersson (1976) treated heavy metals uptake according to Michaelis-Menten kinetics ( Lehninger , 1975), discussed later in detail...copper kinetics equation as used in this modeling effort is presented below, after Lehninger (1975): dv_ dV, Ca (5) dt dt C.+K, where: v = rate of copper...the bulk solution, Cb, using either the Lineweaver-Burk double reciprocal or Eadie-Hofstee graphical methods ( Lehninger , 1975). Nielsen (1976 b) used

  19. Electron affinity coefficients of nitrogen oxides and biodegradation kinetics in denitrification of contaminated stream water.

    Kim, Seung-Hyun; Chung, Jong-Bae; Jeong, Byeong-Ryong; Lee, Young-Deuk; Prasher, Shiv O


    During the dry season in Korea, rivers become more vulnerable to contamination by biochemical oxygen demand (BOD) and nitrogen. It is hypothesized that the natural characteristics of the streams in Korea allow the contaminated water to be treated at the tributaries. Down-stream river water quality in Korea may be improved by spraying the contaminated stream water from the tributaries over the surrounding floodplains. The consequent water filtration through the soil could remove the contaminants through aerobic and denitrifying reactions. In this study, the kinetics parameters of the denitrifying reaction in floodplain filtration were determined using contaminated stream water. For the electron donor the Monod kinetics was used, while the competitive Michaelis-Menten model was employed for the electron acceptors. The parameters to the competitive Michaelis-Menten model were found using continuous denitrifying reactions, instead of the batch reactions employed in previous studies, to match the conditions needed to apply the competitive Michaelis-Menten kinetics. From the result, it was found that continuous reactions as well as batch reactions could be used to determine the affinity coefficients in denitrification. The results of this study also showed that the affinity coefficient of NO2, using continuous reactions, was similar to that of other studies in the literature found via batch reactions, whereas the affinity coefficient of N2O was much larger than that acquired with batch reactions. The parameters obtained in this study will be used in future work to simulate the contaminant behaviors during floodplain filtration using a mathematical model.

  20. Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem.

    Rotbart, Tal; Reuveni, Shlomi; Urbakh, Michael


    We study the effect of restart, and retry, on the mean completion time of a generic process. The need to do so arises in various branches of the sciences and we show that it can naturally be addressed by taking advantage of the classical reaction scheme of Michaelis and Menten. Stopping a process in its midst-only to start it all over again-may prolong, leave unchanged, or even shorten the time taken for its completion. Here we are interested in the optimal restart problem, i.e., in finding a restart rate which brings the mean completion time of a process to a minimum. We derive the governing equation for this problem and show that it is exactly solvable in cases of particular interest. We then continue to discover regimes at which solutions to the problem take on universal, details independent forms which further give rise to optimal scaling laws. The formalism we develop, and the results obtained, can be utilized when optimizing stochastic search processes and randomized computer algorithms. An immediate connection with kinetic proofreading is also noted and discussed.

  1. Commemorating the 1913 Michaelis-Menten paper Die Kinetik der Invertinwirkung: three perspectives.

    Deichmann, Ute; Schuster, Stefan; Mazat, Jean-Pierre; Cornish-Bowden, Athel


    Methods and equations for analysing the kinetics of enzyme-catalysed reactions were developed at the beginning of the 20th century in two centres in particular; in Paris, by Victor Henri, and, in Berlin, by Leonor Michaelis and Maud Menten. Henri made a detailed analysis of the work in this area that had preceded him, and arrived at a correct equation for the initial rate of reaction. However, his approach was open to the important objection that he took no account of the hydrogen-ion concentration (a subject largely undeveloped in his time). In addition, although he wrote down an expression for the initial rate of reaction and described the hyperbolic form of its dependence on the substrate concentration, he did not appreciate the great advantages that would come from analysis in terms of initial rates rather than time courses. Michaelis and Menten not only placed Henri's analysis on a firm experimental foundation, but also defined the experimental protocol that remains standard today. Here, we review this development, and discuss other scientific contributions of these individuals. The three parts have different authors, as indicated, and do not necessarily agree on all details, in particular about the relative importance of the contributions of Michaelis and Menten on the one hand and of Henri on the other. Rather than force the review into an unrealistic consensus, we consider it appropriate to leave the disagreements visible. © 2013 FEBS.

  2. Specificity of non-Michaelis-Menten enzymes: necessary information for analyzing metabolic pathways.

    Cornish-Bowden, Athel; Cárdenas, María Luz


    The specificity of an enzyme obeying the Michaelis−Menten equation is normally measured by comparing the kcat/Km for different substrates, but this is inappropriate for enzymes with a Hill coefficient h different from 1. The obvious alternative of generalizing Km in the expression as K0.5, the substrate concentration for half-saturation, is better, but it is not entirely satisfactory either, and here we show that kcat/K0.5(h) gives satisfactory results for analyzing the kinetic behavior of metabolic pathways. The importance of using kcat/K0.5(h) increases with the value of h, but even when h is small, it makes an appreciable difference, as illustrated for the mammalian hexokinases. Reinterpretation of data for the specificity of these enzymes in terms of the proposed definition indicates that hexokinase D, often believed highly specific for glucose, and accordingly called “glucokinase”, actually has the lowest preference for glucose over fructose of the four isoenzymes found in mammals.

  3. Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem

    Rotbart, Tal; Reuveni, Shlomi; Urbakh, Michael


    We study the effect of restart, and retry, on the mean completion time of a generic process. The need to do so arises in various branches of the sciences and we show that it can naturally be addressed by taking advantage of the classical reaction scheme of Michaelis and Menten. Stopping a process in its midst—only to start it all over again—may prolong, leave unchanged, or even shorten the time taken for its completion. Here we are interested in the optimal restart problem, i.e., in finding a restart rate which brings the mean completion time of a process to a minimum. We derive the governing equation for this problem and show that it is exactly solvable in cases of particular interest. We then continue to discover regimes at which solutions to the problem take on universal, details independent forms which further give rise to optimal scaling laws. The formalism we develop, and the results obtained, can be utilized when optimizing stochastic search processes and randomized computer algorithms. An immediate connection with kinetic proofreading is also noted and discussed.

  4. A new multi-wavelength model-based method for determination of enzyme kinetic parameters.

    Sorouraddin, Mohammad-Hossein; Amini, Kaveh; Naseri, Abdolhossein; Vallipour, Javad; Hanaee, Jalal; Rashidi, Mohammad-Reza


    Lineweaver-Burk plot analysis is the most widely used method to determine enzyme kinetic parameters. In the spectrophotometric determination of enzyme activity using the Lineweaver-Burk plot, it is necessary to find a wavelength at which only the substrate or the product has absorbance without any spectroscopic interference of the other reaction components. Moreover, in this method, different initial concentrations of the substrate should be used to obtain the initial velocities required for Lineweaver-Burk plot analysis. In the present work, a multi-wavelength model-based method has been developed and validated to determine Michaelis-Menten constants for some enzyme reactions. In this method, a selective wavelength region and several experiments with different initial concentrations of the substrate are not required. The absorbance data of the kinetic assays are fitted by non-linear regression coupled to the numeric integration of the related differential equation. To indicate the applicability of the proposed method, the Michaelis-Menten constants for the oxidation of phenanthridine, 6-deoxypenciclovir and xanthine by molybdenum hydroxylases were determined using only a single initial concentration of the substrate, regardless of any spectral overlap.

  5. Estimation of Michaelis-Menten constant of efflux transporter considering asymmetric permeability.

    Sugano, Kiyohiko; Shirasaka, Yoshiyuki; Yamashita, Shinji


    It was previously reported that the apparent K(m) values of P-gp in apical to basal (A to B) and basal to apical (B to A) directions were different. The purpose of the present study was to derive a theoretical framework by which this asymmetric concentration-permeability profile can be explained using a single intrinsic K(m) value. A three compartment model was used to represent the apical, cytosol and basal compartments. The difference of passive permeability and the surface areas between the apical and basolateral membrane were explicitly taken into account. Applying the steady state approximation and considering the mass balance in the cytosol compartment, an open analytical solution was obtained. By using this equation, the asymmetric concentration-permeability profile was appropriately reproduced. In addition, the expression level dependency of apparent K(m) was also reproduced. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Kinetic Measurements for Enzyme Immobilization.

    Cooney, Michael J


    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  7. A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light.

    Mafrica, Stefano; Godiot, Stéphanie; Menouni, Mohsine; Boyron, Marc; Expert, Fabien; Juston, Raphaël; Marchand, Nicolas; Ruffier, Franck; Viollet, Stéphane


    In this paper, we present: (i) a novel analog silicon retina featuring auto-adaptive pixels that obey the Michaelis-Menten law, i.e. V=V(m) I(n)/I(n)+σ(n); (ii) a method of characterizing silicon retinas, which makes it possible to accurately assess the pixels' response to transient luminous changes in a ±3-decade range, as well as changes in the initial steady-state intensity in a 7-decade range. The novel pixel, called M(2)APix, which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and responds appropriately to step changes up to ±3 decades in size without causing any saturation of the Very Large Scale Integration (VLSI) transistors. Thanks to the intrinsic properties of the Michaelis-Menten equation, the pixel output always remains within a constant limited voltage range. The range of the Analog to Digital Converter (ADC) was therefore adjusted so as to obtain a Least Significant Bit (LSB) voltage of 2.35mV and an effective resolution of about 9 bits. The results presented here show that the M(2)APix produced a quasi-linear contrast response once it had adapted to the average luminosity. Differently to what occurs in its biological counterparts, neither the sensitivity to changes in light nor the contrast response of the M(2)APix depend on the mean luminosity (i.e. the ambient lighting conditions). Lastly, a full comparison between the M(2)APix and the Delbrück auto-adaptive pixel is provided.

  8. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    Fernandez, J.A. [Area de Ecologia, Facultad de Biologia, Univ. Santiago de Compostela, 15782 Santiago de Compostela (Spain)]. E-mail:; Vazquez, M.D. [Area de Ecologia, Escuela Politecnica Superior, Univ. Santiago de Compostela, 27002 Lugo (Spain); Lopez, J. [Area de Ecologia, Facultad de Ciencias, Univ. de Vigo, 36200 Vigo (Spain); Carballeira, A. [Area de Ecologia, Facultad de Biologia, Univ. Santiago de Compostela, 15782 Santiago de Compostela (Spain)


    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses.

  9. Uso do "bootstrap" na estimação de parâmetros em modelos não lineares - uma aplicação em mecanismos cinéticos de michaelis-menten

    Machado, Eustáquio José


    A equação hiperbólica, conhecida no contexto bioquímico como o modelo de Michaelis-Menten, é utilizada para descrever a velocidade de reações químicas envolvendo enzimas (cinética enzimática). Este estudo teve como objetivo comparar os ajustes do modelo de Michaelis-Menten (1913) que fez uso de dois modelos não-lineares e quatro modelos linearizados. Os dois modelos não-lineares (um utilizou o método clássico assintotico usual e o outro fez uso da abordagem "bootstrap"). Os modelos linearizad...

  10. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient.

    Fernández, J A; Vázquez, M D; López, J; Carballeira, A


    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH.

  11. A mesoscopic stochastic model for the specific consumption rate in substrate-limited microbial growth


    The specific consumption rate of substrate, as well as the associated specific growth rate, is an essential parameter in the mathematical description of substrate-limited microbial growth. In this paper we develop a completely new kinetic model of substrate transport, based on recent knowledge on the structural biology of transport proteins, which correctly describes very accurate experimental results at near-zero substrate concentration values found in the literature, where the widespread Michaelis-Menten model fails. Additionally, our model converges asymptotically to Michaelis-Menten predictions as substrate concentration increases. Instead of the single active site enzymatic reaction of Michaelis-Menten type, the proposed model assumes a multi-site kinetics, simplified as an apparent all-or-none mechanism for the transport, which is controlled by means of the local substrate concentration in the close vicinity of the transport protein. Besides, the model also assumes that this local concentration is not equal to the mean substrate concentration experimentally determined in the culture medium. Instead, we propose that it fluctuates with a mostly exponential distribution of Weibull type. PMID:28187189

  12. Extended kinetic model of real-time polymerase chain reaction process

    Fedorov, A. A.; Sochivko, D. G.; Varlamov, D. A.; Kurochkin, V. E.


    Real-time polymerase chain reaction (real-time PCR) is the main molecular genetic method used for qualitative and quantitative analysis of specific nucleic acid sequences in many areas of biomedical research. Theoretical study of pCr models allows to estimate the influence of various reaction components and parameters, and to determine the unknown parameter values by approximating the experimental real-time PCR curves. An extended kinetic model of real-time PCR is presented. The model takes into account the enzyme activity based on Michaelis-Menten kinetics, the hybridization of complementary DNA fragments, the presence of a fluorescent probe used for detection of the reaction products, and the temperature dependence of primers and probe hybridization.

  13. How molecular should your molecular model be? On the level of molecular detail required to simulate biological networks in systems and synthetic biology.

    Gonze, Didier; Abou-Jaoudé, Wassim; Ouattara, Djomangan Adama; Halloy, José


    The recent advance of genetic studies and the rapid accumulation of molecular data, together with the increasing performance of computers, led researchers to design more and more detailed mathematical models of biological systems. Many modeling approaches rely on ordinary differential equations (ODE) which are based on standard enzyme kinetics. Michaelis-Menten and Hill functions are indeed commonly used in dynamical models in systems and synthetic biology because they provide the necessary nonlinearity to make the dynamics nontrivial (i.e., limit-cycle oscillations or multistability). For most of the systems modeled, the actual molecular mechanism is unknown, and the enzyme equations should be regarded as phenomenological. In this chapter, we discuss the validity and accuracy of these approximations. In particular, we focus on the validity of the Michaelis-Menten function for open systems and on the use of Hill kinetics to describe transcription rates of regulated genes. Our discussion is illustrated by numerical simulations of prototype systems, including the Repressilator (a genetic oscillator) and the Toggle Switch model (a bistable system). We systematically compare the results obtained with the compact version (based on Michaelis-Menten and Hill functions) with its corresponding developed versions (based on "elementary" reaction steps and mass action laws). We also discuss the use of compact approaches to perform stochastic simulations (Gillespie algorithm). On the basis of these results, we argue that using compact models is suitable to model qualitatively biological systems.

  14. Enhanced identification and exploitation of time scales for model reduction in stochastic chemical kinetics.

    Gómez-Uribe, Carlos A; Verghese, George C; Tzafriri, Abraham R


    Widely different time scales are common in systems of chemical reactions and can be exploited to obtain reduced models applicable to the time scales of interest. These reduced models enable more efficient computation and simplify analysis. A classic example is the irreversible enzymatic reaction, for which separation of time scales in a deterministic mass action kinetics model results in approximate rate laws for the slow dynamics, such as that of Michaelis-Menten. Recently, several methods have been developed for separation of slow and fast time scales in chemical master equation (CME) descriptions of stochastic chemical kinetics, yielding separate reduced CMEs for the slow variables and the fast variables. The paper begins by systematizing the preliminary step of identifying slow and fast variables in a chemical system from a specification of the slow and fast reactions in the system. The authors then present an enhanced time-scale-separation method that can extend the validity and improve the accuracy of existing methods by better accounting for slow reactions when equilibrating the fast subsystem. The resulting method is particularly accurate in systems such as enzymatic and protein interaction networks, where the rates of the slow reactions that modify the slow variables are not a function of the slow variables. The authors apply their methodology to the case of an irreversible enzymatic reaction and show that the resulting improvements in accuracy and validity are analogous to those obtained in the deterministic case by using the total quasi-steady-state approximation rather than the classical Michaelis-Menten. The other main contribution of this paper is to show how mass fluctuation kinetics models, which give approximate evolution equations for the means, variances, and covariances of the concentrations in a chemical system, can feed into time-scale-separation methods at a variety of stages.

  15. A Teacher-Developed Inquiry Model to Teach the Molecular Basis of Hyperbolic Kinetics in Biological Membrane Transport

    Marcus, Leanne; Plumeri, Julia; Baker, Gary M.; Miller, Jon S.


    A previously published classroom teaching method for helping students visualize and understand Michaelis-Menten kinetics (19) was used as an anticipatory set with high school and middle school science teachers in an Illinois Math and Science Partnership Program. As part of the activity, the teachers were asked to collect data by replicating the…

  16. Kinetics of ruminal lipolysis of triacylglycerol and biohydrogenation of long-chain fatty acids: new insights from old data.

    Moate, P J; Boston, R C; Jenkins, T C; Lean, I J


    Previous investigations into ruminal lipolysis of triacylglycerol and ruminal biohydrogenation (BH) of unsaturated long-chain fatty acids have generally quantified these processes with either zero-order or first-order kinetics. This investigation examined if Michaelis-Menten and other nonlinear kinetics might be useful for quantifying these processes. Data from 2 previously published in vitro experiments employing rumen fluid from sheep to investigate the lipolysis of trilinolein, the BH of cis-9, cis-12 linoleic acid (LA), and the BH of fatty acids derived from the lipolysis of trilinolein were used for the development of a multi-compartmental model. The model described the lipolysis of triacylglycerol well. The model also provided a good mathematical description of the resulting production of nonesterified fatty acids, the isomerization of nonesterified LA, and subsequent production of rumenic acid (RA), vaccenic acid (VA), and stearic acid (SA). However, the model described poorly the patterns of the concentrations of LA, RA, VA, and SA after incubation of trilinolein in rumen fluid. The model is consistent with known stoichiometry and biochemistry and is parsimonious in that it employs a minimal number of parameters to describe all of the major aspects of lipolysis and BH. The first step in the lipolysis of trilinolein was described by Michaelis-Menten kinetics (Vmax = 529 +/- 16 mg/L per h; Km = 698 +/- 41 mg/L). Both subsequent lipolysis steps were approximated by a first-order (linear kinetics) rate constant (k = 2.64 +/- 0.041 /h). Isomerization of LA to RA was modeled by simple Michaelis-Menten kinetics (Vmax = 2,421 +/- 83 mg/L per h; Km = 440 +/- 22 mg/L). The kinetics of the BH of RA to VA was described by a Michaelis-Menten-type process involving competitive inhibition by VA (Vmax = 492 +/- 6.5 mg/L per h; Km = 1 mg/L). The final step, the BH of VA to SA, was modeled by a quasi-first-order process (k = 0.533 +/- 0.021 /h), but as the concentration of

  17. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis-Menten constants.

    Youdim, K; Dodia, R


    Non-linear dose-exposure (supra-proportionality) occurs when plasma drug concentrations increase in a non-linear fashion with increasing dose. To predict the likelihood of this, an understanding is required of the K(M), which reflects a drug ability to saturate a specific enzyme involved in its metabolism. This study assessed the accuracy of K(M) and V(max) determinations for compounds using a substrate-depletion approach with those determined using the product-formation approach, using both recombinant human cytochrome P450 (CYP) enzymes and human liver microsomes. For the vast majority of the compounds studied, the K(M)'s using recombinant CYPs and human liver microsomes in the two approaches predicted within two-fold. Further comparisons between the K(M) and V(max)-values were made between those measured using the product-formation approach and those estimated following simultaneous fitting of the Michaelis-Menten equation to all substrate depletion plots. In each case values were comparable. In conclusion, the current study showed the substrate-depletion approach can be used to estimate K(M) and V(max) using both human liver microsomes and recombinant P450s. Estimation of these parameters during early discovery will aid in the understanding of dosages at which non-linearity may occur, but potentially aid predictions of likely clinical drug-drug interactions.

  18. Lipase-catalyzed ethanolysis of fish oils: multi-response kinetics.

    Torres, Carlos F; Moeljadi, Marlina; Hill, Charles G


    The kinetics of the lipase-catalyzed (Pseudomonas cepacia) ethanolysis of fish oil has been studied in a batch reactor using menhaden oil, tuna oil, and acylglycerol mixtures derived from menhaden oil. Multi-response models derived from a generalized Michaelis-Menten mechanism were developed to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. A first-order model for deactivation of the lipase was fit simultaneously to one of the data sets.

  19. Analysis of protein film voltammograms as Michaelis-Menten saturation curves yield the electron cooperativity number for deconvolution.

    Heering, Hendrik A


    Deconvolution of protein film voltammetric data by fitting multiple components (sigmoids, derivative peaks) often is ambiguous when features are partially overlapping, due to exchangeability between the width and the number of components. Here, a new method is presented to obtain the width of the components. This is based on the equivalence between the sigmoidal catalytic response as function of electrode potential, and the classical saturation curve obtained for the enzyme activity as function of the soluble substrate concentration, which is also sigmoidal when plotted versus log[S]. Thus, analysis of the catalytic voltammogram with Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots is feasible. This provides a very sensitive measure of the cooperativity number (Hill coefficient), which for electrons equals the apparent (fractional) number of electrons that determine the width, and thereby the number of components (kinetic phases). This analysis is applied to the electrocatalytic oxygen reduction by Paracoccus denitrificans cytochrome aa(3) (cytochrome c oxidase). Four partially overlapping kinetic phases are observed that (stepwise) increase the catalytic efficiency with increasingly reductive potential. Translated to cell biology, the activity of the terminal oxidase stepwise adapts to metabolic demand for oxidative phosphorylation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Microscale Measurements of Michaelis-Menten Constants of Neuraminidase with Nanogel Capillary Electrophoresis for the Determination of the Sialic Acid Linkage.

    Gattu, Srikanth; Crihfield, Cassandra L; Holland, Lisa A


    Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis-Menten constants (KM) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A KM value of 3.3 ± 0.8 mM (Vmax, 2100 ± 200 μM/min) was obtained for 3'-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a KM of 2 ± 1 mM (Vmax, 400 ± 100 μM/min) was obtained for the 6'-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a KM value of 3 ± 2 mM (Vmax, 900 ± 300 μM/min) for 3'-sialyllactose. With a knowledge of Vmax, the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3' and 6' sialic acid linkages.

  1. Kinetic study of the enzymatic hydrolysis of sugarcane bagasse

    M. L. Carvalho


    Full Text Available This work presents a kinetic study of the enzymatic hydrolysis of three cellulosic substrates: filter paper (FP, used as a low recalcitrance substrate model; steam exploded sugarcane bagasse (SB; and weak acid pretreated SB (1:20 dry bagasse:H2SO4 solution 1% w/w, the last two delignified with 4% NaOH (w/w. The influence of substrate concentration was assessed in hydrolysis experiments in a shaker, using Accellerase® 1500, at pH 4.8, in 50 mM sodium citrate buffer. Cellulose loads (weight substrate/weight total were changed between 0.5%-13% (for FP and 0.99%-9.09% (for SB. For FP and low loads of steam exploded SB, it was possible to fit pseudo-homogeneous Michaelis-Menten models (with inhibition. For FP and higher loads of steam exploded SB, modified Michaelis-Menten models were fitted. Besides, it was observed that, after retuning of the model parameters, it is possible to apply a model fitted for one situation to a different case. Chrastil models were also fitted and they were the only feasible approach for the highly recalcitrant acid-treated SB.

  2. The kinetics of denitrification in permeable sediments

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.


    on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent K...

  3. Non-steady state population kinetics of intravenous phenytoin.

    Frame, B; Beal, S L


    This observational study explored the effects of demographics, sickness, and polypharmacy on the non-steady state population pharmacokinetics of intravenous phenytoin. One hundred fifteen patients were studied. Models were developed using the NONMEM program with hybrid first-order conditional estimation. A Michaelis-Menten model with delayed induction was preferred over a Michaelis-Menten model without induction, a Michaelis-Menten model with immediate induction, or a linear model with delayed induction. When the data were fit to a Michaelis-Menten model with delayed induction, the volume of distribution (Vd) was found to depend on weight and serum albumin. The Vd was estimated to be 0.95 l/kg, assuming an albumin level of 3 g/dl. The Michaelis-Menten constant (km) was estimated to be 7.9 mg/l. The baseline maximum metabolic rate was 580 mg/day for a 70-kg patient. The average time to onset of induction was 59.5 hours. If a fever developed after induction began, it increased the extent of induction. This model was evaluated retrospectively in 26 additional patients, yielding a mean prediction error of -0.4 mg/l (-3.0-2.2 mg/l) and a mean absolute prediction error of 4.7 mg/l (3.2-6.2 mg/l) based on two-level feedback. Given the large interindividual variances in maximum metabolic rate, phenytoin levels should be measured frequently.


    Andrija Šmelcerović


    Full Text Available In this study we investigated the kinetics of the nitration of quercetin by horseradish peroxidase. Quercetin nitration reaction was followed by recording the spectral changes over the time at 380 nm. The reaction rate increases with increasing of the quercetin concentration and follows the Michaelis-Menten type kinetics. Kinetic parameters of the studied enzymatic reaction were determined.

  5. Biochemical kinetics in changing volumes.

    Pawłowski, Piotr H; Zielenkiewicz, Piotr


    The need of taking into account the change of compartment volume when developing chemical kinetics analysis inside the living cell is discussed. Literature models of a single enzymatic Michaelis-Menten process, glycolytic oscillations, and mitotic cyclin oscillations were tested with appropriate theoretical extension in the direction of volume modification allowance. Linear and exponential type of volume increase regimes were compared. Due to the above, in a growing cell damping of the amplitude, phase shift, and time pattern deformation of the metabolic rhythms considered were detected, depending on the volume change character. The performed computer simulations allow us to conclude that evolution of the cell volume can be an essential factor of the chemical kinetics in a growing cell. The phenomenon of additional metabolite oscillations caused by the periodic cell growth and division was theoretically predicted and mathematically described. Also, the hypothesis of the periodized state in the growing cell as the generalization of the steady-state was formulated.

  6. The Estimation of Respiration Rate and Michaelis-Menten Models of Shiitake by Principle of Enzyme Kinetics in Closed System%利用酶动力学拟合在密闭条件下香菇呼吸速率方程及米氏方程

    谢晶; 刘晓丹


    对香菇分别在273 K、283 K和293 K的密闭容器中氧气和二氧化碳随时间、浓度的变化进行了测定,根据酶动力学原理,利用非线性估计法、多重回归分析分别获得气体成分的变化率曲线和米式方程,从而获得相应的参数,求得反映呼吸状态的呼吸熵动态变化规律以及温度影响参数--活化能,并以此求出在任意温度、有氧呼吸气体环境条件下果蔬的最大呼吸速率,为气调包装系统设计提供理论依据.

  7. Kinetics of glucose transport in rat muscle

    Ploug, Thorkil; Galbo, H; Vinten, J


    -MG concentration exhibited Michaelis-Menten kinetics. Uptake by simple diffusion could not be detected. The maximum 3-O-MG transport velocity (Vmax) was increased more by maximum isometric contractions (10- to 40-fold, depending on fiber type) than by insulin (20,000 microU/ml; 3- to 20-fold) in both red and white...

  8. Transport Reversal during Heteroexchange: A Kinetic Study

    V. Makarov


    Full Text Available It is known that secondary transporters, which utilize transmembrane ionic gradients to drive their substrates up a concentration gradient, can reverse the uptake and instead release their substrates. Unfortunately, the Michaelis-Menten kinetic scheme, which is popular in transporter studies, does not include transporter reversal, and it completely neglects the possibility of equilibrium between the substrate concentrations on both sides of the membrane. We have developed a complex two-substrate kinetic model that includes transport reversal. This model allows us to construct analytical formulas allowing the calculation of a “heteroexchange” and “transacceleration” using standard Michaelis coefficients for respective substrates. This approach can help to understand how glial and other cells accumulate substrates without synthesis and are able to release such substrates and gliotransmitters.

  9. Modeling nitrate removal in a denitrification bed.

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C


    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  10. Mass action realizations of reaction kinetic system models on various time scales

    Hangos, K M; Szederkenyi, G, E-mail:, E-mail: [Process Control Research Group, Computer and Automation Reseach Institute, Kende u. 13-17, H-1111 Budapest (Hungary)


    Complex chemical reaction networks often exhibit different dynamic behaviour on different time scales. A combined approach is proposed in this work for determining physically meaningful mass action realizations of complex chemical reaction networks that describe its dynamic behaviour on different time scales. This is achieved by appropriately reducing the detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the particular time scale, and then searching for an optimal realization using mixed integer linear programing. Furthermore, the relationship between the properties (reversibility, deficiency, stability) of the obtained realizations of the same system on different time scales are also investigated and related to the same properties of the detailed overall model. It is shown that the reduced models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as oscillations, when the original detailed is globally asymptotically stable. The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified versions of the well known Brusselator model have also been investigated and presented as a case study.

  11. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V


    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  12. A simplified kinetic model for the side reactions occurring during the enzymatic synthesis of ampicillin

    A.L.O. Ferreira


    Full Text Available This work presents a kinetic study of the side reactions of the ampicillin enzymatic synthesis, from phenylglycine methyl ester and 6-aminopenicillanic acid using penicillin G acylase immobilized on agarose. A Michaelis-Menten model with competitive inhibition was fitted to initial rates of ester and antibiotic hydrolysis, at pH 6.5 and 25ºC. Inherent kinetic parameters were estimated for low enzymatic loads, to assure that diffusional resistance was not important. It was observed that ampicillin inhibits the hydrolysis of PGME, but the inhibitory effect of the ester on ampicillin hydrolysis was almost negligible. The obtained parameters were: k cat1= 0.025 mM/UI min, Km1 = 155.4mM, K AE = 16.18mM, k cat2= 4.67x10-3 mM/UI min, Km2 = 11.47, K EA = 0.68 mM. Parameter values are in the range reported in the literature, except for Km1, which is much higher. The large confidence interval for this parameter denotes that the model presents low sensitivity with respect to it.

  13. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL; Frerichs, Joshua T [ORNL; Jagadamma, Sindhu [ORNL


    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  14. Development of Optimized Guidelines for Therapeutic Strategies for Organophosphate Poisoning


    Hoang, 1995). Metabolism is a complex mechanism, but is implemented into PBPK models in the form of zero order, first order, or Michaelis - Menten ...kinetics. The Vmax and Km required in the Michaelis - Menten equation are derived from in vitro and in vivo 22 measurements. Most PBPK models...metabolism occurs in the liver and follows Michaelis - Menten kinetics (Hoang, 1995). PBPK modeling of organophosphates The consideration of developing a

  15. Inferring latent gene regulatory network kinetics

    González, Javier; Vujačić, Ivan; Wit, Ernst


    Regulatory networks consist of genes encoding transcription factors (TFs) and the genes they activate or repress. Various types of systems of ordinary differential equations (ODE) have been proposed to model these networks, ranging from linear to Michaelis-Menten approaches. In practice, a serious d

  16. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics.

    Chaudhury, Srabanti; Cao, Jianshu; Sinitsyn, Nikolai A


    We consider a generic stochastic model of ion transport through a single channel with arbitrary internal structure and kinetic rates of transitions between internal states. This model is also applicable to describe kinetics of a class of enzymes in which turnover events correspond to conversion of substrate into product by a single enzyme molecule. We show that measurement of statistics of single molecule transition time through the channel contains only restricted information about internal structure of the channel. In particular, the most accessible flux fluctuation characteristics, such as the Poisson indicator (P) and the Fano factor (F) as function of solute concentration, depend only on three parameters in addition to the parameters of the Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple intermediate steps as well as provide valuable information about the internal kinetic rates.

  17. Representação do efeito de inibição enzimática reversível para o modelo cinético de Michaelis-Menten no estado transiente

    André Rosa Martins


    Full Text Available ResumoOs processos enzimáticos que seguem o modelo cinético de Michaelis-Menten foram estudados a partir de diferentes propostas para descrever a etapa de inibição reversível. As propostas de inibição foram comparadas a partir de um processo genérico, onde as constantes cinéticas receberam valores unitários e o valor numérico da concentração de substrato foi dez (10 vezes superior ao valor numérico da concentração de enzima. Para cada proposta de modelo de inibição foram obtidas soluções numéricas a partir de sistema não linear de equações diferenciais ordinárias, gerando gráficos que apresentaram, separadamente, a variação das concentrações da enzima, dos complexos enzimáticos, do substrato e do produto da reação. Foi obtido um modelo, dentre as propostas avaliadas, com desempenho indicando comportamento similar ao verificado no modelo clássico de Michaelis-Menten, onde o complexo de reação é rapidamente formado e, ao longo do processo, decai até tender a zero. Em contrapartida, diferentemente do modelo clássico, na nova proposta de modelo o efeito de inibição começa em zero e, ao longo do processo, tende ao valor nominal da concentração inicial da enzima. Tais respostas mostraram-se válidas para valores distintos de concentração de enzima e de tempo de processo, mostrando robustez e indicando uma tendência do somatório do substrato e do produto atingir o valor nominal da concentração inicial do substrato ao longo do tempo de processamento.


    Syahinaz Shahrazi


    Full Text Available This study relates to the mathematical modelling of enzymatic production of Cyclodextrins (CDs by Cyclodextrin Glucanotransferase (CGTase from Bacillus macerans. The experiments were carried out in batch mode using different starch sources and the results were used to estimate unknown parameters using linearization and dynamic simulation methods. α- and β-CD produced from tapioca were found to give the highest Michaelis-Menten constant, KM,i of 58.23 and 54.07 g L-1, respectively and maximum velocity, Vmax,i of 3.45 and 2.76 g L-1.min, respectively, while sago resulted in the highest KM,i and Vmax,i values of 342.35 g L-1 and 5.97 g L-1.min, respectively, for γ-CD obtained by the linearization method. Value of product inhibition, K1,i and CD degradation coefficient rate, δCD,i, were estimated using dynamic simulation, indicating that exponential reaction kinetics could be fitted better with the experimental data. Sensitivity analysis revealed that the product inhibition parameter in the exponential reaction kinetic equation is more significant in the process. For validation, the production of CDs by fed batch method was undertaken and starch and enzyme were added into the reaction medium. Then, the predicted profiles generated by simulation were compared with the experimental values. The proposed exponential reaction kinetics shows good fitting with the experimental data.

  19. Degradation kinetics and metabolites in continuous biodegradation of isoprene.

    Srivastva, Navnita; Singh, Ram S; Upadhyay, Siddh N; Dubey, Suresh K


    The kinetic parameters of isoprene biodegradation were studied in a bioreactor, comprising of bioscrubber and polyurethane foam packed biofilter in series and inoculated with Pseudomonas sp., using a Michaelis-Menten type model. The maximum elimination capacity, ECmax; substrate constant, Ks and ECmax/Ks values for bioscrubber were found to be 666.7 g m(-3) h(-1), 9.86 g m(-3) and 67.56 h(-1), respectively while those for biofilter were 3333 g m(-3) h(-1), 13.96 g m(-3) and 238.7 h(-1), respectively. The biofilter section exhibited better degradation efficiency compared to the bioscrubber unit. Around 62-75% of the feed isoprene got converted to carbon dioxide, indicating the efficient capability of bacteria to mineralize isoprene. The FTIR and GC-MS analyses of degradation products indicated oxidative cleavage of unsaturated bond of isoprene. These results were used for proposing a plausible degradation pathway for isoprene.

  20. A mathematical model of liver metabolism: from steady state to dynamic

    Calvetti, D; Kuceyeski, A [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail:, E-mail:, E-mail:


    The increase in Type 2 diabetes and other metabolic disorders has led to an intense focus on the areas of research related to metabolism. Because the liver is essential in regulating metabolite concentrations that maintain life, it is especially important to have good knowledge of the functions within this organ. In silico mathematical models that can adequately describe metabolite concentrations, flux and transport rates in the liver in vivo can be a useful predictive tool. Fully dynamic models, which contain expressions for Michaelis-Menten reaction kinetics can be utilized to investigate different metabolic states, for example exercise, fed or starved state. In this paper we describe a two compartment (blood and tissue) spatially lumped liver metabolism model. First, we use Bayesian Flux Balance Analysis (BFBA) to estimate the values of flux and transport rates at steady state, which agree closely with values from the literature. These values are then used to find a set of Michaelis-Menten parameters and initial concentrations which identify a dynamic model that can be used for exploring different metabolic states. In particular, we investigate the effect of doubling the concentration of lactate entering the system via the hepatic artery and portal vein. This change in lactate concentration forces the system to a new steady state, where glucose production is increased.

  1. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique

    Christiansen, Nina Høj; Andersen, Frede Østergaard; Jensen, Henning S.


    with the affinity at low Pi concentrations (Vmax/Km) were determined by fitting data to the Michaelis-Menten kinetics. L. uniflora showed the highest Vmax/Km in the root tissue and the lowest Km. M. alterniflorum showed the highest and E. canadensis and P. perfoliatus the lowest Vmax/Km in leaf tissue. M...

  2. Kinetics and selectivity of the copper-catalysed oxidative coupling of 4-(2 ',6 '-dimethylphenoxyl-2,6-dimethylphenol

    Baesjou, PJ; Driessen, WL; Challa, G; Reedijk, J


    The kinetics of the copper/N-methylimidazole catalysed oxidative coupling reaction with the C-O coupled dimer of 2,6-dimethylphenol (DMP or monomer), viz. 4-(2',6'-dimethylphenoxy)-2,6-dimethylphenol (dimer), as the substrate have been studied. The reaction was found to obey Michaelis-Menten

  3. Immobilization of laccase on modified silica: stabilization, thermal inactivation and kinetic behaviour in 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid.

    Tavares, Ana P M; Rodríguez, Oscar; Fernández-Fernández, María; Domínguez, Alberto; Moldes, Diego; Sanromán, María A; Macedo, Eugénia A


    Laccase was immobilized on modified silica carrier. The immobilization conditions, pH and enzyme concentration were optimized. Operational stability of 10 reaction cycles showed that immobilized laccase in buffer was stable, presenting an activity loss 80% was obtained in ionic liquid (IL) solution. Activity of immobilized laccase was maintained when incubated in IL. After 7days of incubation, immobilized laccase lost 30-50% of its initial activity. Immobilization also improved thermal stability of laccase in the presence of IL. Enzyme kinetics was modelled with Michaelis-Menten model. The Km value for free laccase increases significantly with the IL concentration. Slight differences were found in Vm for free enzyme. Unusual kinetic behaviour was obtained for immobilized laccase in IL: Both Vm and Km increased with IL concentration, resulting in increased catalytic efficiency of the immobilized enzyme in presence of IL.

  4. A Century of Enzyme Kinetic Analysis, 1913 to 2013

    Johnson, Kenneth A.


    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. ...

  5. A kinetic study of the copper-catalysed oxidative coupling of 2,6-dimethylphenol. The role of copper, base and phenol concentrations

    Baesjou, PJ; Driessen, WL; Challa, G; Reedijk, J


    The influence of varying concentrations and ratios of phenol, base and copper on the copper/N-methylimidazole catalysed oxidative coupling of 2,6-dimethylphenol (DMP) has been studied. The reaction obeys simple Michaelis-Menten kinetics with respect to the phenol. The amount of DPQ formed during the

  6. A kinetic study of the copper-catalysed oxidative coupling of 2,6-dimethylphenol. The role of copper, base and phenol concentrations

    Baesjou, PJ; Driessen, WL; Challa, G; Reedijk, J


    The influence of varying concentrations and ratios of phenol, base and copper on the copper/N-methylimidazole catalysed oxidative coupling of 2,6-dimethylphenol (DMP) has been studied. The reaction obeys simple Michaelis-Menten kinetics with respect to the phenol. The amount of DPQ formed during the

  7. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme.

    Min, Wei; Jiang, Liang; Xie, X Sunney


    Enzyme molecules are dynamic entities with stochastic fluctuation in both protein conformation and enzymatic activity. However, such a notion of fluctuating enzymes, best characterized by recent single-molecule experiments, was not considered in the classic Michaelis-Menten (MM) kinetic scheme. Here we incorporate the fluctuation concept into the reversible MM scheme, and solve analytically all the possible kinetics (i.e., substrate concentration dependent enzymatic velocity) for a minimal model of fluctuating enzymes. Such a minimal model is found to display a variety of distinct kinetic behaviors (phases) in addition to the classic MM kinetics; excess substrate inhibition, sigmoidal kinetics, and concave biphasic kinetics. We find that all these kinetic phases are interrelated and unified under the framework of fluctuating enzymes and can be adequately described by a phase diagram that consists of two master parameters. Functionally, substrate inhibition, sigmoidal kinetics, and convex biphasic phases exhibit positive cooperativity, whereas concave biphasic phases display negative cooperativity. Remarkably, all these complex kinetics are produced by fluctuating enzymes with single substrate binding site, but the two conformations are, therefore, fundamentally different from the classic MWC and KNF models that require multiple subunit or binding sites. This model also suggests that, for a given enzyme/substrate pair, the non-MM behaviors could undergo transitions among different kinetic phases induced by varying product concentrations, owing to the fundamental Haldane symmetry in the reversible MM scheme.

  8. The Kinetics of Enzyme Mixtures

    Simon Brown


    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  9. A Morphologically Structured Model for Mycelial Growth and Secondary Metabolite Formation

    刘刚; 徐志南; 岑沛霖


    A morphologically structured model is proposed to describe the batch fermentation of lovastatin according to the growth kinetics of filamentous microorganisms. Three kinds of hyphae are considered in the model:actively growing hyphae, non-growing hyphae and deactivated hyphae. Furthermore, actively growing hyphae consist of three morphological compartments: apical compartment which gives rise to hyphal tip extension; subapical compartment which is related to hyphal branching; and hyphal compartment which is only responsible for secondary metabolite formation. The kinetics of mycelial growth mechanism is summarized and applied in modeling lovastatin fermentation. A Michaelis-Menten kinetic model with substrate inhibition is proposed for product formation. As expected, the model simulations fit well with experimental data obtained either from a laboratory scale 10 L fermenter or from a vilot-vlant scale fermenter.

  10. Kinetic and molecular analyses reveal isoprene degradation potential of Methylobacterium sp.

    Srivastva, Navnita; Vishwakarma, P; Bhardwaj, Y; Singh, A; Manjunath, K; Dubey, Suresh K


    Efforts were made to isolate and characterize bacteria capable of growing on methane and organic compounds, and to achieve the simultaneous degradation of more than one pollutant. Among the methanotrophs, species of Methylobacterium was able to catabolize a variety of hydrocarbons, including the branched-chain alkenes. Therefore, laboratory incubations experiments were carried out in batch mode to assess the potential of Methylobacterium sp. PV1 for degrading isoprene, the low-molecular-weight alkene, the most abundant non-methane volatile hydrocarbon present in the environment. Methylobacterium sp. PV1, isolated from paddy field soil, was characterized by pmoA and 16S rRNA gene sequencing and FAME analysis, and used for isoprene degradation. The kinetics of biodegradation is studied using the Michaelis-Menten model. The optimum degradation (80%) with maximum average relative degradation rate was observed at 150ppm isoprene. The degradation products were also analyzed using FTIR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kinetic Activity of Commercial Native Linamarase (CNLIN and Engineered <&beta-glucosidase from Saccharomyces cerevisiae on Cassava Linamarin

    Julius Kwagh-Har Ikya


    Full Text Available The ability of Commercial Native Linamarase (CNLIN and Engineered Linamarase (GELIN extracts from Saccharomyces cerevisiae to hydrolyse cassava linamarin was challenged. CNLIN acting as control was used together with GELIN extracts from Saccharomyces cerevisiae to evaluate the kinetic data for test enzymes at pH 3.5, 6.8 and 10.5, respectively and ambient temperature (35°C. Data obtained from the varying activity versus substrate concentrations were fitted with the Michaelis-Menten plots and Lineweaver-Burk model to obtain maximum velocity (Vmax, affinity coefficient (Km, physiological efficiency (Vmax/Km and r2 (linear regressing coefficient. The results indicated that the engineered linamarase conferred different enzyme kinetic data showing degradation of cassava linamarin by CNLIN and GELIN from Saccharomyces cerevisiae at the optimum pH and temperature. The relation was best described by the characteristic sigmoid Michaelis-Menten plots and Lineweaver-Burk model evidence from the high coefficient of linear regression (r2>0.976. Vmax and Km derived from the Lineweaver-Burk model varied from 10.0 to 13.0 µmol/min and 0.5 to 0.9 &muM respectively for engineered enzymes and 0.0-10.0 mol/min and 0.0 to 0.9 &muM respectively for CNLIN. The kinetics profiles of the studied enzymes showed their actions on cassava linamarin were influenced by degree of genetic manipulation, purification and pH at ambient temperature. The wide pH tolerance in the degradation of linamarin suggests a possible use of the engineered linamarase from Saccharomyces cerevisiae in detoxifying linamarin in cassava for the production of cyanide-free cassava-based food products.

  12. Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers.

    la Cecilia, Daniele; Maggi, Federico


    Twenty-two experimental sets were used to determine the biodecomposition parameters of atrazine (ATZ), deisopropylatrazine (DIATZ), and deethylatrazine (DEATZ) by inverse solution of Michaelis-Menten-Monod kinetic equations. The averaged maximum specific growth rate (μ), Michaelis-Menten half-saturation concentration (K), and biomass yield (Y) ranged between 2.00 × 10(-7) and 4.62 × 10(-5) 1/s, 3.43 × 10(-6) and 1.39 × 10(1) mol/L, and 1.20 × 10(2) and 2.98 × 10(5) mg-wet-Bio/mol-Subs, respectively. Parameters grouped by reaction pathway appeared clustered by aerobic and anaerobic catabolic breakdown, and were poorly correlated between each other (R ranging from -0.27 to 0.63, p ≥ 0.05). The tested bacterial strains decomposed ATZ, DIATZ, and DEATZ relatively rapidly in laboratory conditions, with an half-life (t1/2) ranging between 3 and 6 days. Numerical modeling showed that ATZ, DIATZ, and DEATZ half-lives were particularly sensitive to their initial concentration and the initial microbial biomass concentration. This study suggests that these bacterial strains can effectively be used or enhanced for bioremediation of agricultural soils where atrazine has been applied as long as these bacteria already coexist in or can integrate with the local soil microbial population at a given location. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The total quasi-steady-state approximation for complex enzyme reactions

    Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.


    Biochemistry in general and enzyme kinetics in particular have been heavily influenced by the model of biochemical reactions known as Michaelis-Menten kinetics. Assuming that the complex concentration is approximately constant after a short transient phase leads to the usual Michaelis-Menten (MM...

  14. Analysis of mathematical modelling on potentiometric biosensors.

    Mehala, N; Rajendran, L


    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  15. Enzymatic degradation of low soluble compounds in monophasic water: solvent reactors. Kinetics and modeling of anthracene degradation by MnP.

    Eibes, G; Moreira, M T; Feijoo, G; Lema, J M


    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds presenting low water solubility and high hydrophobicity, which greatly hampers their natural biodegradation. The enzymatic degradation of a model compound, anthracene, was evaluated in presence of a miscible solvent for an increased solubility. Manganese peroxidase, a ligninolytic enzyme from white-rot fungi, was used as biocatalyst in a medium containing acetone. The kinetic parameters of the enzymatic degradation of anthracene, obtained from fed-batch experiments, were applied to model the operation of a continuous reactor. Kinetics comprised a Michaelis-Menten equation, modified with an autocatalytic term, assumed to the effect of quinones acting as electron carriers, and a logistic function related to enzyme activity. The continuous reactor has been operated for 108 h, attaining a 90% of anthracene degradation, which demonstrated the feasibility of the system for its application in the removal of poorly soluble compounds. The model of this reactor permitted to predict accurately anthracene degradation in different conditions, such as external addition of anthraquinone and different enzymatic activities.

  16. Kinetic Modeling of Enzymatic Hydrolysis of Coconut Oil with Lipase%脂肪酶水解椰子油动力学研究

    武林贺; 白新鹏; 吴谦; 徐小梦; 马若影; 李雪


    A kinetic study on hydrolysis for the production of derivatives catalyzed by Lipase was investigated. The effects of substrate concentration,enzyme concentration,temperature and time on the hydrolysis rate of co-conut oil by lipase were analyzed. Based on this,the Michaelis constant(km) and maximum rate(Vm) were de-duced by Lineweaver-Burk plotting and Wilkinson statistical method. Results showed that,under the optimal conditions of enzyme concentration 1%and temperature 50℃,the km and Vm were 1.273 9 [mg/(g·mL)] and 0.969 6 [mg/(g·mL·min)] respectively. The Michaelis-Menten equation was:v= 0.969 6[S]1.273 9+[S] . The model-pre-dicted values were consistent with the actually measured values from confirmation tests. Though the simulation of Michaelis-Menten equation to the hydrolysis process,goodness of fit were greater than 0.99,it found that ap-plication of Michaelis-Menten equation in hydrolysis process was reasonable. It can provide research foundation for the fat digestion process.%为了探究脂肪酶水解椰子油的动力学过程,在研究了底物质量浓度、酶添加量、酶解温度及酶解时间对脂肪酶水解椰子油反应速率影响的基础上,本试验采用Lineweaver-Burk法和Wilkinson统计法两种方法对酶解过程进行拟合,计算酶解过程的动力学常数km和Vm,并求解脂肪酶水解椰子油动力学方程。结果表明:在酶添加量为1%、温度为50℃的条件下,动力学常数km为1.2739[mg/(g·mL)],Vm为0.9696[mg/(g·mL·min)],米氏方程为:v=0.9696[S]1.2739+[S]。经过试验验证得出米氏方程的拟合度大于0.99,说明方程的预测值与测定值基本吻合,米氏方程适合脂肪酶水解椰子油动力学研究,为油脂酶解过程提供理论模型。

  17. Novel mathematical models for cell-mediated cytotoxicity assays without applying enzyme kinetics but with combinations and probability: bystanders in bulk effector cells influence results of cell-mediated cytotoxicity assays.

    Takayanagi, Toshiaki


    Cell-mediated cytotoxicity assays are widely implemented to evaluate cell-mediated cytotoxic activity, and some assays are analyzed using the analogy of enzyme kinetics. In the analogy, the effector cell is regarded as the enzyme, the target cell as the substrate, the effector cell-target cell conjugate as the enzyme-substrate complex and the dead target cell as the product. However, the assumptions analogous to those of enzyme kinetics are not always true in cell-mediated cytotoxicity assays, and the parameter analogous to the Michaelis-Menten constant is not constant but is dependent on the number of effector cells. Therefore I present novel mathematical models for cell-mediated cytotoxicity assays without applying enzyme kinetics. I instead use combinations and probability, because analysis of cell-mediated cytotoxicity assays by applying enzyme kinetics seems controversial. With my original models, I demonstrate simulations of the data in previously published papers. The results are exhibited in the same forms as the corresponding data. Comparing the simulation results with the published data, the results seem to agree well with the data. From simulations of cytotoxic assays with bulk effector cells, it appears that bystanders in bulk effector cells increase both the cytotoxic activity and the motility of effector cells.

  18. KINETIKA FERMENTASI SELULOSA MURNI OLEH Trichoderma reesi QM 9414 MENJADI GLUKOSA DAN PENERAPANNYA PADA JERAMI PADI BEBAS LIGNIN [Kinetics of Pure Cellulose Fermentation by Trichoderma Reesei QM 9414 to Glucose and Its Application of on Lignin Free Rice Straw

    M Iyan Sofyan


    Full Text Available The objectives of this research were: 1 to determine aeration rate and substrate concentration of pure cellulose to produce maximum glucose by Trichoderma reesei QM 9414 at 30 oC, and agitation 150 rpm; 2 to study the kinetics of pure cellulose fermentation by Trichoderma reesei QM 9414 to glucose and its implication upon fermentation of the lignin free rice straw. The experiment was arranged in factorial randomized complete design in three times replication. Treatments consisted of three levels of aeration (1,00 vvm; 1,5 vvm; 2,0 vvm and three levels of substrate concentration (0,75 ; 1,00 ; 1,25 % w/v. The results showed that at the exponential phase the average specific growth of Trichoderma reesei QM 9414 was 0,05374 hour-1, the maximum glucose product concentration of pure cellulose was 0.1644 gL-1,and the oxygen transfer was 0,0328 mg L-1 hour-1. According to t-test, the kinetics of pure cellulose fermentation model just the same as the lignin free rice straw fermentation.The enzymes produced by Trichoderma reesei QM 9414 in pure cellulose fermentation media followed the Michaelis-Menten model. The enzyme kinetic parameters were the maximum growth rate was 37x10-3 hour-1 and Michaelis-Menten constant was ½ maximum μ =17,5x10-3 hour-1. The volumetric oxygen transfer (KLa using rice straw was 0,0337 mg.hour-1. The value of KLa could be used for conversion from bioreactor at laboratory scale to commercial scale design.

  19. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.

    Privman, Eve; Venton, B Jill


    Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions.

  20. Comparative kinetic analysis of two fungal β-glucosidases

    Casanave Dominique


    Full Text Available Abstract Background The enzymatic hydrolysis of cellulose is still considered as one of the main limiting steps of the biological production of biofuels from lignocellulosic biomass. It is a complex multistep process, and various kinetic models have been proposed. The cellulase enzymatic cocktail secreted by Trichoderma reesei has been intensively investigated. β-glucosidases are one of a number of cellulolytic enzymes, and catalyze the last step releasing glucose from the inhibitory cellobiose. β-glucosidase (BGL1 is very poorly secreted by Trichoderma reesei strains, and complete hydrolysis of cellulose often requires supplementation with a commercial β-glucosidase preparation such as that from Aspergillus niger (Novozymes SP188. Surprisingly, kinetic modeling of β-glucosidases lacks reliable data, and the possible differences between native T. reesei and supplemented β-glucosidases are not taken into consideration, possibly because of the difficulty of purifying BGL1. Results A comparative kinetic analysis of β-glucosidase from Aspergillus niger and BGL1 from Trichoderma reesei, purified using a new and efficient fast protein liquid chromatography protocol, was performed. This purification is characterized by two major steps, including the adsorption of the major cellulases onto crystalline cellulose, and a final purification factor of 53. Quantitative analysis of the resulting β-glucosidase fraction from T. reesei showed it to be 95% pure. Kinetic parameters were determined using cellobiose and a chromogenic artificial substrate. A new method allowing easy and rapid determination of the kinetic parameters was also developed. β-Glucosidase SP188 (Km = 0.57 mM; Kp = 2.70 mM has a lower specific activity than BGL1 (Km = 0.38 mM; Kp = 3.25 mM and is also more sensitive to glucose inhibition. A Michaelis-Menten model integrating competitive inhibition by the product (glucose has been validated and is able to predict the

  1. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model

    Helms, Hans Cc; Aldana, Blanca I; Groth, Simon


    -application of transporter inhibitors and competing amino acids. Endothelial abluminal L-glutamate uptake was almost abolished by co-application of an EAAT-1 specific inhibitor, whereas luminal uptake was inhibited by L-glutamate and L-aspartate (1 mM). L-glutamate uptake followed Michaelis-Menten-like kinetics with high...

  2. Emergence of Dynamic Cooperativity in the Stochastic Kinetics of Fluctuating Enzymes

    Kumar, Ashutosh; Nandi, Mintu; Dua, Arti


    Dynamic cooperativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic cooperativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative cooperativity. For fewer enzymes, dynamic cooperativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, how...

  3. Mathematical Modeling of Biosensors Based on an Array of Enzyme Microreactors

    Juozas Kulys


    Full Text Available This paper presents a two-dimensional-in-space mathematical model ofbiosensors based on an array of enzyme microreactors immobilised on a single electrode.The modeling system acts under amperometric conditions. The microreactors were modeledby particles and by strips. The model is based on the diffusion equations containing a non-linear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The modelinvolves three regions: an array of enzyme microreactors where enzyme reaction as well asmass transport by diffusion takes place, a diffusion limiting region where only the diffusiontakes place, and a convective region, where the analyte concentration is maintained constant.Using computer simulation, the influence of the geometry of the microreactors and of thediffusion region on the biosensor response was investigated. The digital simulation wascarried out using the finite difference technique.

  4. Laccase immobilized manganese ferrite nanoparticle: synthesis and LSSVM intelligent modeling of decolorization.

    Mahmoodi, Niyaz Mohammad; Arabloo, Milad; Abdi, Jafar


    Laccase was immobilized onto manganese ferrite nanoparticle (MFN) and dye decolorization from single and binary systems was studied. The characteristics of laccase immobilized manganese ferrite nanoparticle (LIMFN) were investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct red 31 (DR31), Acid blue 92 (AB92) and Direct green 6 (DG6) were used. A least square support vector machine (LSSVM) was developed to predict the decolorization efficiency of various single and binary systems based on the obtained laboratory data under different experimental conditions. Statistical and graphical quality measures were also employed to evaluate the performance and accuracy of the developed intelligent models. It is shown that the predictions of the designed LSSVM models are in close agreement with the experimental data. The effects of LIMFN dosage, pH and dye concentration on dye decolorization from single and binary systems were evaluated. Decolorization kinetics followed Michaelis-Menten Model.

  5. Sufficient conditions for optimality for a mathematical model of drug treatment with pharmacodynamics

    Maciej Leszczyński


    Full Text Available We consider an optimal control problem for a general mathematical model of drug treatment with a single agent. The control represents the concentration of the agent and its effect (pharmacodynamics is modelled by a Hill function (i.e., Michaelis-Menten type kinetics. The aim is to minimize a cost functional consisting of a weighted average related to the state of the system (both at the end and during a fixed therapy horizon and to the total amount of drugs given. The latter is an indirect measure for the side effects of treatment. It is shown that optimal controls are continuous functions of time that change between full or no dose segments with connecting pieces that take values in the interior of the control set. Sufficient conditions for the strong local optimality of an extremal controlled trajectory in terms of the existence of a solution to a piecewise defined Riccati differential equation are given.

  6. Model-Based Optimization of Scaffold Geometry and Operating Conditions of Radial Flow Packed-Bed Bioreactors for Therapeutic Applications

    Danilo Donato


    Full Text Available Radial flow perfusion of cell-seeded hollow cylindrical porous scaffolds may overcome the transport limitations of pure diffusion and direct axial perfusion in the realization of bioengineered substitutes of failing or missing tissues. Little has been reported on the optimization criteria of such bioreactors. A steady-state model was developed, combining convective and dispersive transport of dissolved oxygen with Michaelis-Menten cellular consumption kinetics. Dimensional analysis was used to combine more effectively geometric and operational variables in the dimensionless groups determining bioreactor performance. The effectiveness of cell oxygenation was expressed in terms of non-hypoxic fractional construct volume. The model permits the optimization of the geometry of hollow cylindrical constructs, and direction and magnitude of perfusion flow, to ensure cell oxygenation and culture at controlled oxygen concentration profiles. This may help engineer tissues suitable for therapeutic and drug screening purposes.

  7. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Nelson P. Guerra


    Full Text Available The effect of increasing ageing time (t of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN was investigated. Although all the enzymatic reactions follow michaelian kinetics, vmax decreased significantly (P<0.05 and KM increased (although not always significantly with the increase in t. The conformational changes produced in the starch chains as a consequence of the ageing seemed to affect negatively the diffusivity of the starch to the active site of the enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G].

  8. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.

    Goudar, Chetan T


    We have identified an error in the published integral form of the modified Michaelis-Menten equation that accounts for endogenous substrate production. The correct solution is presented and the error in both the substrate concentration, S, and the kinetic parameters Vm , Km , and R resulting from the incorrect solution was characterized. The incorrect integral form resulted in substrate concentration errors as high as 50% resulting in 7-50% error in kinetic parameter estimates. To better reflect experimental scenarios, noise containing substrate depletion data were analyzed by both the incorrect and correct integral equations. While both equations resulted in identical fits to substrate depletion data, the final estimates of Vm , Km , and R were different and Km and R estimates from the incorrect integral equation deviated substantially from the actual values. Another observation was that at R = 0, the incorrect integral equation reduced to the correct form of the Michaelis-Menten equation. We believe this combination of excellent fits to experimental data, albeit with incorrect kinetic parameter estimates, and the reduction to the Michaelis-Menten equation at R = 0 is primarily responsible for the incorrectness to go unnoticed. However, the resulting error in kinetic parameter estimates will lead to incorrect biological interpretation and we urge the use of the correct integral form presented in this study.

  9. Modeling of an immobilized lipase tubular reactor for the production of glycerol and fatty acids from oils; Modelado de un reactor tubular de lipasas inmovilizadas para la produccion de glicerol y acidos grasos a partir de aceites

    Oddone, S.; Grasselli, M.; Cuellas, A.


    Advances in the design of a bioreactor in the fats and oils industry have permitted the hydrolysis of triglycerides in mild conditions and improved productivity while avoiding the formation of unwanted byproducts. The present work develops a mathematical model that describes the hydrolytic activity of a tubular reactor with immobilized lipases for the production of glycerol and fatty acids from the oil trade. Runge Kuttas numerical method of high order has been applied, considering that there is no accumulation of the substratum in the surface of the membrane, where the enzyme is. At the same time, different equations based on the kinetic model of Michaelis Mentens and the Ping-Pong bi-bi mechanism were examined. Experimental data in discontinuous systems are the basis for the development of the quantitative mathematical model that was used to simulate the process computationally. The obtained results allow for optimizing both the operative variables and the economic aspects of industrial processes. (Author)

  10. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    Lu, Yanfei; Lekszycki, Tomasz


    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  11. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent

    Christley Scott


    Full Text Available Abstract Background Stochastic effects can be important for the behavior of processes involving small population numbers, so the study of stochastic models has become an important topic in the burgeoning field of computational systems biology. However analysis techniques for stochastic models have tended to lag behind their deterministic cousins due to the heavier computational demands of the statistical approaches for fitting the models to experimental data. There is a continuing need for more effective and efficient algorithms. In this article we focus on the parameter inference problem for stochastic kinetic models of biochemical reactions given discrete time-course observations of either some or all of the molecular species. Results We propose an algorithm for inference of kinetic rate parameters based upon maximum likelihood using stochastic gradient descent (SGD. We derive a general formula for the gradient of the likelihood function given discrete time-course observations. The formula applies to any explicit functional form of the kinetic rate laws such as mass-action, Michaelis-Menten, etc. Our algorithm estimates the gradient of the likelihood function by reversible jump Markov chain Monte Carlo sampling (RJMCMC, and then gradient descent method is employed to obtain the maximum likelihood estimation of parameter values. Furthermore, we utilize flux balance analysis and show how to automatically construct reversible jump samplers for arbitrary biochemical reaction models. We provide RJMCMC sampling algorithms for both fully observed and partially observed time-course observation data. Our methods are illustrated with two examples: a birth-death model and an auto-regulatory gene network. We find good agreement of the inferred parameters with the actual parameters in both models. Conclusions The SGD method proposed in the paper presents a general framework of inferring parameters for stochastic kinetic models. The method is

  12. Application of Arrhenius model combined special quality index in shelf life prediction of vegetable%Arrhenius方程结合特征指标在蔬菜货架期预测中的应用

    张利平; 谢晶


    货架期预测模型可以用来预测蔬菜的货架期.文章通过数学模型讨论蔬菜相关品质,如Vc降解、叶绿素损失、颜色以及质构的变化;介绍不同研究中使用的Arrhenius模型及相关参数或方程,比如Q10、Weibull方程,Michaelis-Menten方程和不同级数的动力学方程,还介绍各个预测模型的局限性.经典的Arrhenius模型结合动力学方程形式有待改进,而Arrhenius方程结合Weibull模型和Michaelis- Menten 方程则有望在新鲜蔬菜货架期中广为应用.%Shelf life prediction model can be used to predict the storage time of certain vegetable. This article discusses relevant qualities of vegetable, such as vitamin C degradation, chlorophyll loss, color and texture changes via mathematical models; Arrhemus model applied in different reaserches is introduced with related parameters or equations, such as Q10,, Weibull mode], Michaehs-Menten equation and kinetic model with different orders used in various studies, while limitations of each prediction models are also investigated. Classical forms of Arrhenius equation combined with kinetic models need to be improved, while models combined with Weibull model and Michaelis-Menten equation were promising used widely in predicting shelf life of fresh vegetables.

  13. Compartmental and enzyme kinetic modeling to elucidate the biotransformation pathway of a centrally acting antitrypanosomal prodrug.

    Generaux, Claudia N; Ainslie, Garrett R; Bridges, Arlene S; Ismail, Mohamed A; Boykin, David W; Tidwell, Richard R; Thakker, Dhiren R; Paine, Mary F


    DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 μM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 μM; V(max1), 12 pmol/min/mg; K(m2), 27 μM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 μM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.

  14. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7.

    Stone, Andrew N; Mackenzie, Peter I; Galetin, Aleksandra; Houston, J Brian; Miners, John O


    Morphine elimination involves UDP-glucuronosyltransferase (UGT) catalyzed conjugation with glucuronic acid to form morphine 3- and 6-glucuronides (M3G and M6G, respectively). It has been proposed that UGT2B7 is the major enzyme involved in these reactions, but there is evidence to suggest that other isoforms also catalyze morphine glucuronidation in man. Thus, we have characterized the selectivity and kinetics of M3G and M6G formation by recombinant human UGTs. UGT 1A1, 1A3, 1A6, 1A8, 1A9, 1A10, and 2B7 all catalyzed M3G formation, but only UGT2B7 formed M6G. The kinetics of M3G formation by the UGT1A family isoforms was consistent with a single enzyme Michaelis-Menten model, with apparent Km values ranging from 2.6 to 37.4 mM. In contrast, M3G and M6G formation by UGT2B7 exhibited atypical kinetics. The atypical kinetics may be described by a model with high- and low-affinity Km values (0.42 and 8.3 mM for M3G, and 0.97 and 7.4 mM for M6G) from fitting to a biphasic Michaelis-Menten model. However, a multisite model with an interaction between two identical binding sites in a negative cooperative manner provides a more realistic approach to modeling these data. According to this model, the respective binding affinities (Ks) for M3G and M6G were 1.76 and 1.41 mM, respectively. These data suggest that M6G formation may be used as a selective probe for UGT2B7 activity, and morphine glucuronidation by UGT2B7 appears to involve the simultaneous binding of two substrate molecules, highlighting the need for careful analysis of morphine glucuronidation kinetics in vitro.

  15. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Zahra Ghobadi Nejad


    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.


    This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...

  17. Enzyme kinetics: the whole picture reveals hidden meanings.

    Pinto, Maria F; Estevinho, Berta N; Crespo, Rosa; Rocha, Fernando A; Damas, Ana M; Martins, Pedro M


    The methodology adopted by Michaelis and Menten in 1913 is still routinely used to characterize the catalytic power and selectivity of enzymes. These kinetic measurements must be performed soon after the purified enzyme is mixed with a large excess of substrate. Other time scales and solution compositions are no less physiologically relevant, but fall outside the range of applicability of the classical formalism. Here we show that the complete picture of an enzyme's mode of function is critically obscured by the limited scope of conventional kinetic analysis, even in the simplest case of a single active site without inhibition. This picture is now unveiled in a mathematically closed form that remains valid over the reaction time for all combinations of enzyme/substrate concentrations and rate constants. Algebraic simplicity is maintained in the new formalism when stationary reaction phases are considered. By achieving this century-old objective, the otherwise hidden role of the reversible binding step is revealed and atypical kinetic profiles are explained. Most singular kinetic behaviors are identified in a critical region of conditions that coincide with typical cell conditions. Because it is not covered by the Michaelis-Menten model, the critical region has been missed until now by low- and high-throughput screenings of new drugs. New possibilities are therefore raised for novel and once-promising inhibitors to therapeutically target enzymes.


    This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...

  19. Kinetic investigation of a solvent-free, chemoenzymatic reaction sequence towards enantioselective synthesis of a β-amino acid ester.

    Strompen, Simon; Weiss, Markus; Ingram, Thomas; Smirnova, Irina; Gröger, Harald; Hilterhaus, Lutz; Liese, Andreas


    A solvent-free, chemoenzymatic reaction sequence for the enantioselective synthesis of β-amino acid esters has been kinetically and thermodynamically characterized. The coupled sequence comprises a thermal aza-Michael addition of cheap starting materials and a lipase catalyzed aminolysis for the kinetic resolution of the racemic ester. Excellent ee values of >99% were obtained for the β-amino acid ester at 60% conversion. Kinetic constants for the aza-Michael addition were obtained by straightforward numerical integration of second-order rate equations and nonlinear fitting of the progress curves. A different strategy had to be devised for the biocatalytic reaction. Initially, a simplified Michaelis-Menten model including product inhibition was developed for the reaction running in THF as an organic solvent. Activity based parameters were used instead of concentrations in order to facilitate the transfer of the kinetic model to the solvent-free system. Observed solvent effects not accounted for by the use of thermodynamic activities were incorporated into the kinetic model. Enzyme deactivation was observed to depend on the ratio of the applied substrates and also included in the kinetic model. The developed simple model is in very good agreement with the experimental data and allows the simulation and optimization of the solvent-free process.

  20. A Century of Enzyme Kinetic Analysis, 1913 to 2013

    Johnson, Kenneth A.


    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893

  1. A century of enzyme kinetic analysis, 1913 to 2013.

    Johnson, Kenneth A


    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function.

  2. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems



    Full Text Available The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna. This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC, no-tillage (NT, conventional tillage (CT and pasture with Brachiaria brizantha (PBb and evaluated with acetate buffer (AB, tris-HCl buffer (TB, modified universal buffer (MUB and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP. MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils.

  3. The use of PAMAM dendrimers as a platform for laccase immobilization: kinetic characterization of the enzyme.

    Cardoso, Franciane Pinheiro; Aquino Neto, Sidney; Ciancaglini, Pietro; de Andrade, Adalgisa R


    The kinetic behavior of the enzyme laccase in solution and immobilized onto carbon platforms using poly(amido amine) (PAMAM) dendrimers has been investigated. The results with the immobilized enzymes have demonstrated that almost ten times more enzyme on the carbon support is required for satisfactory kinetic rates to be achieved. Furthermore, the study as a function of the substrate concentration revealed that the kinetic behavior of the enzyme in solution fits the Michaelis-Menten model. However, when the enzyme is immobilized onto the carbon surface, the catalyzed reaction follows a particular kinetic behavior with apparent positive cooperativity. The highest activity with laccase (in solution or immobilized) is achieved around pH 4.5, and the substrate conversion rate clearly diminishes with rising pH. The optimum temperature lies around 60 °C. The enzyme displays good catalytic activity in a wide range of pH and temperature values. The stability tests evidenced that there is no appreciable reduction in the enzymatic activity after immobilization within the first 30 days. Taking into account both the kinetic and stability tests, one can infer that the use of PAMAM dendrimers seems to be a very attractive approach for the immobilization of enzymes, as well as a feasible and useful methodology for the anchoring of enzymes with potential application in many biotechnological areas.

  4. On Experiments Teaching of Biochemistry through the Determination of Michaelis-Menten Kinetics of an Enzyme%从米氏常数(Km)的测定谈药学生物化学实验教学

    马中良; 李艳利; 鲍真真; 王旻


    在生物化学试验中,酶的米氏常数的测定实验是经典的实验.通过Km 测定这一实验的改进,指导学生怎样认识和把握理论知识,并将之应用科学研究中.在生物化学实验教学中,注意提高学生的动手能力,提高解决问题和分析问题的能力,从而形成对待实验结果和教材的正确观点.

  5. 米氏消除药物静脉给药的药动学方程数值解%A Numerical Method for Plasma Concentration of Drugs Obeying Michaelis-Menten Clearance Kinetics by Bolus Intravenous Administration

    林中; 苏银法


    目的: 获得(一级并行)米氏消除药物静脉注射给药时的血药浓度近似解.方法: 根据四阶Runge-Kutta算法,采用Excel软件编写基于药动学参数的程序.结果:输出某周期或稳态任一次给药后的预期血药浓度.结论:方法操作简单,结果可靠,可作为(一级并行)米氏消除药物静脉注射给药时药动学方程的数值解法.

  6. Plasma Concentration of Drugs Obeying the Michaelis-Menten Clearance Kinetics in the Case of Extravascular Administration%米氏消除药物血管外给药血药浓度的数值解

    苏银法; 杜乐燕


    目的获得(一级并行)米氏消除药物血管外给药时的血药浓度近似值.方法根据四阶Runge-Kutta算法,采用Excel软件编写基于药动学参数的血药浓度近似解表格程序.结果通过实例演示,可以输出第n周期(或稳态)第s次血管外给药后每间隔0.005 h的预期血药浓度.结论该法是(一级并行)米氏消除药物血管外给药动力学方程的一种可靠的数值解法.

  7. Theory Study on Consistence in A Steady-state for Intravenous Injection Drugs Obeying Michaelis-Menten Elimination Kinetics%静注Michaelis-Menten消除动力学稳态浓度的理论研究

    祁兵; 黄大贶


    @@ Michaelis-Menten消除动力学(下称米氏型消除)是非线性药物动力学中的重要部分.大量临床研究表明[1],呈药动学非线性特征的药物,尤有必要进行血药浓度监测.本文对静注多次给药情况下的稳态动力学特征进行了研究,得到了稳态浓度存在的必要条件及稳态浓度的精确表达式,为临床用药提供了理论依据.

  8. Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled With Electron Mediators

    Michael E.G. Lyons


    Full Text Available A detailed kinetic analysis of the pertinent physical processes underlying the operation of enzyme electrodes immobilized within alkane thiol self assembled monolayers is developed. These electrodes utilize a soluble mediator, which partitions into the monolayer, regenerates the active catalytic form of the enzyme and is re-oxidized at the underlying support electrode surface giving rise to a current which reflects kinetic events at the enzyme surface. Both the enzyme/substrate and enzyme mediator kinetics have been quantified fully in terms of a ping-pong mechanism for the former and Michaelis-Menten kinetics for the latter. The effect of substrate and mediator diffusion in solution have also been specifically considered and the latter processes have been shown to result in a complex expression for the reaction flux. Four limiting kinetic cases have been enumerated and simple expressions for the reaction flux in each of these rate limiting situations have been developed. Kinetic case diagrams have been presented as an aid to mechanistic diagnosis. The complicating effects of diffusive loss of reduced mediator from the enzyme layer have also been examined and the relation between the observed flux corresponding to reduced mediator oxidation at the support electrode and the substrate reaction flux in the enzyme layer have been quantified in terms of an efficiency factor. Results extracted from recently published practical realizations of immobilized monolayer enzyme systems have been discussed in the context of the proposed model analysis.

  9. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum.

    Moxley, Michael A; Beard, Daniel A; Bazil, Jason N


    Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD(+)/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD(+) activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.

  10. Innovative Microsystems: Novel Nanostructures to Capture Circulating Breast Cancer Cells


    agitated by the auto shake function 5 seconds before each read. These data are then interpreted with a Michaelis - Menten model of the HRP enzyme kinetics ...Amplex Red) and fluorescent product (Resorufin) in a given micro-plate well as a function of time t; Vmax and KM are the standard Michaelis - Menten ...Molecular Probes). The fluorescence signal, generated by the action of the HRP immobilized on the chiclets, is then read in kinetic mode with excitation

  11. A simple theory of motor protein kinetics and energetics. II.

    Qian, H


    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  12. Enzymatic Synthesis of Furfuryl Alcohol Ester with Oleic Acid by Candida antarctica Lipase B and Its Kinetic Study

    Sengupta, Avery; Dey, Tanmoy; Ghosh, Mahua; Ghosh, Jaydip; Ghosh, Santinath


    This study investigated the successful enzymatic production of furfuryl oleate and its detailed kinetic study by Michaelis-Menten model. Esterification of oleic acid and furfuryl alcohol by Candida antarctica lipase B (Novozym 435 preparation) in a solvent free system was studied in the present work at 1:1 molar ratio of furfuryl alcohol and oleic acid. About 99 % conversion (on the basis of oleic acid) has been achieved within 6 h at 5 % enzyme concentration. Ping-pong bi-bi mechanism (inhibition phenomenon taken into account) was applied to describe the ratios as a complex kinetic model. The kinetic parameters were determined using MATLAB language programme. The two initial rate constants KA and KB respectively were found out by different progress curves plotted with the help of MATLAB language programme. It was concluded from the results that furfuryl alcohol considerably inhibited the enzymatic reaction while oleic acid had negligible inhibitory effect. It was clearly seen that the initial rate was increased with the increase in the furfuryl alcohol concentration until 2 M/L after which there was a drop in the initial rate depicting the inhibitory effect of furfuryl alcohol. Surprisingly, it has been observed that addition of 0.1 mol of product activated the esterification reaction. Finally, the model was found to be statistically fitting well with the experimental data.

  13. Probing the kinetics of quantum dot-based proteolytic sensors.

    Díaz, Sebastián A; Malonoski, Anthony P; Susumu, Kimihiro; Hofele, Romina V; Oh, Eunkeu; Medintz, Igor L


    As an enzyme superfamily, proteases are rivaled only by kinases in terms of their abundance within the human genome. Two ratiometric quantum dot (QD) Förster resonance energy transfer-based sensors designed to monitor the activity of the proteolytic enzymes collagenase and elastase are investigated here. Given the unique material constraints of these sensing constructs, assays are realized utilizing excess enzyme and fixed substrate in progress curve format to yield enzyme specificity or k cat/K m ratios. The range of k cat/Km values derived is 0.5-1.1 mM(-1) s(-1) for the collagenase sensor and 3.7-4.2 mM(-1) s(-1) for the elastase sensor. Of greater interest is the observation that the elastase sensor can be well represented by the Michaelis-Menten model while the collagenase sensor cannot. The latter demonstrates increased specificity at higher peptide substrate/QD loading values and an apparent QD-caused reversible inhibition as the reaction progresses. Understanding the detailed kinetic mechanisms that underpin these types of sensors will be important especially for their further quantitative utilization.

  14. Kinetic simulation of malate-aspartate and citrate-pyruvate shuttles in association with Krebs cycle.

    Korla, Kalyani; Vadlakonda, Lakshmipathi; Mitra, Chanchal K


    In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model.

  15. Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Toyoda, Kazuhiro; Tebo, Bradley M.


    The kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1 was measured under controlled conditions of the initial Mn(II) concentration, spore concentration, chemical speciation, pH, O2, and temperature. Mn(II) oxidation experiments were performed with spore concentrations ranging from 0.7 to 11 × 109 spores/L, a pH range from 5.8 to 8.1, temperatures between 4 and 58 °C, a range of dissolved oxygen from 2 to 270 μM, and initial Mn(II) concentrations from 1 to 200 μM. The Mn(II) oxidation rates were directly proportional to the spore concentrations over these ranges of concentration. The Mn(II) oxidation rate increased with increasing initial Mn(II) concentration to a critical concentration, as described by the Michaelis-Menten model (Km = ca. 3 μM). Whereas with starting Mn(II) concentrations above the critical concentration, the rate was almost constant in low ionic solution (I = 0.05, 0.08). At high ionic solution (I = 0.53, 0.68), the rate was inversely correlated with Mn(II) concentration. Increase in the Mn(II) oxidation rate with the dissolved oxygen concentration followed the Michaelis-Menten model (Km = 12-19 μM DO) in both a HEPES-buffered commercial drinking (soft) water and in artificial and natural seawater. Overall, our results suggest that the mass transport limitations of Mn(II) ions due to secondary Mn oxide products accumulating on the spores cause a significant decrease of the oxidation rate at higher initial Mn(II) concentration on a spore basis, as well as in more concentrated ionic solutions. The optimum pH for Mn(II) oxidation was approximately 7.0 in low ionic solutions (I = 0.08). The high rates at the alkaline side (pH > 7.5) may suggest a contribution by heterogeneous reactions on manganese bio-oxides. The effect of temperature on the Mn(II) oxidation rate was studied in three solutions (500 mM NaCl, ASW, NSW solutions). Thermal denaturation occurred at 58 °C and spore germination was evident at 40 °C in all three

  16. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John


    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides.

  17. Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine.

    Sulaiman, Saba A J; Suliman, Fakhr Eldin O; Barghouthi, Samira


    Gamma-aminobutyric acid transaminase (GABA-T, EC is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.

  18. Kinetics of microbial growth and biodegradation of methanol and toluene in biofilters and an analysis of the energetic indicators.

    Avalos Ramirez, Antonio; Bénard, Sandrine; Giroir-Fendler, Anne; Jones, J Peter; Heitz, Michèle


    The kinetics of microbial growth and the biodegradation of methanol and toluene in (a) biofilters (BFs), and (b) biotrickling filters (BTFs), packed with inert materials, has been studied and analyzed. The specific growth rate, mu, for the treatment of methanol was 0.037h(-1) for a wide range of operating conditions. In the BF, mu was found to be a function of the methanol and toluene concentrations in the biofilm. In the BF used for treating methanol, mu was found to be affected by (1) the nitrogen concentration present in the nutrient solution, and (2) the kind of packing material employed. The kinetics of the methanol and toluene biodegradations were also analyzed using "mixed order" models. A Michaelis-Menten model type provided a good fit for the elimination capacity (EC) of the BTF treating methanol, while a Haldane model type provided a good fit to the EC of the BF treating methanol and toluene. The carbon dioxide production rate was related to the packed bed temperature and the content of the volatile solids within the biofilm. For the BF, the ratio of temperature/carbon dioxide production rate (PCO(2)) was 0.024 degrees C per unit of PCO(2), and for the BTF it was 0.15 degrees C per unit of PCO(2).

  19. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    Oldiges Marco


    Full Text Available Abstract Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1 experimental measurement of participating molecules, (2 assignment of rate laws to each reaction, and (3 parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1 coarse-grained comparison of the algorithms on all models and (2 fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics

  20. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage.

    Deng, Dongyang; Weidhaas, Jennifer L; Lin, Lian-Shin


    The kinetics and microbial ecology in sulfidogenic bioreactors used in a novel two-stage process for co-treatment of acid mine drainage (AMD) and municipal wastewater (MWW) were investigated. Michaelis-Menten modeling of COD oxidation by sulfate reducing bacteria (SRB) (Vmax=0.33mgL(-1)min(-1), Km=4.3mgL(-1)) suggested that the Vmax can be reasonably achieved given the typical COD values in MWW and anticipated mixing with AMD. Non-competitive inhibition modeling (Ki=6.55mgL(-1)) indicated that excessive iron level should be avoided to limit its effects on SRB. The COD oxidation rate was positively correlated to COD/sulfate ratio and SRB population, as evidenced by dsrA gene copies. Phylogenetic analysis revealed diverse microbial communities dominated by sulfate reducing delta-proteobacteria. Microbial community and relative quantities of SRB showed significant differences under different COD/sulfate ratios (0.2, 1 and 2), and the highest dsrA gene concentration and most complex microbial diversity were observed under COD/sulfate ratio 2. Major species were associated with Desulfovirga, Desulfobulbus, Desulfovibrio, and Syntrophus sp. The reported COD kinetics, SRB abundances and the phylogenetic profile provide insights into the co-treatment process and help identify the parameters of concerns for such technology development. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Inhibition and Biochemical Characterization of Methicillin-Resistant Staphylococcus aureus Shikimate Dehydrogenase: An in Silico and Kinetic Study

    Claudia Avitia-Domínguez


    Full Text Available Methicillin-resistant Staphylococcus auerus (MRSA strains are having a major impact worldwide, and due to their resistance to all β-lactams, an urgent need for new drugs is emerging. In this regard, the shikimate pathway is considered to be one of the metabolic features of bacteria and is absent in humans. Therefore enzymes involved in this route, such as shikimate dehydrogenase (SDH, are considered excellent targets for discovery of novel antibacterial drugs. In this study, the SDH from MRSA (SaSDH was characterized. The results showed that the enzyme is a monomer with a molecular weight of 29 kDa, an optimum temperature of 65 °C, and a maximal pH range of 9–11 for its activity. Kinetic studies revealed that SDH showed Michaelis-Menten kinetics toward both substrates (shikimate and NADP+. Initial velocity analysis suggested that SaSDH catalysis followed a sequential random mechanism. Additionally, a tridimensional model of SaSDH was obtained by homology modeling and validated. Through virtual screening three inhibitors of SaSDH were found (compounds 238, 766 and 894 and their inhibition constants and mechanism were obtained. Flexible docking studies revealed that these molecules make interactions with catalytic residues. The data of this study could serve as starting point in the search of new chemotherapeutic agents against MRSA.

  2. Estimation of Kinetic Parameters for Enzyme Catalysed Batch Bioreactor for the Production of Ethanol from Corn

    Z. R. Yelebe


    Full Text Available This paper addresses the challenge of estimating various kinetic parameters for the design of an optimized enzyme catalysed batch bioreactor of high efficiency and yield. Mathematical models were developed to describe the batch reaction time in relation to the substrate, enzyme and product concentration. The results obtained from the plots generated were: 35.50gmol/ for the velocity of reaction of the enzymes (Vmax, 0.10049hr-1 for the maximum specific growth rate (µmax 826.45gmol/l for the Michaelis-Menten constant (Km, 0.005402577 for maintenance coefficient (Ms, 10.104kgCx/kgCs for yield of cell weight per unit weight of substrate (Ycx/CS, 0.05436kgCp/kgCs for yield of product weight per unit weight of substrate utilized (Ycp/CS and 0.01416 for endogenous decay coefficient (Kd for the design of the batch biochemical reactor. Hence, they are useful parameters for predicting the most appropriate batch reaction conditions and the efficiency of the bioreactor. The mathematical model predictions showed that it can be considered as a good complimentary tool to real system since the simulation results of the mathematical model agrees with experimental data reported in literature.

  3. Modelling phytate degradation kinetics in soaked wheat and barley

    Blaabjerg, Karoline; Strathe, A B; Poulsen, Hanne Damgaard


    ) function, a first-order (FO) function and a Generalised Michaelis Menten (GMM) function were considered. The GMM fitted the data best. The GMM function was used to derive the relative instantaneously degradable fraction of phytate (F0) and the half-life (t1/2) of phytate in hours (K). Addition of Phytase 1...

  4. Biosynthesis and stereoselective analysis of (-)- and (+)-zaltoprofen glucuronide in rat hepatic microsomes and its application to the kinetic analysis.

    Wang, Haina; Ji, Jianbo; Zeng, Su


    Zaltoprofen, available commercially as a racemic mixture, is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs). Firstly, (+)- and (-)-zaltoprofen glucuronide was biosynthesized and purified. Then a simple and rapid RP-HPLC analysis method for direct determination of (+)- and (-)-zaltoprofen glucuronide in rat hepatic microsomes was developed and validated. The calibration curves of (+)- and (-)-zaltoprofen glucuronide both showed good linearity in the concentration range from 0.15 to 31.13 μM. The lower limit of quantification was 0.15 μM. Finally, this method was used to investigate the enantioselectivity of zaltoprofen glucuronidation in rat hepatic microsomes. The kinetics of zaltoprofen glucuronidation in rat hepatic microsomes for 40 min incubation fit the Michaelis-Menten model. Kinetic analysis indicated that (-)-zaltoprofen had a higher glucuronidation rate in rat liver microsome than that of (+)-zaltoprofen. The catalyzing efficiency (V(max)/K(m)) ratio of (+)-zaltoprofen to (-)-enantiomer is 0.8 times in rat liver microsomes.

  5. Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase.

    Palai, Tapas; Mitra, Shubhrajyoti; Bhattacharya, Prashant K


    The enzymatic synthesis of galacto-oligosaccharides (GOS) from lactose was studied using commercial grade β-galactosidase (Biolacta FN5) from Bacillus circulans. The reaction was carried out under free enzyme condition varying initial lactose concentration (ILC: 55-525 g/L), enzyme concentration (0.05-1.575 g/L), temperature (30-50°C) and pH (5.0-6.0). Reaction mixture compositions were analyzed utilizing high performance liquid chromatography (HPLC). A maximum GOS formation of 39% (dry basis) was achieved at an ILC of 525 g/L converting 60% of the lactose fed. Tri-saccharides were the major types of GOS formed, accounting approximately 24%; whereas, tetra-saccharides and penta-saccharides account approximately 12% and 3%, respectively. Design correlation was developed in order to observe the quantitative effect of operating parameters on GOS yield. Further, based on Michaelis-Menten model, four-step reaction pathways were considered for simplistic understanding of the kinetics. Apart from predicting the reaction mixture composition, the approach also provided kinetic parameters though simulation using COPASI 4.7®. Excellent agreements were observed between simulated and experimental results.

  6. Kinetics of adsorption of organic pollutants by bioadsorbents; Cinetica de adsorcao de poluentes organicos por bioadsorventes

    Santos, E.G. [Universidade Federal de Campina Grande, PB (Brazil). Programa de Recursos Humanos da ANP, PRH-25]. E-mail:; Alsina, O.L.S.; Silva, F.L.H. [Universidade Federal de Campina Grande, PB (Brazil). Centro de Ciencias e Tecnologia. Dept. de Engenharia Quimica]. E-mail:;


    During the petroleum exploration and production processes, a great amount of water is produced together with the oil and the natural gas. This water needs an appropriate treatment before been discarded or reuse, due to a their great amount of organic pollutants content. Several separation processes are used in order to improve the effluent quality. In this way, the research of new adsorbent materials that present a low industrial cost has great importance. In this paper, adsorption experiments of organic pollutants using as adsorbent, the corn-cob, the powder wood and the coconut mesocarp, were accomplished. The organic effluent used in this work was simulated by a dispersion of gas in water and the experimental data were obtained through experiments in an agitated reactor. The kinetic curve was been adjusted for Michaelis-Menten equation and equilibrium isotherm modeling with Langmuir isotherm. Both model fitted well the experimental data. The obtained results show the viability of the use of the biomass as adsorbents for organic pollutants, once, with appropriate amounts of the gas/biomass, it was possible to eliminate, practically, the whole pollutant. (author)

  7. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.


    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  8. Enzyme Kinetics: A critique of the quasi-steady-state approximation

    Bhattacharyya, Kamal


    The standard two-step model of homogeneous-catalyzed reactions had been theoretically analyzed at various levels of approximations from time to time. The primary aim was to check the validity of the quasi-steady-state approximation, and hence emergence of the Michaelis-Menten kinetics, with various substrate-enzyme ratios. But, conclusions vary. We solve here the desired set of coupled nonlinear differential equations by invoking a new set of dimensionless variables. Approximate solutions are obtained via the power-series method aided by Pade approximants. The scheme works very successfully in furnishing the initial dynamics at least up to the region where existence of any steady state can be checked. A few conditions for its validity are put forward and tested against the findings. Temporal profiles of the substrate and the product are analyzed in addition to that of the complex to gain further insights into legitimacy of the above approximation. Some recent observations like the reactant stationary approxim...

  9. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics.

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A; Arvizu-Flores, Aldo A; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A; García-Orozco, Karina D; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R; Islas-Osuna, Maria A


    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min(-1) and 68.49 s(-1) respectively and 0.693 mM, 105.32 mM min(-1) and 89.57 s(-1), for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.

    Wang, Ning-Xin; Li, Yan; Deng, Xi-Hai; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan


    In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation.

  11. Stability and kinetic behavior of immobilized laccase from Myceliophthora thermophila in the presence of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate.

    Fernández-Fernández, María; Moldes, Diego; Domínguez, Alberto; Sanromán, M Ángeles; Tavares, Ana Paula M; Rodríguez, Oscar; Macedo, Eugénia A


    The use of ionic liquids (ILs) as reaction media for enzymatic reactions has increased their potential because they can improve enzyme activity and stability. Kinetic and stability properties of immobilized commercial laccase from Myceliophthora thermophila in the water-soluble IL 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4 ]) have been studied and compared with free laccase. Laccase immobilization was carried out by covalent binding on glyoxyl-agarose beads. The immobilization yield was 100%, and the activity was totally recovered. The Michaelis-Menten model fitted well to the kinetic data of enzymatic oxidation of a model substrate in the presence of the IL [emim][EtSO4 ]. When concentration of the IL was augmented, the values of Vmax for free and immobilized laccases showed an increase and slight decrease, respectively. The laccase-glyoxyl-agarose derivative improved the laccase stability in comparison with the free laccase regarding the enzymatic inactivation in [emim][EtSO4 ]. The stability of both free and immobilized laccase was slightly affected by small amounts of IL (<50%). A high concentration of the IL (75%) produced a large inactivation of free laccase. However, immobilization prevented deactivation beyond 50%. Free and immobilized laccase showed a first-order thermal inactivation profile between 55 and 70°C in the presence of the IL [emim][EtSO4 ]. Finally, thermal stability was scarcely affected by the presence of the IL.

  12. Cinética de Inactivación de la Enzima Peroxidasa, Color y Textura en Papa Criolla (Solanum tuberosum Grupo phureja sometida a tres Condiciones de Escaldado Kinetics of Peroxidase Enzyme Inactivation, Color and Texture in Golden Potato (Solanum tuberosum phureja group under three Blanching Conditions

    Rolando Mendoza


    Full Text Available El objetivo de este trabajo fue determinar la cinética de inactivación de la enzima peroxidasa y la cinética del color y textura en tubérculos de papa criolla (Solanum tuberosum grupo phureja sometidos a escaldado mediante agua a 80°C, 90°C y vapor saturado a 93°C. Los coeficientes de transferencia de calor para el escaldado en agua oscilaron entre 214 y 230 W °C-1 m-2 mientras que para vapor saturado fueron en promedio 84.5 W °C-1 m-2. A diferentes tiempos de precocción el tubérculo de papa criolla presentó una zona en donde ocurrió pardeamiento enzimático, hecho que fue modelado según la cinética de Michaelis-Menten y otra zona en donde el cambio de color disminuyó debido a la inactivación enzimática que correspondió a una cinética de primer orden, de manera similar al comportamiento de la textura. La inactivación de la enzima peroxidasa obedeció al mecanismo de Lumry-Eyring.The objective of this work was to determine the inactivation kinetics of peroxidase enzyme and the change in color and texture in golden potato tubers (Solanum tuberosum phureja group exposed to blanching with water at 80°C, 90°C and to saturated steam at 93°C. The heat transfer coefficients for the blanch water ranged between 214 and 230 W °C-1 m-2 while for saturated steam they showed an average of 84.5 W °C-1 m-2. At different pre-cooking times the golden potato tuber showed an area that developed enzymatic browning, which was fitted to the Michaelis-Menten kinetic model and another area where the color change decreased due to enzyme inactivation, which corresponded to first order kinetics, in a similar way as the texture behavior. The inactivation of peroxidase enzyme followed the Lumry-Eyring mechanism.

  13. Hepatic glucuronidation of resveratrol: interspecies comparison of enzyme kinetic profiles in human, mouse, rat, and dog.

    Maier-Salamon, Alexandra; Böhmdorfer, Michaela; Thalhammer, Theresia; Szekeres, Thomas; Jaeger, Walter


    The enzyme kinetic profiles of the formation of resveratrol-3-O-glucuronide (R3G) and resveratrol-4'-O-glucuronide (R4'G) by liver microsomes from humans, dogs, and rodents were investigated. Glucuronidation by human and dog liver microsomes to R3G and R4'G occurred for about 65% of applied resveratrol, and was significantly reduced to 10% when substrate concentration was increased 10-fold. In contrast, rodent microsomes glucuronidated about 90% of applied resveratrol independently of substrate concentration. Furthermore, in mouse and rat liver microsomes, resveratrol was almost exclusively conjugated at position 3, whereas human and dog livers also glucuronidated resveratrol at position 4' (ratio R3G:R4'G = 5:1). Interspecies differences were also found when calculating the enzyme kinetic profiles of both conjugates. Formation of R4'G in human and dog microsomes followed Michaelis-Menten kinetics, while R3G showed substrate inhibition at higher resveratrol concentrations. In mouse and rat microsomes, however, both R3G and R4'G formation exhibited auto-activation kinetics. Formation of R3G and R4'G by recombinant UGT1A1 also showed substrate inhibition kinetics that led to decreased intrinsic clearance values, while UGT1A9-catalyzed glucuronidation demonstrated substrate inhibition kinetics at position 3 and Hill kinetics for the formation of R4'G. In conclusion, resveratrol glucuronidation exhibited species-dependent differences, with the dog as the animal model that most closely represents humans in terms of this process.

  14. Comparison of mechanistic models in the initial rate enzymatic hydrolysis of AFEX-treated wheat straw

    Agbogbo Frank K


    Full Text Available Abstract Background Different mechanistic models have been used in the literature to describe the enzymatic hydrolysis of pretreated biomass. Although these different models have been applied to different substrates, most of these mechanistic models fit into two- and three-parameter mechanistic models. The purpose of this study is to compare the models and determine the activation energy and the enthalpy of adsorption of Trichoderma reesei enzymes on ammonia fibre explosion (AFEX-treated wheat straw. Experimental enzymatic hydrolysis data from AFEX-treated wheat straw were modelled with two- and three-parameter mechanistic models from the literature. In order to discriminate between the models, initial rate data at 49°C were subjected to statistical analysis (analysis of variance and scatter plots. Results For three-parameter models, the HCH-1 model best fitted the experimental data; for two-parameter models Michaelis-Menten (M-M best fitted the experimental data. All the three-parameter models fitted the data better than the two-parameter models. The best three models at 49°C (HCH-1, Huang and M-M were compared using initial rate data at three temperatures (35°, 42° and 49°C. The HCH-1 model provided the best fit based on the F values, the scatter plot and the residual sum of squares. Also, its kinetic parameters were linear in Arrhenius/van't Hoff's plots, unlike the other models. The activation energy (Ea is 47.6 kJ/mol and the enthalpy change of adsorption (ΔH is -118 kJ/mol for T. reesei enzymes on AFEX-treated wheat straw. Conclusion Among the two-parameter models, Michaelis-Menten model provided the best fit compared to models proposed by Humphrey and Wald. For the three-parameter models, HCH-1 provided the best fit because the model includes a fractional coverage parameter (ϕ which accounts for the number of reactive sites covered by the enzymes.

  15. Kinetic study of enzymatic hydrolysis of potato starch

    Óscar Fernando Castellanos Domínguez


    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis. Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98. Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  16. Coexistence of steady state for a diffusive prey-predator model with harvesting

    Yan Li


    Full Text Available In this article, we study a diffusive prey-predator model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting, subject to homogeneous Dirichlet boundary conditions. Treating the prey harvesting parameter as a bifurcation parameter, we obtain the existence, bifurcation and stability of coexistence steady state solutions. We use the method of upper and lower solutions, degree theory in cones, and bifurcation theory. The conclusions show the importance of prey harvesting in the model.

  17. The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism

    Zoe Rogers


    Full Text Available N-acetyltransferase 2 (NAT2 catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism explains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax and affinity (Km in children 0–10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of 30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artificial intelligence method, multivariate adaptive regression splines (MARS, to identify factors predicting NAT2 Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearly modified the NAT2 genotype contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concentration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale systems modeling from the level of cellular chemical reactions to whole body physiological parameters, by automatic selection of significant predictors by the algorithm.

  18. Effect in vitro of propoxur on kinetics of K+ stimulated PNPPase and protection by thiol reagents.

    Babu, G R; Reddy, G R; Rajendra, W; Chetty, C S


    Kinetics analysis of K+ stimulated PNPPase was studied in the rat brain synaptosomes in the presence of propoxur. Non-competitive inhibition with respect to activation by PNPP was seen by the decreased maximal velocity (Vmax) without change in Michaelis-Menten Constant (Km). Activation energy values (delta E) were increased suggesting the decreased catalytic potential of the enzyme. It is also observed that dithiothrietol (DTT) (76 microM), cysteine (82 microM) and glutathione (120 microM) neutralized the inhibition of K(+)-PNPPase by propoxur to different extents.

  19. [Substrate specificity and kinetic properties of a soluble nucleoside triphosphatase from bovine kidneys].

    Sivuk, V F; Rusina, I M; Luchko, T A; Makarchikov, A F


    Soluble nucleoside triphosphatase differing in its properties from all known proteins with NTPase activity was partially purified from bovine kidneys. The enzyme has pH optimum of 7.5, molecular mass of 60 kDa, as estimated by gel chromatography, and shows an absolute dependence on divalent metal ions. NTPase obeyed Michaelis-Menten kinetics in the range of substrate concentration tested from 45 to 440 microM; the apparent Km for inosine-5'-triphosphate was calculated to be 23.3 microM. The enzyme was found to possess a broad substrate specificity, being capable of hydrolyzing various nucleoside-5'-tri- as well as diphosphates.

  20. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti


    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  1. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti


    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  2. Kinetics of the simultaneous production of b- and g-cyclodextrins catalyzed by CGTase from alkalophilic Bacillus sp. - doi: 10.4025/actascitechnol.v35i4.13944

    Marcos De Souza


    Full Text Available The cyclodextrins (CDs are cyclic maltooligosaccharides obtained by cyclization of linear chains of starch, catalyzed by the enzyme cyclomaltodextringlucanotransferase (CGTase. The interest in CD production results from the formation of inclusion complexes, which allow many important applications, especially in food, pharmaceutical and cosmetic industries. The substances complexed generally have their properties modified by complexation. It is appreciated if increased solubility and higher thermal and chemical stabilities are obtained. In this work, a kinetic model was developed for the production of cyclodextrins in the presence of CGTase from alkalophilic Bacillus sp., taking into account the reversibility of the cyclization reaction, the simultaneous production of b and g-CD and also the inhibitory influence of the substrate and products (CDs, on the enzymatic activity of the CGTase. The substrate formed from a solution of maltodextrins was treated as a single substrate. The model was compared with experimental results of 24h of reaction and this comparison demonstrated that there was a very good representation of the data throughout the test period. The model also allowed explaining the observation of different experimental values for each Michaelis-Menten constant and substrate inhibition constant for each CD, although the CDs are produced from the same substrate.  

  3. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo


    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Similarity transformation approach to identifiability analysis of nonlinear compartmental models.

    Vajda, S; Godfrey, K R; Rabitz, H


    Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.

  5. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    Lijun Su

    Full Text Available Simulation models of leaf area index (LAI and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm. In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  6. Ordens não inteiras em cinética química Non-integer orders in chemical kinetics

    André P. Oliveira


    Full Text Available Starting from zero-, first-, and second-order integrated laws for chemical kinetics, some cases are shown which produce fractional orders. Taking the Michaelis-Menten mechanism as a first example, it is shown that substrate order can go from 1 to zero, depending on relative concentration of enzyme and substrate. Using other examples which show fractional orders higher than one and even negative (inhibition, it is shown that the presence of an equilibrium before or parallel to the rate determining step can be the reason for fractional orders, which is an indication of a more complex mechanism.

  7. Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood-brain barrier.

    Duarte, João M N; Gruetter, Rolf


    Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.

  8. A simple, mass balance model of carbon flow in a controlled ecological life support system

    Garland, Jay L.


    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  9. Stiripentol kinetics in epilepsy: nonlinearity and interactions.

    Levy, R H; Loiseau, P; Guyot, M; Blehaut, H M; Tor, J; Moreland, T A


    Stiripentol kinetics during oral therapy were assessed in six patients with epilepsy who were receiving other antiepileptic drugs. Steady-state levels at 600, 1200, and 2400 mg/day increased in a nonlinear fashion, indicating Michaelis-Menten kinetics. Oral clearance of stiripentol at 600 mg/day was 41.5 +/- 23.4 l/day/kg (mean +/- SD), greater than that at 1200 mg/day (20.3 +/- 8.8 l/day/kg; P less than 0.05) or 2400 mg/day (8.5 +/- 3.8 l/day/kg; P less than 0.01). The apparent in vivo Michaelis-Menten parameters were determined from three mean steady-state concentrations. The average velocity of conversion of stiripentol to its metabolites (Vm), Michaelis constant (Km), and the ratio Vm/Km were 49.3 +/- 13.1 mg/day/kg, 1.35 +/- 1.08 mg/l, and 50.2 +/- 27.5 l/day/kg. Stiripentol reduced the elimination clearances of concomitant antiepileptic drugs. Phenytoin clearance was reduced in all five subjects who received this drug, from a mean control of 29.5 +/- 13.4 l/day to 18.5 +/- 4.6 l/day at a stiripentol dose of 1200 mg/day (P = 0.05) and to 6.48 +/- 2.59 l/day at 2400 mg/day (P less than 0.01). Stiripentol reduced the clearance of carbamazepine in one subject from a control value of 209 l/day to 128 l/day (1200 mg/day) and 61 l/day (2400 mg/day). Stiripentol reduced phenobarbital clearance in two subjects from 3.8 and 5.1 l/day to 2.3 and 3.4 l/day (2400 mg/day). The Michaelis-Menten kinetics of stiripentol, as well as its interactions with other antiepileptic drugs, have important implications in the designing of controlled clinical trials.

  10. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study.

    Pedruzzi, Israel; da Silva, Eduardo A Borges; Rodrigues, Alírio E


    In this work, we have investigated the kinetics of the biotechnological production of lactobionic acid (LBA) and sorbitol by the catalytic action of glucose-fructose oxidoreductase (GFOR) and glucono-δ-lactonase (GL) enzymes. The cells of bacterium Zymomonas mobilis ATCC 29191 containing this enzymatic complex were submitted to permeabilization and reticulation procedures. The effect of the concentration of substrates on the rate of product formation using a mobilized cell system was investigated. The application of higher fructose concentration seems to not affect the initial rate of formation of the bionic acid. Under conditions of low initial concentration of lactose, the experimental kinetic data of the bi-substrate reaction were modelled by assuming a rate equation of the classical ping-pong mechanism. The found kinetic parameters displayed a low affinity of the GFOR enzyme for both substrates. The enzymatic system did not exhibit normal Michaelis-Menten kinetics in response to a change of concentration of lactose, when fructose was held constant, presenting a sigmoid relationship between initial velocity and substrate concentration. A rate equation based on Hill kinetics was used to describe the kinetic behaviour of this enzyme-substituted reaction at higher lactose concentrations. The results from batch experiments using immobilized cells within Ca-alginate beads revealed that there is no pronounced occurrence of mass transfer limitations on LBA production for beads with 1.2 mm in average diameter. This discussion aids for defining the best operating conditions to maximize the productivity for LBA and sorbitol in this bioconversion and also for reducing the complexity of downstream separation processes.

  11. Adaptive neural-based fuzzy modeling for biological systems.

    Wu, Shinq-Jen; Wu, Cheng-Tao; Chang, Jyh-Yeong


    The inverse problem of identifying dynamic biological networks from their time-course response data set is a cornerstone of systems biology. Hill and Michaelis-Menten model, which is a forward approach, provides local kinetic information. However, repeated modifications and a large amount of experimental data are necessary for the parameter identification. S-system model, which is composed of highly nonlinear differential equations, provides the direct identification of an interactive network. However, the identification of skeletal-network structure is challenging. Moreover, biological systems are always subject to uncertainty and noise. Are there suitable candidates with the potential to deal with noise-contaminated data sets? Fuzzy set theory is developed for handing uncertainty, imprecision and complexity in the real world; for example, we say "driving speed is high" wherein speed is a fuzzy variable and high is a fuzzy set, which uses the membership function to indicate the degree of a element belonging to the set (words in Italics to denote fuzzy variables or fuzzy sets). Neural network possesses good robustness and learning capability. In this study we hybrid these two together into a neural-fuzzy modeling technique. A biological system is formulated to a multi-input-multi-output (MIMO) Takagi-Sugeno (T-S) fuzzy system, which is composed of rule-based linear subsystems. Two kinds of smooth membership functions (MFs), Gaussian and Bell-shaped MFs, are used. The performance of the proposed method is tested with three biological systems.

  12. Mathematical modeling of maize starch liquefaction catalyzed by α-amylases from Bacillus licheniformis: effect of calcium, pH and temperature.

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Ðurđa


    The first step of starch hydrolysis, i.e. liquefaction has been studied in this work. Two commercial α-amylases from Bacilllus licheniformis, known as Termamyl and Liquozyme have been used for this purpose. Using starch as the substrate, kinetics of both enzymes has been determined at optimal pH and temperature (pH 7, T = 80 °C) and at 65 °C and pH 5.5. Michaelis-Menten model with uncompetitive product inhibition was used to describe enzyme kinetics. Mathematical models were developed and validated in the repetitive batch and fed-batch reactor. Enzyme inactivation was described by the two-step inactivation model. All experiments were performed with and without calcium ions. The activities of both tested amylases are approximately one hundred times higher at 80 °C than at 65 °C. Lower inactivation rates of enzymes were noticed in the experiments performed at 65 °C without the addition of calcium than in the experiments at 80 °C. Calcium ions in the reaction medium significantly enhance amylase stability at 80 °C and pH 7. At other process conditions (65 °C and pH 5.5) a weaker calcium stabilizing effect was detected.

  13. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti


    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  14. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele


    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  15. Hezbollah: The Dynamics of Recruitment


    fundamental Michaelis - Menten kinetic interaction of the enzyme- substrate complex over time. As substrates are converted by enzymes 0 to the intermediate... Michaelis - Menten , Sensitivity Analysis, Nonlinear Differential Equations 16. PRICE CODE 17. SECURITY CLASSIFICATION UNCLASSIFIED OF REPORT 18...Illustrations Figures Figure 1. Concentration over time for the Michaelis - Menten equations. ...................................... 38 Figure 2

  16. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.

    Maximova, Ksenia; Trylska, Joanna


    Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis-Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine β-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37°C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis-Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.

    Li, Su-Juan; Wang, Chen; Wu, Zeng-Qiang; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan


    To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 microL min(-1)), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis-Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.

  18. QE+QSS for Derivation of Kinetic Equations and Stiffness Removing

    Gorban, A N


    We present the general formalism of the Quasiequilibrium approximation (QE) with the proof of the persistence of entropy production in the QE approximation. We demonstrate, how to apply this formalism to chemical kinetics and describe the difference between QE and Quasi--Steady--State (QSS) approximations. The celebrated QSS "Michaelis--Menten" kinetics is, as a matter of fact, the "Briggs-Haldane" kinetics. Michaelis and Menten used the QE assumption that all intermediate complexes are in fast equilibrium with free substrates and enzyme. Similar approach was developed by Stuekelberg (1952) for the Boltzmann kinetics. Following them, we combine the QE (fast equilibria) and the QSS (small amounts) approaches and study the general kinetics with fast intermediates present in small amount. We prove the representation of the rate of an elementary reaction as a product of the Boltzmann factor (purely thermodynamic) and the kinetic factor, and found the basic relations between kinetic factors. In the practice of mod...

  19. Semi-physiologic model validation and bioequivalence trials simulation to select the best analyte for acetylsalicylic acid.

    Cuesta-Gragera, Ana; Navarro-Fontestad, Carmen; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; García-Arieta, Alfredo; Trocóniz, Iñaki F; Casabó, Vicente G; Bermejo, Marival


    The objective of this paper is to apply a previously developed semi-physiologic pharmacokinetic model implemented in NONMEM to simulate bioequivalence trials (BE) of acetyl salicylic acid (ASA) in order to validate the model performance against ASA human experimental data. ASA is a drug with first-pass hepatic and intestinal metabolism following Michaelis-Menten kinetics that leads to the formation of two main metabolites in two generations (first and second generation metabolites). The first aim was to adapt the semi-physiological model for ASA in NOMMEN using ASA pharmacokinetic parameters from literature, showing its sequential metabolism. The second aim was to validate this model by comparing the results obtained in NONMEM simulations with published experimental data at a dose of 1000 mg. The validated model was used to simulate bioequivalence trials at 3 dose schemes (100, 1000 and 3000 mg) and with 6 test formulations with decreasing in vivo dissolution rate constants versus the reference formulation (kD 8-0.25 h (-1)). Finally, the third aim was to determine which analyte (parent drug, first generation or second generation metabolite) was more sensitive to changes in formulation performance. The validation results showed that the concentration-time curves obtained with the simulations reproduced closely the published experimental data, confirming model performance. The parent drug (ASA) was the analyte that showed to be more sensitive to the decrease in pharmaceutical quality, with the highest decrease in Cmax and AUC ratio between test and reference formulations.

  20. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus

    Obeid, Jamila; Magnin, Jean-Pierre [Grenoble Institute of Technology, LEPMI, UMR 5631 (CNRS-INPG-UJF), BP 75, 38402 St Martin d' Heres (France); Flaus, Jean-Marie; Adrot, Olivier [Grenoble Institute of Technology, Laboratoire des sciences pour la conception, l' optimisation et la production, 46, avenue Felix Viallet, 38031 Grenoble (France); Willison, John C. [Laboratoire de Chimie et Biologie des Metaux (UMR 5249 CEA-CNRS-UJF), iRTSV/LCBM, CEA-Grenoble, 38054 Grenoble (France); Zlatev, Roumen [Autonomous University of Baja California, Institute of Engineering, Mexicali, Baja California (Mexico)


    The photosynthetic bacterium, Rhodobacter capsulatus, produces hydrogen under nitrogen-limited, anaerobic, photosynthetic culture conditions, using various carbon substrates. In the present study, the relationship between light intensity and hydrogen production has been modelled in order to predict both the rate of hydrogen production and the amount of hydrogen produced at a given time during batch cultures of R. capsulatus. The experimental data were obtained by investigating the effect of different light intensities (6000-50,000 lux) on hydrogen-producing cultures of R. capsulatus grown in a batch photobioreactor, using lactate as carbon and hydrogen source. The rate of hydrogen production increased with increasing light intensity in a manner that was described by a static Baly model, modified to include the square of the light intensity. In agreement with previous studies, the kinetics of substrate utilization and growth of R. capsulatus was represented by the classical Monod or Michaelis-Menten model. When combined with a dynamic Leudekong-Piret model, the amount of hydrogen produced as a function of time was effectively predicted. These results will be useful for the automatization and control of bioprocesses for the photoproduction of hydrogen. (author)

  1. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics.

    Saaby, Lasse; Brodin, Birger


    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate kinetic parameters, such as Km and Vmax, for carrier-mediated transport, whereas half-maximal inhibitor concentration (IC50) and the disassociation constant for an inhibitor/P-gp complex (Ki) have been determined to estimate P-gp inhibition. This review addresses in vitro methods commonly used to study P-gp transport kinetics and aims at providing a critical evaluation of the application of steady-state Michaelis-Menten analysis of kinetic parameters for substrate/P-gp interactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Fatmawati, Akbarningrum; Agustriyanto, Rudy


    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  3. Mathematic modelling of the enteric nervous network. 5. Excitation propagation in a planar neural network.

    Miftakhov, R N; Wingate, D L


    A mathematical model of the enteric nervous system (Auerbach's plexus) as a planar neural network has been developed, based on the actual morphological data of its organization. The network is composed of excitatory (cholinergic) and inhibitory (adrenergic) neurones interconnected by polysynaptic channels, formed of the geometrically non-uniform unmyelinated nerve axons. The synaptic zones are modelled as a three-compartment open pharmacokinetics system, i.e., presynaptic terminal, synaptic cleft and postsynaptic membrane where the pharmacokinetic mechanisms of electrochemical coupling are considered. All the chemical reactions of transformation of acetylcholine and adrenaline within them are described by first order Michaelis-Menten kinetics. The propagation of the electrical impulse along the pathways and in the vicinity of the nerve terminal is described by the modified Hodgkin-Huxley equations. The results of numerical simulation of the propagation of excitation within the neuronal chain, inhibitory feedback circuit, and a planar neuronal network under normal physiological conditions and after treatment with cholinergic/adrenergic agonists and antagonists are presented. The model predicts the dose-dependent influence of pharmacological agents on the neural network function.

  4. Modeling reaction noise with a desired accuracy by using the X level approach reaction noise estimator (XARNES) method.

    Konkoli, Zoran


    A novel computational method for modeling reaction noise characteristics has been suggested. The method can be classified as a moment closure method. The approach is based on the concept of correlation forms which are used for describing spatially extended many body problems where particle numbers change in space and time. In here, it was shown how the formalism of spatially extended correlation forms can be adapted to study well mixed reaction systems. Stochastic fluctuations in particle numbers are described by selectively capturing correlation effects up to the desired order, ξ. The method is referred to as the ξ-level Approximation Reaction Noise Estimator method (XARNES). For example, the ξ=1 description is equivalent to the mean field theory (first-order effects), the ξ=2 case corresponds to the previously developed PARNES method (pair effects), etc. The main idea is that inclusion of higher order correlation effects should lead to better (more accurate) results. Several models were used to test the method, two versions of a simple complex formation model, the Michaelis-Menten model of enzymatic kinetics, the smallest bistable reaction network, a gene expression network with negative feedback, and a random large network. It was explicitly demonstrated that increase in ξ indeed improves accuracy in all cases investigated. The approach has been implemented as automatic software using the Mathematica programming language. The user only needs to input reaction rates, stoichiometry coefficients, and the desired level of computation ξ.

  5. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    Farazdaghi, Hadi


    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  6. Modelling Two Different Therapy Strategies for Drug T-20 on HIV-1 Patients%使用T-20治疗HIV-1患者的不同策略的数学建模与研究

    宋保军; 娄洁; 文清芝


    通过建立数学模型,描述了HIV-1感染者使用抗病毒治疗药物——融合酶抑制剂(T-20)的治疗效果.使用脉冲微分方程描述了T-20的使用过程,并考虑了两种不同的药物消除动力学:一级消除动力学与米-曼(Michaelis-Menten)消除动力学.此模型是个非自治微分方程系统,主要关注其无病平衡态,并研究当接受治疗者在服药完全依从的治疗过程中无病平衡态的稳定性.分别针对药物剂量与服药间隔得到了使得无病平衡态稳定的阈值条件.此外,还研究了间歇治疗的效果.研究表明,间歇治疗的效果甚至可以比完全不治疗还要糟糕.%A mathematical model that describes the antiretroviral therapy of the fusion inhibitor enfuvirtide on HIV-1 patients and the effect of enfuvirtide (formerly T-20) using impulsive differential equations were developed, taking into account two different drug elimination kinetics: first order and Michaelis-Menten. The model was a non-autonomous system of differential equations. For the time-dependent system, the disease-free equilibrium and its stability when therapy was taken with perfect adherence were focused on. Analytical thresholds for dosage and dosing intervals were determined to ensure that the disease-free equilibrium remains stable. The effects of supervised treatment interruption were also explored. It is shown that supervised treatment interruption may be worse than no therapy at all, thus strongly supporting no interruption strategies.

  7. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Leong, Sze Ying; Oey, Indrawati


    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Extracellular acid phosphatase activities in Eriophorum vaginatum tussocks: A modeling synthesis

    Moorhead, D.L. (Texas Tech Univ., Lubbock (United States)); Kroehler, C.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg (United States)); Linkins, A.E. (Clarkson Univ., Potsdan, NY (United States)); Reynolds, J.F. (San Diego State Univ., CA (United States))


    Analyses of Eriophorum vaginatum tussocks provided mass and kinetic parameters for a Michaelis-Menten model of phosphatase activities in Alaskan tussock tundra. This model was used to simulate the temporal patterns of phosphatase activities, given a 90-d thawing season and organic phosphorus concentrations of 30 [mu]M in the first and last 10-d intervals; 15 [mu]M at other times. Results indicated that about 28% of the total annual tussock activity (155 mg P released) occurred during the brief period of high substrate availability in autumn; little occurred in spring because most of the tussock was frozen and live root mass was low. Phosphatases associated with living roots of E. vaginatum were responsible for about 4% of the total activity in tussocks (ca. 6 mg P), which is almost twice the annual plant demand (ca. 3.5 mg). These results suggest that (1) E. vaginatum may obtain much of its phosphorus requirement from the activities of root surface phosphatases, and (2) the timing of maximum plant phosphorus uptake (late in year) and growth (early in year) are asynchronous, i.e., E. vaginatum integrates nutrient availabilities across years. 41 refs., 2 figs., 1 tab.

  9. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui


    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice.

  10. "On-the-fly" kinetics of enzymatic racemization using deuterium NMR in DNA-based chiral oriented media.

    Chan-Huot, Monique; Lesot, Philippe; Pelupessy, Philippe; Duma, Luminita; Bodenhausen, Geoffrey; Duchambon, Patricia; Toney, Michael D; Reddy, U Venkateswara; Suryaprakash, N


    We report the in situ and real-time monitoring of the interconversion of L- and D-alanine-d3 by alanine racemase from Bacillus stearothermophilus directly observed by (2)H NMR spectroscopy in anisotropic phase. The enantiomers are distinguished by the difference of their (2)H quadrupolar splittings in a chiral liquid crystal containing short DNA fragments. The proof-of-principle, the reliability, and the robustness of this new method is demonstrated by the determination of the turnover rates of the enzyme using the Michaelis-Menten model.

  11. SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks

    Schröder Adrian


    Full Text Available Abstract Background The development of complex biochemical models has been facilitated through the standardization of machine-readable representations like SBML (Systems Biology Markup Language. This effort is accompanied by the ongoing development of the human-readable diagrammatic representation SBGN (Systems Biology Graphical Notation. The graphical SBML editor CellDesigner allows direct translation of SBGN into SBML, and vice versa. For the assignment of kinetic rate laws, however, this process is not straightforward, as it often requires manual assembly and specific knowledge of kinetic equations. Results SBMLsqueezer facilitates exactly this modeling step via automated equation generation, overcoming the highly error-prone and cumbersome process of manually assigning kinetic equations. For each reaction the kinetic equation is derived from the stoichiometry, the participating species (e.g., proteins, mRNA or simple molecules as well as the regulatory relations (activation, inhibition or other modulations of the SBGN diagram. Such information allows distinctions between, for example, translation, phosphorylation or state transitions. The types of kinetics considered are numerous, for instance generalized mass-action, Hill, convenience and several Michaelis-Menten-based kinetics, each including activation and inhibition. These kinetics allow SBMLsqueezer to cover metabolic, gene regulatory, signal transduction and mixed networks. Whenever multiple kinetics are applicable to one reaction, parameter settings allow for user-defined specifications. After invoking SBMLsqueezer, the kinetic formulas are generated and assigned to the model, which can then be simulated in CellDesigner or with external ODE solvers. Furthermore, the equations can be exported to SBML, LaTeX or plain text format. Conclusion SBMLsqueezer considers the annotation of all participating reactants, products and regulators when generating rate laws for reactions. Thus, for

  12. Kinetic Study on Flooded Soil Recovery Using Soil Containing Arbuscular Mycorrhizal Fungi

    Zainol N.


    Full Text Available The purpose of this research was to determine the kinetic parameters for flooded soil recovery via soil containing Arbuscular Mycorrhizal fungi (AMF. The general procedures of this experiment started by preparation of simulated flooded soil (FS and soil containing AMF (SA. Mixed soil was prepared by mixing FS and SA with ratio 1:1. Onion plant was chosen as a host plant and planted in the mixed soil for 14 days. The plantation was conducted in ambient temperature. The nutrients (nitrogen, phosphorus and potassium concentrations in the soil were tested using HACH Spectrophotomer. The Michaelis-Menten equation was used to study the nutrients recovery in soil. The Lineweaver-Bulk plot was used to solve the Michaelis-Menten equation. From the experiment conducted, the maximum nutrient uptake (Vmax and bonding affinity (Km obtained for nitrogen (N were 6.28mg/l.d and 82.17 mg/l, for phosphorus (P were 9.80 mg/l.d and 60.96 mg/l.d and for potassium (K were 0.07mg/l.d and 4.55mg/l. By comparing the result with other researcher, it showed that the Vmax and Km of nitrogen (N and phosphorus (P obtained were higher than other research. This was because the onion required a high level of N and P in the soil compared to other host plant.

  13. Studies on the kinetics of plasminogen activation by tissue plasminogen activator.

    Rånby, M


    The steady-state rate of plasminogen activation by tissue plasminogen activator has been determined at various plasminogen concentrations. A plasmin substrate method similar to that presented by Christensen and Müllertz (Biochim. Biophys. Acta 480 (1977) 257-281) was used. The reaction was studied using one-chain type and two-chain type tissue plasminogen activator, N-terminal glutamic acid and N-terminal lysine plasminogen in the presence and in the absence of fibrin (eight studies). The kinetic data were fitted to a general Wong-Hanes equation and the simplest equation with significant parameters was found. In the absence of fibrin N-terminal glutamic acid plasminogen activation obeyed the Michaelis-Menten rate equation (Km 4.9 and 7.6 micro M and kcat 0.0013 and 0.0078 s-1 for one-chain type and two-chain type tissue plasminogen activator, respectively. In the absence of fibrin the activation of N-terminal lysine plasminogen activation failed to obey the Michaelis-Menten rate equation. Fibrin was found to stimulate greatly (up to 1000-fold) the steady-state activation rate. A theory for the fibrin stimulating mechanism is presented.

  14. Oxidative desulfurization: kinetic modelling.

    Dhir, S; Uppaluri, R; Purkait, M K


    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  15. Quasi steady-state approximations in complex intracellular signal transduction networks - a word of caution

    Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.


    Enzyme reactions play a pivotal role in intracellular signal transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics and the MM approximation is often used when modeling enzyme reactions. However, it is known that the MM approximation is only valid at low enzyme concentrati......Enzyme reactions play a pivotal role in intracellular signal transduction. Many enzymes are known to possess Michaelis-Menten (MM) kinetics and the MM approximation is often used when modeling enzyme reactions. However, it is known that the MM approximation is only valid at low enzyme...

  16. Kinetics Studies On Polyphenoloxidase Catalize P-chlorophenol Oxidzing Reaction in onaqueous System%多酚氧化酶在非水相中催化对氯苯酚氧化反应的动力学研究

    李华; 霍瑞贞


      In experiment,the polyphenoloxidase was extracted from mushroom by using acetone precipitating method threetimes. And then, it was immobilized by using the absorbentdeposition method with porous glass powder as carriers,It wasstudied to catalize p-chlorophenol oxidizing reaction inchloroform, complys with Michaelis-Menten dynamicmodel.And themoisture content in organic solvent directly affected thecatalytic activity of mushroom polyphenoloxidase. Theoptimum reaction condition for the catalyrtic oxidation of p-chlorophenol in chloroform was determined: pH:7, temperature:25°C, moisture content: 0.5%(v/v).The measured value of dynamic parameters was 29.45kJ. mol-1 for apparent activationenergy,1.058mol. L-1 for Michaelis-Menten kinetics and 9.074×10-2 min-1 for the maximum reaction rate.%  本文用丙酮沉淀法从蘑菇中提取多酚氧化酶,以多孔玻璃粉为载体,用吸附沉积法将酶固定,研究了该酶在氯仿介质中催化对氯苯酚氧化反应的机理遵循米氏(Michaelis-Menten)动力学方程;而且,在有机介质中含水率大小直接影响酶的催化活性.实验测得反应的最佳条件为pH=7.0,温度为25°C,含水率为0.5%(v/v);表观活化能Ea=29.54kJ . mol-1,米氏常数Km=1.058mol . dm-3,最大反应速率rmax=90.74×10-3min-1.

  17. Multiple alternative substrate kinetics.

    Anderson, Vernon E


    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment.

  18. Kinetics of methane oxidation in selected mineral soils

    Walkiewicz, A.; Bulak, P.; Brzeziñska, M.; Włodarczyk, T.; Polakowski, C.


    The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.

  19. Mathematical modelling of polyamine metabolism in bloodstream-form Trypanosoma brucei: an application to drug target identification.

    Xu Gu

    Full Text Available We present the first computational kinetic model of polyamine metabolism in bloodstream-form Trypanosoma brucei, the causative agent of human African trypanosomiasis. We systematically extracted the polyamine pathway from the complete metabolic network while still maintaining the predictive capability of the pathway. The kinetic model is constructed on the basis of information gleaned from the experimental biology literature and defined as a set of ordinary differential equations. We applied Michaelis-Menten kinetics featuring regulatory factors to describe enzymatic activities that are well defined. Uncharacterised enzyme kinetics were approximated and justified with available physiological properties of the system. Optimisation-based dynamic simulations were performed to train the model with experimental data and inconsistent predictions prompted an iterative procedure of model refinement. Good agreement between simulation results and measured data reported in various experimental conditions shows that the model has good applicability in spite of there being gaps in the required data. With this kinetic model, the relative importance of the individual pathway enzymes was assessed. We observed that, at low-to-moderate levels of inhibition, enzymes catalysing reactions of de novo AdoMet (MAT and ornithine production (OrnPt have more efficient inhibitory effect on total trypanothione content in comparison to other enzymes in the pathway. In our model, prozyme and TSHSyn (the production catalyst of total trypanothione were also found to exhibit potent control on total trypanothione content but only when they were strongly inhibited. Different chemotherapeutic strategies against T. brucei were investigated using this model and interruption of polyamine synthesis via joint inhibition of MAT or OrnPt together with other polyamine enzymes was identified as an optimal therapeutic strategy.

  20. Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

    Madhu Khurana; Pradeep K Sharma; Kalyan K Banerji


    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants. The reaction is acid-catalysed and the acid dependence has the form: obs = + [H+]. The oxidation of -deuterioformic acid exhibits a substantial primary kinetic isotope effect (H/D = 6.01 at 303 K). The reaction has been studied in nineteen different organic solvents and the solvent effect has been analysed using Taft’s and Swain’s multiparametric equations. The temperature dependence of the kinetic isotope effect indicates the presence of a symmetrical cyclic transition state in the rate-determining step. Suitable mechanisms have been proposed

  1. A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition

    Tang, J. Y.; Riley, W. J.


    We demonstrate that substrate uptake kinetics in any consumer-substrate network subject to the total quasi-steady-state assumption can be formulated as an equilibrium chemistry (EC) problem. If the consumer-substrate complexes equilibrate much faster than other metabolic processes, then the relationships between consumers, substrates, and consumer-substrate complexes are in quasi-equilibrium and the change of a given total substrate (free plus consumer-bounded) is determined by the degradation of all its consumer-substrate complexes. In this EC formulation, the corresponding equilibrium reaction constants are the conventional Michaelis-Menten (MM) substrate affinity constants. When all of the elements in a given network are either consumer or substrate (but not both), we derived a first-order accurate EC approximation (ECA). The ECA kinetics is compatible with almost every existing extension of MM kinetics. In particular, for microbial organic matter decomposition modeling, ECA kinetics explicitly predicts a specific microbe's uptake for a specific substrate as a function of the microbe's affinity for the substrate, other microbes' affinity for the substrate, and the shielding effect on substrate uptake by environmental factors, such as mineral surface adsorption. By taking the EC solution as a reference, we evaluated MM and ECA kinetics for their abilities to represent several differently configured enzyme-substrate reaction networks. In applying the ECA and MM kinetics to microbial models of different complexities, we found (i) both the ECA and MM kinetics accurately reproduced the EC solution when multiple microbes are competing for a single substrate; (ii) ECA outperformed MM kinetics in reproducing the EC solution when a single microbe is feeding on multiple substrates; (iii) the MM kinetics failed, while the ECA kinetics succeeded, in reproducing the EC solution when multiple consumers (i.e., microbes and mineral surfaces) were competing for multiple

  2. Constructing stochastic models from deterministic process equations by propensity adjustment

    Wu Jialiang


    Full Text Available Abstract Background Gillespie's stochastic simulation algorithm (SSA for chemical reactions admits three kinds of elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. All other types of reaction processes, for instance those containing non-integer kinetic orders or following other types of kinetic laws, are assumed to be convertible to one of the three elementary kinds, so that SSA can validly be applied. However, the conversion to elementary reactions is often difficult, if not impossible. Within deterministic contexts, a strategy of model reduction is often used. Such a reduction simplifies the actual system of reactions by merging or approximating intermediate steps and omitting reactants such as transient complexes. It would be valuable to adopt a similar reduction strategy to stochastic modelling. Indeed, efforts have been devoted to manipulating the chemical master equation (CME in order to achieve a proper propensity function for a reduced stochastic system. However, manipulations of CME are almost always complicated, and successes have been limited to relative simple cases. Results We propose a rather general strategy for converting a deterministic process model into a corresponding stochastic model and characterize the mathematical connections between the two. The deterministic framework is assumed to be a generalized mass action system and the stochastic analogue is in the format of the chemical master equation. The analysis identifies situations: where a direct conversion is valid; where internal noise affecting the system needs to be taken into account; and where the propensity function must be mathematically adjusted. The conversion from deterministic to stochastic models is illustrated with several representative examples, including reversible reactions with feedback controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic focusing. Conclusions The construction of a stochastic

  3. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo


    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized

  4. Microbial ureolysis in the seawater-catalysed urine phosphorus recovery system: Kinetic study and reactor verification.

    Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao


    Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery.

  5. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian


    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity.

  6. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K


    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Robust Designs for Three Commonly Used Nonlinear Models

    Xu, Xiaojian; Chen, Arnold


    In this paper, we study the robust designs for a few nonlinear models, including an exponential model with an intercept, a compartmental model, and a Michaelis-Menten model, when these models are possibly misspecified. The minimax robust designs we considered in this paper are under consideration of not only minimizing the variances but also reducing the possible biases in estimation. Both prediction and extrapolation cases are discussed. The robust designs are found incorporating the approximation of these models with several situations such as homoscedasticity, and heteroscedasticity. Both ordinary and weighted nonlinear least squares methods are utilized.

  8. Chemical kinetics modeling

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)


    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  9. Kinetics and mechanism of the oxidation of some diols by benzyltrimethylammonium tribromide

    Garima Goswami; Seema Kothari; Kalyan K Banerji


    The kinetics of oxidation of five vicinal and four non-vicinal diols, and two of their monoethers by benzyltrimethylammonium tribromide (BTMAB) have been studied in 3:7 (/) acetic acid-water mixture. The vicinal diols yield the carbonyl compounds arising out of the glycol bond fission while the other diols give the hydroxycarbonyl compounds. The reaction is first-order with respect to BTMAB. Michaelis-Menten type kinetics is observed with respect to diol. Addition of benzyltrimethylammonium chloride does not affect the rate. Tribromide ion is postulated to be the reactive oxidizing species. Oxidation of [1,1,2,2-2H4] ethanediol shows the absence of a kinetic isotope effect. The reaction exhibits substantial solvent isotope effect. A mechanism involving a glycol-bond fission has been proposed for the oxidation of the vicinal diols. The other diols are oxidized by a hydride ion transfer to the oxidant, as are the monohydric alcohols.

  10. The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks.

    Aon, Miguel Antonio; O'Rourke, Brian; Cortassa, Sonia


    In this work, we highlight the links between fractals and scaling in cells and explore the kinetic consequences for biochemical reactions operating in fractal media. Based on the proposal that the cytoskeletal architecture is organized as a percolation lattice, with clusters emerging as fractal forms, the analysis of kinetics in percolation clusters is especially emphasized. A key consequence of this spatiotemporal cytoplasmic organization is that enzyme reactions following Michaelis-Menten or allosteric type kinetics exhibit higher rates in fractal media (for short times and at lower substrate concentrations) at the percolation threshold than in Euclidean media. As a result, considerably faster and higher amplification of enzymatic activity is obtained. Finally, we describe some of the properties bestowed by cytoskeletal organization and dynamics on metabolic networks.

  11. Kinetics of ethylene and ethylene oxide in subcellular fractions of lungs and livers of male B6C3F1 mice and male fischer 344 rats and of human livers.

    Li, Qiang; Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg


    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of V(max) [nmol/(min·mg protein)] and of the apparent Michaelis constant (K(m) [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, V(max) values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as V(max)/K(m) [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO.

  12. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Andrea Ciliberto


    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  13. Modelling heart rate kinetics.

    Zakynthinaki, Maria S


    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women).

  14. Modelling heart rate kinetics.

    Maria S Zakynthinaki

    Full Text Available The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise. Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women.

  15. Modelling Heart Rate Kinetics

    Zakynthinaki, Maria S.


    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  16. Catalytic and Inhibitory Kinetic Behavior of Horseradish Peroxidase on the Electrode Surface

    Titi Wang


    Full Text Available Enzymatic biosensors are often used to detect trace levels of some specific substance. An alternative methodology is applied for enzymatic assays, in which the electrocatalytic kinetic behavior of enzymes is monitored by measuring the faradaic current for a variety of substrate and inhibitor concentrations. Here we examine a steady-state and pre-steady-state reduction of H2O2 on the horseradish peroxidase electrode. The results indicate the substrate-concentration dependence of the steady-state current strictly obeys Michaelis-Menten kinetics rules; in other cases there is ambiguity, whereby he inhibitor-concentration dependence of the steady-state current has a discontinuity under moderate concentration conditions. For pre-steady-state phases, both catalysis and inhibition show an abrupt change of the output current. These anomalous phenomena are universal and there might be an underlying biochemical or electrochemical rationale.

  17. Kinetics and mechanism of oxidation of aliphatic alcohols by tetrabutylammonium tribromide

    Manju Baghmar; Pradeep K Sharma


    Oxidation of nine primary aliphatic alcohols by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid leads to the formation of the corresponding aldehydes. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to alcohols. The reaction failed to induce the polymerization of acrylonitrile. Tetrabutylammonium chloride has no effect on the reaction rate. The proposed reactive oxidizing species is the tribromide ion. The oxidation of [1,1-2H2]ethanol exhibits a substantial kinetic isotope effect. The effect of solvent composition indicates that the rate increases with increase in the polarity of the solvent. The reaction is susceptible to both polar and steric effects of substituents. A mechanism involving transfer of a hydride ion in the ratedetermining step has been proposed.

  18. Kinetics of Phosphatase of Regenerating Liver-3 (PRL-3) Inhibition by Small-molecular Inhibitors


    Phosphatase of Regenerating Liver-3 (PRL-3) is a newly identified colorectal cancer metastasis-related protein,which isa 22 kDa non-classical protein tyrosine phosphatase with a C-terminal prenylation motif. In this study, the inhibition kinetics of protein tyrosine phosphatases (PTPs) by a fluorescent substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) was evaluated. PRL-3 exhibits classical Michaelis-Menten kinetics with a vmax value of the inhibitor magnolol can cause Km to increase, but does not alter the vmax value, which suggests the competitive inhibition of PRL-3. At the same time, it was found that DiFMUP is a more sensitive substrate for PRL-3 than para-nitrophenyl phosphate(pNPP) that is more frequently used at present. Furthermore, the method of screening for PTPs by the use of DiFMUP was developed, which studied the acceptance of DiFMUP by other PTPs.

  19. A dynamical system of deposit and loan volumes based on the Lotka-Volterra model

    Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.


    In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.

  20. Nutrient uptake rate as a function of cell size and surface transporter density: A Michaelis-like approximation to the model of Pasciak and Gavis

    Armstrong, Robert A.


    Pasciak and Gavis were first to propose a model of nutrient uptake that includes both physical transport by diffusion and active biological transport across the cell membrane. While the Pasciak-Gavis model is not complicated mathematically (it can be expressed in closed form as a quadratic equation), its parameters are not so easily interpretable biologically as are the parameters of the Michaelis-Menten uptake model; this lack of transparency is probably the main reason the Pasciak-Gavis model has not been adopted by ecologically oriented modelers. Here I derive a Michaelis-like approximation to the Pasciak-Gavis model, and show how the parameters of the latter map to those of the Michaelis-like model. The derived approximation differs from a pure Michaelis-Menten model in a subtle but potentially critical way: in a pure Michaelis-Menten model, the half-saturation constant for nutrient uptake is independent of the density of transporter (or "porter") proteins on the cell surface, while in the Pasciak-Gavis model and its Michaelis-like approximation, the half-saturation constant does depend on the density of porter proteins. The Pasciak-Gavis model predicts a unique relationship between cell size, nutrient concentration in the medium, the half-saturation constant of porter-limited nutrient uptake, and the resulting rate of uptake; the Michaelis-like approximation preserves the most important feature of that relationship, the size at which porter limitation gives way to diffusion limitation. Finally I discuss the implications for community structure that are implied by the Pasciak-Gavis model and its Michaelis-like approximation.

  1. Thermodynamics and kinetics of an enzyme-catalyzed reaction determined by isothermal titration calorimetry%等温滴定量热法测定酶催化反应的热动力学参数

    彭尚; 孙丽霞; 熊珍爱; 周利琴; 兰雄雕; 孙建华; 童张法; 廖丹葵


    采用等温滴定量热法(ITC)测定猪肺血管紧张素转化酶(angiotensin converting enzyme,ACE)催化水解其体外模拟底物马尿酰-组氨酰-亮氨酸(Hip-His-Leu,HHL)反应的热动力学参数,考察了温度对动力学参数的影响。结果表明,该反应的摩尔水解焓ΔHhydr为正值,是吸热反应,且随温度升高ΔHhydr增大,等压比热容 cp为0.2126kJ/(mol·K);ACE 催化 HHL 的水解反应符合 Michaelis-Menten 机理,在实验温度范围内(298.15~313.15K),米氏常数Km随温度升高而减小,催化常数kcat随温度的升高先增大后减少,在308.15K时达到最大值2.534s−1。将该法与传统的初始速率法进行比较,传统法存在的局限性使测得的 Km相对偏大。同时使用 ITC结合动力学分析测得ACE抑制剂药物依那普利拉为竞争性抑制剂,抑制常数KI为12.1 nmol/L,与文献比较证明该法可用于抑制剂类型的判断,是一种开发 ACE 抑制剂的新方法。应用该方法确定活性多肽Arg-Tyr-Leu-Gly-Tyr(RY-5)为非竞争性抑制剂,抑制常数KI为1.0μmol/L。%Thermodynamic and kinetic parameters of angiotensin converting enzyme(ACE)catalyzed hydrolysis of simulating substrate Hippuryl-Histidyl-Leucine(HHL)in vitro were determined by isothermal titration calorimetry(ITC). The effect of temperature on kinetic parameters was investigated; the results showed that the ACE-catalyzed reaction was endothermic with a small constant pressure specific heat capacity [cp=0.2126kJ/(mol·K)]. The value of molar hydrolysis enthalpyΔHhydrwas positive and increased as temperature rose. The reaction mechanism was in accordance with the Michaelis-Menten model in the temperature range(298.15—313.15K);the effect of temperature on the Michaelis constant(Km)was negative,while catalytic constant(kcat)first increased then decreased with the increase of temperature,reaching the maximum value of 2.534s−1 at 308.15K. Initial rate

  2. Dramatic Differences in Organophosphorus Hydrolase Activity between Human and Chimeric Recombinant Mammalian Paraoxonase-1 Enzymes


    with phenyl acetate and paraoxonwere determined by Michaelis - Menten steady state kinetics . The data from four or more independent experiments were fit...paraoxon was followed atA412 for 20 min at room temperature as described above. The data were fit using Michaelis - Menten steady state kinetics to derive...for 4 h at room temperature as described above. The data were fit using Michaelis - Menten steady state kinetics to derive the KM and Vmax values of

  3. Onsager reciprocity principle for kinetic models and kinetic schemes

    Mahendra, Ajit Kumar


    Boltzmann equation requires some alternative simpler kinetic model like BGK to replace the collision term. Such a kinetic model which replaces the Boltzmann collision integral should preserve the basic properties and characteristics of the Boltzmann equation and comply with the requirements of non equilibrium thermodynamics. Most of the research in development of kinetic theory based methods have focused more on entropy conditions, stability and ignored the crucial aspect of non equilibrium thermodynamics. The paper presents a new kinetic model formulated based on the principles of non equilibrium thermodynamics. The new kinetic model yields correct transport coefficients and satisfies Onsager's reciprocity relationship. The present work also describes a novel kinetic particle method and gas kinetic scheme based on this linkage of non-equilibrium thermodynamics and kinetic theory. The work also presents derivation of kinetic theory based wall boundary condition which complies with the principles of non-equili...

  4. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states.

    Abuhelwa, Ahmad Y; Foster, David J R; Mudge, Stuart; Hayes, David; Upton, Richard N


    Itraconazole is an orally active antifungal agent that has complex and highly variable absorption kinetics that is highly affected by food. This study aimed to develop a population pharmacokinetic model for itraconazole and the active metabolite hydroxyitraconazole, in particular, quantifying the effects of food and formulation on oral absorption. Plasma pharmacokinetic data were collected from seven phase I crossover trials comparing the SUBA-itraconazole and Sporanox formulations of itraconazole. First, a model of single-dose itraconazole data was developed, which was then extended to the multidose data. Covariate effects on itraconazole were then examined before extending the model to describe hydroxyitraconazole. The final itraconazole model was a 2-compartment model with oral absorption described by 4-transit compartments. Multidose kinetics was described by total effective daily dose- and time-dependent changes in clearance and bioavailability. Hydroxyitraconazole was best described by a 1-compartment model with mixed first-order and Michaelis-Menten elimination for the single-dose data and a time-dependent clearance for the multidose data. The relative bioavailability of SUBA-itraconazole compared to that of Sporanox was 173% and was 21% less variable between subjects. Food resulted in a 27% reduction in bioavailability and 58% reduction in the transit absorption rate constant compared to that with the fasted state, irrespective of the formulation. This analysis presents the most extensive population pharmacokinetic model of itraconazole and hydroxyitraconazole in the literature performed in healthy subjects. The presented model can be used for simulating food effects on itraconazole exposure and for performing prestudy power analysis and sample size estimation, which are important aspects of clinical trial design of bioequivalence studies.

  5. Verhulst and stochastic models for comparing mechanisms of MAb productivity in six CHO cell lines.

    Shirsat, Nishikant; Avesh, Mohd; English, Niall J; Glennon, Brian; Al-Rubeai, Mohamed


    The present study validates previously published methodologies-stochastic and Verhulst-for modelling the growth and MAb productivity of six CHO cell lines grown in batch cultures. Cytometric and biochemical data were used to model growth and productivity. The stochastic explanatory models were developed to improve our understanding of the underlying mechanisms of growth and productivity, whereas the Verhulst mechanistic models were developed for their predictability. The parameters of the two sets of models were compared for their biological significance. The stochastic models, based on the cytometric data, indicated that the productivity mechanism is cell specific. However, as shown before, the modelling results indicated that G2 + ER indicate high productivity, while G1 + ER indicate low productivity, where G1 and G2 are the cell cycle phases and ER is Endoplasmic Reticulum. In all cell lines, growth proved to be inversely proportional to the cumulative G1 time (CG1T) for the G1 phase, whereas productivity was directly proportional to ER. Verhulst's rule, "the lower the intrinsic growth factor (r), the higher the growth (K)," did not hold for growth across all cell lines but held good for the cell lines with the same growth mechanism-i.e., r is cell specific. However, the Verhulst productivity rule, that productivity is inversely proportional to the intrinsic productivity factor (r x ), held well across all cell lines in spite of differences in their mechanisms for productivity-that is, r x is not cell specific. The productivity profile, as described by Verhulst's logistic model, is very similar to the Michaelis-Menten enzyme kinetic equation, suggesting that productivity is more likely enzymatic in nature. Comparison of the stochastic and Verhulst models indicated that CG1T in the cytometric data has the same significance as r, the intrinsic growth factor in the Verhulst models. The stochastic explanatory and the Verhulst logistic models can explain the

  6. 水浮莲(Pistia stratiotes L.)对NH4+-N和NO3--N吸收动力学研究%The Kinetic of Ammonium and Nitrate Uptake by Water Lettuce (Pistia stratiotes L.)

    胡绵好; 奥岩松; 杨肖娥


    水体中的营养元素过多(特别是氮、磷)所导致的富营养化现象已是全球性的环境问题.近来利用大型维管束植物对富营养化水体的修复已备受关注.然而,水体中氮的去除受到包括氮的离子形态及其在水体中浓度等各种因素的影响.研究通过Michaelis-Menten动力学方程来研究植物根系表面氮的浓度与植物吸收氮的相互关系.该方程包括2个参数:吸收最大速率(Vmax)和米氏常数(Km),其分别表示植物吸收不同氮形态的最大速率和对不同氮形态亲和力的高低.利用加权回归分析结果表明,生长在不同浓度营养液水浮莲(Pistia stratiotes L.)吸收速率拟和Michaelis-Menten方程.水浮莲对NH4+-N的Km很高,表明其对NH4+-N亲和力高;在NO3--N单一氮源提供下,水浮莲对NO3--N的吸收动力学与NH4+-N相似.然而,在营养液中同时存在NH4+-N和NO3--N时,NO3--N吸收的最大速率明显降低,但对其Km的影响不大,这种抑制作用看来属于非竞争性的.在NH4+-NN和NO3--N的同时存在下,由于植物吸收NO3--N能力的降低可能导致植物对氮的利用率下降.%Eutrophication, which overenrich with nutrients (principally nitrogens and phosphorus) in water bodies, has been recognized as a global problem. Macrophytes play a major role in nutrient removal. However, nitrogen removal is affected by many factors including the N-ion species and its concentration in water bodies. In the present study, the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation involves two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of water lettuce (Pistia stratiotes L.) growing in a different concentration nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4+-N the Km values

  7. Kinetics and mechanism of the oxidation of some neutral and acidic -amino acids by tetrabutylammonium tribromide

    Raghvendra Shukla; Pradeep K Sharma; Kalyan K Banerji


    The oxidation of eleven amino acids by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid results in the formation of the corresponding carbonyl compounds and ammonia. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with some of the amino acids while others exhibit second-order dependence. It failed to induce polymerization of acrylonitrile. The effect of solvent composition indicate that the rate of reaction increases with increase in the polarity of the medium. Addition of tetrabutylammonium chloride has no effect on the rate of oxidation. Addition of bromide ion causes decrease in the oxidation rate but only to a limiting value. The reaction is susceptible to both polar and steric effects of the substituents. A suitable mechanism has been proposed.

  8. Effect of hydrodynamics on kinetics of gluconic acid enzymatic production in bubble column reactor

    Ramezani Mohammad


    Full Text Available Oxidation of glucose by homogeneous glucose oxidase was performed in rectangular bubble column reactor at 40°C, ambient pressure and pH of 5.5 while superficial gas (oxygen velocity was varied in the homogeneous and transition regime in the range of 0.0014 - 0.0112 m s-1. Effect of superficial gas (oxygen velocity on the apparent reaction rate and its parameters was determined and it was observed that the apparent reaction rate on the basis of volume of the liquid increased with increasing the superficial gas (oxygen velocity. The apparent reaction rate was assumed to be in the form of Michaelis-Menten equation and its apparent kinetic parameters were evaluated by the nonlinear regression method.

  9. Kinetics Modeling of Cancer Immunology.


    CANCER IMMUNOLOGY -1 DTICS ELECTED SEP 9 8 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND V ,1986 %,e docment ha le approved for public A." I and sale...1986 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED KINETICS MODELING OF CANCER IMMUNOLOGY Final: 1985/1986 6. PERFORMING ORG. REPORT...137 (1986) "Kinetics Modeling of Cancer Immunology " A Trident Scholar Project Report by Midn I/C Scott Helmers, Class of 1986 United States Naval

  10. Crystallization Kinetics within a Generic Modelling Framework

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist


    An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....

  11. Developing an Enzyme Mediated Soil Organic Carbon Decomposition Model

    Mayes, M. A.; Post, W. M.; Wang, G.; Jagadamma, S.; Steinweg, J. M.; Schadt, C. W.


    We developed the Microbial-ENzyme-mediated Decomposition (MEND) model in order to mechanistically model the decomposition of soil organic carbon (C). This presentation is an overview of the concept and development of the model and of the design of complementary lab-scale experiments. The model divides soil C into five pools of particulate, mineral-associated, dissolved, microbial, and enzyme organic C (Wang et al. 2012). There are three input types - cellulose, lignin, and dissolved C. Decomposition is mediated via microbial extracellular enzymes using the Michaelis-Menten equation, resulting in the production of a common pool of dissolved organic C. Parameters for the Michaelis-Menten equation are obtained through a literature review (Wang and Post, 2012a). The dissolved C is taken up by microbial biomass and proportioned according to microbial maintenance and growth, which were recalculated according to Wang and Post (2012b). The model allows dissolved C to undergo adsorption and desorption reactions with the mineral-associated C, which was also parameterized based upon a literature review and complementary laboratory experiments. In the lab, four 14C-labeled substrates (cellulose, fatty acid, glucose, and lignin-like) were incubated with either the particulate C pool, the mineral-associated C pool, or to bulk soils. The rate of decomposition was measured via the production of 14CO2 over time, along with incorporation into microbial biomass, production of dissolved C, and estimation of sorbed C. We performed steady-state and dynamic simulations and sensitivity analyses under temperature increases of 1-5°C for a period of 100 y. Simulations indicated an initial decrease in soil organic C consisting of both cellulose and lignin pools. Over longer time intervals (> 6 y), however, a shrinking microbial population, a concomitant decrease in enzyme production, and a decrease in microbial carbon use efficiency together decreased CO2 production and resulted in greater

  12. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL


    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  13. Kinetic Approach to the Mechanism of Redox Reaction of Pyrocatechol Violet and Nitrite Ion in Aqueous Hydrochloric Acid

    A. Adetoro


    Full Text Available The kinetics of the oxidation of Pyrocatechol violet (PCVH by nitrite ion (NO2- in aqueous acidic medium has been studied at 24±1ºC, I = 0.50 mol/dm3(NaCl, [H+] = 1.0×10-3 mol/dm3. The reaction is first order to [PCVH] and half order to [NO2-]. The redox reaction displayed a 1:1 stoichiometry and obeys the rate law: d[PCVH]/dt = (a + b[H+] [PCVH][NO2-]½. The second-order rate constant increases with increase in acid concentration and ionic strength. This system displayed positive salt effect while spectroscopic investigation and Michaelis-Menten plot showed evidence of intermediate complex formation in the course of the reaction. A plausible mechanism has been proposed for the reaction.

  14. Investigating the kinetics of paramagnetic-beads linked alkaline phosphatase enzyme through microchannel resistance measurement in dielectric microchip.

    Faure, Mathilde; Sotta, Bruno; Gamby, Jean


    Real time monitoring of electrolyte resistance changes during hydrolysis of 4-nitrophenylphosphate (pNPP) by alkaline phosphatase (ALP) bound on paramagnetic-beads was performed into a small dielectric channel. The reaction kinetic fit with a non-competitive substrate-inhibition equation. Michaelis-Menten apparent constant, KM(app), was determined as 0.33±0.06mM and the maximum apparent rate, Vmax(app) as 98±5pMs(-1). The detection limits were 15fM for ALP and 0.75mM for pNPP. This miniaturized device constitutes a powerful tool for analysis of interaction between ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG.

    Chahinian, Henri; Nini, Lylia; Boitard, Elisabeth; Dubès, Jean-Paul; Comeau, Louis-Claude; Sarda, Louis


    The better to characterize enzymes hydrolyzing carboxyl ester bonds (carboxyl ester hydrolases), we have compared the kinetic behavior of various lipases and esterases against solutions and emulsions of vinyl esters and TAG. Short-chain vinyl esters are hydrolyzed at comparable rates by esterases and lipases and have higher limits of solubility in water than corresponding TAG. Therefore, they are suited to study the influence of the physical state of the substrate on carboxyl ester hydrolase activity within a large concentration range. Enzymes used in this study are TAG lipases from microorganisms, lipases from human and guinea pig pancreas, pig liver esterase, and acetylcholinesterase. This study also includes cutinase, a fungal enzyme that displays functional properties between esterases and lipases. Esterases display maximal activity against solutions of short-chain vinyl esters (vinyl acetate, vinyl propionate, and vinyl butyrate) and TAG (triacetin, tripropionin, and tributyrin). Half-maximal activity is reached at ester concentrations far below the solubility limit. The transition from solution to emulsion at substrate concentrations exceeding the solubility limit has no effect on esterase activity. Lipases are active on solutions of short-chain vinyl esters and TAG but, in contrast to esterases, they all display maximal activity against emulsified substrates and half-maximal activity is reached at substrate concentrations near the solubility limit of the esters. The kinetics of hydrolysis of soluble substrates by lipases are either hyperbolic or deviate from the Michaelis-Menten model and show no or weak interfacial activation. The presence of molecular aggregates in solutions of short-chain substrates, as evidenced by a spectral dye method, likely accounts for the activity of lipases against soluble esters. Unlike esterases, lipases hydrolyze emulsions of water-insoluble medium- and long-chain vinyl esters and TAG such as vinyl laurate, trioctanoin, and

  16. Plant Photosynthesis-Irradiance Curve Responses to Pollution Show Non-Competitive Inhibited Michaelis Kinetics.

    Lin, Maozi; Wang, Zhiwei; He, Lingchao; Xu, Kang; Cheng, Dongliang; Wang, Genxuan


    Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis.

  17. Plant Photosynthesis-Irradiance Curve Responses to Pollution Show Non-Competitive Inhibited Michaelis Kinetics.

    Maozi Lin

    Full Text Available Photosynthesis-irradiance (PI curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn and photosynthetically active radiation (PAR, and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM to predict the co-variation of Pn, PAR, and the relative pollution index (I. We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis.

  18. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings

    Aslam, M.; Travis, R. L.; Huffaker, R. C.


    Nitrate and NO2- transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3- and NO2- was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3- and NO2-. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3- and NO2- uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3- and NO2- uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3- uptake ranged from 34 to 36 micromolar and of NO2- uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3- and NO2- inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3- was a more effective inhibitor than NO2-. Nitrate and NO2- transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.

  19. Chemical kinetics and combustion modeling

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)


    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  20. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    James, Margaret O


    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  1. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models.

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe


    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical

  2. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)


    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  3. Bayesian inference of baseline fertility and treatment effects via a crop yield-fertility model.

    Hungyen Chen

    Full Text Available To effectively manage soil fertility, knowledge is needed of how a crop uses nutrients from fertilizer applied to the soil. Soil quality is a combination of biological, chemical and physical properties and is hard to assess directly because of collective and multiple functional effects. In this paper, we focus on the application of these concepts to agriculture. We define the baseline fertility of soil as the level of fertility that a crop can acquire for growth from the soil. With this strict definition, we propose a new crop yield-fertility model that enables quantification of the process of improving baseline fertility and the effects of treatments solely from the time series of crop yields. The model was modified from Michaelis-Menten kinetics and measured the additional effects of the treatments given the baseline fertility. Using more than 30 years of experimental data, we used the Bayesian framework to estimate the improvements in baseline fertility and the effects of fertilizer and farmyard manure (FYM on maize (Zea mays, barley (Hordeum vulgare, and soybean (Glycine max yields. Fertilizer contributed the most to the barley yield and FYM contributed the most to the soybean yield among the three crops. The baseline fertility of the subsurface soil was very low for maize and barley prior to fertilization. In contrast, the baseline fertility in this soil approximated half-saturated fertility for the soybean crop. The long-term soil fertility was increased by adding FYM, but the effect of FYM addition was reduced by the addition of fertilizer. Our results provide evidence that long-term soil fertility under continuous farming was maintained, or increased, by the application of natural nutrients compared with the application of synthetic fertilizer.

  4. Kinetic Modeling of Biological Systems

    Resat, Haluk; Petzold, Linda; Pettigrew, Michel F.


    The dynamics of how its constituent components interact define the spatio-temporal response of a natural system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided.

  5. Carrying-over toxicokinetic model uncertainty into cancer risk estimates. The TCDD example

    Edler, L. [Division of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Heinzl, H.; Mittlboeck, M. [Medical Univ. of Vienna (Austria). Dept. of Medical Computer Sciences


    Estimation of human cancer risks depends on the assessment of exposure to the investigated hazardous compound as well as on its toxicokinetic and toxicodynamic in the body. Modeling these processes constitutes a basic prerequisite for any quantitative risk assessment including assessment of the uncertainty of risk estimates. Obviously, the modeling process itself is part of the risk assessment task, and it affects the development of valid risk estimates. Due to the wealth of information available on exposure and effects in humans and animals 2,3,7,8 tetrachlorodibenzo-pdioxin (TCDD) provides an excellent example to elaborate methods which allow a quantitative analysis of the uncertainty of TCDD risk estimates, and which show how toxicokinetic model uncertainty carries over to risk estimate uncertainty and uncertainty of the dose-response relationship. Cancer is usually considered as a slowly evolving disease. An increase in TCDD dose may result in an increase of the observable cancer response not until some latency time period has elapsed. This fact needs careful consideration when a dose-response relationship is to be established. Toxicokinetic models are capable to reconstruct TCDD exposure concentrations during a lifetime such that time-dependent TCDD dose metrics like the area under the concentration-time curve (AUC) can be constructed for each individual cohort member. Two potentially crucial model assumptions for estimating the exposure of a person are the assumption of lifetime constancy of total lipid volume (TLV) of the human body and the assumption of a simple linear kinetic of TCDD elimination. In 1995 a modified Michaelis-Menten kinetic (also known as Carrier kinetic) has been suggested to link the TCDD elimination rate to the available TCDD amount in the body. That is, TCDD elimination would be faster, of nearly the same rate, or slower under this kinetic than under a simple linear kinetic when the individual would be highly, moderately, or slightly

  6. Mild Hypothermia Decreases Fentanyl and Midazolam Steady-State clearance in a Rat Model of Cardiac Arrest

    Empey, Philip E.; Miller, Tricia M.; Philbrick, Ashley H.; Melick, John; Kochanek, Patrick M.; Poloyac, Samuel M.


    Objectives Therapeutic hypothermia is widely-employed for neuroprotection after cardiac arrest(CA). However, concern regarding elevated drug concentrations during hypothermia and increased adverse drug reaction risk complicates concurrent pharmacotherapy. Many commonly used medications in critically ill patients rely on the cytochrome P450(CYP) 3A isoform for their elimination. Therefore, our study objectives were to determine the effect of mild hypothermia on the in vivo pharmacokinetics of fentanyl and midazolam, two clinically-relevant CYP3A substrates, after CA and to investigate the mechanisms of these alterations. Design Prospective, randomized, controlled study Setting University research laboratory Subjects Thirty two adult male Sprague-Dawley rats Interventions An asphyxial CA rat model was used and mild hypothermia(33 °C) was induced 1h post injury by surface cooling and continued for 10 hours to mimic the prolonged clinical application of hypothermia accompanied by intensive care interventions. Fentanyl and midazolam were independently administered by intravenous infusion and plasma and brain concentrations were analyzed using ultra-performance liquid chromatography tandem mass spectrometry. Cyp3a2 protein expression was measured and a Michaelis-Menten enzyme kinetic analysis was performed at 37°C and 33°C using control rat microsomes. Measurements and Main Results Mild hypothermia decreased the systemic clearance of both fentanyl (61.5±11.5 to 48.9±8.95 mL/min/kg;p midazolam (89.2±12.5 to 73.6±12.1 mL/min/kg;p midazolam in rats after CA through alterations in Cyp3a metabolic capacity rather than enzyme affinity as observed with other CYPs. Contrasting effects on blood and brain levels further complicates drug dosing. Consideration of the impact of hypothermia on medications whose clearance is dependent on CYP3A metabolism is warranted. PMID:22067624

  7. Modelagem aplicada aos processos digestivos e metabólicos do suíno Applied modeling to the digestive and metabolic processes of the pig

    Paulo Alberto Lovatto


    Full Text Available Esse estudo bibliográfico descreve os princípios mais importantes da modelagem aplicada aos processos digestivos e metabólicos do suíno. Essa forma de modelagem se apóia, sobretudo, em dois princípios matemáticos: a linearidade e a não-linearidade, sendo representada essencialmente pelas leis de ação de massa e de Michaelis-Menten, respectivamente. Os modelos foram classificados em explicativos, temporais e paramétricos. Os explicativos descrevem a forma de integração do conhecimento, podendo ser empíricos ou mecânicos. Os temporais definem a forma de integração do conhecimento em função do tempo, podendo ser estáticos ou dinâmicos. Os paramétricos associam os parâmetros temporais e explicativos, podendo ser deterministas ou estocásticos. Os modelos de crescimento foram integrados em níveis mais subjacentes que os de digestão. Os princípios metabólicos que envolvem o anabolismo e o catabolismo tissulares, bem como as vias de utilização dos nutrientes foram melhor estudados nos tecidos proteicos. A presente revisão mostra que os modelos de digestão e de metabolismo já desenvolvidos são dinâmicos, deterministas e empíricos. Na maioria dos casos, esses modelos representam parcialmente os fenômenos digestivos e metabólicos do suíno. Os novos modelos devem integrar as formas paramétricas estocásticas, o que os aproxima mais d realidade da cinética celular nos seres vivos, considerando os nutrientes desde a ingestão até sua utilização em nível molecular.This paper reviews the main principles and characterizes the evolution of modeling applied to the swine digestive and metabolic processes. Such modeling is largely based on two mathematical principles: linearity and non-linearity, which were represented essentially by action mass and Michaelis-Menten laws. The digestive and metabolic models were classified in explanatory, temporal and parametric. Explanatory ones describe the knowledge integration, and

  8. Kinetic modelling of enzymatic starch hydrolysis

    Bednarska, K.A.


    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch. A

  9. Research on a novel kinetics experiment of enzyme-catalyzed reaction presented for undergraduate teaching%适用于本科教学的新酶促反应动力学实验研究

    吴梅芬; 王晓岗; 刘亚菲; 许新华


    The mechanism of a-chymotrypsin-catalyzed hydrolysis of 4-nitrophenyl trimethylacetate includes the following steps:the reversible enzyme-substrate binding and the enzyme acylation and enzyme deacylation.This mechanism is quite different from the conventional Michaelis-Menten mechanism for enzyme-catalyzed reactions.The corresponding kinetic parameters can be expressed precisely on the basis of chemical kinetics theory,such as Michaelis constant KM ,equilibrium constant K,catalytic rate constant kcat ,and the rate constants of the elementary reactions k 2 and k 3 .The reaction is carried out at 25 °C in a pH = 8.5 buffer of tris(hydroxymethyl)aminomethane (TRIS)by means of spectrophotometry.The kinetic curves are fitted linearly and non-linearly.The kinetic parameters are in agreement with the theoretical prediction.The enzyme product used in this experiment is cheap and the activity is stable. The experimental method is simple enough to be applied in undergraduate physical chemistry laboratory courses.As an ideal model of complex reaction,the experiment will help the students to enhance the understanding and knowledge of chemical kinetics theories.%通过严格的化学反应动力学推导,得到了a-糜蛋白酶催化三甲基乙酸对硝基苯酯水解反应相关的动力学参数的表达式,包括表观米氏常数 KM、酶-底物络合物稳定常数 K 、催化速率常数 kcat 、以及基元反应步骤速率常 k2和 k3等.实验在25℃,pH =8.5的三羟基氨基甲烷缓冲液中进行,用分光光度法测定反应的动力学曲线.数据经过非线性拟合和线性拟合,得到相关的动力学参数,该参数与理论预测一致.该实验酶制剂价格低廉,活性稳定,实验方法简单,可作为本科物理化学实验课程中复杂反应动力学测量的一个很好的实例,加深学生对化学反应动力学相关理论和概念的理解和掌握.

  10. Estudio de bioequivalencia de teofilina considerando cinética de Michaelis-Menten

    Fagiolino, Pietro; Turlier, M.; Payssé, Helena; Aiache, Jean-Marc


    Se presenta un estudio de bioequivalencia de dos formas farmacéuticas de Teofilina de liberación prolongada, teniendo en cuenta la cinética no lineal de eliminación de esta droga. Una dosis de 300 mg de Teofilina fue administrada a 12 voluntarios sanos, en un diseno aleatorio, cruzado y compensado. Se utilizó una forma farmacéutica elixir, a los efectos de estimar los parámetros farmacocinéticos de eliminación en cada individuo. Como parámetros de evaluación de la biodisponibilidad se utilizó...

  11. Kinetic models of conjugated metabolic cycles

    Ershov, Yu. A.


    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  12. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants

    Jens B. Hafke


    Full Text Available Apart from a few using cut aphid stylets, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV, while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV. In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarisations were recorded. Data analysis by nonlinear least-square data fittings as well as by linear Eadie-Hofstee (EH -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: Km1 1.2-1.8 mM, Km2 6.6-9.0 mM of sucrose uptake by sieve elements. However, Akaike’s Information Criterion (AIC favoured single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/ pF were detected in the whole-cell mode. In conclusion (a Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b electrophysiology provides a useful tool for in-situ determination of Km values, (c As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve

  13. Kinetics of the Enzymatic Hydrolysis of Sweet Cassava Starch and Bitter Cassava Flour and Gadung (Dioscorea hispida Dennst Flour at Low Temperature

    Hargono Hargono


    Full Text Available Starch is a potential substrate for this purpose, but the extra cost is needed to hydrolyze it into reducing sugar. As an alternative to the expensive and energy demanding conventional hydrolysis process, the low-temperature hydrolysis is being studied. Granular Starch Hydrolysing Enzyme (GSHE was used in the process to degrade starch into reducing sugar at 30°C and pH 4. The substrates included bitter cassava flour, sweet cassava starch, and gadung flour. Starch concentrations studied were 50, 100, 150, 200, 250, 300, 350, and 400 g/L, respectively, while concentration of enzyme was 1.5 % (w/w. The optimum condition of the process was hydrolysis using 200 g/L of substrate concentration and enzyme  concentration of 1.5% for 12 h. It was found that the reducing sugar was  49.3  g/L and the productivity of reducing sugar (Qrs was 4.11 (gL-1 h-1.   Lineweaver-Burk plot of Michaelis-Menten equation was used to study the inhibition kinetics. The Michaelis-Menten constants (Km  for these three substrates were determined as 141.64 g/L, 137,64 g/L and 140.84 g/L for bitter cassava flour, sweet cassava starch, and gadung flour, respectively. The value of  Vm/Km, which denotes the affinity of the enzyme to the substrate, were determined and compared, and the result showed that the affinity (Vm to the enzyme to this substrate followed  the order of sweet cassava starch˃ bitter cassava flour˃ gadung flour, and all are non-competitive inhibitor, while the  Ki value was 0.022 h -1.

  14. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary


    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  15. A model of reactor kinetics

    Thompson, A.S.; Thompson, B.R.


    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  16. Kinetics model for lutate dosimetry

    Lima, M.F.; Mesquita, C.H., E-mail:, E-mail: [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  17. Crystallization Kinetics within a Generic Modeling Framework

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.


    to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter...

  18. Microbial Mineralization of cis-Dichloroethene and Vinyl Chloride as a Component of Natural Attenuation of Chloroethene Contaminants under Conditions Identified in the Field as Anoxic


    chloroethene mineralization under nomi- nally anoxic conditions can exhibit saturation type ( Michaelis - Menten ) kinetics over the range of environmentally...relevant concentrations. The Michaelis - Menten parameters, Vmax and ks, are sensitive to a number of environmental factors and vary according to in

  19. Kinetics of cadmium accumulation and its effects on microtubule integrity and cell viability in the seagrass Cymodocea nodosa.

    Malea, Paraskevi; Adamakis, Ioannis-Dimosthenis S; Kevrekidis, Theodoros


    The kinetics of cadmium accumulation and its effects on microtubule cytoskeleton and cell viability in leaf blades of the seagrass Cymodocea nodosa were investigated under laboratory conditions in exposure concentrations ranging from 0.5 to 40 mg L(-1). An initial rapid accumulation of cadmium was followed by a steady state. The Michaelis-Menten model adequately described metal accumulation; equilibrium concentration and uptake velocity tended to increase, whereas bioconcentration factor at equilibrium to decrease, as the exposure concentration increased. Cadmium depolymerized microtubules after 3-9 d of exposure, depending on trace metal concentration, indicating that microtubules could be used as an early biomarker of cadmium stress; cell death, occurring at later time than microtubule disturbance, was also observed. Microtubule depolymerization expressed as percentage of reduction of fluorescence intensity and cell mortality expressed as percentage of live cells increased with time. The lowest experimental tissue concentration associated with the onset of microtubule depolymerization and cell death (98.5-128.9μgg(-1)drywt, 0.5 mg L(-1) treatment, 7th and 9th d) was within the wide range of reported cadmium concentrations in leaves of seagrass species from various geographical areas. This lowest tissue concentration was exceeded up to the 3rd d at higher exposure concentrations, but toxic effects were generally detected at later time. The time periods required for the onset of depolymerization and for 10 and 50% of cells to die tended to decrease as the uptake velocity increased; in particular, significant negative correlations were found between these variables. These results suggest that toxicity appears to be a function of cadmium uptake rate rather than of the total tissue metal concentration. Hence, tissue residues should be interpreted in relation to the time frame of the exposure, while the estimation of metal uptake velocity could be utilized for

  20. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method.

    Valencia, Pedro L; Astudillo-Castro, Carolina; Gajardo, Diego; Flores, Sebastián


    We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974). The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis-Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax , Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].

  1. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    Mohamed, Samah Y.


    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  2. Modeling of Reactor Kinetics and Dynamics

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov


    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  3. Human UGT1A4 and UGT1A3 conjugate 25-hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability.

    Wang, Zhican; Wong, Timothy; Hashizume, Takanori; Dickmann, Leslie Z; Scian, Michele; Koszewski, Nicholas J; Goff, Jesse P; Horst, Ronald L; Chaudhry, Amarjit S; Schuetz, Erin G; Thummel, Kenneth E


    25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated. Two isozymes, UGT1A4 and UGT1A3, were identified as the principal catalysts of 25OHD3 glucuronidation in human liver. Three 25OHD3 monoglucuronides (25OHD3-25-glucuronide, 25OHD3-3-glucuronide, and 5,6-trans-25OHD3-25-glucuronide) were generated by recombinant UGT1A4/UGT1A3, human liver microsomes, and human hepatocytes. The kinetics of 25OHD3 glucuronide formation in all systems tested conformed to the Michaelis-Menten model. An association between the UGT1A4*3 (Leu48Val) gene polymorphism with the rates of glucuronide formation was also investigated using human liver microsomes isolated from 80 genotyped livers. A variant allele dose effect was observed: the homozygous UGT1A4*3 livers (GG) had the highest glucuronidation activity, whereas the wild type (TT) had the lowest activity. Induction of UGT1A4 and UGT1A3 gene expression was also determined in human hepatocytes treated with pregnane X receptor/constitutive androstane receptor agonists, such as rifampin, carbamazepine, and phenobarbital. Although UGT mRNA levels were increased significantly by all of the known pregnane X receptor/constitutive androstane receptor agonists tested, rifampin, the most potent of the inducers, significantly induced total 25OHD3 glucuronide formation activity in human hepatocytes measured after 2, but not 4 and 24 hours, of incubation. Finally, the presence of 25OHD3-3-glucuronide in both human plasma and bile was confirmed, suggesting that the glucuronidation pathway might be physiologically relevant and contribute to vitamin D homeostasis in humans.

  4. Improved Methodology for Parameter Inference in Nonlinear, Hydrologic Regression Models

    Bates, Bryson C.


    A new method is developed for the construction of reliable marginal confidence intervals and joint confidence regions for the parameters of nonlinear, hydrologic regression models. A parameter power transformation is combined with measures of the asymptotic bias and asymptotic skewness of maximum likelihood estimators to determine the transformation constants which cause the bias or skewness to vanish. These optimized constants are used to construct confidence intervals and regions for the transformed model parameters using linear regression theory. The resulting confidence intervals and regions can be easily mapped into the original parameter space to give close approximations to likelihood method confidence intervals and regions for the model parameters. Unlike many other approaches to parameter transformation, the procedure does not use a grid search to find the optimal transformation constants. An example involving the fitting of the Michaelis-Menten model to velocity-discharge data from an Australian gauging station is used to illustrate the usefulness of the methodology.

  5. An equilibrium and kinetic modeling



    Jun 18, 2007 ... Potato dextrose agar medium was prepared by taking 200 g of peeled and sliced potato with .... of glucose as carbon source and ammonium chloride as nitrogen source each. .... Pore and solid diffusion kinetics in fixed bed ...

  6. Kinetic exchange models for social opinion formation

    Lallouache, Mehdi; Chakrabarti, Bikas K


    We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society.

  7. Different enzyme kinetics of midazolam in recombinant CYP3A4 microsomes from human and insect sources.

    Christensen, Hege; Mathiesen, Liv; Postvoll, Lillian W; Winther, Bjørn; Molden, Espen


    In vitro drug metabolism techniques with human CYP c-DNA expressed systems are frequently used to predict human drug metabolism in vivo. The aim of this study was to compare midazolam enzyme kinetics in recombinant expressed CYP3A4 microsomes from human and insect cells. The amounts of 1'- hydroxymidazolam and 4-hydroxymidazolam formed in CYP3A4 microsomes from transfected human liver epithelial cells (T5-3A4 microsomes) and baculovirus-infected insect cells (with and without coexpressed cytochrome b(5)) were analysed by LC-MS. Enzyme kinetic parameters were estimated by nonlinear regression. Mean K(m) for the formation of 1'-hydroxymidazolam was 3- and 4-fold higher in T5-3A4 microsomes than in insect microsomes (pmicrosomes was reflected by significantly lower Cl(int) compared to insect microsomes (pmicrosomes displayed Michaelis-Menten kinetics, while insect microsomes showed substrate inhibition kinetics. The different enzyme kinetics of midazolam observed in recombinant CYP3A4 microsomes from human and insect sources, especially the substantially higher K(m) obtained in human microsomes compared to insect microsomes, should be further evaluated since it may have implications for correlations to in vivo situation.

  8. Kinetics of platelet 5-hydroxytryptamine uptake in headache patients.

    Hannah, P; Jarman, J; Glover, V; Sandler, M; Davies, P T; Clifford Rose, F


    Platelet 5-hydroxytryptamine (5-HT) uptake was measured in asymptomatic headache patients attending a specialist migraine clinic, and in hospital staff who did not suffer from regular or severe headache. Current levels of anxiety and depression were assessed in all subjects using the Hospital Anxiety and Depression (HAD) scale and their possible influence on the uptake kinetics taken into account during the analysis of results. The Michaelis-Menten constant (Km) was significantly raised in common migraine and tension headache compared with controls (p less than 0.001 and p less than 0.01, respectively), but not in classical migraine or cluster headache. The increase remained significant after adjusting for differences in age, sex, presence of anxiety or depression (HAD sub-scale score greater than or equal to 8), drug intake during the week before testing, time elapsed since last attack and time of assay (am or pm). No differences were observed between patients and controls in the maximal rate of uptake (Vmax) or platelet count, and previous reports of a reduction in Vmax in patients experiencing attack within 5 days prior to testing could not be confirmed. The cause and significance of an increased Km are not clear, but plasma factors acting as competitive inhibitors for the uptake site or an alteration in the configuration of the uptake site are possible explanations. If confirmed, the shared biochemical abnormality may suggest that common migraine and tension headache have a common pathogenesis.

  9. Electrochemical evaluation of glutathione S-transferase kinetic parameters.

    Enache, Teodor Adrian; Oliveira-Brett, Ana Maria


    Glutathione S-transferases (GSTs), are a family of enzymes belonging to the phase II metabolism that catalyse the formation of thioether conjugates between the endogenous tripeptide glutathione and xenobiotic compounds. The voltammetric behaviour of glutathione (GSH), 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione S-transferase (GST), as well as the catalytic conjugation reaction of GSH to CDNB by GST was investigated at room temperature, T=298.15K (25°C), at pH6.5, for low concentration of substrates and enzyme, using differential pulse (DP) voltammetry at a glassy carbon electrode. Only GSH can be oxidized; a sensitivity of 0.14nA/μM and a LOD of 6.4μM were obtained. The GST kinetic parameter electrochemical evaluation, in relation to its substrates, GSH and CDNB, using reciprocal Michaelis-Menten and Lineweaver-Burk double reciprocal plots, was determined. A value of KM~100μM was obtained for either GSH or CDNB, and Vmax varied between 40 and 60μmol/min per mg of GST.

  10. Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(PH:quinone oxidoreductase.

    Iryna Kishko

    Full Text Available The E. coli protein WrbA is an FMN-dependent NAD(PH:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(PH or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(PH:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An

  11. Simulating microbial denitrification with EPIC: Model description and initial testing

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, Jimmy R.; Jones, Curtis D.; Link, Robert P.; Manowitz, D.; Schwab, D. E.; Zhang, Xuesong; Robertson, G. P.; Milar, Neville


    Microbial denitrification occurs in anaerobic soil microsites and aquatic environments leading to production of N2O and N2 gases, which eventually escape to the atmosphere. Atmospheric concentrations of N2O have been on the rise since the beginning of the industrial revolution due to large-scale manipulations of the N cycle in managed ecosystems, especially the use of synthetic nitrogenous fertilizer. Here we document and test a microbial denitrification model identified as IMWJ and implemented as a submodel in the EPIC terrestrial ecosystem model. The IMWJ model is resolved on an hourly time step using the concept that C oxidation releases electrons that drive a demand for electron acceptors such as O2 and oxides of N (NO3-, NO2-, and N2O). A spherical diffusion approach is used to describe O2 transport to microbial surfaces while a cylindrical diffusion method is employed to depict O2 transport to root surfaces. Oxygen uptake by microbes and roots is described with Michaelis-Menten kinetic equations. If insufficient O2 is present to accept all electrons generated, the deficit for electron acceptors may be met by oxides of nitrogen, if available. The movement of O2, CO2 and N2O through the soil profile is modeled using the gas transport equation solved on hourly or sub-hourly time steps. Bubbling equations also move N2O and N2 through the liquid phase to the soil surface under highly anaerobic conditions. We used results from a 2-yr field experiment conducted in 2007 and 2008 at a field site in southwest Michigan to test the ability of EPIC, with the IMWJ option, to capture the non-linear response of N2O fluxes as a function of increasing rates of N application to maize [Zea mays L.]. Nitrous oxide flux, soil inorganic N, and ancillary data from 2007 were used for EPIC calibration while 2008 data were used for independent model validation. Overall, EPIC reproduced well the timing and magnitude of N2O fluxes and NO3- mass in surficial soil layers after N

  12. Chemical Kinetic Modeling of Advanced Transportation Fuels

    PItz, W J; Westbrook, C K; Herbinet, O


    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  13. Kinetics of phosphorus uptake and root morphology of local and improved varieties of maize

    Machado Cynthia Torres de Toledo


    Full Text Available Interspecific and intraspecific differences in the efficiency of utilization of soil phosphorus (P are explained, in part, by plant morphological and physiological variations, which characterize the plant for nutrient acquisition. As part of a study on maize genotypes characterization for P-uptake and use efficiency, kinetic parameters of P uptake and root morphological characters were evaluated for six local and improved maize varieties, grown in nutrient solution. The kinetic parameters related to P influx were: maximal transport rate (Vmax, the Michaelis-Menten constant (Km, and the external concentration when net uptake is zero (Cmin. Measured root morphological characters were: root length, radius, and surface area. Shoot and root dry matter yield and the P content in these parts were also determined. Diferences among varieties were observed in the kinetic parameters Vmax and Km, root length and in root/shoot dry matter ratio. Lower Km values were better indicatives of P uptake ability of the varietes and were significantly correlated to higher dry matter production and P-efficiency index.

  14. Root Morphology and Zn2+ Uptake Kinetics of the Zn Hyperaccumulator of Sedum alfredii Hance

    Ting-Qiang LI; Xiao-E YANG; Zhen-Li HE; Jin-Yan YANG


    Root morphology and Zn2+ uptake kinetics of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated using hydroponic methods and the radiotracer flux technique. The results indicate that root length, root surface area, and root volume of NHE decreased significantly with increasing Zn2+ concentration in growth media, whereas the root growth of HE was not adversely affected, and was even promoted, by 500 μmol/L Zn2+. The concentrations of Zn2+ in both ecotypes of S. alfredii were positively correlated with root length, root surface area and root volumes, but no such correlation was found for root diameter. The uptake kinetics for 65Zn2+ in roots of both ecotypes of S. alfredii were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period of investigation. The concentration-dependent uptake kinetics of the two ecotypes of S. alfredii could be characterized by the Michaelis-Menten equation, with the Vmax for 65Zn2+ influx being threefold greater in HE compared with NHE, indicating that enhanced absorption into the root was one of the mechanisms involved in Zn hyperaccumulation. A significantly larger Vmax value suggested that there was a higher density of Zn transporters per unit membrane area in HE roots.


    L.R.B. Gonçalves


    Full Text Available In this work the effects of diffusion on the hydrolysis of maltose using glucoamylase immobilized on macroporous silica at 30o C are studied. Two different kinds of experimental assays are carried out: one using free enzyme and the other using an enzyme covalently linked to macroporous silica, preactivated with glutaraldehyde. Free enzyme assays are used to estimate the kinetic parameters for hydrolysis of maltose at 30ºC, according to a Michaelis-Menten equation, with inhibition by the product. Runs with the immobilized enzyme enable us to estimate dextrin diffusivities in silica, assuming that the inherent kinetic parameters are equal to the intrinsic ones. The values of kinetic and mass transfer parameters are: K3 = 0.90x10-5 g/U.s, Km = 0.61x10-3 g/ml, Ki = 1.23x10-1 g/ml, DMs = 0.50x10-6 cm2 /s and DGs = 0.55x10-6 cm2 /s

  16. Effect of diet-induced obesity on kinetic parameters of amino acid uptake by rat erythrocytes.

    Picó, C; Pons, A; Palou, A


    The effects of cafeteria diet-induced obesity upon in vitro uptake of L-Alanine, Glycine, L-Lysine, L-Glutamine, L-Glutamic acid, L-Phenylalanine and L-Leucine by isolated rat erythrocytes have been studied. The total Phe and Leu uptakes followed Michaelis-Menten kinetics. The Glu uptake was fitted to diffusion kinetics. The uptakes of Ala, Gly, Lys and Gln were best explained by a two-component transport: one saturable and one diffusion. Obesity increased the Km value for Ala, Gln and Leu, and the Vmax value for Ala, but decreased the Vmax for Lys. Kinetic parameters of Phe uptake were unaffected by obesity. In addition, the pseudo-first order rate constant (Vmax/Km) for Ala, Gly, Gln, Lys and Leu uptake decreased as a result of cafeteria diet-induced obesity. The Kd value for Ala, Gly, Gln and Glu decreased and that of Lys increased as result of obesity. These adaptations could, at least in part, explain alterations in amino acid distribution between blood cells and plasma related to overfeeding or obesity.

  17. A general mathematical framework for representing soil organic matter dynamics in biogeochemistry models

    Sierra, C. A.; Mueller, M.


    Recent work have highlighted the importance of nonlinear interactions in representing the decomposition of soil organic matter (SOM). It is unclear however how to integrate these concepts into larger biogeochemical models or into a more general mathematical description of the decomposition process. Here we present a mathematical framework that generalizes both previous decomposition models and recent ideas about nonlinear microbial interactions. The framework is based on a set of four basic principles: 1) mass balance, 2) heterogeneity in the decomposability of SOM, 3) transformations in the decomposability of SOM over time, 4) energy limitation of decomposers. This framework generalizes a large majority of SOM decomposition models proposed to date. We illustrate the application of this framework to the development of a continuous model that includes the ideas in the Dual Arrhenius Michaelis-Menten Model (DAMM) for explicitly representing temperature-moisture limitations of enzyme activity in the decomposition of heterogenous substrates.

  18. A kinetic model for predicting biodegradation.

    Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O


    Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.

  19. A Kinetic Characterization of the Gill (Na(+), K(+))-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura).

    Farias, Daniel L; Lucena, Malson N; Garçon, Daniela P; Mantelatto, Fernando L; McNamara, John C; Leone, Francisco A


    We provide a kinetic characterization of (Na(+), K(+))-ATPase activity in a posterior gill microsomal fraction from the semi-terrestrial mangrove crab Cardisoma guanhumi. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na(+), K(+))-ATPase activity, but also containing other microsomal ATPases. The (Na(+), K(+))-ATPase, notably immuno-localized to the apical region of the epithelial pillar cells, and throughout the pillar cell bodies, has an M r of around 110 kDa and hydrolyzes ATP with V M = 146.8 ± 6.3 nmol Pi min(-1) mg protein(-1) and K M = 0.05 ± 0.003 mmol L(-1) obeying Michaelis-Menten kinetics. While stimulation by Na(+) (V M = 139.4 ± 6.9 nmol Pi min(-1) mg protein(-1), K M = 4.50 ± 0.22 mmol L(-1)) also follows Michaelis-Menten kinetics, modulation of (Na(+), K(+))-ATPase activity by MgATP (V M = 136.8 ± 6.5 nmol Pi min(-1) mg protein(-1), K 0.5 = 0.27 ± 0.04 mmol L(-1)), K(+) (V M = 140.2 ± 7.0 nmol Pi min(-1) mg protein(-1), K 0.5 = 0.17 ± 0.008 mmol L(-1)), and NH4(+) (V M = 149.1 ± 7.4 nmol Pi min(-1) mg protein(-1), K 0.5 = 0.60 ± 0.03 mmol L(-1)) shows cooperative kinetics. Ouabain (K I = 52.0 ± 2.6 µmol L(-1)) and orthovanadate (K I = 1.0 ± 0.05 µmol L(-1)) inhibit total ATPase activity by around 75%. At low Mg(2+) concentrations, ATP is an allosteric modulator of the enzyme. This is the first study to provide a kinetic characterization of the gill (Na(+), K(+))-ATPase in C. guanhumi, and will be useful in better comprehending the biochemical underpinnings of osmoregulatory ability in a semi-terrestrial mangrove crab.

  20. Nonlinearities and transit times in soil organic matter models: new developments in the SoilR package

    Sierra, Carlos; Müller, Markus


    SoilR is an R package for implementing diverse models representing soil organic matter dynamics. In previous releases of this package, we presented the implementation of linear first-order models with any number of pools as well as radiocarbon dynamics. We present here new improvements of the package regarding the possibility to implement models with nonlinear interactions among state variables and the possibility to calculate ages and transit times for nonlinear models with time dependencies. We show here examples on how to implement model structures with Michaelis-Menten terms for explicit microbial growth and resource use efficiency, and Langmuir isotherms for representing adsorption of organic matter to mineral surfaces. These nonlinear terms can be implemented for any number of organic matter pools, microbial functional groups, or mineralogy, depending on user's requirements. Through a simple example, we also show how transit times of organic matter in soils are controlled by the time-dependencies of the input terms.

  1. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models.

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S


    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  2. A mechanical model for the role of the neck linker during kinesin stepping and gating

    Wang, HaiYan; He, ChenJuan


    In this paper, considering the different elastic properties in the attached head and the free head, we propose a physical model, in which the free head undergoes a diffusive search in an entropic spring potential formed by undocking the neck linker, and there are asymmetric conformational changes in the attached head formed by docking the neck linker to support the load force and bias the diffusive search to the forward direction. By performing the thermodynamic analysis, we obtain the free energy difference between forward and backward binding sites. And using the Fokker-Planck equation with two absorbing boundaries, we obtain the dependence of the ratio of forward to backward steps on the backward force. Also, within the Michaelis-Menten model, we investigate the dependence of the velocity-load relationship on the effective length of the junction between the two heads. The results show that our model can provide a physical understanding for the processive movement of kinesin.

  3. Kinetics of the intestinal uptake of zinc acexamate in normal and zinc-depleted rats.

    Torres-Molina, F; Martínez-Coscollá, A; Gisbert, S; Quintana, E; Sendrós, S; Peris-Ribera, J E; Plá-Delfina, J M


    The uptake of zinc as acexamic acid salt in the small intestine of the anaesthetized rat was shown to be a two-phase process in normal animals. The first phase is rapid mucosal binding which satisfies the Freundlich isotherm equation and which involves about 30 per cent of the initially perfused zinc. The second phase was characterized as an apparent absorption step which obeys Michaelis-Menten and first-order combined kinetics, with the following parameters: Vm = 6.51 mg h-1; Km = 2.96 mg; ka = 0.306 h-1. In largely non-saturated conditions, an apparent global rate constant of about 2.50 h-1 was calculated. No significant interference due to endogenous zinc excretion into the small intestine was observed during the absorption period. In zinc-deficient animals, the two phases were not so well characterized. Binding was non-linear and apparent absorption efficiency was much greater at high zinc concentrations, so no evidence of saturable kinetics was found, thus confirming the hypothesis of a homeostatic zinc regulation mechanism.

  4. Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies.

    Tavares, Ana P M; Silva, Cláudia G; Dražić, Goran; Silva, Adrián M T; Loureiro, José M; Faria, Joaquim L


    The biocatalytic performance of immobilized enzyme systems depends mostly on the intrinsic properties of both biomolecule and support, immobilization technique and immobilization conditions. Multi-walled carbon nanotubes (MWCNTs) possess unique features for enzyme immobilization by adsorption. Enhanced catalytic activity and stability can be achieved by optimization of the immobilization conditions and by investigating the effect of operational parameters. Laccase was immobilized over MWCNTs by adsorption. The hybrid material was characterized by Fourier transformed infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM, respectively). The effect of different operational conditions (contact time, enzyme concentration and pH) on laccase immobilization was investigated. Optimized conditions were used for thermal stability, kinetic, and storage and operational stability studies. The optimal immobilization conditions for a laccase concentration of 3.75μL/mL were a pH of 9.0 and a contact time of 30min (522 Ulac/gcarrier). A decrease in the thermal stability of laccase was observed after immobilization. Changes in ΔS and ΔH of deactivation were found for the immobilized enzyme. The Michaelis-Menten kinetic constant was higher for laccase/MWCNT system than for free laccase. Immobilized laccase maintained (or even increased) its catalytic performance up to nine cycles of utilization and revealed long-term storage stability.

  5. Reduction of hexavalent chromium by a novel Ochrobactrum sp. - microbial characteristics and reduction kinetics.

    Narayani, M; Vidya Shetty, K


    A Gram negative hexavalent chromium (Cr(VI)) reducing bacteria, Ochrobactrum sp. Cr-B4 (genbank accession number: JF824998) was isolated from the aerator water of an activated sludge process of a wastewater treatment facility of a dye and pigment based specialty chemical industry. It showed a resistance for 1000 mg L(-1) Cr(VI). It exhibited resistance against other heavy metal ions like Ni(2+) (900 mg L(-1) ), Cu(2+) (500 mg L(-1) ), Pb(2+) (800 mg L(-1) ), and Cd(2+) (250 mg L(-1) ), Zn(2+) (700 mg L(-1) ), Fe(3+) (800 mg L(-1) ), and against selected antibiotics. Cr-B4 could efficiently reduce 200 mg L(-1) Cr(VI) completely in nutrient and LB media and could convert Cr(VI) to Cr(III) efficiently. Cr(VI) reduction in nutrient media followed allosteric enzyme kinetics with Km values of 59.39 mg L(-1) and Vmax values of 47.03 mg L(-1)  h(-1) . The reduction in LB media followed Michaelis-Menten kinetics with Km values of 99.52 mg L(-1) and Vmax of 77.63 mg L(-1)  h(-1) . Scanning electron micrograms revealed the presence of extracellular polymeric secretions.




    Full Text Available Robust immobilization techniques that preserve the activity of biomolecules havemany potential applications. In recent years, a number of new bioimobilisationmethods in sol-gel-derived materials were reported. The interactions between thebiomolecule and the inorganic material determine the degree to which thebiomolecule retains its native properties. The newer technological developments inthe field of immobilized biocatalysts can offer the possibility of a wider and moreeconomical exploitation of biocatalysts in biological applications, food and feedindustry, medicine, and in the development of bioprocess monitoring devices, like thebiosensors.The aim of this study was to obtain immobilized enzymatic preparations by methodswhich affect enzyme conformations and kinetic parameters as less as possible. Weimmobilized the enzymatic preparation with protease activity produced by a Bacilluslicheniformis B 40 local strain by physical bonding on ceramics and entrapment intosol-gel-derived glasses obtained from tetraethyl orthosilicate (TEOS, deposited inthin layer on a ceramic support (entrapment/deposition. Both physically adsorbedand entrapped/deposited enzymes follow Michaelis-Menten kinetics, similar with thesoluble enzyme. In the case of immobilized enzymes, the apparent Michaelisconstant, Km, was greater than that of the native one, as it was expected. The kineticparameters indicate that the enzymatic preparations adsorbed on ceramic supportand entrapped/deposited show less affinity for the substrate, Km being 1.3 and 2.1times higher than that of the native enzyme, respectively. The maximum velocityincreased also by 3.5 and 7.9 times respectively, compared with the free counterpart(according to Lineweaver-Burk linearization.

  7. Investigation of Horseradish Peroxidase Kinetics in an "Organelle-Like" Environment.

    Baumann, Patric; Spulber, Mariana; Fischer, Ozana; Car, Anja; Meier, Wolfgang


    In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu. The values of the Michaelis-Menten constant (K m ) measured for HRP in a confined space (encapsulated in nanoreactors) in the absence of macromolecules are ≈50% lower than in free conditions, and the presence of a crowding agent results in a further pronounced decrease. These results clearly suggest that activities of enzymes in confined spaces can be tuned by varying the concentrations of crowding compounds. The present investigation represents an advance in nanoreactor design by considering the influence of environmental factors on enzymatic performance, and it demonstrates that both encapsulation and the presence of a crowding environment increase the enzyme-substrate affinity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical Kinetic Models for Advanced Engine Combustion

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  9. Kinetic models with randomly perturbed binary collisions

    Bassetti, Federico; Toscani, Giuseppe


    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases.

  10. 碱性蛋白酶水解米糠蛋白动力学特性研究%Research on Kinetics Characteristics of Hydrolyzing Rice Bran Protein by Alkaline Protease

    翟爱华; 李新华


    The response mechanism and kinetic behavior of bioactive peptides by protease were studied. Rice bran protein was used as raw material. Based on the classic Michaelis - Menten equation, the enzymatic kinetics of the system of rice bran protein and alkaline protease was researched by the method of mathematical derivation combined with experiment. The mechanism model of single substrate hydrolysis of protein and inactivation of protease were considered to build the kinetics model of R =aexp[ -b(DH) ] ,and the parameters "a" and "b" of the kinetics model were determined. Origin 8. 0 software was applied to fit the deduced formula and calculate related parameters of enzyme kinetic model. It was shown that the rate of hydrolysis kinetic model was R = (94. 754e0 - 0. 0597s0 ) exp [ -0. 157 (DH)] and the kinetic model of degree of hydrolysis and time of hydrolysis was DH = 6. 37× ln[1 +(14. 88e0/s0 -0. 009)t]. The kinetic constants of the system of rice bran protein and alkaline protease were fitted by experiments and the results showed that the constant K4 of enzyme inactivation was 16. 144 min-1 and the constant k2 of enzymatic reaction rate was 94. 754 min-1 .%研究蛋白酶水解制备生物活性多肽反应机制与动力学行为,基于经典的米氏方程理论,应用数学推导结合试验研究的方法,以米糠蛋白为原料,对米糠蛋白-碱性蛋白酶体系进行酶解动力学研究.考虑蛋白质单底物水解、蛋白酶失活的机理模型,构建动力学模型R=aexp[-b(DH)],其中对参数a值和b值进行确定.利用Origin 8.0软件,对推导出的公式进行拟合得到水解速率动力学模型为R=(94.754e0-0.0597s0)exp[-0.157(DH)],水解度-水解时间的动力学模型:DH =6.37ln[1+(14.88e0/s0-0.009)t].对于米糠蛋白-碱性蛋白酶模型体系,经试验拟合,并求得该体系动力学常数:酶失活常数K4为16.144 min-1,酶解反应速率常数k2为94.754 min-1.

  11. Study on biofiltration capacity and kinetics of nutrient uptake by Gracilaria cervicornis (Turner J. Agardh (Rhodophyta, Gracilariaceae

    Marcella A. A. Carneiro


    Full Text Available The absorption efficiency and kinetic parameters (Vmax, Ks and Vmax:Ks of the seaweed Gracilaria cervicornis for the nutrients NH4+, NO3- and PO4(3- were evaluated. Absorption efficiency was measured by monitoring nutrient concentrations for 5 h in culture media with initial concentrations of 5, 10, 20 and 30µM. Kinetic parameters were determined by using the Michaelis-Menten formula. Absorption efficiencies for this algae were greater in treatments with lower concentrations, as evidenced by a reduction of 85.3, 97.5 and 81.2% for NH4+, NO3- and PO4(3-, respectively. Kinetic parameters show that G. cervicornis exhibits greater ability to take up high concentrations of NH4+ (Vmax=158.5µM g dw-1 h-1 and low concentrations of PO4(3- (Ks=5µM and Vmax:Ks=10.3. These results suggest that this algal species has good absorption capacity for the nutrients tested and may be a promising candidate as a bioremediator of eutrophized environments.

  12. Kinetics and mechanism of the oxidation of some vicinal and non-vicinal diols by tetrabutylammonium tribromide

    Jaya Gosain; Pradeep K Sharma


    Kinetics of oxidation of five vicinal and four non-vicinal diols, and two of their monoethers, by tetrabutylammonium tribromide (TBATB) has been studied. The vicinal diols yield products arising out of glycol-bond fission, while the non-vicinal diols produce the hydroxycarbonyl compounds. The reaction is first-order with respect to TBATB. Michaelis-Menten type kinetics is observed with respect to diols. The reaction fails to induce the polymerization of acrylonitrile. There is no effect of tetrabutylammonium chloride on the reaction rate. The proposed reactive oxidizing species is the tribromide ion. The effect of solvent composition indicates that the rate increases with increase in the polarity of the solvent. The oxidation of [1,1,2,2-2H4] ethanediol shows the absence of any primary kinetic isotope effect. Values of solvent isotope effect, (H2O)/(D2O), at 288 K for the oxidation of ethanediol, propane-1,3-diol and 3-methoxybutan-1-ol are 3.41, 0.98 and 1.02 respectively. A mechanism involving a glycol-bond fission has been proposed for the oxidation of vicinal diols. Non-vicinal diols are oxidised by a hydride-transfer mechanism, as they are monohydric alcohols.

  13. Kinetic and hydrodynamic models of chemotactic aggregation

    Chavanis, Pierre-Henri


    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  14. Investigation of Evolved Paraoxonase-1 Variants for Prevention of Organophosphorous Pesticide Compound Intoxication


    were determined by Michaelis - Menten steady state kinetics using Prism Graphpad (Irvine, CA). Kinetic data for CMP hydrolysis was used as a metric to...against CMP, paraoxon and phenyl acetate versus G3C9 expression in E. coli (Table 1). A closer examination of the Michaelis - Menten parameters reveals...0.05% BSA 1.09 ± 0.06 45 ± 9 24 ± 5 Table 2. Michaelis - Menten parameters for G3C9 CMP hydrolysis. G3C9 expressed in mammalian cells displayed

  15. A kinetic model of zircon thermoluminescence

    Turkin, A.A.; Es, H.J. van; Vainshtein, D.I.; Hartog, H.W. den

    A kinetic model of zircon thermoluminescence (TL) has been constructed to simulate the processes and stages relevant to thermoluminescent dating such as: filling of electron and hole traps during the excitation stage both for natural and laboratory irradiation; the time dependence of fading after

  16. Kinetic modeling of reactions in Foods

    Boekel, van M.A.J.S.


    The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to effec

  17. Gaussian kinetic model for granular gases.

    Dufty, James W; Baskaran, Aparna; Zogaib, Lorena


    A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.

  18. Kinetics model development of cocoa bean fermentation

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny


    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  19. Computational model for Halorhodopsin photocurrent kinetics

    Bravo, Jaime; Stefanescu, Roxana; Talathi, Sachin


    Optogenetics is a rapidly developing novel optical stimulation technique that employs light activated ion channels to excite (using channelrhodopsin (ChR)) or suppress (using halorhodopsin (HR)) impulse activity in neurons with high temporal and spatial resolution. This technique holds enormous potential to externally control activity states in neuronal networks. The channel kinetics of ChR and HR are well understood and amenable for mathematical modeling. Significant progress has been made in recent years to develop models for ChR channel kinetics. To date however, there is no model to mimic photocurrents produced by HR. Here, we report the first model developed for HR photocurrents based on a four-state model of the HR photocurrent kinetics. The model provides an excellent fit (root-mean-square error of 3.1862x10-4, to an empirical profile of experimentally measured HR photocurrents. In combination, mathematical models for ChR and HR photocurrents can provide effective means to design test light based control systems to regulate neural activity, which in turn may have implications for the development of novel light based stimulation paradigms for brain disease control. I would like to thank the University of Florida and the Physics Research Experience for Undergraduates (REU) program, funded through NSF DMR-1156737. This research was also supported through start-up funds provided to Dr. Sachin Talathi

  20. Modeling inhomogeneous DNA replication kinetics.

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  1. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault


    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  2. Reduced Chemical Kinetic Model for Titan Entries

    Romain Savajano


    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  3. Development of an empirical nonlinear model for mercury bioaccumulation in the South and South Fork Shenandoah rivers of Virginia.

    Brent, Robert N; Kain, Donald G


    Mercury is a globally distributed pollutant that biomagnifies in aquatic food webs. In the United States, 3781 water bodies fail to meet criteria for safe fish consumption due to mercury bioaccumulation. In the risk assessment and management of these impairments (through the total maximum daily load program), an important step is evaluating the relationship between aqueous mercury and mercury in fish tissue. Often, this relationship is simplified to a bioaccumulation factor (BAF): the ratio of fish tissue mercury to aqueous mercury. This article evaluates the relationship between aqueous mercury and fish tissue mercury across a contamination gradient in the South and South Fork Shenandoah rivers of Virginia. The relationship was found to be nonlinear, with BAFs decreasing as the level of contamination increased. This means that protective water column mercury concentration targets established from site-specific BAFs will be overestimated in contaminated areas and will not be sufficiently protective. To avoid this over-prediction in the South and South Fork Shenandoah rivers, an empirical nonlinear Michaelis-Menten model was used to establish a protective water-quality target. Among other models and variables, the Michaelis-Menten model, relating total mercury in the water column to methylmercury in fish tissue, achieved the best empirical fit (r(2) = 0.9562). The resulting water-quality targets using this model were 3.8 and 3.2 ng/l for the South and South Fork Shenandoah rivers, respectively. These values are 2.1-2.5 times lower than the water-quality target developed using a site-specific BAF. These findings demonstrate the need to consider nonlinear BAF relationships in mercury-contaminated areas.

  4. Enzyme kinetics determined by single-injection isothermal titration calorimetry.

    Transtrum, Mark K; Hansen, Lee D; Quinn, Colette


    The purposes of this paper are (a) to examine the effect of calorimeter time constant (τ) on heat rate data from a single enzyme injection into substrate in an isothermal titration calorimeter (ITC), (b) to provide information that can be used to predict the optimum experimental conditions for determining the rate constant (k2), Michaelis constant (KM), and enthalpy change of the reaction (ΔRH), and (c) to describe methods for evaluating these parameters. We find that KM, k2 and ΔRH can be accurately estimated without correcting for the calorimeter time constant, τ, if (k2E/KM), where E is the total active enzyme concentration, is between 0.1/τ and 1/τ and the reaction goes to at least 99% completion. If experimental conditions are outside this domain and no correction is made for τ, errors in the inferred parameters quickly become unreasonable. A method for fitting single-injection data to the Michaelis-Menten or Briggs-Haldane model to simultaneously evaluate KM, k2, ΔRH, and τ is described and validated with experimental data. All four of these parameters can be accurately inferred provided the reaction time constant (k2E/KM) is larger than 1/τ and the data include enzyme saturated conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Stochastic kinetics of ribosomes: single motor properties and collective behavior

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V


    Synthesis of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an {\\it exact} analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a ``Michaelis-Menten-like'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechano-chemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a c...

  6. Double perturbation series in the differential equations of enzyme kinetics

    Fraser, Simon J.


    The connection between combined singular and ordinary perturbation methods and slow-manifold theory is discussed using the Michaelis-Menten model of enzyme catalysis as an example. This two-step mechanism is described by a planar system of ordinary differential equations (ODEs) with a fast transient and a slow "steady-state" decay mode. The systems of scaled nonlinear ODEs for this mechanism contain a singular (η) and an ordinary (ɛ) perturbation parameter: η multiplies the velocity component of the fast variable and dominates the fast-mode perturbation series; ɛ controls the decay toward equilibrium and dominates the slow-mode perturbation series. However, higher order terms in both series contain η and ɛ. Finite series expansions partially decouple the system of ODEs into fast-mode and slow-mode ODEs; infinite series expansions completely decouple these ODEs. Correspondingly, any slow-mode ODE approximately describes motion on M, the linelike slow manifold of the system, and in the infinite series limit this description is exact. Thus the perturbation treatment and the slow-manifold picture of the system are closely related. The functional equation for M is solved automatically with the manipulative language MAPLE. The formal η and ɛ single perturbation expansions for the slow mode yield the same double (η,ɛ) perturbation series expressions to given order. Generalizations of this procedure are discussed.

  7. Compartmental modeling and tracer kinetics

    Anderson, David H


    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  8. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa


    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  9. Thermodynamic and kinetic modelling: creep resistant materials

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson


    particles and coarsening of MX, M23C6 and Laves phase particles. The modelling provided new insight into the long term stability of new steels. Modelling of the detrimental precipitation of Z phase Cr(V,Nb)N is described, which points to new approaches in alloy development for higher temperatures......The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  10. Kinetics and Mechanistic Studies on Oxidation of Levocarnitine by Bromamine-T in HCl Medium Catalyzed by Ru(III

    R. Ramachandrappa


    Full Text Available A kinetic study on RuCl3-catalysed oxidation of levocarnitine (LC by sodium N-bromo-p-toluenesulphonamide or bromamine-T (BAT has been carried out in HCl medium at 303 K. The reaction rate shows a first order dependence on [BAT]0 and fractional order with respect to both [LC]0 and [H+]. Addition of the reaction product, p-toluenesulphonamide, retards the rate. The addition of RuCl3 and chloride ions to the reaction mixture shows an increase in the rate of the reaction. The dielectric effect is positive. The variation of ionic strength of the medium has no significant effect on the rate of the reaction. The reaction fails to initiate polymerization of acrylamide. Michaelis-Menten type of kinetics has been proposed. Thermodynamic parameters have been computed from Arrhenius plot by studying the reaction at different temperatures. The reaction stoichiometry and oxidation products were identified. Based on the experimental observations a suitable mechanism was proposed and rate law deduced.

  11. Human plasma triglyceride labeling after high sucrose feeding. II. Study on triglyceride kinetics and postheparin lipolytic activity

    Wu, C.H.; Shreeve, W.W.


    Kinetic studies of the very-low-density lipoprotein triglycerides (VLDL-TG) turnover by endogenous labeling with glycerol-2-/sup 3/H were performed in 13 patients in the postabsorptive state, first after 10-14 days on a low-sucrose high-starch-diet, then again after 10-14 days of isocaloric high-sucrose low-starch diet (HSD). After HSD, a significant decrease in the fractional turnover rates of VLDL-TG was observed, as well as a modest but significant increase in its pool size, but the net turn-over rates remained unchanged. Using Michaelis-Menten formulation, we have further calculated the V/sub max/ and Km's of the removal system for VLDL-TG and found that the V/sub max/ and Km's do not differ significantly between the two dietary periods. These results suggest that the removal mechanism for VLDL-TG has not changed after 10-14 days on the HSD, at least when the patients are studied in the postabsorptive state. Measurements of postheparin lipolytic activity under fed condition in 17 patients (including the 13 patients above) have shown a decrease after HSD. However, a defect in the removal of plasma-TG related to decreased activity of tissue-lipoprotein lipase in the fed state has not been conclusively uncovered by the kinetic studies performed in the postabsorptive state, and cannot contribute significantly to the expansion of VLDL-TG pool.

  12. Macromolecular crowding and the steady-state kinetics of malate dehydrogenase.

    Poggi, Christopher G; Slade, Kristin M


    To understand how macromolecular crowding affects enzyme activity, we quantified the Michaelis-Menten kinetics of mitochondrial malate dehydrogenase (MDH) in the presence of hen egg white (HEW), lysozyme, bovine serum albumin (BSA), gum arabic, poly(vinylpyrrolidone) (PVP), and dextrans of various molecular weights. Although crowding tended to decrease Km and Vmax values, the magnitude depended on the crowding agent, reaction direction, and isozyme (mitochondrial porcine heart or thermophlic TaqMDH from Thermus flavus). Crowding slowed oxaloacetate reduction more significantly than malate oxidation, which may suggest that mitochondrial enzymes have evolved to function optimally under the crowded constraints in which they are immersed. Since direct comparisons of neutral to charged crowders are underrepresented in the literature, we performed these studies and found that neutral crowding agents lowered Vmax values more than charged crowders of similar size. The exception was hen egg white, a mixture of charged proteins that caused the largest observed decreases in both Km and Vmax. Finally, the data provide insight about the mechanism by corroborating MDH subunit dependence.


    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  14. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir


    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety.

  15. A kinetic model for chemical neurotransmission

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  16. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    Takizuka, T.


    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.


    Daniele Penteado Rosa


    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  18. Research progress of the atypical kinetic profiles of cytochrome P450 enzymes%细胞色素P450酶的非典型动力学研究进展

    曾彩雯; 何芳; 夏春华; 熊玉卿


    Cytochrome P450 enzymes are composed of many isozyraes and involved in the biotransformation of both exogenous and endogenous substances. A growing number of studies have found that the P450 enzymes do not always follow the classical Michaelis-Menten kinetics, but show atypical kinetic behavior, which is also the current research hotspot. In this paper, the category and mechanisms of atypical kinetics of the P450 enzyme were reviewed, providing theoretical basis for the research of enzyme kinetics.%细胞色素P450酶是一组由许多同工酶组成的超基因大家族,在外源性和内源性物质的代谢中起着极其重要的作用.越来越多的研究发现,P450酶并不总是遵循经典的米氏动力学,动力学模式经常以别构形式出现,即表现出非典型动力学行为,这也是当今的一个研究热点.本文就P450酶的非典型动力学表现形式及其发生机制做一综述,为酶动力学研究提供科学依据.

  19. Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C


    CONTEXT: No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. OBJECTIVE: Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that c

  20. A kinetic model of plasma turbulence

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.


    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  1. Mathematical Modelling of Thermal Degradation Kinetics of Ascorbic ...

    However, adequate study has not been conducted to exploit the potential of this ... of ascorbic acid in yeabesha gomen fitted first-order reaction kinetic model ... Activation energy for ascorbic degeneration kinetics of yeabesha gomen was ...

  2. Thermodynamic and kinetic modeling of transcriptional pausing.

    Tadigotla, Vasisht R; O Maoiléidigh, Dáibhid; Sengupta, Anirvan M; Epshtein, Vitaly; Ebright, Richard H; Nudler, Evgeny; Ruckenstein, Andrei E


    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes. When applied to 100 experimental pauses in transcription elongation by Escherichia coli RNA polymerase on 10 DNA templates, the approach produces statistically significant results. We also present a kinetic model for the rate of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic barriers to backtracking resulting from steric clashes of EC with the cotranscriptionally generated RNA secondary structure, an aspect not included explicitly in previous attempts at modeling the transcription elongation process.

  3. Thermodynamically consistent model calibration in chemical kinetics

    Goutsias John


    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  4. Quantification and evaluation of kinetic bio-catalytic pathway of horseradish peroxidase in an electron mediated reaction system and its applications in plant extracts

    Krishna, Honnur; Nagaraja, Padmarajaiah; Shivakumar, Anantharaman; Chamaraja, Nelligere A.; Aradhana, Narayan


    The intermolecular coupling of 2,5-dimethoxyaniline (DMA) as mediated electron transfer reaction in presence of H2O2 and peroxidase in acetate buffer of pH 4.2 resulting green colored product having maximum absorption at λmax = 740 nm was investigated by spectrophotometer. Under optimum conditions, linearity range for the quantification of H2O2 was 2.0-288.0 μM and for peroxidase were 0.59-9.46 and 0.443-9.46 nM by kinetic and fixed-time method, respectively. The catalytic efficiency and catalytic power were KeffD = 2.354 × 105 M-1 min-1 and KpowD = 4.59 × 10-4 min-1, respectively. From the plot of d(1/Do) vs d(1/Vo) and d(1/Ho) vs d(1/Vo), Michaelis-Menten constants for DMA and H2O2were found that KmD = 1458 μM and KmHO = 301 μM. Applicability of the method was tested for peroxidase activity in some plant extracts and compared with guaiacol/peroxidase system. Regarding superiority of the method, it is suggested that DMA/peroxidase system can be a better hydrogen donor for HRP assay than guaiacol system as evident from kinetic data.

  5. Quantification and evaluation of kinetic bio-catalytic pathway of horseradish peroxidase in an electron mediated reaction system and its applications in plant extracts.

    Krishna, Honnur; Nagaraja, Padmarajaiah; Shivakumar, Anantharaman; Chamaraja, Nelligere A; Aradhana, Narayan


    The intermolecular coupling of 2,5-dimethoxyaniline (DMA) as mediated electron transfer reaction in presence of H(2)O(2) and peroxidase in acetate buffer of pH 4.2 resulting green colored product having maximum absorption at λ(max)=740 nm was investigated by spectrophotometer. Under optimum conditions, linearity range for the quantification of H(2)O(2) was 2.0-288.0 μM and for peroxidase were 0.59-9.46 and 0.443-9.46 nM by kinetic and fixed-time method, respectively. The catalytic efficiency and catalytic power were K(eff)(D)=2.354 × 10(5)M(-1)min(-1) and K(pow)(D)=4.59 × 10(-4)min(-1), respectively. From the plot of d(1/D(o)) vs d(1/V(o)) and d(1/H(o)) vs d(1/V(o)), Michaelis-Menten constants for DMA and H(2)O(2)were found that K(m)(D)=1,458 μM and [Formula: see text] =301 μM. Applicability of the method was tested for peroxidase activity in some plant extracts and compared with guaiacol/peroxidase system. Regarding superiority of the method, it is suggested that DMA/peroxidase system can be a better hydrogen donor for HRP assay than guaiacol system as evident from kinetic data.

  6. Purification and Biochemical and Kinetic Properties of an Endo-Polygalacturonase from the Industrial Fungus Aspergillus sojae.

    Fratebianchi, Dante; Cavello, Ivana Alejandra; Cavalitto, Sebastián Fernando


    An endo-polygalacturonase secreted by Aspergillus sojae was characterized after being purified to homogeneity from submerged cultures with orange peel as the sole carbon source by gel filtration and ion-exchange chromatographies. According to SDS-PAGE and analytical isoelectric focusing analyses, the enzyme presents a molecular weight of 47 kDa and pI value of 4.2. This enzyme exhibits considerable stability under highly acidic to neutral conditions (pH 1.5-6.5) and presents a half-life of 2 h at 50°C. Besides its activity towards pectin and polygalacturonic acid, the enzyme displays pectin-releasing activity, acting best in a pH range of 3.3-5.0. Thin-layer chromatographic analysis revealed that tri-galacturonate is the main enzymatic end product of polygalacturonic acid hydrolysis, indicating that it is an endo-polygalacturonase. The enzyme exhibits Michaelis-Menten kinetics, with KM and VMAX values of 0.134 mg/mL and 9.6 µmol/mg/min, respectively, and remained stable and active in the presence of SO2, ethanol, and various cations assayed except Hg2+. © 2017 S. Karger AG, Basel.

  7. Enzyme kinetic study of a new cardioprotective agent, KR-32570 using human liver microsomes and recombinant CYP isoforms.

    Kim, Hyojin; Seo, Kyung-Ah; Kim, Hyunmi; Lee, Hye Suk; Lee, Choong-Hwan; Shin, Jae-Gook; Liu, Kwang-Hyeon


    KR-32570 (5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. Human liver microsomal incubation of KR-32570 in the presence of NADPH resulted in the formation of two metabolites, hydroxy-KR-32570 and O-desmethyl-KR-32570. In this study, a kinetic analysis of the metabolism of two metabolites from KR-32570 was performed in human liver microsomes, and recombinant CYP1A2, and CYP3A4. The metabolism for hydroxy- and O-desmethyl-KR-32570 formation from KR-32570 by human liver microsomes was best described by a Michaelis-Menten equation and a Hill equation, respectively. The Cl(int) values of hydroxy- and O-desmethyl-KR-32570 formation were similar to each other (0.03 vs 0.04 microL/min/pmol CYP, respectively). CYP3A4 mediated the formation of hydroxy-KR-32570 from KR-32570 with Cl(int) = 0.24 microL/min/pmol CYP3A4. The intrinsic clearance for O-desmethyl-KR-32570 formation by CYP1A2 was 0.83 AL/min/pmol CYP1A2. These findings suggest that CYP3A4 and CYP1A2 enzymes are major enzymes contributing to the metabolism of KR-32570.

  8. Modeling in applied sciences a kinetic theory approach

    Pulvirenti, Mario


    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  9. Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme


    inhibition, Michaelis - Menten constants, and rates of reactivation for wild-type and V146H/ L363E hCE1 against racemic cyclosarin and stereoisomers of...0017441.t002 Table 3. Inhibition and Michaelis - Menten constants for wild-type and V146H/L363E hCE1 against stereoisomers of sarin and soman model...6 | Issue 3 | e17441 where Km was the nerve agent model Michaelis - Menten constant, k2 the unimolecular phosphonylation rate constant, v the remaining

  10. On Kinetics Modeling of Vibrational Energy Transfer

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)


    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.




    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  12. Kinetic depletion model for pellet ablation

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)


    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  13. Holographic kinetic k-essence model

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail:; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail:; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail:


    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  14. Population balance modeling of antibodies aggregation kinetics.

    Arosio, Paolo; Rima, Simonetta; Lattuada, Marco; Morbidelli, Massimo


    The aggregates morphology and the aggregation kinetics of a model monoclonal antibody under acidic conditions have been investigated. Growth occurs via irreversible cluster-cluster coagulation forming compact, fractal aggregates with fractal dimension of 2.6. We measured the time evolution of the average radius of gyration, , and the average hydrodynamic radius, , by in situ light scattering, and simulated the aggregation kinetics by a modified Smoluchowski's population balance equations. The analysis indicates that aggregation does not occur under diffusive control, and allows quantification of effective intermolecular interactions, expressed in terms of the Fuchs stability ratio (W). In particular, by introducing a dimensionless time weighed on W, the time evolutions of measured under various operating conditions (temperature, pH, type and concentration of salt) collapse on a single master curve. The analysis applies also to data reported in the literature when growth by cluster-cluster coagulation dominates, showing a certain level of generality in the antibodies aggregation behavior. The quantification of the stability ratio gives important physical insights into the process, including the Arrhenius dependence of the aggregation rate constant and the relationship between monomer-monomer and cluster-cluster interactions. Particularly, it is found that the reactivity of non-native monomers is larger than that of non-native aggregates, likely due to the reduction of the number of available hydrophobic patches during aggregation.

  15. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism - case study of Faecalibacterium prausnitzii

    Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B. A.; Lannebère, Sylvain; van de Wiele, Tom; Rabaey, Korneel


    Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL-1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM kcat = 5.3×105 s-1, at 37 °C) and glucose (KM = 6 μM kcat = 2.4 × 105 s-1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.

  16. Electrothermal Model of Kinetic Inductance Detectors

    Thomas, Christopher N; Goldie, David J


    An electrothermal model of Kinetic Inductance Detectors (KIDs) is described. The non-equilibrium state of the resonator's quasiparticle system is characterized by an effective temperature, which because of readout-power heating is higher than that of the bath. By balancing the flow of energy into the quasiparticle system, it is possible to calculate the steady-state large-signal, small-signal and noise behaviour. Resonance-curve distortion and hysteretic switching appear naturally within the framework. It is shown that an electrothermal feedback process exists, which affects all aspects of behaviour. It is also shown that generation-recombination noise can be interpreted in terms of the thermal fluctuation noise in the effective thermal conductance that links the quasiparticle and phonon systems of the resonator. Because the scheme is based on electrothermal considerations, multiple elements can be added to simulate the behaviour of complex devices, such as resonators on membranes, again taking into account r...

  17. Kinetic characterization of a novel acid ectophosphatase from Enterobacter asburiae.

    Sato, Vanessa Sayuri; Galdiano Júnior, Renato F; Rodrigues, Gisele Regina; Lemos, Eliana G M; Pizauro Junior, João Martins


    Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/10(8) cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4 °C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows "Michaelis-Menten" kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with K i = 0.6 mM and K i = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.

  18. A review on solar wind modeling: kinetic and fluid aspects

    Echim, Marius; Lie-Svendsen, Oystein


    We review the main advantages and limitations of the kinetic exospheric and fluid models of the solar wind (SW). We discuss the hydrostatic model imagined by Chapman, the first supersonic hydrodynamic models published by Parker and the first generation subsonic kinetic model proposed by Chamberlain. It is shown that a correct estimation of the electric field as in the second generation kinetic exospheric models developed by Lemaire and Scherer, provides a supersonic expansion of the corona, reconciling the hydrodynamic and the kinetic approach. The third generation kinetic exospheric models considers kappa velocity distribution function (VDF) instead of a Maxwellian at the exobase and in addition they treat a non-monotonic variation of the electric potential with the radial distance; the fourth generation exospheric models include Coulomb collisions based on the Fokker--Planck collision term. Multi-fluid models of the solar wind provide a coarse grained description and reproduce with success the spatio-tempor...

  19. Chemical Kinetic Modeling of Biofuel Combustion

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  20. Thermoluminescence of zircon: a kinetic model

    Turkin, A A; Vainshtein, D I; Hartog, H W D


    The mineral zircon, ZrSiO sub 4 , belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such a model. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time anneali...