WorldWideScience

Sample records for micellar polymer project

  1. El Dorado Micellar-Polymer Demonstration Project. Second annual report, July 1975--May 1976

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwald, G.W. (ed.)

    1976-07-01

    Laboratory oil displacement tests were conducted using Shell Oil Co. and Union Oil Co. chemical formulations in both Berea and El Dorado Admire Sandstone cores. Total relative mobility of the oil-water bank created during chemical flooding was measured in Admire Sandstone cores. The values ranged from 0.018 to 0.065 reciprocal centipoise. Four observation wells were drilled, cored, and logged during the year. They were cased with fiberglass and are now being used to monitor fluid properties. A tracer test was conducted by injection of chemical tracers into each of the 18 injection wells. Results indicate that there is no gross channeling in the reservoir. The same conclusion was drawn from results of interference tests. Performance forecasting was utilized to show that maintaining the bottom-hole injection pressures at 400 psia and the producing pressures at 30 psia would increase throughput rates and result in acceptable project life for the 6.4-acre, five-spot patterns. Injection well rates relative to the central injector were computed. These rates will be used as a guide for the operation of injection wells. This plan corresponds to operation at constant bottom-hole pressures for a homogeneous reservoir of uniform thickness. Construction of the fresh water system and injection plant was completed. The injection plant has performed satisfactorily. Injection of pretreatment fluid was started in both patterns on November 18, 1975.Severe loss of injectivity was experienced during the first week of injection. Several likely causes were identified and corrective actions taken. More moderate injectivity problems have continued throughout this reporting period. Additional preventive measures have been undertaken to improve the quality of injected fluids. A procedure was developed to stimulate and clean-up wells damaged by the injection fluid. A preliminary evaluation indicates that combination solvent-acid treatments will increase injection rates to the desired level.

  2. Micellar and antibody-targeted polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Chytil, Petr; Kovář, Lubomír; Říhová, Blanka; Ulbrich, Karel

    2010-01-01

    Roč. 295, - (2010), s. 1-12 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA AV ČR IAA400500806; GA AV ČR IAAX00500803; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : doxorubicin * drug delivery systems * HPMA copolymers Subject RIV: CD - Macromolecular Chemistry

  3. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    Science.gov (United States)

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Commercial scale demonstration: enhanced oil recovery by micellar-polymer flood. Annual report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.C.

    1982-05-01

    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.5-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5-acre pattern has decreased from 11.0% in September 1980, to 7.9% in September 1981. The 2.5-acre pattern had been on a plateau since May 1980, and as of May 1981 appears to be on a decline. The oil cut of the 5.0-acre pattern has increased from 5.9% in September 1980, to 10.9% in September 1981. The 5.0-acre pattern experienced a sharp increase in oil cut after 34% of a pore volume of total fluid had been injected and appears to be continuing its incline. This fifth annual report is organized under the following three work breakdown structures: fluid injection; production; and performance monitoring.

  5. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  6. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery.

    Science.gov (United States)

    Jones, Marie-Christine

    2015-01-01

    With a number of formulations currently in clinical trials, the interest in polymer micelles as drug carriers in unlikely to subside. Historically, linear diblock copolymers have been used as the building blocks for micelle preparation. Yet, recent advances in polymer chemistry have meant that a wider variety of polymer architectures and compositions have become available and been trialed for pharmaceutical applications. This mini-review aims to provide an overview of recent, exciting developments in triblock, graft and hyperbranched polymer chemistries that may change the way polymeric micelles drug formulations are prepared.

  7. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Goldburg, A.; Price, H.

    1980-12-01

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  8. Enhanced Micellar Catalysis LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  9. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  10. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation.

    Science.gov (United States)

    Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H

    2014-11-18

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.

  11. Biodegradable micellar HPMA-based polymer-drug conjugates with betulinic acid for passive tumor targeting

    Czech Academy of Sciences Publication Activity Database

    Lomkova, Ekaterina A.; Chytil, Petr; Janoušková, Olga; Mueller, T.; Lucas, H.; Filippov, Sergey K.; Trhlíková, Olga; Aleshunin, P. A.; Skorik, Y. A.; Ulbrich, Karel; Etrych, Tomáš

    2016-01-01

    Roč. 17, č. 11 (2016), s. 3493-3507 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) * polymeric micelles * drug delivery Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.246, year: 2016

  12. Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent.

    Science.gov (United States)

    Shih, Yung-Han; Lirio, Stephen; Li, Chih-Keng; Liu, Wan-Ling; Huang, Hsi-Ya

    2016-01-08

    In this study, an effective method for the separation of imidazole derivatives 2-methylimidazole (2-MEI), 4- methylimidazole (4-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in caramel colors using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography (CSEI-sweeping-MEKC) was developed. The limits of detection (LOD) and quantitation (LOQ) for the CSEI-sweeping-MEKC method were in the range of 4.3-80μgL(-1) and 14-270μgL(-1), respectively. Meanwhile, a rapid fabrication activated carbon-polymer (AC-polymer) monolithic column as adsorbent for solid-phase microextraction (SPME) of imidazole colors was developed. Under the optimized SPME condition, the extraction recoveries for intra-day, inter-day and column-to-column were in the range of 84.5-95.1% (<6.3% RSDs), 85.6-96.1% (<4.9% RSDs), and 81.3-96.1% (<7.1% RSDs), respectively. The LODs and LOQs of AC-polymer monolithic column combined with CSEI-sweeping-MEKC method were in the range of 33.4-60.4μgL(-1) and 111.7-201.2μgL(-1), respectively. The use of AC-polymer as SPME adsorbent demonstrated the reduction of matrix effect in food samples such as soft drink and alcoholic beverage thereby benefiting successful determination of trace-level caramel colors residues using CSEI-sweeping-MEKC method. The developed AC-polymer monolithic column can be reused for more than 30 times without any significant loss in the extraction recovery for imidazole derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  14. Catalysis in micellar and macromoleular systems

    CERN Document Server

    Fendler, Janos

    1975-01-01

    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  15. FIDDLER CREEK POLYMER AUGMENTATION PROJECT; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  16. A Lipophilic IR-780 Dye-Encapsulated Zwitterionic Polymer-Lipid Micellar Nanoparticle for Enhanced Photothermal Therapy and NIR-Based Fluorescence Imaging in a Cervical Tumor Mouse Model

    Directory of Open Access Journals (Sweden)

    Santhosh Kalash Rajendrakumar

    2018-04-01

    Full Text Available To prolong blood circulation and avoid the triggering of immune responses, nanoparticles in the bloodstream require conjugation with polyethylene glycol (PEG. However, PEGylation hinders the interaction between the nanoparticles and the tumor cells and therefore limits the applications of PEGylated nanoparticles for therapeutic drug delivery. To overcome this limitation, zwitterionic materials can be used to enhance the systemic blood circulation and tumor-specific delivery of hydrophobic agents such as IR-780 iodide dye for photothermal therapy. Herein, we developed micellar nanoparticles using the amphiphilic homopolymer poly(12-(methacryloyloxydodecyl phosphorylcholine (PCB-lipid synthesized via reversible addition–fragmentation chain transfer (RAFT polymerization. The PCB-lipid can self-assemble into micelles and encapsulate IR-780 dye (PCB-lipid–IR-780. Our results demonstrated that PCB-lipid–IR-780 nanoparticle (NP exhibited low cytotoxicity and remarkable photothermal cytotoxicity to cervical cancer cells (TC-1 upon near-infrared (NIR laser irradiation. The biodistribution of PCB-lipid–IR-780 showed higher accumulation of PCB-lipid–IR-780 than that of free IR-780 in the TC-1 tumor. Furthermore, following NIR laser irradiation of the tumor region, the PCB-lipid–IR-780 accumulated in the tumor facilitated enhanced tumor ablation and subsequent tumor regression in the TC-1 xenograft model. Hence, these zwitterionic polymer-lipid hybrid micellar nanoparticles show great potential for cancer theranostics and might be beneficial for clinical applications.

  17. Micellar liquid chromatography

    International Nuclear Information System (INIS)

    Basova, Elena M; Ivanov, Vadim M; Shpigun, Oleg A

    1999-01-01

    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  18. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  19. Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Vishnevetskaya, N. S.; Niebuur, B.-J.; Koziolová, Eva; Lomkova, Ekaterina A.; Chytil, Petr; Etrych, Tomáš; Papadakis, C. M.

    2017-01-01

    Roč. 295, č. 8 (2017), s. 1313-1325 ISSN 0303-402X R&D Projects: GA MZd(CZ) NV16-28600A; GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : drug delivery * HPMA copolymers * fluorescence correlation spectroscopy Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  20. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  1. Underwater Fiber Reinforced Polymer (FRP) Wrap Experimental Project

    Science.gov (United States)

    2018-01-30

    In 2017, The Maine Department of Transportation in collaboration with the Kenway Corporation and Construction Divers Inc. (CDI), completed a rehabilitation project on the Rices Bridge (#2715) over the York River in York, Maine. The project was to add...

  2. Micellar polymerization: Computer simulations by dissipative particle dynamics.

    Science.gov (United States)

    Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel

    2018-07-15

    Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. SANS study of three-layer micellar particles

    CERN Document Server

    Plestil, J; Kuklin, A I; Cubitt, R

    2002-01-01

    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  4. Lateral Order and Self-Organized Morphology of Diblock Copolymer Micellar Films

    Directory of Open Access Journals (Sweden)

    Jiun-You Liou

    2018-05-01

    Full Text Available We report the lateral order and self-organized morphology of diblock copolymer polystyrene-block-poly(2-vinylpyridine, P(S-b-2VP, and micelles on silicon substrates (SiOx/Si. These micellar films were prepared by spin coating from polymer solutions of varied concentration of polymer in toluene onto SiOx/Si, and were investigated with grazing-incidence small-angle X-ray scattering (GISAXS and an atomic force microscope (AFM. With progressively increased surface coverage with increasing concentration, loosely packed spherical micelles, ribbon-like nanostructures, and a second layer of spherical micelles were obtained sequentially. Quantitative analysis and simulations of the micellar packing demonstrates that the spatial ordering of the loosely packed spherical micelles altered from short-range order to hexagonal order when the micellar coverage increased from small to moderate densities of the covered surface. At large densities, anisotropic fusion between spherical micelles caused the ribbon-like nanostructures to have a short-range spatial order; the ordering quality of the second layer was governed by the rugged surface of the underlying layer because the valleys between the ribbon-like nanostructures allowed for further deposition of spherical micelles.

  5. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  6. Phase separation in living micellar networks

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.

    We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.

  7. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  8. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  9. Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery.

    Science.gov (United States)

    Zaquen, Neomy; Lu, Hongxu; Chang, Teddy; Mamdooh, Russel; Lutsen, Laurence; Vanderzande, Dirk; Stenzel, Martina; Junkers, Thomas

    2016-12-12

    Although micelles are commonly used for drug delivery purposes, their long-term fate is often unknown due to photobleaching of the fluorescent labels or the use of toxic materials. Here, we present a metal-free, nontoxic, nonbleaching, fluorescent micelle that can address these shortcomings. A simple, yet versatile, profluorescent micellar system, built from amphiphilic poly(p-phenylenevinylene) (PPV) block copolymers, for use in drug delivery applications is introduced. Polymer micelles made from PPV show excellent stability for up to 1 year and are successfully loaded with anticancer drugs (curcumin or doxorubicin) without requiring introduction of physical or chemical cross-links. The micelles are taken up efficiently by the cells, which triggers disassembly, releasing the encapsulated material. Disassembly of the micelles and drug release is conveniently monitored as fluorescence of the single polymer chains appear, which enables not only to monitor the release of the payload, but in principle also the fate of the polymer over longer periods of time.

  10. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  11. Surface dynamics of micellar diblock copolymer films

    Science.gov (United States)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  12. Photonics of dyes molecules in reverse micellar solution

    International Nuclear Information System (INIS)

    Ibragimova, M.R.; Laurinas, V.Ch.

    2001-01-01

    Spectral luminescent characteristics of the dye acridine orange and eosin has been studied in reverse micellar solutions of sodium bis(2-ethyl-hexyl)sulfosuccinate. It was shown that the increase of the nucleus volume of reverse micelles. (author)

  13. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  14. Bis-polymer lipid-peptide conjugates and nanoparticles thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Dong, He; Shu, Jessica; Dube, Nikhil

    2018-04-24

    The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.

  15. Biological activity and photostability of biflorin micellar nanostructures.

    Science.gov (United States)

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  16. Biological Activity and Photostability of Biflorin Micellar Nanostructures

    Directory of Open Access Journals (Sweden)

    Edson R. B. Santana

    2015-05-01

    Full Text Available Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9% and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS. The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures’ photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  17. Ascorbyl radical disproportionation in reverse micellar systems

    Science.gov (United States)

    Gębicki, J. L.; Szymańska-Owczarek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.

    2018-04-01

    Ascorbyl radical was generated by the pulse radiolysis method and observed with the fast kinetic spectrophotometry within reverse micelles stabilized by AOT in n-heptane or by Igepal CO-520 in cyclohexane at different water to surfactant molar ratio, w0. Rate constants for the disproportionation of the ascorbyl radicals were smaller than those for intermicellar exchange for both type of reverse micelles and slower than those in homogeneous aqueous solutions. However, they increased with increasing w0 for AOT/n-heptane system, while they decreased for Igepal CO-520 system. The absorption spectra of ascorbic acid AOT/n-heptane reverse micellar system showed that the "pH" sensed by this molecule is lower than that in respective homogeneous aqueous solutions. The obtained results were rationalized taking into account three main factors (i) preferential location of ascorbic acid molecules in the interfacial region of the both types of reverse micelles; (ii) postulate that the pH of the interface is lower than that of the water pool of reverse micelles and (iii) different structure of the interface of the reverse micelles made by AOT in n-heptane and those formed by Igepal CO-520 I cyclohexane. Some possible consequences of these findings are discussed.

  18. Recirculation and reutilization of micellar bile lecithin.

    Science.gov (United States)

    Robins, S J

    1975-09-01

    Bile lecithins, solubilized in micellar bile salt and radiolabeled in the 1-acyl fatty acid, phosphorus, and choline positions, were infused in the small bowel of fasted rats. Absorption of each label was virtually complete after 24 h. However, these lecithins were extensively hydrolyzed in the bowel lumen as well as after absorption, and neither the fatty acid nor phosphorus was significantly retained in the enterohepatic circulation or reutilized for biliary lecithin synthesis. In contrast, while choline was also dissociated from absorbed lecithin, choline was instead retained in the liver, reincorporated into newly synthesized hepatic lecithin, and sercreted in biliary lecithin in 10-fold greater amounts than either the fatty acid or phosphorus. However, the extent of choline incorporation into bile lecithin was limited and was not further increased when free choline was directly injected into the portal vein. The data therefore suggest that although only choline of absorbed lecithin is retained in the enterohepatic circulation and preserved for new biliary lecithin synthesis, exogenous choline utilization is regulated by the size of the available hepatic pool.

  19. Structural study of concentrated micellar solutions

    International Nuclear Information System (INIS)

    Zemb, Thomas

    1985-01-01

    This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr

  20. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  1. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  2. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Thibaud-Erkey, Catherine [United Technologies reserach Center, East Hartford, CT (United States); Alahyari, Abbas [United Technologies reserach Center, East Hartford, CT (United States)

    2016-12-28

    Heat exchangers (HXs) are critical components in a wide range of heat transfer applications, from HVAC (Heating Ventilation and Cooling) to automobiles to manufacturing plants. They require materials capable of transferring heat at high rates while also minimizing thermal expansion over the usage temperature range. Conventionally, metals are used for applications where effective and efficient heat exchange is required, since many metals exhibit thermal conductivity over 100 W/m K. While metal HXs are constantly being improved, they still have some inherent drawbacks due to their metal construction, in particular corrosion. Polymeric material can offer solution to such durability issues and allow designs that cannot be afforded by metal construction either due to complexity or cost. A major drawback of polymeric material is their low thermal conductivity (0.1-0.5? W/mK) that would lead to large system size. Recent improvements in the area of filled polymers have highlighted the possibility to greatly improve the thermal conductivity of polymeric materials while retaining their inherent manufacturing advantage, and have been applied to heat sink applications. Therefore, the objective of this project was to develop a robust review of materials for the manufacturing of industrial and commercial non-metallic heat exchangers. This review consisted of material identification, literature evaluation, as well as empirical and model characterization, resulting in a database of relevant material properties and characteristics to provide guidance for future heat exchanger development.

  3. Application des techniques de diffusion de la lumière des rayons x et des neutrons à l'étude des systèmes colloïdaux. Deuxième partie : étude des différents systèmes : polymères en solution à l'état solide, solutions micellaires, systèmes fractals Application of Light, X-Ray and Neutron Diffusion Techniques to the Study of Colloidal Systems. Part Two: Research on Different Systems: Polymers in Solution in the Solid State, Micellar Solutions, Fractals Systems

    Directory of Open Access Journals (Sweden)

    Espinat D.

    2006-11-01

    article takes up polymer and colloidal solutions. Particular attention is paid to the importance of scattering techniques for characterizing polymers in solution and micellar solutions. A look is also taken at the information that central scattering can provide on the macrostructure of crystallized or amorphous polymers in a solid state. Many systems have a structure of the fractal type. After describing several examples, the article demonstrates that scattering methods can provide some information about materials, and especially about the fractal dimension.

  4. Ring opening metathesis polymerization-derived block copolymers bearing chelating ligands: synthesis, metal immobilization and use in hydroformylation under micellar conditions

    Directory of Open Access Journals (Sweden)

    Gajanan M. Pawar

    2010-03-01

    Full Text Available Norborn-5-ene-(N,N-dipyrid-2-ylcarbamide (M1 was copolymerized with exo,exo-[2-(3-ethoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-en-2-carbonyloxyethyl]trimethylammonium iodide (M2 using the Schrock catalyst Mo(N-2,6-Me2-C6H3(CHCMe2Ph(OCMe(CF322 [Mo] to yield poly(M1-b-M2. In water, poly(M1-b-M2 forms micelles with a critical micelle-forming concentration (cmc of 2.8 × 10−6 mol L−1; Reaction of poly(M1-b-M2 with [Rh(CODCl]2 (COD = cycloocta-1,5-diene yields the Rh(I-loaded block copolymer poly(M1-b-M2-Rh containing 18 mg of Rh(I/g of block copolymer with a cmc of 2.2 × 10−6 mol L−1. The Rh-loaded polymer was used for the hydroformylation of 1-octene under micellar conditions. The data obtained were compared to those obtained with a monomeric analogue, i.e. CH3CON(Py2RhCl(COD (C1, Py = 2-pyridyl. Using the polymer-supported catalyst under micellar conditions, a significant increase in selectivity, i.e. an increase in the n:iso ratio was accomplished, which could be further enhanced by the addition of excess ligand, e.g., triphenylphosphite. Special features of the micellar catalytic set up are discussed.

  5. Modulating Pluronics micellar rupture with cyclodextrins and drugs: effect of pH and temperature

    International Nuclear Information System (INIS)

    Valero, M; Dreiss, C A

    2014-01-01

    Micelles of the triblock copolymer Pluronic F127 can encapsulate drugs with various chemical structures and their architecture has been studied by small-angle neutron scattering (SANS). Interaction with a derivative of β-cyclodextrin, namely, heptakis(2,6-di-O- methyl)-β-cyclodextrin (DIMEB), induces a complete break-up of the micelles, providing a mechanism for drug release. In the presence of drugs partitioned within the micelles, competitive interactions between polymer, drug and cyclodextrin lead to a modulation of the micellar rupture, depending on the nature of the drug and the exact composition of the ternary system. These interactions can be further adjusted by temperature and pH. While the most widely accepted mechanism for the interaction between Pluronics and cyclodextrins is through polypseudorotaxane (PR) formation, involving the threading of β-CD on the polymer backbone, time-resolved SANS experiments show that de-micellisation takes place in less than 100 ms, thus unambiguously ruling out an inclusion complex between the cyclodextrin and the polymer chains

  6. Wood Polymer Composites Technology Supporting the Recovery and Protection of Tropical Forests: The Amazonian Phoenix Project

    Directory of Open Access Journals (Sweden)

    Antonio D. Nobre

    2009-12-01

    Full Text Available The Amazon Rain Forest has attracted worldwide attention due its large scale services to climate and also due to the green house gas emissions arising from deforestation. Contributing to the later and detrimental to the former, timber logging in the region has very low efficiency (only 16% in the production chain. Such timber extraction, often referred to as selective logging, has been claimed as a sustainable extractive industry, because the forest is said to restore itself through regenerative growth. But forest regeneration in the Amazon occurs naturally only in a very limited scale, resulting that large scale, low efficiency logging poses a big treat to the functional integrity of the biome, supplying to the market only a fraction of what it could if done differently. So, instead of extracting big centennial logs from the forests, the Amazonian Phoenix project proposes that large expanses of degraded lands be reforested using pioneer plants species from the forest itself. These plants have the capacity to heal gaps in the canopy, being able to grow and produce woody biomass in very extreme conditions. The idea is to mimic the regenerative dynamics of the natural ecosystem in short cycle agrosilvicultural production areas, utilizing a variety of technologies to transform raw fibers from these fast growth native plants into a variety of materials with high aggregated value. This communication presents the research on natural fibers by the Polymeric Composites Group within the Amazonian Phoenix Project. Sustainable technologies employing materials with good and responsible ecological footprints are important and necessary stimulus for a change in the destructive economical activities present in the Amazon frontiers. The relatively well established wood polymer composites technology, for example, is a good candidate solution. Two research and development fields are proposed: the first one considers production systems with simple and cheap

  7. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Science.gov (United States)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  8. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hana; Park, Soojin, E-mail: spark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulsan 689-798 (Korea, Republic of)

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  9. Ordering fluctuations in a shear-banding wormlike micellar system

    DEFF Research Database (Denmark)

    Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.

    2010-01-01

    We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...

  10. Strip waves in vibrated shear-thickening wormlike micellar solutions

    Science.gov (United States)

    Epstein, T.; Deegan, R. D.

    2010-06-01

    We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.

  11. Coalinga polymer demonstration project. Fourth annual report, July 1978-July 1979

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, V.

    1980-09-01

    A field demonstration test of displacement mobility control in the East Coalinga Field is being conducted in order to determine the relative merits of polymer flooding and waterflooding in a medium viscosity oil reservoir. The injection pattern consists of four inverted 5-spot patterns and an updip area. Water injection began in June 1976 and continued through April 1978. Polymer injection began in May 1978 and is ongoing. The overall production performance for the pilot has been far less than expected. The current oil production rate is currently below the expected primary decline rate. The polymer injection rate is substantially below original predictions and will increase the time required to inject the designed slug volume.

  12. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta

    2010-01-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  13. Micellar enhanced spectrofluorimetric methods: application to the determination of pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H.; Hinze, W.L.

    1982-01-01

    The effects of cationic hexadecyltrimethylammonium chloride (CTAC), nonionic polyoxyethylene(9.5)p-1,1,3,3-tetramethylbutylphenol, Triton X-100 (TX-100), and anionic sodium dodecylsulfate (NaLS) surfactant micelles upon the spectrofluorimetric determination of pyrene is described. It was found that the intensity of the pyrene fluorescence is enhanced from 3 to 16 times in the presence of the micellar systems. Possible reasons for this micellar induced enhanced fluorescence are discussed. The spectral parameters, fluorescence lifetimes, quantum yields, lower detection limits, and analytical figures of merit for pyrene in CTAC, NaLS, TX-100, ethanol, and water are compared. The detection limit of pyrene in the presence of micelles (approx. 1.0 x 10/sup -10/ M) is about an order of magnitude lower than that possible in alcohol alone. A brief discussion on the predicted general applicability of this new technique in fluorimetric analysis is also given. 4 figures, 2 tables.

  14. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity.

    Science.gov (United States)

    Basu Ray, Gargi; Chakraborty, Indranil; Moulik, Satya P

    2006-02-01

    The critical micellar concentration (cmc) of both ionic and non-ionic surfactants can be conveniently determined from the measurements of UV absorption of pyrene in surfactant solution. The results on a number of surfactants have agreed with that realized from pyrene fluorescence measurements as well as that obtained following conductometric, tensiometric and calorimetric methods. The absorbance vs [surfactant] profiles for all the major UV spectral peaks of pyrene have been found to be sigmoidal in nature which were analyzed according to Sigmoidal-Boltzmann equation (SBE) to evaluate the cmcs of the studied surfactants. The difference between the initial and the final asymptotes (a(i) and a(f), respectively) of the sigmoidal profile, Delta a = (a(f)-a(i)) and the slope of the sigmoid, S(sig) have been observed to depend on the type of the surfactant. The Delta a has shown a linear correlation with the ratio of the fluorescence intensities of the first and the third vibronic peaks, I1/I3 of pyrene which is considered as a measure of the environmental polarity (herein micellar interior) of the probe (pyrene). Thus, Delta a values have the prospect for use as another index for the estimation of polarity of micellar interior.

  15. Micellar Catalysis of Diels-Alder Reactions : Substrate Positioning in the Micelle

    NARCIS (Netherlands)

    Rispens, Theo; Engberts, Jan B.F.N.

    2002-01-01

    We have studied the kinetics of the Diels-Alder reactions of cyclopentadiene, sorbyl alcohol, and sorbyltrimethylammonium bromide with a series of N-substituted maleimides in micellar media. Micellar rate constants have been determined and were found to be 20-40 times lower than the respective

  16. One electron reduction of acridine orange studied in aqueous micellar medium using pulse radiolysis technique

    International Nuclear Information System (INIS)

    Goel, Anjali; Guha, S.N.

    1994-01-01

    Absorption spectrum, decay and formation kinetics of semi reduced species formed by the reaction of hydrated electron (e aq - ) with acridine orange (AO) were evaluated in sodium lauryl sulphate (SLS) micellar medium. Fluorescence and absorption properties of AO were also studied in this micellar system. The results were compared with those in homogenous aqueous medium. (author). 2 refs., 2 figs

  17. Marginalism, quasi-marginalism and critical phenomena in micellar solutions

    International Nuclear Information System (INIS)

    Reatto, L.

    1986-01-01

    The observed nonuniversal critical behaviour of some micellar solutions is interpreted in terms of quasi-marginalism, i.e. the presence of a coupling which scales with an exponent very close to the spatial dimensionality. This can give rise to a preasymptotic region with varying effective critical exponents with a final crossover to the Ising ones. The reduced crossover temperature is estimated to be below 10 -6 . The exponents β and γ measured in C 12 e 5 are in good agreement with the scaling law expected to hold for the effective exponents. The model considered by Shnidman is found unable to explain the nonuniversal critical behaviour

  18. Differential thermodynamic signature of carbon nanomaterials using amphiphilic micellar probe

    Science.gov (United States)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr

    2018-04-01

    The thermodynamic signature of single-wall carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (rG-O) using amphiphilic micellar probe has been explored. The study reveals an intricate correlation between nano-surface topology and calorimetric profile of SWCNTs, MWCNTs and rG-O. The critical micelle concentration (CMC) is found to be sensitive to the topological diversity of nanomaterials. The study explores a thermodynamic approach to characterize the nano-surface topology of SWCNTs, MWCNTs and graphene surface.

  19. Organisation and shape of micellar solutions of block copolymers

    Science.gov (United States)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  20. Polymeric micellar pH-sensitive drug delivery system for doxorubicin.

    Science.gov (United States)

    Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel

    2005-03-02

    A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.

  1. Functionalized Vegetable Oils for Utilization as Polymer Building Blocks: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    International Nuclear Information System (INIS)

    Carde, T.

    2001-01-01

    Vegetable oils such as soybean oil will be converted to novel polymers using hydroformylation and other catalytic processes. These polymers can be used in the construction, automotive, packaging, and electronic sectors

  2. Modulated photophysics of 2-anthracene sulphonate in micellar assembly

    International Nuclear Information System (INIS)

    Rana, Dipak Kumar; Sarkar, Arindam; Dhar, Sayaree; Mandal, Tapas Kumar; Bhattacharya, Subhash Chandra

    2010-01-01

    The association of a non-ionic surfactant of polyoxyethylene-p-(1,1,3,3-tetramethylbutyl)phenyl ether (Triton X) series with 2-AS in aqueous solution has been studied by means of steady-state, time-resolved fluorescence and fluorescence anisotropy techniques. The effect of the hydrophobic chain length on the structural dynamism of the fluorophore has been reported. Experimental results demonstrate that the equilibrium of this dynamism is sensitive to the environment. The association constant of the probe molecule with the non-ionic micelles of Triton X (TX), location of the probe in the micellar environment, have been determined from the change in emission characteristics of the probe as a function of surfactant concentration. The rate constant of quenching and mode of quenching of probe in micellar media have been ascertained. Quantitative estimates of the micropolarity at the binding sites of the probe molecule have been determined. Some of the environment-dependent relevant fluorescence parameters, fluorescence anisotropy (r), have been monitored for exploring the imposed motional restriction of the microenvironment around the probe. An attempt has been made to correlate the steady-state results with time resolved study.

  3. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  4. Redox behavior and optical response of nanostructured poly(3,4-ethylenedioxythiophene) films grown in a camphorsulfonic acid based micellar solution

    International Nuclear Information System (INIS)

    Bhandari, Shweta; Deepa, M.; Singh, S.; Gupta, Govind; Kant, Rama

    2008-01-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films have been electropolymerized from an aqueous micellar solution comprising camphorsulfonic acid (CSA), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and EDOT. The inclusion of the dopants CS - and CF 3 SO 3 - in the polymer structure and an unusually high doping level of 0.54 have been ascertained by the X-ray photoelectron spectroscopy. Transmission electron microscopy and atomic force microscopy studies show that the micellar effect of CSA leads to a morphology wherein polymer particles link together to form elongated shapes and also endows the film with a surface roughness of 25-30 nm. These nanostructures permit a facile intercalation-deintercalation of anions in the film during redox cycling. Electrochemical impedance spectroscopy show that the charge transfer phenomenon at the PEDOT-electrolyte interface is dominant in the high frequency region and diffusion controlled ionic movement prevails in the low frequency regime. The use of these films as potential cathodes in electrochromic windows is rationalized not only on the basis of their high scalability and ease of processing but also due to their large coloration efficiency (123 cm 2 C -1 ) and transmission modulation (50%) at a photopic wavelength of 550 nm. But further improvement in color-bleach kinetics and reproducibility of redox behavior is desirable to broaden their spectrum of utility

  5. A theory of phase separation in asphaltene-micellar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Sanchez, Juan H. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2001-08-01

    A theory of phase separation in micellar solutions of asphaltene in aromatic hydrocarbons was reported in this paper, based on both the approach of the phase behavior of amphiphile/water micelles, and the self-association of asphaltene in aromatic core. Several experimental techniques have been used by different investigators showing the existence of some kind of critical micellar concentration (CMC) on asphaltenes in aromatic solutions. So, at least asphaltene-monomer and asphaltene-micellar phases are experimentally demonstrated facts. These two phases are the main purpose in this report on a theoretical model. Some results show the temperature versus asphaltene concentration phase diagram. The phase diagram is examined against the limited critical micelle concentration data for asphaltenes-in-toluene systems. Such phase diagram is also qualitatively examined against an experimental demonstration of phase separation. The asphaltene-micelle growth depends on the parameter K responsible for the shape and size of it. At the same time, parameter K depends on both the number of asphaltene-monomer associated in the asphaltene-micelle, and the chemical potentials in the interior and in the periphery of the micelle. An expression for getting the number of asphaltene-monomers self-associated in the asphaltene-micelle was obtained. [Spanish] Se reporta una teoria de separacion de fases en soluciones micelares de asfalteno en hidrocarburos aromaticos, basada tanto en la conducta de fase de micelas formadas por anififilos en agua como en la autoasociacion de asfaltenos en nucleos aromaticos. Se han usado diversas tecnicas experimentales por diferentes investigadores que demuestran la existancia de algun tipo de concentracion micelar critica (CMC) de soluciones de asfaltenos en aromaticos. Entonces, al menos las fases de asfalteno-monomerico y de asfalteno-micelar son hechos experimentalmente demostrados. Esta dos fases son el principal proposito de este reporte en un modelo

  6. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  7. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  8. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  9. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  10. Jet A fuel recovery using micellar flooding: Design and implementation.

    Science.gov (United States)

    Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G

    2016-09-01

    Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  12. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin; Almahdali, Sarah; Rodionov, Valentin

    2015-01-01

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head

  13. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  14. Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum).

    Science.gov (United States)

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Failla, Mark L

    2013-04-17

    The high diversity of carotenoids and chlorophylls in foods contrasts with the reduced number of pigments that typically are investigated in micellarization studies. In this study, pepper samples (raw and heat-treated) contained 68 individual pigments, but only 38 of them were micellarized after in vitro digestion. The micellarization of pigments was majorly determined by the interaction effect of processing style (food matrix effect) and fat type (saturated and unsaturated). The highest micellarization was observed with raw peppers. Unsaturated fat increased the micellarization of carotenoid esters, while the impact of fat on the micellarization of free carotenoids seemed to be dependent on pigment structure. The micellarization efficiency was diminished as the esterification level of carotenoids increased. The type of fatty acid moiety and the polarity of the carotenoids modulated their micellarization. Chlorophylls were transformed into pheophytins by heat-processing and digestion, with the pheophytins being stable under gastrointestinal conditions. Micellarization of pheophytins was improved by fat.

  15. Redox reactions in micellar systems. communication 4. Eosin-photosensitized reduction of methylviologen

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochenko, V.; Dzhabiev, T.S.; Rubtsov, I.V.

    1985-12-10

    The authors present data on photosensitized reduction of methylviologen (MV/sup 2 +/) by disodium ethylenediaminetetraacetate (EDTA) in micellar systems modeling, in a first approximation, the structural organization of components of the chain of energy and electron transfer in natural photosynthesis. Photosensitized reduction of methylviologen by EDTA in micellar solutions can model photosystem I of plants with structure formation of reagents and transfer of excitation energy before the step of occurrence of a redox reaction in the active center.

  16. Impact of thermooxidation of phytosteryl and phytostanyl fatty acid esters on cholesterol micellarization in vitro.

    Science.gov (United States)

    Scholz, Birgit; Weiherer, Renate; Engel, Karl-Heinz

    2017-09-01

    The effects of thermooxidation of a phytosteryl/-stanyl and a phytostanyl fatty acid ester mixture on cholesterol micellarization were investigated using an in vitro digestion model simulating enzymatic hydrolysis by cholesterol esterase and subsequent competition of the liberated phytosterols/-stanols with cholesterol for incorporation into mixed micelles. As a first step, relationships between different doses of the ester mixtures and the resulting micellarized cholesterol were established. Subsequent subjection of the thermooxidized ester mixtures to the in vitro digestion model resulted in three principal observations: (i) thermal treatment of the ester mixtures led to substantial decreases of the intact esters, (ii) in vitro digestion of cholesterol in the presence of the thermooxidized ester mixtures resulted in significant increases of cholesterol micellarization, and (iii) the extents of the observed effects on cholesterol micellarization were strongly associated to the remaining contents of intact esters. The loss of efficacy to inhibit cholesterol micellarization due to thermally induced losses of intact esters corresponded to a loss of efficacy that would have been induced by an actual removal of these amounts of esters prior to the in vitro digestion. The obtained results suggest that in particular oxidative modifications of the fatty acid moieties might be responsible for the observed increases of cholesterol micellarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Stability and stabilization of polymers under irradiation. Final report of a co-ordinated research project, 1994-1997

    International Nuclear Information System (INIS)

    1999-01-01

    The contributions presented in this technical publication describe progress in understanding and controlling the degradation of polymeric materials induced by exposure to ionizing radiation. This subject area is of widespread importance to industrial use of radiation for two classes of applications: (1) the processing and production of polymeric materials by means of irradiation facilities, and (2) the use of polymeric materials in applications for which they must withstand irradiation throughout the course of their useful lifetimes. Due to extensive and still-growing use of polymeric materials for technological applications of immense variety, and the fact that radiation-processing has the potential to play an expanding role in polymer manufacturing (current uses include crosslinking, curing, sterilization, surface modification, lithography, etc.), the ability to inhibit unwanted material property changes which often occur when materials are irradiated, and to predict useful lifetimes, remains a limiting factor in a number of existing radiation technologies. Additionally, the ability to control unwanted degradation will be necessary for successful implementation of future, more advanced, radiation processing schemes. This co-ordinated research project (CRP) was established for the purpose of focusing the attention of appropriate technical experts on the complex task of establishing a better fundamental basis for understanding and attacking problems or radiation degradation of materials. The group dynamics have been designed to achieve a synergistic interaction among worldwide research facilities for the purposes of identifying degradation problems, exchanging ideas and results on the solution of these problems, and making the emerging information available in an organized and accessible format. From this meeting, it is clear that much remains to be learnt in terms of understanding degradation mechanisms and phenomena. It also appears that important new

  18. Field Implementation of Handheld FTIR Spectrometer for Polymer Content Determination and for Quality Control of RAP Mixtures : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    The purpose of this research study is to determine if the implementation of FTIRS in Louisiana for determining polymer content in asphalt mixtures and for quality control of recycled asphalt mixtures is feasible. The ultimate objective is to develop ...

  19. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    Science.gov (United States)

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-07

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.

  20. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells.

    Science.gov (United States)

    Yang, Zhe; Sun, Na; Cheng, Rui; Zhao, Chenyang; Liu, Zerong; Li, Xian; Liu, Jie; Tian, Zhongmin

    2017-12-01

    Several studies have demonstrated that cancer stem cells (CSCs) are responsible for replenishing bulk tumor cells, generating new tumors and causing metastasis and relapse. Although combination therapy with multiple chemotherapeutics is considered to be a promising approach for simultaneously eliminating non-CSCs and CSCs, it is difficult to deliver drugs into the inner region of a solid tumor where the CSCs are located due to a lack of capillaries. Here, we synthesized a pH-sensitive polymer, poly(ethylene glycol)-benzoic imine-poly(γ-benzyl-l-aspartate)-b-poly(1-vinylimidazole) block copolymer (PPBV), to develop a pH multistage responsive micellar system for co-delivering paclitaxel and curcumin and synergistically eliminating breast cancer stem cells (bCSCs) and non-bCSCs. This pH multistage responsive micellar system could intelligently switch its surface charge from neutral to positive, de-shield its PEG layer and reduce its size after long-circulation and extravasation from leaky blood vessels at tumor sites, thus facilitating their cellular uptake and deep tumor penetration. These advantages were also beneficial for the combinational therapy efficacy of PTX and CUR to reach the maximum level and achieve superior tumor inhibition activity and effective bCSCs-killing capacity in vivo. Consequently, this pH multistage responsive micellar system is a powerful platform for collaborative therapy with PTX and CUR to simultaneously eliminate bCSCs and non-CSCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. αvβ3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo

    Directory of Open Access Journals (Sweden)

    Zhong P

    2017-10-01

    Full Text Available Ping Zhong,1,2 Xiaolei Gu,1,2 Ru Cheng,1,2 Chao Deng,1,2 Fenghua Meng,1,2 Zhiyuan Zhong1,2 1Biomedical Polymers Laboratory, 2Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China Abstract: Antibody-mertansine (DM1 conjugates (AMCs are among the very few active targeting therapeutics that are approved or clinically investigated for treating various cancers including metastatic breast cancer. However, none of the AMCs are effective for the treatment of triple-negative breast cancers (TNBCs. Here, we show that cRGD-decorated, redox-activatable micellar mertansine prodrug (cRGD-MMP can effectively target and deliver DM1 to αvβ3 integrin overexpressing MDA-MB-231 TNBC xenografts in nude mice, resulting in potent tumor growth inhibition. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays showed that cRGD-MMP had obvious targetability to MDA-MB-231 cells with a low half-maximal inhibitory concentration (IC50 of 0.18 µM, which was close to that of free DM1 and 2.2-fold lower than that of micellar mertansine prodrug (MMP; nontargeting control. The confocal microscopy studies demonstrated that cRGD-MMP mediated a clearly more efficient cellular uptake and intracellular release of doxorubicin (used as a fluorescent anticancer drug model in MDA-MB-231 cells. Notably, cRGD-MMP loaded with 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide (DiR; a hydrophobic near-infrared dye was shown to quickly accumulate in the MDA-MB-231 tumor with strong DiR fluorescence from 2 to 24 h post injection. MMP loaded with DiR could also accumulate in the tumor, although significantly less than cRGD-MMP. The biodistribution studies revealed a high DM1 accumulation of 8.1%ID/g in the tumor for cRGD-MMP at 12 h post injection. The therapeutic results demonstrated that cRGD-MMP effectively suppressed MDA-MB-231 tumor growth at

  2. Online naphazoline quality control by micellar-enhanced spectrofluorimetry.

    Science.gov (United States)

    Peralta, Cecilia Mariana; Silva, Raúl Alejandro; Fernández, Liliana Patricia; Masi, Adriana Noemí

    2011-01-01

    The aim of this study was to develop a method for online spectrofluorimetric quality control of naphazoline (NPZ) in pharmaceuticals and raw drugs. A combination of a flow-injection analysis (FIA) system with micellar-enhanced fluorescence detection is presented as a powerful alternative for the rapid and sensitive analysis of naphazoline. Since NPZ shows low native fluorescence, the use of an anionic surfactant, such as sodium dodecyl sulphate (SDS), provides a considerable enhancement of fluorescence intensity and the nature of the technique allows a possible and easy adaptation to a FIA system. Using λ(exc) = 280 nm and λ(em) = 326 nm, a good linear relationship (LOL) was obtained in the range 0.003-10 µg mL(-1) with a detection limit (LOD) of 3 × 10(-4) µg mL(-1) (s/n = 3). Parameters related to the nature of the analytical signal and to the FIA manifold were optimized. Satisfactory recoveries were obtained in the analysis of commercial pharmaceutical formulations. The proposed method is simple, accurate and allows for high-speed sampling and considerably shorter analysis times. In addition, it requires inexpensive equipment and reagents and has easy operational conditions and no side effects, thus avoiding environmental pollution through toxic waste. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    Science.gov (United States)

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Separation Of N-Nitrosamines By Micellar Electrokinetic Chromatography

    International Nuclear Information System (INIS)

    Nur Amira Md Ali; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim

    2014-01-01

    A simple and rapid micellar electrokinetic chromatography (MEKC) method was developed for separation of three selected N-Nitrosamines namely N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA) and N-nitrosodiphenylamine (NDPhA). The effects of composition of the buffer and its pH, concentration of surfactants on the separation and migration times of nitrosamines were investigated. The instrumental variables affecting sensitivity and resolution such as power supply and injection mode were carefully optimized. The best separation was achieved using 40 mM sodium dodecyl sulfate (SDS) as a surfactant in 10 mM phosphate buffer (pH 8.0) at a temperature of 25 degree Celsius, applied voltage of 29 kV, wavelength of 230 nm and electrokinetic injection of 9 s at 5 kV within 10 min analysis time. Excellent linearity was obtained in the concentration range of 2 to 100 μg/ mL with coefficients of determination, r 2 ≥0.979. This method showed good reproducibility with relative standard deviation (RSDs) value ranging from 2.46 % to 6.61 %. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.16 to 0.43 μg/ mL and 0.54 to 1.44 μg/mL respectively. (author)

  5. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  6. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  7. Study of the Reaction 2-(p-Nitrophenylethyl Bromide + OH− in Dimeric Micellar Solutions

    Directory of Open Access Journals (Sweden)

    María Luisa Moyá

    2011-11-01

    Full Text Available The dehydrobromination reaction 2-(p-nitrophenylethyl bromide + OH− was investigated in several alkanediyl-a-w-bis(dodecyldimethylammonium bromide, 12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12 micellar solutions, in the presence of NaOH 5 × 10−3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br− micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br− micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to water.

  8. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium

    International Nuclear Information System (INIS)

    Nakao, Ryuji; Halldin, Christer

    2013-01-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. Methods: This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Results: Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for 11 C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Conclusion: Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma

  9. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  10. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D.; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D.; Lebrun, N. [CEA Grenoble, CEREM, 38 (France)

    1996-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  11. Progress of the BT-EdF-CEA project. The lithium polymer battery; Avancees du projet BT-EdF-CEA. Batterie lithium polymere

    Energy Technology Data Exchange (ETDEWEB)

    Marginedes, D; Majastre, H [Bollore Technologies, 29 - Quimper (France); Baudry, P; Lascaud, S [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bloch, D; Lebrun, N [CEA Grenoble, CEREM, 38 (France)

    1997-12-31

    The lithium-polymer energy storage technology requires the production of thin films of huge surface. The BT-EdF-CEA consortium has studied the various manufacturing techniques of these films and their assembly. The process was chosen according to its productivity, low expensiveness, ecological impact and energy performances with capacities reaching 40 Ah. This paper explains: the objectives and specifications of the project, the advantage of the consortium and the role of the different partners, the results (coating, dry extrusion and battery element manufacturing techniques), and the electrochemical performances of the elements. (J.S.)

  12. The magnetoviscous effect of micellar solutions doped with water based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, Fabiana R., E-mail: farantes@if.usp.br [Institute of Physics, University of Sao Paulo (Brazil); Institute of Fluid Mechanics, Technische Universität Dresden (Germany); Odenbach, Stefan, E-mail: stefan.odenbach@tu-dresden.de [Institute of Fluid Mechanics, Technische Universität Dresden (Germany)

    2015-09-15

    This work presents a magnetorheological study of micellar solutions of potassium laurate and water doped with magnetite nanoparticles, accompanied by auxiliary dynamic light scattering measurements. An increase in the viscosity of the samples under applied field was observed and, furthermore, a considerable magnetoviscous effect was revealed even at magnetic particles' concentrations as low as 0.005–0.01 vol%. This indicates that the rheological behavior of the micelles is changed by the interaction of the magnetic particles with the applied field, leading to different microscopic arrangements in the micellar solutions. - Highlights: • We study the magnetorheological behavior of micellar solutions doped with ferrofluids. • We observe an increase in the viscosity of the samples under an applied field. • We find a large magnetoviscous effect even at low magnetic particles' concentration. • Interaction of particles with the field changes the micelles' rheological behavior.

  13. Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The sensitization of Tb 3+ and Eu 3+ luminescence by energy transfer from aromatic triplet donors like naphthalene, bromonaphthalene, biphenyl, and phenanthrene in micellar sodium lauryl sulfate solution has been studied. Formal second-order rate constants for the energy transfer process in the micellar solutions were determined as 5 x 10 5 and 1.8 x 10 5 M -1 S -1 for transfer from biphenyl to Tb 3+ . The method of converting these rate constants to second-order constants pertaining to the micellar microenvironment is discussed; it is estimated that the transfer process at the micelles is charaterized by rate constants about one order of magnitude smaller than the formal ones. The transfer process is thus extremely slow. 7 figures

  14. Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells.

    Science.gov (United States)

    Koh, Haeng-Deog; Changez, Mohammad; Lee, Jae-Suk

    2010-10-18

    A polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core-shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell-embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS-b-P2VP hybrid NPs is confirmed by transmission electron microscopy, energy-dispersive X-ray, and UV-Vis absorption. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  16. Effect of ripening, heat processing, and fat type on the micellarization of pigments from jalapeño peppers.

    Science.gov (United States)

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Jiménez-Castro, Jorge A; Cervantes-Paz, Braulio; Ibarra-Junquera, Vrani; Pérez-Martínez, Jaime David; Zamudio-Flores, Paul B; Escalante-Minakata, Pilar

    2013-10-16

    Raw and heat-processed (boiled and grilled) jalapeño peppers at three intermediate ripening stages (brown, 50% red, and 75% red) were digested in vitro without fat and in the presence of soybean oil (SO) or beef tallow (BT), and the micellarization of their lipid soluble pigments (LSP) was measured. The micelles from digestions with brown, 50% red, and 75% red peppers contained up to 27, 35, and 29 different LSP, respectively. Boiling and grilling decreased the micellarization of LSP from brown peppers, whereas the opposite was observed with 75% red peppers. Heat processing did not clearly affect the micellarization of LSP from 50% red fruits. The impact of fat on LSP micellarization was ripening-dependent, but the micellarization of the less polar carotenoids was always increased by SO or BT. This positive effect of fat was higher with SO than with BT.

  17. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    Science.gov (United States)

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  19. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  20. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  1. PH-triggered micellar membrane for controlled release microchips

    KAUST Repository

    Yang, Xiaoqiang; Moosa, Basem; Deng, Lin; Zhao, Lan; Khashab, Niveen M.

    2011-01-01

    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and

  2. phenylalanine and l-tyrosine as chiral micellar media for the cat

    African Journals Online (AJOL)

    potential chiral micellar catalysts for the Diels-Alder reaction between methyl acrylate and .... hydrophobic effects, electrostatic interactions and the accompanying medium effects. In the case .... liquids as effective organocatalysts for Diels-Alder reaction. Green Chem. 2014, 16 .... Colloids and Surfaces A: Physicochem.

  3. phenylalanine and l-tyrosine as chiral micellar media for the cat

    African Journals Online (AJOL)

    polar solvents [15-18]. Hence, surfactants offer the possibility for organic reactions to occur in aqueous media, and from the viewpoint of green chemistry, water is safer, harmless and environmentally benign [19]. However, there has been limited work on the use of chiral micellar media to catalyze Diels-. Alder reactions.

  4. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    NARCIS (Netherlands)

    Rispens, T; Engberts, JBFN

    2003-01-01

    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl

  5. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya

    2015-01-01

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu 2+ , Fe 2+ , Ni 2+ and Zn 2+ in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu 2+ , Fe 2+ and Ni 2+ caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe 2+ , Cu 2+ , Ni 2+ and Zn 2+ . • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions

  6. Complexation of lysozyme with sodium caseinate and micellar casein in aqueous buffered solutions

    NARCIS (Netherlands)

    Antonov, Y.A.; Moldenaers, P.; Cardinaels, R.M.

    We present an extended structural and morphological study of the complexation of lysozyme (Lys) with sodium caseinate (SC) and micellar casein (MC) by means of turbidity measurements, phase analysis, dynamic, static and electrophoretic light scattering, bright-field and confocal laser scanning

  7. Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry

    NARCIS (Netherlands)

    Mol, Roelof; De Jong, Gerhardus J.; Somsen, Govert W.

    2005-01-01

    Atmospheric pressure photoionization (APPI) is presented as a novel means for the combination of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS). The on-line coupling is achieved using an adapted sheath flow interface installed on an orthogonal APPI source. Acetone or

  8. The Nature of the Micellar Stern Region As Studied by Reaction Kinetics. 2

    NARCIS (Netherlands)

    Buurma, Niklaas J.; Serena, Paola; Blandamer, Michael J.; Engberts, Jan B.F.N.

    2004-01-01

    The nature of rate-retarding effects of cationic micelles on the water-catalyzed hydrolyses of a series of para-substituted 1-benzoyl-1,2,4-triazoles (1a-f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2) has been studied using kinetic methods. A comparison is drawn between medium effects in the micellar

  9. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    NARCIS (Netherlands)

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.

    2011-01-01

    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on

  10. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  11. Stepwise dynamics of an anionic micellar film - Formation of crown lenses.

    Science.gov (United States)

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2017-06-15

    We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Studies for the use of water soluble chelating polymer in ultra-filtration technique for the removal of uranium from aqueous solutions

    International Nuclear Information System (INIS)

    Misra, S.K.; Mahatele, A.K.; Tripathi, S.C.; Vijayan, K.; Munshi, S.K.

    2005-01-01

    Studies were carried out for the removal of uranium from aqueous medium using water soluble chelating polymer by ultra-filtration technique. The water soluble polymers are the option for the surfactants used in the micellar enhanced ultra-filtration technique. More than 95% separation of uranium carried out under different experimental conditions, suggest that the technique can be effectively employed for the removal uranium from the aqueous effluent streams. (author)

  13. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  14. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    Science.gov (United States)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica

  15. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian; Yu, Haizhou; Wang, Yongmei; Cui, Jie; Kong, Weixin; Jiang, Wei

    2012-01-01

    the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between

  16. Analysis of micellar and vesicular lecithin and cholesterol in model bile using 1H- and 31P-NMR

    NARCIS (Netherlands)

    de Graaf, M. P.; Groen, A. K.; Bovée, W. M.

    1995-01-01

    The distribution of phospholipid and cholesterol between the vesicular and micellar phases in bile plays an important role in the formation of cholesterol gallstones. Conventional analytical procedures to determine the distribution are potentially unreliable because they disturb the distribution of

  17. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  18. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  19. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  20. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing.

    Science.gov (United States)

    Chen, Zhiquan; He, Changcheng; Li, Fengbin; Tong, Ling; Liao, Xingzhi; Wang, Yong

    2010-06-01

    We reported the deliberate control on the micelle opening and closing of amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar films by exposing them to selective solvents. We first treated the micellar films with polar solvents including ethanol and water (pH = 4, 8, and 12) that have different affinities to P2VP. We observed opening of the micelles in all the cases. Both the size of opened pores and the opening rate are dependent on the solvency of different solvents for P2VP. We then explored the closing behavior of the opened micelles using solvents having different affinities to PS. We found that the opened micelles were recovered to their initial closed micelle forms. The recovery was accompanied by a slow micelle disassociation process which gradually reduced the micelle size. The rates of the micelle closing and disassociation are also dependent on the solvency of different solvents for PS.

  1. Interfaced conducting polymers

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Petzelt, Jan; Prokeš, J.

    2017-01-01

    Roč. 224, February (2017), s. 109-115 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline * polypyrrole * poly(p-phenylenediamine) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (FZU-D) OBOR OECD: Polymer science; Polymer science (FZU-D) Impact factor: 2.435, year: 2016

  2. Transepithelial Transport of Curcumin in Caco-2 Cells Is significantly Enhanced by Micellar Solubilisation.

    Science.gov (United States)

    Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-03-01

    Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min -1  cm -2 , respectively). This resulted in a higher P app value of 2.11 × 10 -6  cm/s for Sol-CUR compared to a P app value of 0.56 × 10 -6  cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.

  3. One electron reduction and absorption characteristics of Cresyl violet in micellar medium

    International Nuclear Information System (INIS)

    Gawandi, Vijay B.; Guha, S.N.; Hari Mohan

    2000-01-01

    Effect of surfactant micelles on absorption characteristics of Cresyl violet (CV) and on its redox reactions have been studied. Among the various surfactants investigated anionic surfactants particularly sodium lauryl sulfate (SLS) and sodium dodecyl benzene sulfonate (SDDBS) showed marked effect on these properties. Reactions of hydrated electron in these micellar media were studied using the technique of nanosecond pulse radiolysis. Results of other surfactants, viz.BSS, CTAB and TritonX-100 have also been presented. (author)

  4. Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium

    International Nuclear Information System (INIS)

    Phukan, Smritakshi; Mishra, Bhupendra; Chandra Shekar, K.P.; Kumar, Anil; Kumar, Dalip; Mitra, Sivaprasad

    2013-01-01

    Steady state and time-resolved fluorescence properties of porphyrin appended 1,3,4-oxadiazoles and thiazoles were described in homogeneous medium as well as in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The electron withdrawing substituent on the porphyrin moiety in both the cases make a donor–spacer–acceptor type of intramolecular photoinduced electron transfer (PET) system resulting substantial quenching in porphyrin fluorescence due to partial energy migration towards the acceptor in the excited state. The increase in fluorescence yield as well as appreciable difference in fluorescence decay behavior in aqueous buffer solution of pH 4.2 from that in chloroform solution is believed due to partial protonation of the porphyrin ring. All the investigated systems show preferential binding into the interfacial region of the micellar sub-domain with varying degree of penetration depending on the nature of the substituent. Almost 2–4 fold increase in fluorescence yield for the probes is explained on the basis of restricted flexibility and corresponding decrease in total nonradiative rate inside the micellar interface layer. - Highlights: ► Synthesis and detail fluorescence studies of a series of porphyrin appended 1,3,4-oxadiazoles and thiazoles. ► Comparison of homogeneous solvent study with that in CTAB. ► Substantial porphyrin fluorescence quenching in donor–spacer–acceptor type system. ► Preferential binding of the substituted porphyrins in micellar sub-domain. ► Appreciable increase in fluorescence yield in micellar interface layer is due to decrease in total nonradiative rate.

  5. Photochemical assessment of UO2+2 complexation in Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1994-01-01

    This is a report on the spectral characteristics of UO 2 +2 in the excited state in the Triton X-100 micellar medium. The downward curving of the Stern-Volmer plot explains the two kinds of populations of UO 2 +2 upon micellization. A blue shift of the quenched emission is ascribed due to the collisional encounter of UO 2 +2 with the head groups of Triton X-100. (author). 5 refs., 2 figs

  6. Deracemization of bilirubin as the marker of the chirality of micellar aggregates.

    Science.gov (United States)

    Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna

    2012-01-01

    The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities. Copyright © 2011 Wiley-Liss, Inc.

  7. Fundamental Characterization of the Micellar Self-Assembly of Sophorolipid Esters.

    Science.gov (United States)

    Koh, Amanda; Todd, Katherine; Sherbourne, Ezekiel; Gross, Richard A

    2017-06-13

    Surfactants are ubiquitous constituents of commercial and biological systems that function based on complex structure-dependent interactions. Sophorolipid (SL) n-alkyl esters (SL-esters) comprise a group of modified naturally derived glycolipids from Candida bombicola. Herein, micellar self-assembly behavior as a function of SL-ester chain length was studied. Surface tensions as low as 31.2 mN/m and critical micelle concentrations (CMCs) as low as 1.1 μM were attained for diacetylated SL-decyl ester (dASL-DE) and SL-octyl ester, respectively. For deacetylated SL-esters, CMC values reach a lower limit at SL-ester chains above n-butyl (SL-BE, 1-3 μM). This behavior of SL-esters with increasing hydrophobic tail length is unlike other known surfactants. Diffusion-ordered spectroscopy (DOSY) and T 1 relaxation NMR experiments indicate this behavior is due to a change in intramolecular interactions, which impedes the self-assembly of SL-esters with chain lengths above SL-BE. This hypothesis is supported by micellar thermodynamics where a disruption in trends occurs at n-alkyl ester chain lengths above those of SL-BE and SL-hexyl ester (SL-HE). Diacetylated (dA) SL-esters exhibit an even more unusual trend in that CMC increases from 1.75 to 815 μM for SL-ester chain lengths of dASL-BE and dASL-DE, respectively. Foaming studies, performed to reveal the macroscopic implications of SL-ester micellar behavior, show that the observed instability in foams formed using SL-esters are due to coalescence, which highlights the importance of understanding intermicellar interactions. This work reveals that SL-esters are an important new family of green high-performing surfactants with unique structure-property relationships that can be tuned to optimize micellar characteristics.

  8. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  9. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.

    Science.gov (United States)

    Sarkar, Rupa; Ghosh, Manoranjan; Pal, Samir Kumar

    2005-02-01

    We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.

  10. Self-association of analgesics in aqueous solution: micellar properties of dextropropoxyphene hydrochloride and methadone hydrochloride.

    Science.gov (United States)

    Attwood, D; Tolley, J A

    1980-08-01

    The solution properties of several analgesics including dextropropoxyphene hydrochloride, methadone hydrochloride, dextromoramide acid tartrate and dipipanone hydrochloride have been examined using light scattering, conductivity, vapour pressure osmometry and surface tension techniques. A micellar pattern of association was established for dextropropoxyphene hydrochloride and methadone hydrochloride and critical micelle concentrations and aggregation numbers are reported. The hydrophobic contribution to the free energy of micellization of dextropropoxyphene was determined from measurement of the critical micelle concentration in the presence of added electrolyte.

  11. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    Science.gov (United States)

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  13. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    Science.gov (United States)

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  15. Retention of bile salts in micellar electrokinetic chromatography: relation of capacity factor to octanol-water partition coefficient and critical micellar concentration.

    Science.gov (United States)

    Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E

    2001-12-25

    The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.

  16. Single-shot soft x-ray laser-induced ablative microstructuring of organic polymer with demagnifying projection

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Rus, Bedřich; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Juha, Libor; Hájková, Věra; Chalupský, Jaromír

    2008-01-01

    Roč. 33, č. 10 (2008), s. 1087-1089 ISSN 0146-9592 R&D Projects: GA AV ČR KAN300100702; GA ČR GA202/05/2316; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024 Institutional research plan: CEZ:AV0Z10100523 Keywords : x-ray lasers * laser ablation * microstructuring Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.772, year: 2008

  17. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Science.gov (United States)

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G

    2017-03-23

    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient P OW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log P OW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  18. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Gao W

    2017-02-01

    Full Text Available Wei Gao,1 Guihua Ye,1 Xiaochuan Duan,1 Xiaoying Yang,1 Victor C Yang1,2 1Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics, School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA Abstract: The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR. To overcome multidrug resistance (MDR and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep. First, the polymers poly(l-histidine-coupled polyethylene glycol-2000 (PHIS-PEG2000 and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000 were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000 or 7pep-DSPE-PEG2000 (7-pep HD micelles. The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX, the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr, which attributed to the synergistic effect of poly(l-histidine-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the targetability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug

  19. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  20. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  1. Clickable antifouling polymer brushes for polymer pen lithography

    Czech Academy of Sciences Publication Activity Database

    Bog, U.; de los Santos Pereira, Andres; Mueller, S. L.; Havenridge, S.; Parrillo, Viviana; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.

    2017-01-01

    Roč. 9, č. 13 (2017), s. 12109-12117 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GJ15-09368Y Institutional support: RVO:61389013 Keywords : antifouling * biofunctional interfaces * polymer brushes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  2. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Bačáková, Lucie; Kolská, Z.; Švorčík, V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID527403 ISSN 1687-4110 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : polymer cytocompatibility * polymer surface * nanotechnology Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.547, year: 2012

  3. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  4. Micellar copolymerization of poly(acrylamide-g-propylene oxide): rheological evaluation and solution characterization; Copolimerizacao micelar de poli(acrilamida-g-oxido de propileno): avaliacao reologica e caracterizacao de suas solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Sadicoff, Bianca L.; Brandao, Edimir M.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; Amorim, Marcia C.V. [Universidade Estadual, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    2001-06-01

    Graft copolymers of polyacrylamide and poly(propylene oxide) were synthesized by a micellar copolymerization technique. The rheological properties of the copolymers solutions were evaluated and compared with literature data for solutions of the same copolymers, synthesized by solution polymerization. The effect of hydrophobe content, salt addition and surfactant addition on the rheological properties were also investigated. Increasing hydrophobe content resulted in higher solution viscosities in the semi-dilute regime. Upon addition of salts, the hydrophobic groups associated to minimize their exposure to water. In the semi-dilute region, higher contents of surfactant added resulted in lower reduced viscosities of the polymer solutions. The copolymers were qualitatively characterized by infra-red spectrometry. (author)

  5. Applications of micellar enzymology to clean coal technology. [Laccase

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  6. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  7. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2012-10-01

    Full Text Available Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a “green” micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable “functional” molecules, has been produced.

  8. Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters

    Directory of Open Access Journals (Sweden)

    Gradzielski Michael

    2008-01-01

    Full Text Available Abstract Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB. The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6–15 nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1 mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25 min.

  9. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  10. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tharayil, Nishanth [Clemson Univ., SC (United States)

    2016-06-29

    -template imprinting approach for the selective capture of less abundant plant metabolites from a crowded soil/litter leachate. Our results suggests that i) the root exudate pattern of plants is highly dependent on the nutrient status of the plant, with greater specificity of root exudation occurring in growing medium with low available form of nutrients, ii) the chemical composition of root exudation is a function of the distance of sampling from the source-roots, with the composition of root exudation being more enriched in polar metabolites farther from the source-roots, iii) Further we demonstrated that the compounds present in real root exudates diffuse farther from the source roots than those in artificial root exudates that are traditionally used. Thus, our project highlights how the soil matrix is instrumental in modifying the chemical composition of root exudates, and highlights that, apart from the plant physiology, the specificity and function of root exudates is also modified by environmental factors.

  11. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  12. Application of micellar electrokinetic capillary chromatography for routine analysis of different materials

    Directory of Open Access Journals (Sweden)

    Injac Rade

    2008-01-01

    Full Text Available Micellar electrokinetic capillary chromatography (MEKC has become a popular mode among the several capillary electro-migration techniques. Most drug analysis can be performed by using MEKC because of its wide applicability. Separation of very complex mixtures, determination of drugs in the biological materials, etc., can be successfully achieved by MEKC. This review surveys typical applications of MEKC analysis. Recent advances in MEKC, especially with solid-phase extraction and large-volume sample stacking, are described. Modes of electrokinetic chromatography including MEKC, a separation theory of MEKC, environmental friendly analysis, and selectivity manipulation in MEKC are also briefly mentioned.

  13. The different-ligand complexing of europium with complexones and β-diketones in micellar solution

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Smirnova, N.S.; Martynenko, L.I.; Evseev, A.M.; Savitskij, A.P.

    1989-01-01

    Method of pH-metric titration with mathematical simulation was used to study the effect of nonionic surfactant (polyoxyethyleneoctylphenyl este) on stability of europium complexes with cyclohexanediaminetetraacetic and ethylenediaminetetraacetic acids. Optimal conditions for ternary complex formation in the system Eu 3+ -complexone-β-diketone at pH 7.0-9.0 were found. Complex-compositions were determined and their stability constants were calculated. It is shown that complex stability decreases by several orders in micellar solutions, tecause β-diketone introduction to the solution decreases thermodynamic stability of complexes

  14. An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution

    KAUST Repository

    Griffiths, I. M.; Bain, C. D.; Breward, C. J. W.; Chapman, S. J.; Howell, P. D.; Waters, S. L.

    2012-01-01

    Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.

  15. Optimisation of resolution in micellar electrokinetic chromatography by multivariate evaluation of electrolytes.

    Science.gov (United States)

    Mikaeli, S; Thorsén, G; Karlberg, B

    2001-01-12

    A novel approach to multivariate evaluation of separation electrolytes for micellar electrokinetic chromatography is presented. An initial screening of the experimental parameters is performed using a Plackett-Burman design. Significant parameters are further evaluated using full factorial designs. The total resolution of the separation is calculated and used as response. The proposed scheme has been applied to the optimisation of the separation of phenols and the chiral separation of (+)-1-(9-anthryl)-2-propyl chloroformate-derivatized amino acids. A total of eight experimental parameters were evaluated and optimal conditions found in less than 48 experiments.

  16. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays.

    Science.gov (United States)

    Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P

    2011-08-23

    Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society

  17. Polymers of phenylenediamines

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2015-01-01

    Roč. 41, February (2015), s. 1-31 ISSN 0079-6700 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyphenylenediamine * phenylenediamine * conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 27.184, year: 2015

  18. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  19. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  20. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  1. Determination of patulin in commercial apple juice by micellar electrokinetic chromatography.

    Science.gov (United States)

    Murillo, M; González-Peñas, E; Amézqueta, S

    2008-01-01

    A novel and validated micellar electrokinetic capillary chromatography (MEKC) method using ultraviolet detection (UV) has been applied to the quantitative analysis of patulin (PAT) in commercial apple juice. Patulin was extracted from samples with an ethylacetate solution. The micellar electrokinetic capillary chromatography (MECK) parameters studied for method optimization were buffer composition, voltage, temperature, and a separation between PAT and 5-hydroxymethylfurfural (HMF) (main interference in apple juice PAT analysis) peaks until reaching baseline. The method passes a series of validation tests including selectivity, linearity, limit of detection and quantification (0.7 and 2.5 microgL(-1), respectively), precision (within and between-day variability) and recovery (80.2% RSD=4%), accuracy, and robustness. This method was successfully applied to the measurement of 20 apple juice samples obtained from different supermarkets. One hundred percent of the samples were contaminated with a level greater than the limit of detection, with mean and median values of 41.3 and 35.7 microgL(-1), respectively.

  2. Dynamic and structural characterisation of micellar solutions of surfactants by spin relaxation and translational diffusion

    International Nuclear Information System (INIS)

    Mahieu, Nathalie

    1992-01-01

    The work reported in this research thesis aimed at characterizing micellar phases formed by some surfactants (sodium carboxylates) in aqueous solution. After some recalls on nuclear magnetic resonance dealing with spin relaxation (longitudinal relaxation, transverse relaxation, relaxation in the rotating coordinate system, and crossed relaxation), and comments on the dipolar mechanism responsible of relaxation phenomena, the author presents the methods used for relaxation parameter measurement and the data processing software issued from experiments. He presents experiments which allowed the self-diffusion coefficient to be measured, reports data processing, and addresses problems of special diffusion and of coherence transfers during diffusion measurements. Results of proton relaxation measurements are then presented and discussed. They are used to determine the micellar state of the studied carboxylates. The case of the oleate is also addressed. Measurements of carbon-13 relaxation times are reported, and exploited in terms of structural parameters by using the Relaxator software. An original method of the hetero-nuclear Overhauser method is presented, and used to assess the average distance between water molecules and micelle surface [fr

  3. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk.

    Science.gov (United States)

    Malacarne, Massimo; Franceschi, Piero; Formaggioni, Paolo; Sandri, Sandro; Mariani, Primo; Summer, Andrea

    2014-05-01

    The main requirement for milk processed in most cheese typologies is its rennet coagulation ability. Despite the increasing number of studies, the causes for abnormal coagulation of milk are not fully understood. The aim of this study was to ascertain relationships between milk characteristics and its rennet coagulation ability, focusing on the influence of calcium (Ca) and phosphorus (P). Ca and P are essential constituents of the micelles. Micellar P can be present as part of colloidal calcium phosphate (inorganic-P) or covalently bound to caseins as phosphate groups (casein-P). Eighty one herd milk samples (SCCproperties. Optimal milk was characterised by the highest contents of major constituents, protein fractions and minerals, lowest content of chloride and highest values of titratable acidity. Non-coagulating milk was characterised by the highest values of pH and the lowest of titratable acidity. At micellar level, Optimal milk showed the highest values of colloidal Ca, casein-P and colloidal Mg (g/100 g casein), while Non-coagulating milk showed the lowest values. Interestingly, there was no statistical difference regarding the content of colloidal inorganic-P (g/100 g casein) between Optimal and Non-coagulating milks. Overall, high mineralisation of the micelle (expressed as g inorganic-P/100 g casein) positively affect its rennetability. However, excessive mineralisation could lead to a reduction of the phosphate groups (g casein-P/100 g casein) available for curd formation.

  4. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  5. In situ synthesis of Prussian blue nanoparticles within a biocompatible reverse micellar system for in vivo Cs"+ uptake

    International Nuclear Information System (INIS)

    Lavaud, Cyril; Kajdan, Marilyn; Long, Jerome; Larionova, Joulia; Guari, Yannick; Compte, Elsa; Maurel, Jean-Claude; Him, Josephine Lai Kee; Bron, Patrick; Oliviero, Erwan

    2017-01-01

    A new highly stable Prussian blue reverse micellar system comprising ultra-small Prussian blue nanoparticles in Aonyss (Peceolt, b-sitosterol, lecithin, ethanol and water) acts as an in vivo Cs"+ uptake agent presenting higher efficiency compared to commercially available Prussian blue treatment with a significant dose effect. (authors)

  6. Comparison of migration modeling in micellar electrokinetic chromatography by linear regression and by use of an artificial neural network

    NARCIS (Netherlands)

    Metting, HJ; van Zomeren, PV; van der Ley, CP; Coenegracht, PMJ; de Jong, GJ

    2000-01-01

    The concentrations of modifier (methanol or acetonitrile) and surfactant (sodium dodecyl sulfate SDS) in the running buffer are important factors influencing the mobility of analytes in micellar electrokinetic chromatography (MEKC). Response surfaces of the effective mobility can be used to predict

  7. Thermodynamic analysis of unimer-micelle and sphere-to-rod micellar transitions of aqueous solutions of sodium dodecylbenzenesulfonate

    International Nuclear Information System (INIS)

    Valente, Artur J.M.; López Cascales, J.J.; Fernández Romero, Antonio J.

    2014-01-01

    Highlights: • Unimer-micelle and sphere-to-rod micellar transitions were observed to sodium dodecylbenzenesulfonate in aqueous solutions. • Two micellar transitions were seen by electrical conductivity and surface tension. • An anomalous ΔS 0 and ΔH 0 increase with T was found for the second critical transition. • More stable aggregates are evidenced for spherical micelles than for the other shapes. - Abstract: Temperature dependence of specific conductivity of sodium dodecylbenzenesulfonate (NaDBS) aqueous solutions was analyzed. Two breaks on the plot appeared for all temperature, which suggest two micellar transitions. This has been corroborated by surface tension measurements. The first transition concentration occurs at the critical micelle concentration (CMC), whilst the second critical concentration (so-called transition micellar concentration, TMC) is due to a sphere-to-rod micelles transition. The dependence of CMC and TMC on the temperature allows the computation of the corresponding thermodynamic functions: Gibbs free energy, enthalpy and entropy changes. For the CMC, enthalpy and entropy increments were found that decrease with the temperature values. However, an anomalous behavior was obtained for the TMC, where both ΔS 0 and ΔH 0 values raised with the temperature increase. However, for both transitions, an (enthalpy + entropy) compensation is observed. These results will be compared with similar systems reported in the literature

  8. Correlation between the solubility of aromatic hydrocarbons in water and micellar solutions, with their normal boiling points

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Powell, J.R.; Thomas, J.K.

    1979-01-01

    A linear correlation between the logarithm of the solubility in water of aromatic hydrocarbons and their normal boiling points is shown. Similarly, the logarithm of the distribution ratio of aromatic hydrocarbons in aqueous micellar solution is shown to be linearly related to the boiling points of the hydrocarbons. 2 figures, 2 tables

  9. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian

    2012-01-01

    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  10. Study of micellar solutions of the 'sodium lauryl sulphate-heavy water' system by using pulsed NMR

    International Nuclear Information System (INIS)

    Fouchet, C.

    1972-01-01

    This research thesis reports the study of the nuclear magnetic resonance of protons contained by micellar solutions of sodium lauryl sulphate and heavy water. Relaxation times have been measured with respect to various parameters: concentration, temperature, frequency. The author presents the main properties of micellar solutions and indicate the various possible movements. Then, he addresses the implemented technique, and shows that NMR is sensitive to short range interactions, and allows micellar movements to be studied over an extended rate range. Experimental results are then presented and interpreted [fr

  11. DYNAMICS OF POLYMERS AT INTERFACES; FINAL

    International Nuclear Information System (INIS)

    SMITH, G.S.; MAJEWSKI, J.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses fundamental questions concerning the behavior of polymers at interfaces: (1) What processes control the formation of an adsorbed layer on a clean surface? (2) What processes control the displacement of preadsorbed polymers? (3) Can one accurately predict the structure of polymer layers? To answer these questions, using neutron reflectivity, we have studied adsorbed layers of the polymer poly(methyl methacrylate) (PMMA) onto a quartz substrate. The polymer density profiles were derived from the neutron reflectivity data. We have shown that dry films exhibit behavior predicted by mean-field theory in that the equilibrated layer thickness scales with the molecular weight of the polymer. Also, we find that the profiles of the polymers in solution qualitatively agree with those predicted by reflected random walk (RRW) theories, yet the profiles are not in quantitative agreement

  12. Critical phenomena and polymer coil-to-globule transition

    International Nuclear Information System (INIS)

    Chu, B.; Xu Renliang; Wang Zhulun; Zuo Ju

    1988-01-01

    Small-angle scattering techniques including laser light scattering (LLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) have been useful tools to measure the static and dynamic properties (in terms of critical fluctuations) of fluids, fluid mixtures, polymer and micellar solutions, polymer blends and metallic alloys. A brief review is given of recent results in critical-phenomena experiments using small-angle scattering techniques. Topics of current interest are pointed out, and a guide to the vast literature on critical opalescence is provided. Coil-to-globule transition in polymer solutions has been a classic experimental challenge over the past decade. In order to succeed in reaching the collapsed regime, it becomes important to realize that single coil contraction of a linear polymer molecule in solution takes place in the neighborhood of phase separations. By using the recent development of a small-angle light-scattering spectrometer and by taking advantage of a successful polymer fractionation experiment, the transition behavior of linear polystyrene in cyclohexane from the Θ state to the collapsed regime can be characterized based on both the radius of gyration and the hydrodynamic radius. (orig.)

  13. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  14. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    Science.gov (United States)

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  15. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  16. A photochemical study of uranyl ion interaction with the Triton X-100 micellar system

    International Nuclear Information System (INIS)

    Das, S.K.; Ganguly, B.N.

    1996-01-01

    This is a report on the spectroscopic characteristics of UO 2 2+ in the excited state in Triton X-100 micellar medium. It also indicates some important results of viscosity and surface tension measurements of the system which have direct relevance to the spectroscopic investigation in the excited state. The quenching of the UO 2 2+ fluorescence due to Triton X-100, upon micellization in the aqueous medium, reveals two kinds of microenvironments of the fluorophore from the Stern-Volmer plot. This has been verified by flash photolytic measurements. A blue shift of the quenched emission spectrum is ascribed to the collisional encounter of UO 2 1 + with the head groups of Triton X-100

  17. Enantioseparation of palonosetron hydrochloride by micellar electrokinetic chromatography with sodium cholate as chiral selector.

    Science.gov (United States)

    Tian, Kan; Chen, Hongli; Tang, Jianghong; Chen, Xingguo; Hu, Zhide

    2006-11-03

    The enantioseparation of four stereoisomers of palonosetron hydrochloride by micellar electrokinetic chromatography using sodium cholate as chiral surfactant was described. Sodium cholate was shown to be effective in separating palonosetron hydrochloride stereoisomers. For method optimization, several parameters such as sodium cholate concentration, buffer pH and concentration, the types and concentration of organic modifiers and applied voltage, on the enantioseparation were evaluated and the optimum conditions were obtained as follows: 30 mM borate buffer (pH 9.40) containing 70 mM sodium cholate and 20% (v/v) methanol with an applied voltage of 20 kV. Under these conditions, baseline separation of palonosetron hydrochloride stereoisomers was achieved within 18 min.

  18. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    Science.gov (United States)

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R

    2015-04-06

    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 < logD < 4). CMC can become useful to guide drug discovery scientists to better diagnose, improve, and predict solubility in biorelevant media, thereby enhancing oral bioavailability of drug candidates.

  19. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  20. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  1. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  2. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  3. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  4. Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier.

    Science.gov (United States)

    Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K

    2016-01-01

    Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Integration of vanadium-mixed addenda Dawson heteropolytungstate within poly(3,4-ethylenedioxythiophene) and poly(2,2'-bithiophene) films by electrodeposition from the nonionic micellar aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Goral, Monika [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Jouini, Mohamed, E-mail: jouini@univ-paris-diderot.f [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Perruchot, Christian [Laboratory Interfaces, Traitements, Organisation et DYnamique des Systemes (ITODYS) UMR 7086, Universite Paris Diderot Paris 7 Batiment Lavoisier, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13 (France); Miecznikowski, Krzysztof; Rutkowska, Iwona A. [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Kulesza, Pawel J., E-mail: pkulesza@chem.uw.edu.p [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2011-04-01

    A comparative study describing immobilization of the Dawson type mixed addenda heteropolyanion, [P{sub 2}W{sub 17}VO{sub 62}]{sup 8-} into conducting polymer films of poly(3,4-ethylenedioxythiophene), PEDOT, and poly(2,2'-bithiophene), PBT, is reported. Electrosynthesis of these hybrid films was performed using a micellar aqueous solution of the nonionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-100). Deposited composite films were characterised electrochemically and, on the whole, they exhibited fast electron transfer (ET) properties and relatively high stability towards continuous potential cycling in acidic media. In particular, PEDOT composite showed relatively faster ET properties in comparison to PBT composite. Their permeability was investigated in the presence of cationic and anionic redox probes. Our results implied good mediating capabilities of the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-} anion (within the [P{sub 2}W{sub 17}V{sup 4+}O{sub 62}]{sup 8-}-PEDOT hybrid film) towards the iron (III) reduction. The specific electrocatalytic (reductive) capabilities of hybrid films were also studied by probing the reduction of bromate. The films were further characterised by X-ray photoelectron spectroscopy to establish their interfacial elemental composition. Moreover, their surface morphology was imaged by atomic force microscopy and scanning electron microscopy. Results have shown that physicochemical properties of the investigated hybrid films were affected by polymer hydrophobicity.

  6. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  7. Lithium/polymer batteries. Safety approach of the BT-EDF-CEA project; Accumulateurs lithium/polymere. Demarche securite du projet BT-EDF-CEA

    Energy Technology Data Exchange (ETDEWEB)

    Lascaud, S.; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Bloch, D. [CEAGrenoble, CEREM, 38 (France)

    1996-12-31

    The BT-EdF-CEA consortium for the development and the performance improvement of lithium/polymer batteries has carried out a safety analysis of the industrial risk and the risk for users linked with this new technology. The process chosen for the manufacturing of lithium/polymer batteries does not generate any particular risk of personnel or environmental contamination. Security tests have permitted to observe and analyze the behaviour of 4 Ah elements during thermal shocks, perforation and crushing, and during external short-circuit on 20 Ah elements. These tests demonstrate the great thermal stability and the excellent behaviour of batteries in the case of partial destruction. (J.S.) 2 refs.

  8. Lithium/polymer batteries. Safety approach of the BT-EDF-CEA project; Accumulateurs lithium/polymere. Demarche securite du projet BT-EDF-CEA

    Energy Technology Data Exchange (ETDEWEB)

    Lascaud, S; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Bloch, D [CEAGrenoble, CEREM, 38 (France)

    1997-12-31

    The BT-EdF-CEA consortium for the development and the performance improvement of lithium/polymer batteries has carried out a safety analysis of the industrial risk and the risk for users linked with this new technology. The process chosen for the manufacturing of lithium/polymer batteries does not generate any particular risk of personnel or environmental contamination. Security tests have permitted to observe and analyze the behaviour of 4 Ah elements during thermal shocks, perforation and crushing, and during external short-circuit on 20 Ah elements. These tests demonstrate the great thermal stability and the excellent behaviour of batteries in the case of partial destruction. (J.S.) 2 refs.

  9. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server

    2002-01-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...

  10. Spectroscopic Behavior of Some A3B Type Tetrapyrrolic Complexes in Several Organic Solvents and Micellar Media

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2011-08-01

    Full Text Available The paper presents spectral studies of some unsymmetrical A3B tetrapyrrolic, porphyrin-type complexes with Cu(II and Zn(II in different solvents and micellar media aimed at estimating their properties in connection with the living cell. The results indicate that the position of the absorption and emission peaks is mostly influenced by the central metal ion and less by the environmental polarity or the peripheric substituents of the porphyrinic core. The comparison between the overall absorption and emission spectra of the compounds in methanol or cyclohexane vs. direct and reverse Triton X micellar systems, respectively, suggests for all compounds the localization at the interface between the polyethylene oxide chains and the tert-octyl-phenyl etheric residue of the Triton X-100 molecules. These findings could be important when testing the compounds embedded in liposomes or other delivery systems to the targeted cell.

  11. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    Science.gov (United States)

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  12. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  13. Antimocrobial Polymer

    Science.gov (United States)

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  14. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  15. Spectroscopic studies on the molecular interaction between salicylic acid and riboflavin (B{sub 2}) in micellar solution

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, Maharashtra (India); Patil, S.R., E-mail: srp_fsl@rediffmail.co [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416 004, Maharashtra (India)

    2010-03-15

    The interaction between salicylic acid (SA) and riboflavin (RF) was studied by Fluorescence Resonance Energy Transfer (FRET) in micellar solution. The riboflavin strongly quenches the intrinsic fluorescence of SA by radiative energy transfer. The extent of energy transfer in sodium dodecyl sulphate (SDS) micellar solution of different concentration is quantified from the energy transfer efficiency data. It is seen that the energy transfer is more efficient in the micellar solution. The critical energy transfer distance (R{sub 0}) was determined from which the mean distance between SA and RF molecules was calculated. The quenching was found to fit into Stern-Volmer relation. The results on variation of Stern-Volmer constant (K{sub sv}) with quencher concentration obtained at different temperatures suggested the formation of complex between SA and RF. The association constant of complex formation was estimated and found to decrease with temperature. The values of thermodynamic parameters DELTAH, DELTAG and DELTAS at different temperatures were estimated and the results indicated that the molecular interaction between SA and RF is electrostatic in nature.

  16. Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery

    Directory of Open Access Journals (Sweden)

    Lian H

    2011-12-01

    Full Text Available He Lian1, Jin Sun1, Yan Ping Yu1, Yan Hua Liu2, Wen Cao1, Yong Jun Wang1, Ying Hua Sun1, Si Ling Wang1, Zhong Gui He11School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Ningxia, People's Republic of ChinaBackground: Nowadays, many cytotoxic anticancer drugs exhibit low solubility and poor tumor selectivity, which means that the drug formulation is very important. For example, in the case of paclitaxel (PTX, Cremophor EL® (BASF, Ludwigshafen, Germany needs to be used as a solubilizer in its clinical formulation (Taxol®, Bristol-Myers Squibb, New York, NY, although it can cause serious side effects. Nanomicellar systems are promising carriers to resolve the above problems, and the polymer chosen is the key element.Methods: In this study, a novel amphiphilic chitosan/vitamin E succinate (CS-VES copolymer was successfully synthesized for self-assembling polymeric micelles. Proton nuclear magnetic resonance spectroscopy and infrared were used to characterize the molecular structure of the copolymer. The PTX-loaded CS-VES polymeric micelles (PTX-micelles were characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry.Results: The critical micelle concentration of CS-VES was about 12.6 µg/mL, with the degree of amino group substitution being 20.4%. PTX-micelles were prepared by a nanoprecipitation/dispersion technique without any surfactant being involved. PTX-micelles exhibited a drug loading as high as 21.37% and an encapsulation efficiency of 81.12%, with a particle size ranging from 326.3 to 380.8 nm and a zeta potential of +20 mV. In vitro release study showed a near zero-order sustained release, with 51.06%, 50.88%, and 44.35% of the PTX in the micelles being released up to 168 hours at three drug loadings of 7.52%, 14.09%, and 21.37%, respectively. The cellular uptake

  17. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  18. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    Science.gov (United States)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  20. Conducting polymers as sorbents of influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V. T.; Garina, E. O.; Burtseva, E. I.; Kirillova, E. S.; Ivanova, M. V.; Stejskal, Jaroslav; Sapurina, Irina

    2017-01-01

    Roč. 71, č. 2 (2017), s. 495-503 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S; GA MŠk(CZ) LH14199 Institutional support: RVO:61389013 Keywords : influenza viruses * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  1. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately.

  2. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    International Nuclear Information System (INIS)

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately

  3. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  4. Determination of Sodium deoxycolate residues in vaccinal formulation by micellar electrokinetic chromatography

    International Nuclear Information System (INIS)

    Merchan, Yaima; Lucangioli, Silvia; Carducci, Clyde

    2011-01-01

    The sodium deoxycholate (DCNa) source is the surfactant used in the biopharmaceutical industry for the solubilization of outer membrane vesicles. It is well known the importance of control of this metabolite in biological materials due to its high toxicity for humans. To demonstrate significant small variations of this metabolite in vaccine formulations it is necessary to use a methodology highly selective, sensitive, specific and reproducible. In this report we used the micellar electrokinetic chromatography (MEKC) in a Capillary Ion Analyzer (Water corp. Milford MA) detection at 185 nm mercury lamp. It employed a fused silica capillary uncoated (Waters Corp. Milford MA). We assessed the purity of 2 lots of sodium deoxycholate and analyzed 15 samples of purified vesicles active pharmaceutical ingredient vaccine formulations. Data were recorded and processed with software Millennium TM (Waters Corp. Milford MA). It was found that lots of sodium deoxycholate containing 1.19 and 0.44% cholic acid and contaminate that 93% of the purified vesicles samples were from 0 to 2.44 mg protein DCNa/100 μg. MECK's results were compared with a kinetic test used to determine bile acids in blood (Merckotest). MECK system showed better results regarding the Merkotest

  5. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  6. Determination of Critical Micellar Concentration of Homologous 2-Alkoxyphenylcarbamoyloxyethyl-Morpholinium Chlorides

    Directory of Open Access Journals (Sweden)

    Lenka Stopková

    2018-05-01

    Full Text Available The critical micellar concentrations of selected alkyloxy homologues of local anesthetic 4-(2-{[(2-alkoxyphenylcarbamoyl]oxy}ethylmorpholin-4-ium chloride with nc = 2, 4, 5, 6, 7, 8, and 9 carbons in alkyloxy tail were determined by absorption spectroscopy in the UV–vis spectral region with the use of a pyrene probe. Within the homologous series of the studied amphiphilic compounds, the ln(cmc was observed to be dependent linearly on the number of carbon atoms nc in the hydrophobic tail: ln(cmc = 0.705–0.966 nc. The Gibbs free energy, necessary for the transfer of the methylene group of the alkoxy chain from the water phase into the inner part of the micelle at the temperature of 25 °C and pH ≈ 4.5–5.0, was found to be −2.39 kJ/mol. The experimentally determined cmc values showed good correlations with the predicted values of the bulkiness of the alkoxy tail expressed as the molar volume of substituent R, as well as with the surface tension of the compounds.

  7. Micellar Liquid Chromatographic Determination of Carbaryl and 1-Naphthol in Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Mei-Liang Chin-Chen

    2012-01-01

    Full Text Available A liquid chromatographic procedure has been developed for the determination of carbaryl, a phenyl-N-methylcarbamate, and its main metabolite 1-naphthol, using a C18 column (250’mm’ × ’4.6’mm with a micellar mobile phase and fluorescence detection at maximum excitation/emission wavelengths of 225/333’nm, respectively. In the optimization step, surfactants sodium dodecyl sulphate (SDS, Brij-35 and N-cetylpyridinium chloride monohydrate, and organic solvents propanol, butanol, and pentanol were considered. The selected mobile phase was 0.15’M SDS-6% (v/v-pentanol-0.01’M NaH2PO4 buffered at pH 3. Validation studies, according to the ICH Tripartite Guideline, included linearity (r>0.999, limit of detection (5 and 18’ng mL-1, for carbaryl and 1-naphthol, resp., and limit of quantification (15 and 50’ng mL-1, for carbaryl and 1-naphthol, resp., with intra- and interday precisions below 1%, and robustness parameters below 3%. The results show that the procedure was adequate for the routine analysis of these two compounds in water, soil, and vegetables samples.

  8. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    International Nuclear Information System (INIS)

    Nazari, K.; Adhami, F.; Najjar-Safari, A.; Salmani, S.; Mahmoudi, A.

    2011-01-01

    Highlights: → Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. → Main advantage of this simple method is producing soluble encapsulated nanowires. → Nanowire can be easily precipitated and separated by dilution with distilled water. → Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. → Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  9. Thermosetting microemulsions and mixed micellar solutions as drug delivery systems for periodontal anesthesia.

    Science.gov (United States)

    Scherlund, M; Malmsten, M; Holmqvist, P; Brodin, A

    2000-01-20

    In the present study, thermosetting microemulsions and mixed micellar solutions were investigated as drug delivery systems for anesthetizing the periodontal pocket. The structure of the systems, consisting of the active ingredients lidocaine and prilocaine, as well as two block copolymers (Lutrol F127 and Lutrol F68), was investigated by NMR spectroscopy and photon correlation spectroscopy (PCS). The results obtained for dilute (1-3% w/w) solutions show discrete micelles with a diameter of 20-30 nm and a critical micellization temperature of 25-35 degrees C. Gel permeation chromatography (GPC) was used to study the distribution of the active ingredients, and indicates a preferential solubilization of the active components in micelles over unimers. Analogous to the Lutrol F127 single component system these formulations display an abrupt gelation on increasing temperature. The gelation temperature was found to depend on both the drug ionization and concentration. These systems have several advantages over emulsion-based formulations including good stability, ease of preparation, increased drug release rate, and improved handling due to the transparency of the formulations.

  10. Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues.

    Science.gov (United States)

    Kubalczyk, Paweł; Borowczyk, Kamila; Chwatko, Grażyna; Głowacki, Rafał

    2015-04-01

    A new method for the determination of hydrogen sulfide in hen tissues has been developed and validated. For estimation of hydrogen sulfide content, a sample (0.1 g) of hen tissue was treated according to the procedure consisted of some essential steps: simultaneous homogenization of a tissue and derivatization of hydrogen sulfide to its S-quinolinium derivative with 2-chloro-1-methylquinolinium tetrafluoroborate, separation of so-formed derivative by micellar electrokinetic chromatography with sweeping, and detection and quantitation with the use of UV detector set to measure analytical signals at 375 nm. Effective electrophoretic separation was achieved using fused silica capillary (effective length 41.5 cm, 75 μm id) and 0.05 mol/L, pH 8 phosphate buffer with the addition of 0.04 mol/L SDS and 26% ACN. The lower limit of quantification was 0.12 μmol hydrogen sulfide in 1 g of tissue. The calibration curve prepared in tissue homogenate for hydrogen sulfide showed linearity in the range from 0.15 to 2.0 μmol/g, with the coefficient of correlation 0.9978. The relative standard deviation of the points of the calibration curve varied from 8.3 to 3.2% RSD. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, K., E-mail: nazarikh@ripi.ir [Research Institute of Petroleum Industry, NIOC, P.O. Box 14665-137, Tehran (Iran, Islamic Republic of); Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Adhami, F.; Najjar-Safari, A.; Salmani, S. [Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Mahmoudi, A. [Chemistry Dept., Karaj Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. {yields} Main advantage of this simple method is producing soluble encapsulated nanowires. {yields} Nanowire can be easily precipitated and separated by dilution with distilled water. {yields} Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. {yields} Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  12. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography.

    Science.gov (United States)

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F

    2009-05-01

    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.

  13. Development and validation of micellar liquid chromatographic methods for the determination of antibiotics in different matrixes.

    Science.gov (United States)

    Rambla-Alegre, Maria; Esteve-Romero, Josep; Carda-Broch, Samuel

    2011-01-01

    Antibiotics are the most important bioactive and chemotherapeutic compounds to be produced by microbiological synthesis, and they have proved their worth in a variety of fields, such as medicinal chemistry, agriculture, and the food industry. Interest in antibiotics has grown in parallel with an increasingly high degree of productivity in the field of analytical applications. Therefore, it is necessary to develop chromatographic procedures capable of determining various drugs simultaneously in the shortest possible time. Micellar liquid chromatography (MLC) is an RP-HPLC technique that offers advantages over conventional HPLC as far as sample preparation, selectivity, and versatility are concerned. Its main advantage is that samples can be injected directly into the chromatographic system with no previous preparation step. This paper mainly focuses on the results of the authors' own recent research and reports the chromatographic conditions for determination of various antibiotics (penicillins, quinolones, and sulfonamides) in different matrixes (pharmaceuticals, biological fluids, and food). The work of other authors on MLC-based antibiotic determination has been included.

  14. Analysis of Dyes Extracted from Millimeter-Size Nylon Fibers by Micellar Electrokinetic Chromatography

    International Nuclear Information System (INIS)

    Lewis, L.A.

    2001-01-01

    The Learning Objective is to present to the forensic community a potential qualitative/quantitative method for trace-fiber color comparisons using micellar electrokinetic chromatography (MEKC). Developing a means of analyzing extracted dye constituents from millimeter-size nylon fiber samples was the objective of this research initiative. Aside from ascertaining fiber type, color evaluation and source comparison of trace-fiber evidence plays a critical role in forensic-fiber examinations. Literally thousands of dyes exist to date, including both natural and synthetic compounds. Typically a three-color-dye combination is employed to affect a given color on fiber material. The result of this practice leads to a significant number of potential dye combinations capable of producing a similar color and shade. Since a typical forensic fiber sample is 2 mm or less in length, an ideal forensic dye analysis would qualitatively and quantitatively identify the extracted dye constituents from a sample size of 1 mm or smaller. The goal of this research was to develop an analytical method for comparing individual dye constituents from trace-fiber evidence with dyes extracted from a suspected source, while preserving as much of the original evidence as possible

  15. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  16. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  17. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  18. Influence of buffer zone concentrations on efficiency in partial filling micellar electrokinetic chromatography.

    Science.gov (United States)

    Michalke, D; Kolb, S; Welsch, T

    2001-05-04

    The potential of counter pressure-moderated partial filling micellar electrokinetic chromatography (PF-MEKC) was investigated in this work. Plate numbers of homologous omega-phenylalcohols were measured in a two-plug PF-MEKC system varying the concentrations and hence the ionic strengths of the background buffer compared to the sodium dodecyl sulfate-containing separation buffer and the counter pressure on the cathodic buffer reservoir. It was observed that plate numbers are strongly influenced by both the buffer concentrations and the counter pressure. Highest plate numbers were obtained with a buffer system where the concentrations are adjusted such that the electroosmotic flow velocities in both zones are equal. Differences in the local electroosmotic flow velocities of the zones caused by different buffer concentrations are responsible for tremendously reduced plate numbers. The efficiency drop is explained in several models by the formation of an intersegmental pressure which produces a parabolically shaped laminar flow component in both zones. Thus, the electroosmotic plug-like flow profile is distorted and the efficiency is reduced. The effect of counter pressure on efficiency turned out to be very complex in dependence on the buffer system applied.

  19. Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system.

    Science.gov (United States)

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2011-11-01

    The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme-substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.

  20. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    International Nuclear Information System (INIS)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José; Rodríguez-González, Francisco

    2014-01-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics

  1. Determination of strobilurin fungicide residues in fruits and vegetables by micellar electrokinetic capillary chromatography with sweeping.

    Science.gov (United States)

    Wang, Kun; Chen, Guan-hua; Wu, Xian; Shi, Jie; Guo, Dong-shan

    2014-02-01

    A new assay of micellar electrokinetic capillary chromatography with sweeping was developed to determine azoxystrobin, kresoxim-methyl and pyraclostrobin in fruits and vegetables. The key factors affecting resolution and peak height were studied and the optimum conditions were obtained for separation and enrichment. The running buffer consisted of 40 mM borate, 25 mM sodium dodecyl sulfate and 15% acetonitrile, and its pH was adjusted to 8.4. The sample was injected for 677 nL and the separation voltage was 25 kV. Under the optimum conditions, the enrichment factors of azoxystrobin, kresoxim-methyl and pyraclostrobin were 861, 550 and 403; the linear dynamic ranges were all 0.01-5.0 mg/L; the limits of detection were 0.002, 0.001 and 0.002 mg/kg; the recoveries of spiked samples were 85.1-98.5%, 87.5-97.0% and 89.1-99.1%, respectively. The assay can meet the requirement of maximum residue limits for these three strobilurin fungicides, and has been applied for determining their residues in fruits and vegetables.

  2. O-(β-hydroxyethylrutosides determination by micellar flow injection (FI-spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Cecilia Mariana Peralta

    2014-12-01

    Full Text Available A simple, eco-friendly, sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethylrutosides. The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethylrutosides fluorescence enhancement, increasing considerably the sensitivity of detection. All the variables affecting the fluorescence intensity were studied and optimized. The flow rate was 5 mL/min with detection at 450 nm (after excitation at 346 nm. A linear correlation between drug amount and peak area was established for O-(β-hydroxyethylrutosides in the range of 0.01–200 µg/mL with a detection limit of 0.001 µg/mL (s/n=3. Validation processes were performed by recovering studies with satisfactory results. The new methodology can be employed for the routine analysis of O-(β-hydroxyethylrutosides in bulks as well as in commercial formulations. Keywords: O-(β-hydroxyethylrutosides, Micellar enhancement, Flow injection, Spectrofluorimetry, Pharmaceuticals

  3. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  4. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    Science.gov (United States)

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  6. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-01-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations

  7. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  8. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  9. Polymer Masks for nanostructuring of graphene

    DEFF Research Database (Denmark)

    Shvets, Violetta

    This PhD project is a part of Center for Nanostructured Graphene (CNG) activities. The aim of the project is to develop a new lithography method for creation of highly ordered nanostructures with as small as possible feature and period sizes. The method should be applicable for graphene nanostruc...... demonstrated the opening of what could be interpreted as a band gap....... polymer masks is developed. Mask fabrication is realized by microtoming of 30-60 nm thin sections from pre-aligned polymer monoliths with different morphologies. The resulting polymer masks are then transferred to both silicon and graphene substrates. Hexagonally packed hole patterns with 10 nm hole...

  10. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  11. Application of Surfactant Micellar Solutions as Extractants and Mobile Phases for TLC-Determination of Purine Bases and Doping Agents in Biological Liquids

    Directory of Open Access Journals (Sweden)

    Daria Victorovna Yedamenko

    2015-04-01

    Full Text Available Separation of caffeine and its metabolites (theophylline and theobromine and doping agents (spironolactone, propranolol, and ephedrine and determination of caffeine in serum sample and propranolol and ephedrine in urine were studied on normal-phase thin layers (“Sorbfil-UV-254”. Aqueous organic solvents and aqueous micellar surfactant solutions were compared as the mobile phases for separation. The acceptable separation of purine bases and doping agents was achieved by micellar Thin Layer Chromatography and normal-phase Thin Layer Chromatography. Anionic surfactant solution with added 1-propanol was the best eluent as for caffeine, theophylline, and theobromine separation, as for doping agents. The best characteristics of caffeine extraction from serum, and propranolol and ephedrine from urine were achieved when micellar eluent based on non-ionic Tween-80 surfactant was used. DOI: http://dx.doi.org/10.17807/orbital.v7i1.632

  12. Interactions between 9,10-anthraquinone and aromatic amines in homogeneous and micellar media: A laser flash photolysis and magnetic field effect study

    International Nuclear Information System (INIS)

    Chowdhury, Adity; Basu, Samita

    2006-01-01

    The interactions between 9,10-anthraquinone (AQ) and different aromatic amines, N,N-dimethylaniline and 4,4'-bis (dimethylamino) diphenylmethane (DMDPM), have been studied using absorption, steady-state fluorescence, and laser flash photolysis techniques in organic homogeneous and heterogeneous micellar media. In polar organic homogeneous medium, electron transfer (ET) occurs from amines to excited AQ. In micellar medium, similar intermolecular ET is observed. However, in latter medium, ET predominates over hydrogen abstraction from micelles by excited AQ itself. The occurrence of ET has been further supported by the application of an external magnetic field during laser flash photolysis experiments, which modulates the yield of radical ion pairs formed through ET. Another novel feature, which has also been discussed here, is the abnormal behavior of DMDPM in micellar medium pertaining to energy transfer

  13. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M

    2010-10-01

    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  14. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  15. Development of Micellar HPLC-UV Method for Determination of Pharmaceuticals in Water Samples

    Directory of Open Access Journals (Sweden)

    Danielle Cristina da Silva

    2018-01-01

    Full Text Available Method for extraction and determination of amoxicillin, caffeine, ciprofloxacin, norfloxacin, tetracycline, diclofenac, ibuprofen, nimesulide, levonorgestrel, and 17α-ethynylestradiol exploiting micellar liquid chromatography with PDA detector and solid-phase extraction was proposed. The usage of toxic solvents was low; the chromatographic separation of the medicaments was performed using a C18 column and mobile phases A and B containing 15.0% (v/v ethanol, 3.0% (m/v sodium dodecyl sulfate (SDS, and 0.02 mol·L−1 phosphate at pHs 7.0 and 8.0, respectively. The method is simple, selective, and fast, and the analytes were separated in 23.0 min. For extraction, 1000 mL of sample containing 2.0% (v/v ethanol and 0.002 mol·L−1 citric acid at pH 2.50 was loaded through a 1000 mg of C18 cartridge. The analytes were eluted using 3.0 mL of ethanol, which were evaporated and redissolved in 0.5 mL of mobile phase. Concentration factors better than 1200, except amoxicillin (224, were obtained. The analytical curves were linear (R2 better than 0.992; LOD and LOQ n=10 presented values in the range of 0.019–0.247 and 0.058–0.752 mg·L−1, respectively. Recoveries of 99% were obtained, and the results are in agreement with those obtained by the comparative methods.

  16. Thermodynamic models to elucidate the enantioseparation of drugs with two stereogenic centers by micellar electrokinetic chromatography.

    Science.gov (United States)

    Guo, Xuming; Liu, Qiuxia; Hu, Shaoqiang; Guo, Wenbo; Yang, Zhuo; Zhang, Yonghua

    2017-08-25

    An equilibrium model depicting the simultaneous protonation of chiral drugs and partitioning of protonated ions and neutral molecules into chiral micelles in micellar electrokinetic chromatography (MEKC) has been introduced. It was used for the prediction and elucidation of complex changes in migration order patterns with experimental conditions in the enantioseparation of drugs with two stereogenic centers. Palonosetron hydrochloride (PALO), a weakly basic drug with two stereogenic centers, was selected as a model drug. Its four stereoisomers were separated by MEKC using sodium cholate (SC) as chiral selector and surfactant. Based on the equilibrium model, equations were derived for a calculation of the effective mobility and migration time of each stereoisomer at a certain pH. The migration times of four stereoisomers at different pHs were calculated and then the migration order patterns were constructed with derived equations. The results were in accord with the experiment. And the contribution of each mechanism to the separation and its influence on the migration order pattern was analyzed separately by introducing virtual isomers, i.e., hypothetical stereoisomers with only one parameter changed relative to a real PALO stereoisomer. A thermodynamic model for a judgment of the correlation of interactions between two stereogenic centers of stereoisomers and chiral selector was also proposed. According to this model, the interactions of two stereogenic centers of PALO stereoisomers in both neutral molecules and protonated ions with chiral selector are not independent, so the chiral recognition in each pair of enantiomers as well as the recognition for diastereomers is not simply the algebraic sum of the contributions of two stereogenic centers due to their correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam.

    Science.gov (United States)

    Sethy, Dasaratha; Chakraborty, Hirak

    2016-10-01

    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Synthesis and antibacterial activity of water-dispersible silver nanoparticles via micellar nanoreactors

    Science.gov (United States)

    Pofali, Prasad; Shirolikar, Seema; Borde, Lalit; Pattani, Aditya; Dandekar, Prajakta; Jain, Ratnesh

    2018-04-01

    We have synthesized silver nanoparticles (AgNPs) using micelles of sugar fatty acid ester by dissolving the surfactant in a mixture of iso-octane and n-butanol, with solid-liquid extraction. Highly concentrated, water-dispersible AgNPs were obtained after thorough washing with alcohol, to remove excess of sucrose fatty acid ester DK SS and salt, followed by drying. The particles were characterized for their size, morphology and crystallinity using UV-Visible spectrophotometry, Transmission Electron Microscopy and x-ray diffractometry. Antibacterial study, confirmed the activity of nanoparticles against E. coli, P. aeruginosa and S. aureus, which causes diseases including diarrhoea and several life-threatening infections. Antibacterial activity of E. coli and P. aeruginosa was found to be 2.5 fold and for S. aureus 1.6 fold compared to 50 ppm conc. of Silver Nitrate. Our method of producing nanoparticles is employed as a platform technology for synthesizing other inorganic nanoparticles. This is the first report discussing the use of micellar carriers for obtaining silver nanopowder, to the best of our knowledge, which has the potential to overcome limitations during fabrication of AgNPs using reverse/inverse micelles. Our method yielded nano-sized, water-dispersible AgNPs via an easy and economic approach. The one-pot approach possesses advantages in terms of cost and simplicity, as compared with traditional methods of producing powdered AgNPs using energy intensive and expensive techniques like lyophilisation. The developed method, thus, possesses immense potential for commercial synthesis of AgNPs.

  19. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Science.gov (United States)

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G

    2012-04-01

    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.

  20. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-07-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml{sup -1} and a limit of detection of 0.18 ng ml{sup -1}. The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations.

  1. Flow-injection fluorimetric determination of menadione using on-line photo-reduction in micellar media

    International Nuclear Information System (INIS)

    Perez-Ruiz, Tomas; Martinez-Lozano, Carmen; Tomas, Virginia; Martin, Jesus

    2004-01-01

    A very sensitive fluorimetric method for the determination of menadione using a flow injection system is proposed. The method is based on the on-line reduction of menadione in dodecylsulphate micelles upon irradiation with UV light. The strong fluorescence of the reduced menadione in micellar medium is measured at 410 nm with excitation at 340 nm. The method shows a linear range between 2.42 and 245 ng ml -1 and a limit of detection of 0.18 ng ml -1 . The sample throughput was 90 injections per hour. The applicability of the assay was demonstrated by analysing this vitamin in commercial pharmaceutical preparations

  2. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  3. Diffusion and localization of o-Ps in Dsub(2)O determined from positron annihilation in SDS micellar solutions

    International Nuclear Information System (INIS)

    Vass, Sz.; Kajcsos, Zs.; Molnar, B.

    1985-04-01

    A microscopic diffusion model is presented for the determination of orthopositronium (o-Ps) lifetime in micellar solutions. Among other parameters, the lifetime density function depends on the o-Ps diffusion coefficient in the water phase. Orthopositronium diffusion coefficients are determined by fitting this lifetime density function to positron annihilation spectra obtained from 1 mol/dmsup(3) solution of sodium dodecylsulphate (SDS) in Dsub(2)O at different temperatures. The activation energy of the o-Ps diffusion in Dsub(2)O obtained from the Arrhenius-plot as Esub(a)=(0.9sub(22)+-0.1sub(03)) eV indicates strong localization. (author)

  4. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  5. Advanced polymer chemistry of organometallic anions

    International Nuclear Information System (INIS)

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes

  6. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  7. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Science.gov (United States)

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi

    2014-07-25

    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    International Nuclear Information System (INIS)

    Liu Huanxiang; Yao Xiaojun; Liu Mancang; Hu Zhide; Fan Botao

    2006-01-01

    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R 2 was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes

  9. Separation of mercury(II), methylmercury and phenylmercury by micellar high-performance liquid chromatography on short columns

    International Nuclear Information System (INIS)

    Hutta, M.; Megova, S.; Halko, R.

    1998-01-01

    Three environmentally and agrochemically important mercury species: methylmercury, phenylmercury and mercury(II) are separated within 4 minutes as bromocomplexes by micellar liquid chromatography using very short reversed-phase (RP) C18 columns (up to 30 mm). The micellar mobile phase containing 0.05M cetyltrimethylammonium bromide (CTMA + Br - ), 1% (v/v) 2-propanol, 0.001M cyclohexylenediaminetetraacetic acid (DCTA) and sulfuric acid (pH 2) showed good selectivity in mixed reversed-phase and anion-exchange mode. The above mentioned separation order in which organomercurials are eluted far behind the void volume of the column, but before the mercury(II) peak is advantageous in all instances where mercury(II) is present in real samples in great excess. Environmental and agrochemical samples contain humic material which does not interfere in this particular system. The low cost photometric detection at 500 nm after post-column derivatization by CTMA + Br - micellized dithizone is almost free from interferences and enables detection limits at the 1-3 ng level (e.g., 0.1 ppm Hg) for 20 μl samples. (author)

  10. Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System

    Directory of Open Access Journals (Sweden)

    Shuanggen Wu

    2017-12-01

    Full Text Available The magnetic aqueous micellar two-phase system (MAMTPS has the advantages combined of magnetic solid phase extraction (MSPE and aqueous micellar two-phase system (AMTPS. Thus, MAMTPS based on Fe3O4 magnetic nanoparticles (MNPs and a nonionic surfactant Triton X-114 (TX-114 was developed for the extraction, enrichment and removal of three dyes (Congo red, methyl blue, and methyl violet from aqueous solutions in this study. The MNPs Fe3O4@NH2 was screened as the optimal MNPs benefiting the extraction. Then, the influencing factors of MNPs amount, TX-114 concentration, vibration time, and extraction temperature were investigated in detail. The results showed that the extraction efficiencies of three dyes almost reached 100% using MAMTPS under the optimal conditions; MAMTPS had higher extraction ability than the individual MSPE or AMTPS. Thus, MAMTPS had the advantages of simple operation, high extraction ability, easy recycling of MNPs, and short phase-separation time, which showspotential for use in the extraction and analysis of contaminants from water samples.

  11. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography.

    Science.gov (United States)

    Ashok, Vipin; Agrawal, Nitasha; Durgbanshi, Abhilasha; Esteve-Romero, Josep; Bose, Devasish

    2014-01-01

    A simple, fast, and robust micellar LC method was developed for the separation and identification of the nonpermitted color malachite green in green pea and some ready-to-eat foodstuffs. Malachite green (4-[(4-dimethylaminophenyl) phenyl-methyl]-N,N-dimethylaniline) is a hazardous dye that is used to treat fungal and protozoan infections in fish and is a common adulterant (coloring agent) in green pea and other green vegetables because of its green color. In the present work, malachite green was determined in various foodstuffs using a direct injection technique on an RP C18 column with isocratic elution. The optimum mobile phase consisted of 0.15 M sodium dodecyl sulfate (SDS), 6% pentanol buffered at pH 5. Detection was carried out at 620 nm. Malachite green was eluted in 9.2 min without any interference caused by endogenous compounds. Linearities (r > 0.9999), intraday and interday precision (RSD less than 1.00%) in micellar media, and robustness were studied for method validation. LOD and LOQ were 0.10 and 0.25 ppm, respectively. The simplicity of the developed method makes it useful for routine analysis in the area of food QC.

  12. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan

    2015-01-01

    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  13. Simultaneous Determination of Tizanidine, Nimesulide, Aceclofenac and Paracetamol in Tablets and Biological Fluids Using Micellar Liquid Chromatography.

    Science.gov (United States)

    Belal, Fathalla; Omar, Mahmoud A; Derayea, Sayed; Hammad, Mohamed A; Zayed, Sahar; Saleh, Safaa F

    2018-03-01

    A simple, sensitive and rapid micellar liquid chromatographic method was developed and validated for simultaneous determination of four drugs, namely, paracetamol (PAR), tizanidine (TZD), aceclofenac (ACF) and nimesulide (NMD). Good chromatographic separation was achieved using Cyano column and micellar mobile phase consisting of 120 mM sodium dodecyl sulfate, 25 mM phosphate buffer and 10% (V/V) butanol. The pH was adjusted to three using phosphoric acid. The total retention time was below 10 min. The analysis was performed at a flow rate of 1 mL/min and a column temperature of 40°C with direct UV detection at 230 nm. Diclofenac sodium was used as the internal standard. The proposed method was validated according to the ICH guidelines and was successfully applied to the analysis of these drugs in their tablet dosage forms with high accuracy. Limits of detection were found to be 0.03, 0.07, 0.033 and 0.11 μg/mL for PAR, ACF, TZD and NMD, respectively. The high sensitivity of developed method permitted its application to the in-vitro determination of the cited drugs in spiked human plasma and urine samples, and the obtained results were satisfactory. However, PAR could not be determined in spiked human urine because its peak overlapped with that of the urine peak.

  14. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  15. Effect of micellar environment on Marcus correlation curves for photoinduced bimolecular electron transfer reactions

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2005-07-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amine has been investigated in two cationic micelles, namely, cetyltrimethyl ammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the results have been compared with those observed earlier in sodium dodecyl sulphate (SDS) and triton-X-100 (TX-100) micelles for similar donor-acceptor pairs. Due to a reasonably high effective concentration of the amines in the micellar Stern layer, the steady-state fluorescence results show significant static quenching. In the time-resolved (TR) measurements with subnanosecond time resolution, contribution from static quenching is avoided. Correlations of the dynamic quenching constants (kqTR), as estimated from the TR measurements, show the typical bell-shaped curves with the free-energy changes (ΔG0) of the ET reactions, as predicted by the Marcus outersphere ET theory. Comparing present results with those obtained earlier for similar coumarin-amine systems in SDS and TX-100 micelles, it is seen that the inversion in the present micelles occurs at an exergonicity (-ΔG0>˜1.2-1.3eV) much higher than that observed in SDS and TX-100 micelles (-ΔG0>˜0.7eV), which has been rationalized based on the relative propensities of the ET and solvation rates in different micelles. In CTAB and DTAB micelles, the kqTR values are lower than the solvation rates, which result in the full contribution of the solvent reorganization energy (λs) towards the activation barrier for the ET reaction. Contrary to this, in SDS and TX-100 micelles, kqTR values are either higher or comparable with the solvation rates, causing only a partial contribution of λs in these cases. Thus, Marcus inversion in present cationic micelles is inferred to be the true inversion, whereas that in the anionic SDS and neutral TX-100 micelles are understood to be the apparent inversion, as envisaged from two-dimensional ET theory.

  16. Structural study of the AOT reverse micellar system. Influence of attractive interactions induced by the solubilisation of native and modified proteins

    International Nuclear Information System (INIS)

    Cassin, Guillaume

    1994-01-01

    This research thesis reports the study of the influence of intra-micellar attractions on the thermodynamic behaviour of reverse micellar systems, as well as of the effects induced by the solubilisation of natives or modified proteins. The author proposes a model to explain the decrease of attractions between droplets when the volume fraction occupied by reverse micelles increases. This model which highlights the importance of depletion forces between reverse micelles, allows the building up of a theoretical relationship between the bonding parameter and the volume fraction of reverse micelles. In order to understand the appearance of an attractive term related to the solubilisation of native cytochrome-c in these systems, this protein has been chemically modified. The author highlights the role of the charge born by a micellar probe on the thermodynamic behaviour of micro-emulsions. Then, the author applies the model of dimerizing adhesive spheres to reverse micellar systems containing native cytochrome-c. He shows that theoretical predictions of this model are in agreement with obtained experimental results [fr

  17. SALT-INDUCED TRANSITION FROM A MICELLAR TO A LAMELLAR LIQUID-CRYSTALLINE PHASE IN DILUTE MIXTURES OF ANIONIC AND NONIONIC SURFACTANTS IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    SEIN, A; ENGBERTS, JBFN; VANDERLINDEN, E; VANDEPAS, JC

    In dilute mixtures of anionic surfactant, sodium dodecylbenzenesulfonate (NaDoBS), and nonionic poly(ethylene oxide) alkyl monoether (C13-15E(7)) a transition from a micellar to a lamellar phase is found at high salting-out electrolyte (NaCit) concentrations. With an increase of the salt

  18. Computer Color Matching and Levelness of PEG-Based Reverse Micellar Decamethyl cyclopentasiloxane (D5 Solvent-Assisted Reactive Dyeing on Cotton Fiber

    Directory of Open Access Journals (Sweden)

    Alan Y. L. Tang

    2017-07-01

    Full Text Available The color matching and levelness of cotton fabrics dyed with reactive dye, in a non-aqueous environmentally-friendly medium of decamethylcyclopentasiloxane (D5, was investigated using the non-ionic surfactant reverse-micellar approach comprised of poly(ethylene glycol-based surfactant. The calibration dyeing databases for both conventional water-based dyeing and D5-assisted reverse micellar dyeing were established, along with the dyeing of standard samples with predetermined concentrations. Computer color matching (CCM was conducted by using different color difference formulae for both dyeing methods. Experimental results reveal that the measured concentrations were nearly the same as the expected concentrations for both methods. This indicates that the D5-assisted non-ionic reverse micellar dyeing approach can achieve color matching as good as the conventional dyeing system. The levelness of the dyed samples was measured according to the relative unlevelness indices (RUI, and the results reveal that the samples dyed by the D5 reverse micellar dyeing system can achieve good to excellent levelness comparable to that of the conventional dyeing system.

  19. Protolytic properties and complexation of DL-alpha-alanine and DL-alpha-valine and their dipeptides in aqueous and micellar solutions of surfactants

    NARCIS (Netherlands)

    Chernyshova, O. S.; Boychenko, Oleksandr; Abdulrahman, H.; Loginova, L. P.

    In this work we investigated the effect of the micellar media of anionic (sodium dodecylsulfate, SDS), cationic (cetylpiridinium chloride, CPC) and non-ionic (Brij-35) surfactants on the protolytic properties of amino acids DL-alpha-alanine, DL-alpha-valine and dipeptides

  20. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  1. Thermodynamics of Micellar Systems : Comparison of Mass Action and Phase Equilibrium Models for the Calculation of Standard Gibbs Energies of Micelle Formation

    NARCIS (Netherlands)

    Blandamer, Michael J.; Cullis, Paul M.; Soldi, L. Giorgio; Engberts, Jan B.F.N.; Kacperska, Anna; Os, Nico M. van

    1995-01-01

    Micellar colloids are distinguished from other colloids by their association-dissociation equilibrium in solution between monomers, counter-ions and micelles. According to classical thermodynamics, the standard Gibbs energy of formation of micelles at fixed temperature and pressure can be related to

  2. Effect of the hydrophilic block length on the surface-active and micellar thermodynamic properties of oxyethylene-oxybutylene diblock copolymers in aqueous solution

    International Nuclear Information System (INIS)

    Khan, A.; Usman, M.; Siddiq, M.; Fatima, G.; Harrison, W.

    2009-01-01

    The effect of hydrophilic block length on the surface and micellar thermodynamic properties of aqueous solution of E/sub 40/B/sub 8/, E/sub 80/B/sub 8/ and E/sub 120/B/sub 8/ diblock copolymers, were studied by surface tension measurements over a wide concentration and temperature range; where E stands for an oxyethylene unit and B for an oxybutylene unit. Like conventional surfactants, two breaks (change in the slope) were observed in the surface tension vs logarithm of concentration curve for all the three copolymers. Surface tension measurements were used to estimate surface excess concentrations (r m), area per molecule at air/water interface a and thermodynamic parameters for all adsorption of the pre-micellar region in the temperature range 20 to 50 degree C. Likewise the critical micelle concentration, CMC and thermodynamic parameters for micellization were also calculated for the post-micellar solutions at all temperatures. For comparison the thermodynamic parameters of adsorption and micellization are discussed in detail. The impact of varying E-block length and temperature on all calculated parameters are also discussed. This study shows the importance of hydrophobic-hydrophilic-balance (HHB) of copolymers on various surface and micellar properties. (author)

  3. Chemiluminescence from an oxidation reaction of rhodamine B with cerium(IV) in a reversed micellar medium of cetyltrimethylammonium chloride in 1-hexanol-cyclohexane/water.

    Science.gov (United States)

    Hasanin, Tamer H A; Tsunemine, Yusuke; Tsukahara, Satoshi; Okamoto, Yasuaki; Fujiwara, Terufumi

    2011-01-01

    The chemiluminescence (CL) emission, observed when rhodamine B (RB) in 1-hexanol-cyclohexane was mixed with cerium(IV) sulfate in sulfuric acid dispersed in a reversed micellar medium of cetyltrimethylammonium chloride (CTAC) in 1-hexanol-cyclohexane/water, was investigated using a flow-injection system. The CL emission from the oxidation reaction of RB with Ce(IV) was found to be stronger in the CTAC reversed micellar solution compared with an aqueous solution. Bearing on the enhancement effect of the CTAC reverse micelles on the RB-Ce(IV) CL, several studies including stopped-flow, fluorescence and electron spin resonance (ESR) spectrometries were performed. Rapid spectral changes of an intermediate in the RB-Ce(IV) reaction in the aqueous and reversed micellar solutions were successfully observed using a stopped-flow method. The effect of the experimental variables, i.e., oxidant concentration, sulfuric acid concentration, the mole fraction of 1-hexanol, water-to-surfactant molar concentration ratio, flow rate, upon the CL intensity was evaluated. Under the experimental conditions optimized for a flow-injection determination of RB based on the new reversed micellar-mediated CL reaction with Ce(IV), a detection limit of 0.08 µmol dm(-3) RB was achieved, and a linear calibration graph was obtained with a dynamic range from 0.5 to 20 µmol dm(-3). The relative standard deviation (n = 6) obtained at an RB concentration of 3 µmol dm(-3) was 3%.

  4. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  5. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  6. Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    Science.gov (United States)

    Mahajan, Shveta; Koul, Veena; Choudhary, Veena; Shishodia, Gauri; Bharti, Alok C.

    2013-01-01

    Polymer-SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g-1. Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l-1), indicating stability of the micellar formulation. SPION-polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T2) relaxivity of 260.4 mM-1 s-1. The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting.

  7. Cost Effective Polymer Solar Cells Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Sam-Shajing [Norfolk State Univ, Norfolk, VA (United States)

    2015-10-13

    The technical or research objective of this project is to investigate and develop new polymers and polymer based optoelectronic devices for potentially cost effective (or cost competitive), durable, lightweight, flexible, and high efficiency solar energy conversion applications. The educational objective of this project includes training of future generation scientists, particularly young, under-represented minority scientists, working in the areas related to the emerging organic/polymer based solar energy technologies and related optoelectronic devices. Graduate and undergraduate students will be directly involved in scientific research addressing issues related to the development of polymer based solar cell technology.

  8. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  9. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D field. First year report. R and D of new composite polymer electrolyte for battery; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu bun'ya. Denchiyo shinki fukugo polymer kei denkaishitsu no kenkyu kaihatsu (dai 1 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of new composite polymer electrolyte for Li secondary battery. The ultimate target of the development using this electrolyte is to get Li secondary battery markedly improved in safety/reliability which works at low temperature and controls thermal runaway. The composite polymer base electrolyte is composed of high molecular weight polyethylene oxide copolymer, ethylene oxide oligomer and Li salt, and it is finally cross-linked by heat or light. Studies were made in the following 6 fields: 1) R and D of the creation and optimization of new composite polymer electrolyte; 2) R and D of the commercialization of composite polymer electrolyte battery; 3) R and D on the safety of composite polymer electrolyte; 4) study of the synthesis of new electrolyte and catalytic activity of electrolyte-electrode interface; 5) R and D on polymer/oligomer composite electrolyte; and 6) comprehensive investigational research. (NEDO)

  10. Solvation dynamics in triton-X-100 and triton-X-165 micelles: Effect of micellar size and hydration

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-09-01

    Dynamic Stokes' shift measurements using coumarin 153 as the fluorescence probe have been carried out to study solvation dynamics in two nonionic micelles, viz., triton-X-100 (TX-100) and triton-X-165 (TX-165). In both the micelles, the solvent relaxation dynamics is biexponential in nature. While the fast solvation time τs1 is seen to be almost similar for both the micelles, the slow solvation time τs2 is found to be appreciably smaller in TX-165 than in TX-100 micelle. Dynamic light scattering measurements indicate that the TX-165 micelles are substantially smaller in size than that of TX-100. Assuming similar core size for both the micelles, as expected from the similar chemical structures of the nonpolar ends for both the surfactants, the Palisade layer is also indicated to be substantially thinner for TX-165 micelles than that of TX-100. The aggregation number of TX-165 micelles is also found to be substantially smaller than that of TX-100 micelles. Fluorescence spectral studies of C153 dye in the two micelles indicate that the Palisade layer of TX-165 micelles is more polar than that of TX-100 micelles. Fluorescence anisotropy measurements indicate that the microviscosity in the Palisade layer of TX-165 micelles is also lower than that of TX-100 micelles. Based on these results it is inferred that the structure of the Palisade layer of TX-165 micelles is quite loose and have higher degree hydration in comparison to that of TX-100 micelles. Due to these structural differences in the Palisade layers of TX-165 and TX-100 micelles the solvation dynamics is faster in the former micelles than in the latter. It has been further inferred that in the present systems the collective response of the water molecules at somewhat away from the probes is responsible for the faster component of the solvation time, which does not reflect much of the structural changes of the micellar Palisade layer. On the contrary, the slower solvation time component, which is mainly due to

  11. Polymers for enhanced oil recovery: fundamentals and selection criteria.

    Science.gov (United States)

    Rellegadla, Sandeep; Prajapat, Ganshyam; Agrawal, Akhil

    2017-06-01

    With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.

  12. Evaluation of the numerical solution of polymer flooding; Avaliacao da solucao numerica da injecao de polimeros em reservatorios de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Vinicius Ligiero; Pires, Adolfo Puime; Bedrikovetsky, Pavel G. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)

    2004-07-01

    Enhanced Oil Recovery (EOR) methods include injection of different fluids into reservoirs to improve oil displacement. The EOR methods may be classified into the following kinds: injection of chemical solutions, injection of solvents and thermal methods. The chemical fluids most commonly injected are polymers, surfactants, micellar solutions, etc. Displacement of oil by any of these fluids involves complex physico-chemical processes of interphase mass transfer, phase transitions and transport properties changes. These processes can be divided into two main categories: thermodynamical and hydrodynamical ones. They occur simultaneously during the displacement, and are coupled in the modern mathematical models of EOR. The model for one-dimensional displacement of oil by polymer solutions is analyzed in this paper. The Courant number is fixed, and we compare the results of different runs of a numerical simulator with the analytical solution of this problem. Each run corresponds to a different spatial discretization. (author)

  13. One-electron redox potentials and rate of electron transfer in aqueous micellar solution. Partially solubilized quinones

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The electron transfer equilibrium between AQS/AQS - and DQ/DQ - (where AQS is sodium 9,10-arthraquinone-2-sulfonate and DQ, duroquinone) has been studied by pulse radiolysis in aqueous micellar solutions of sodium lauryl sulfate. The equilibrium constant is changed as would be expected if AQS, AQS - , and DQ- were all mainly in the aqueous solution, and DQ distributed between the micelles and the aqueous phase with a distribution constant of K/sub D//N = 150 M -1 , in agreement with the independently determined value of this constant. The kinetics of the equilibration show, however, that electron transfer at the micelle surface is important, indicating that also AQS and DQ - are associated with the micelle to some extent. With reasonable assumptions regarding the distribution constants of these species (that have some independent support), the observed catalytic effect of the micelles on the electron transfer from DQ - to AQS can be understood

  14. The effect of caffeine on the reactions of the excited singlet state of pyrene in micellar sodium lauryl sulfate

    Science.gov (United States)

    Hashimoto, Shuichi; Thomas, J. Kerry

    1984-08-01

    The effect of caffeine on a few photo-induced reactions of pyrene in micellar sodium lauryl sulfate (NaLS) has been studied. In these systems caffeine complexes with the pyrene (K asso = 85 ± 10 M -1 and also with the other reactants, e.g. Cu 2+ or TI +. The efficiencies of reactions which involve contact, i.e. pyrene excimer formation, and quenching by TI + ions to give the triplet state of pyrene, are significantly reduced in the presence of caffeine, due to geometric inhibitions formed by the complexation processes. The kinetics of photo-induced electron transfer, e.g. between excited pyrene and Cu 2+, are not affected. However, the subsequent reactions of the products are modified and the yield of ionic products is markedly increased.

  15. Quantitative correlation between counterion (X binding affinity to cationic micelles and X – Induced micellar growth for substituted iodobenzoates (X

    Directory of Open Access Journals (Sweden)

    Nor Saadah M. Yusof

    2017-05-01

    Full Text Available A new semi-empirical kinetic (SEK method has been used to calculate the values of KXBr or RXBr (X represents substituted iodobenzoates, with KX and KBr representing CTABr micellar binding constants of counterions X− (in the presence of either spherical or non-spherical micelles and Br− (in the presence of only spherical micelles, respectively. Steady-shear rheological properties of mixed 0.015 M CTABr/[MX] aqueous solutions reveal the presence of flexible wormlike micelles where MX represents sodium 3- and 4-iodobenzoates. The maxima of the plots of viscosity vs. [MX] at 0.015 M CTABr for MX representing sodium 3- and 4-iodobenzoates support the presence of long linear and entangled wormlike micelles.

  16. On the predictions and limitations of the Becker–Döring model for reaction kinetics in micellar surfactant solutions

    KAUST Repository

    Griffiths, I.M.

    2011-08-01

    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-Döring theory for re-equilibration of surfactant solutions. © 2011 Elsevier Inc.

  17. Simultaneous Determination of Eosin-Yellow and Ponceau-S Using H-Point Standard Addition Method in Micellar Media

    Directory of Open Access Journals (Sweden)

    Amandeep Kaur

    2012-01-01

    Full Text Available H-point standard addition method (HPSAM is developed for simultaneous determination of eosin-Y and ponceau-s in micellar media. Nickel chloride (NiCl2 is used as chromogenic reagent for complexes formation of eosin-Y and ponceau-S food colorants. The measurements were carried out using sodium lauryl sulphate as a surfactant, in buffered solution at pH 6.0. The concentration range of 0.115-2.53 μg/mL of eosin-Y and 0.159-3.80 μg/mL of ponceau-S. The proposed procedures have been applied successfully for the simultaneous determination of eosin-Y and ponceau-S in synthetic binary mixtures and real samples.

  18. Determination of water-soluble vitamins in multivitamin dietary supplements and in artichokes by micellar electrokinetic chromatography.

    Science.gov (United States)

    Serni, Enrico; Audino, Valeria; Del Carlo, Sara; Manera, Clementina; Saccomanni, Giuseppe; Macchia, Marco

    2013-01-01

    Several procedures of extraction with solvents for the simultaneous determination of vitamin C and some vitamins belonging to the B group (thiamine, riboflavine, nicotinic acid and nicotinamide) in multivitamin preparations and in artichokes (Cynara cardunculus subsp. scolymus [L.] Hegi) were developed. Different experimental conditions were used, in terms of heat treatment, composition and pH of the extraction mixture, with particular attention to high-temperature steps; purification of the extracts with solid phase extraction and stabilisation through lyophilisation were discussed. Analyses of the extracts were conducted by capillary electrophoresis in micellar electrokinetic chromatography modality. Borate buffer at pH 8.2 was used, and sodium dodecyl sulphate was added to the background electrolyte as surfactant. A range of linearity was determined and calibration curves were plotted for all the analytes.

  19. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    International Nuclear Information System (INIS)

    Kundu, Subrata; Jayachandran, M.

    2013-01-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl 2 ·6H 2 O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.Graphical Abstract

  20. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1999-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  1. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase.

    Science.gov (United States)

    Wadsäter, Maria; Barauskas, Justas; Nylander, Tommy; Tiberg, Fredrik

    2014-05-28

    Lipid nanoparticles of reversed internal phase structures, such as cubic micellar (I2) structure show good drug loading ability of peptides and proteins as well as some small molecules. Due to their controllable small size and inner morphology, such nanoparticles are suitable for drug delivery using several different administration routes, including intravenous, intramuscular, and subcutaneous injection. A very interesting system in this regard, is the two component soy phosphatidylcholine (SPC)/glycerol dioleate (GDO) system, which depending on the ratio of the lipid components form a range of reversed liquid crystalline phases. For a 50/50 (w/w) ratio in excess water, these lipids have been shown to form a reversed cubic micellar (I2) phase of the Fd3m structure. Here, we demonstrate that this SPC/GDO phase, in the presence of small quantities (5-10 wt %) of Polysorbate 80 (P80), can be dispersed into nanoparticles, still with well-defined Fd3m structure. The resulting nanoparticle dispersion has a narrow size distribution and exhibit good long-term stability. In pharmaceutical applications, biodegradation pathways of the drug delivery vehicles and their components are important considerations. In the second part of the study we show how the structure of the particles evolves during exposure to a triacylglycerol lipase (TGL) under physiological-like temperature and pH. TGL catalyzes the lipolytic degradation of acylglycerides, such as GDO, to monoglycerides, glycerol, and free fatty acids. During the degradation, the interior phase of the particles is shown to undergo continuous phase transitions from the reversed I2 structure to structures of less negative curvature (2D hexagonal, bicontinuous cubic, and sponge), ultimately resulting in the formation of multilamellar vesicles.

  2. Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system.

    Science.gov (United States)

    Mashayekhi, Foad; Le, Alexander M; Nafisi, Parsa M; Wu, Benjamin M; Kamei, Daniel T

    2012-10-01

    The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05 μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.

  3. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure.

    Science.gov (United States)

    Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun

    2017-02-08

    Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.

  4. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links.

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.

  5. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  6. ASP project. Dissolved oxygen issues in ASP project

    Directory of Open Access Journals (Sweden)

    M.Y. Bondar

    2018-03-01

    Full Text Available The article presents the latest results of studies about the effect of dissolved oxygen on the efficiency of the ASP flooding project implemented by Salym Petroleum Development N.V.. Pilot project on experimental injection of anionic surfactant solutions, soda and polymer into the reservoir for enhanced oil recovery (ASP project has been implemented since 2016. The stability of one of the components of the ASP polymer is strongly dependent on the presence of iron, stiffness cations and dissolved oxygen in the water. Since the polymer is used for injection at two stages of the project, which are essential and the longest, at the design stage of ASP project a whole complex of polymer protection had been established against negative factors, in particular from the influence of oxygen, which causes not only oxygen corrosion but also irreversible destruction polymer chains. In the paper, studies on the stability of polymer solutions are described, an analysis of viscosity loss with time in the presence of iron and oxygen for polymer solutions is carried out. The choice of chemical deoxygenation method for the control of dissolved oxygen is substantiated. The program of laboratory studies of the ASP project and the analytical instruments used are described. The technological scheme of the ASP process is presented, and recommendations for the implementation of the technology are given.

  7. Intermolecular electron transfer between coumarin dyes and aromatic amines in Triton-X-100 micellar solutions: Evidence for Marcus inverted region

    Science.gov (United States)

    Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas

    2004-02-01

    Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG0) of ~0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor-acceptor close

  8. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    Science.gov (United States)

    2016-01-28

    STIR: RDRL-ROE-M: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds Thrust 1 of the STIR project examines the heat response of...polymer composites loaded with carbon nanotubes (CNTs) to microwave irradiation. This involves (1) a study of how CNT loading affects dielectric...properties of polymer composites and (2) a study of how CNT loading affects the heating response to microwave radiation. Our hypothesis is that the

  9. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be

  10. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  11. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  12. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  13. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  14. The added value of 3D polymer deposition on textiles

    NARCIS (Netherlands)

    Brinks, G.J. (Ger); Warmoeskerken, M.M.C.G. (Marijn)

    2013-01-01

    The working hypothesis for this research project is that it is possible to develop a new functional polymer printing process for the direct application of conductive polymer onto textiles. We will use the basic extrusion technology that is currently applied in 3D printing. Thus the aim is also

  15. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  16. Evaluation of new polymers for enhanced oil recovery; Avaliacao de novos polimeros para recuperacao aumentada de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Ana M.S.; Chagas, Emanuel F.; Costa, Marta; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The main polymers used nowadays for enhanced oil recovery, partially hydrolysed polyacrylamides and xanthan gum, show some limitations, such as low tolerance to salt presence and biological degradation. Therefore, it is necessary the improvement of the polymeric properties. With this goal, a new class of polymers, named 'water-soluble polymers hydrophobically modified' or simply 'amphiphilic polymers', has been developed. In this work, it was obtained a water-soluble acrylamide polymer hydrophobically modified with N,N-dihexyl acrylamide, using the micellar copolymerization technique. After the structural and rheological characterization of the copolymer, its performance in porous medium was evaluated through core flood tests in Botucatu sandstone. In the presence of sodium chloride, the amphiphilic copolymer presented a great increase of viscosity, besides values of resistance factor and of residual resistance factor higher than for the commercial polyacrylamide. This behavior can favor the oil recovery, mainly in high salinity and permeability reservoirs, by improving the water flooding sweep efficiency. (author)

  17. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    Science.gov (United States)

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  18. Micellar modified spectrophotometric determination of nitrobenzenes based upon reduction with tin(II), diazotisation and coupling with the Bratton-Marshall reagent.

    Science.gov (United States)

    Escrig-Tena, I; Alvarez Rodríguez, L; Esteve-Romero, J; García-Alvarez-Coque, M C

    1998-09-01

    Nitrobenzenes, such as the antibiotic chloramphenicol, the vasodilator nicardipine, and the herbicides dinitramin, dinobuton, fenitrothion, methylparathion, oxyfluorfen, parathion, pendimethalin, quintozene, and trifluralin, were determined by using a spectrophotometric method in the visible region (540 nm). The method was based on the reduction of the nitrobenzenes to arylamines with tin(II) chloride, diazotisation of the arylamines and coupling of the diazonium ions with the Bratton-Marshall reagent. The two latter reactions were performed in a micellar medium of sodium dodecyl sulphate. The linear calibration range was 2x10(-6) to 7x10(-5) M (r>0.999), with limits of detection in the 10(-7) M level, which is 2-6 fold lower with respect to the corresponding spectrophotometric procedure in non-micellar medium. The procedure was applied to the analysis of the compounds in commercial preparations (pharmaceuticals and herbicide formulations) and in water samples, with good recoveries.

  19. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  20. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  1. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  2. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  3. Micellar and analytical implications of a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate.

    Science.gov (United States)

    Sanan, Reshu; Mahajan, Rakesh Kumar

    2013-03-15

    With an aim to characterize the micellar aggregates of imidazolium based ionic liquids, a new potentiometric PVC sensor based on neutral ion-pair complexes of dodecylmethylimidazolium bromide-sodium dodecylsulfate (C12MeIm(+)DS(-)) has been developed. The electrode exhibited a linear response for the concentration range of 7.9×10(-5)-9.8×10(-3) M with a super-Nernstian slope of 92.94 mV/decade, a response time of 5 s and critical micellar concentration (cmc) of 10.09 mM for C12MeImBr. The performance of the electrode in investigating the cmc of C12MeImBr in the presence of two drugs [promazine hydrochloride (PMZ) and promethazine hydrochloride (PMT)] and three triblock copolymers (P123, L64 and F68) has been found to be satisfactory on comparison with conductivity measurements. Various micellar parameters have been evaluated for the binary mixtures of C12MeImBr with drugs and triblock copolymers using Clint's, Rubingh's, and Motomura's approach. Thus the electrode offers a simple, straightforward and relatively fast technique for the characterization of micellar aggregates of C12MeImBr, complementing existing conventional techniques. Further, the analytical importance of proposed C12MeIm(+)-ISE as end point indicator in potentiometric titrations and for direct determination of cationic surfactants [cetylpyridinium chloride (CPC), tetradecyltrimethylammonium bromide (TTAB), benzalkonium chloride (BC)] in some commercial products was judged by comparing statistically with classical two-phase titration methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  5. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  6. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein...... is mediated through specific transporters, it is thought that the accumulation can be alleviated through the attachment of ribavirin to a macromolecule. To this end, ribavirin was enzymatically modified into a monomer compatible with controlled polymerization techniques. The ribavirin monomers were...

  7. Polymer reaction engineering, an integrated approach

    NARCIS (Netherlands)

    Meyer, T.; Keurentjes, J.T.F.; Meyer, T.; Keurentjes, J.T.F.

    2005-01-01

    Summary This chapter contains sections titled: Polymer Materials A Short History of Polymer Reaction Engineering The Position of Polymer Reaction Engineering Toward Integrated Polymer Reaction Engineering The Disciplines in Polymer Reaction Engineering The Future: Product-inspired Polymer Reaction

  8. Poly(ester amide-Poly(ethylene oxide Graft Copolymers: Towards Micellar Drug Delivery Vehicles

    Directory of Open Access Journals (Sweden)

    Gregory J. Zilinskas

    2012-01-01

    Full Text Available Micelles formed from amphiphilic copolymers are promising materials for the delivery of drug molecules, potentially leading to enhanced biological properties and efficacy. In this work, new poly(ester amide-poly(ethylene oxide (PEA-PEO graft copolymers were synthesized and their assembly into micelles in aqueous solution was investigated. It was possible to tune the sizes of the micelles by varying the PEO content of the polymers and the method of micelle preparation. Under optimized conditions, it was possible to obtain micelles with diameters less than 100 nm as measured by dynamic light scattering and transmission electron microscopy. These micelles were demonstrated to encapsulate and release a model drug, Nile Red, and were nontoxic to HeLa cells as measured by an MTT assay. Overall, the properties of these micelles suggest that they are promising new materials for drug delivery systems.

  9. Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk.

    Science.gov (United States)

    Franzoi, M; Niero, G; Penasa, M; Cassandro, M; De Marchi, M

    2018-03-01

    Milk mineral content is a key trait for its role in dairy processes such as cheese-making, its use as source of minerals for newborns, and for all traits involving salt-protein interactions. This study investigated a new method for measuring mineral partition between soluble and micellar fractions in bovine milk after rennet coagulation. A new whey dilution step was added to correct the quantification bias due to whey trapped in curd and excluded volume. Moreover, the proposed method allowed the quantification of the diffusible volume after milk coagulation. Milk mineral content and concentration in whey, and diluted whey were quantified by acid digestion and inductively coupled plasma optical emission spectrometry. The repeatability of the method for micellar Ca, Mg, and K was between 2.07 and 8.96%, whereas reproducibility ranged from 4.01 to 9.44%. Recovery of total milk minerals over 3 spiking levels ranged from 92 to 97%. The proposed method provided an accurate estimation of micellar and soluble minerals in milk, and curd diffusible volume. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.

    Science.gov (United States)

    Calvo-Castro, Laura A; Schiborr, Christina; David, Franziska; Ehrt, Heidi; Voggel, Jenny; Sus, Nadine; Behnam, Dariush; Bosy-Westphal, Anja; Frank, Jan

    2018-05-01

    Grapevine-shoot extract Vineatrol30 contains abundant resveratrol monomers and oligomers with health-promoting potential. However, the oral bioavailability of these compounds in humans is low (˂1-2%). The aim of this study was to improve the oral bioavailability of resveratrol from vineatrol by micellar solubilization. Twelve healthy volunteers (six women, six men) randomly ingested a single dose of 500 mg vineatrol (30 mg trans-resveratrol, 75 mg trans-ε-viniferin) as native powder or liquid micelles. Plasma and urine were collected at baseline and over 24 h after intake. Resveratrol and viniferin were analyzed by HPLC. The area under the plasma concentration-time curve (AUC) and mean maximum plasma trans-resveratrol concentrations were 5.0-fold and 10.6-fold higher, respectively, after micellar supplementation relative to the native powder. However, no detectable amounts of trans-ε-viniferin were found in either plasma or urine. The transepithelial permeability of trans-resveratrol and trans-ε-viniferin across differentiated Caco-2 monolayers was consistent to the absorbed fractions in vivo. The oral bioavailability of trans-resveratrol from the grapevine-shoot extract Vineatrol30 was significantly increased using a liquid micellar formulation, without any treatment-related adverse effects, making it a suitable system for improved supplementation of trans-resveratrol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Precision moulding of polymer micro components

    DEFF Research Database (Denmark)

    Tosello, Guido

    2008-01-01

    The present research work contains a study concerning polymer micro components manufacturing by means of the micro injection moulding (µIM) process. The overall process chain was considered and investigated during the project, including part design and simulation, tooling, process analysis, part...... optimization, quality control, multi-material solutions. A series of experimental investigations were carried out on the influence of the main µIM process factors on the polymer melt flow within micro cavities. These investigations were conducted on a conventional injection moulding machine adapted...... to the production of micro polymer components, as well as on a micro injection moulding machine. A new approach based on coordinate optical measurement of flow markers was developed during the project for the characterization of the melt flow. In-line pressure measurements were also performed to characterize...

  12. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    Science.gov (United States)

    2017-09-01

    ER D C/ CE RL T R- 17 -3 0 DoD Corrosion Prevention and Control Program Demonstration of Thermally Sprayed Metal and Polymer Coatings...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...5 2.1.2 Thermoplastic polymer coating (flame spray

  13. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  14. Integrated Instrumentation for Light-Emitting Polymers Development

    National Research Council Canada - National Science Library

    Jen, Alex

    2000-01-01

    The major objective of this project is to develop an integrated instrumentation that combines the capability of performing spin coating of uniform polymer thin films under an oxygen and moisture free...

  15. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    International Nuclear Information System (INIS)

    Mahajan, Shveta; Choudhary, Veena; Koul, Veena; Shishodia, Gauri; Bharti, Alok C

    2013-01-01

    Polymer–SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g −1 . Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l −1 ), indicating stability of the micellar formulation. SPION–polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T 2 ) relaxivity of 260.4 mM −1 s −1 . The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting. (paper)

  16. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  17. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Abstract. Starting from the standard model of polymer motion – the Rouse model – .... reptation and the escape processes (creep motion) from the tube. .... scattering curves from an arrangement of small mesoscopic spheres also allows a.

  18. Micellar HPLC Method for Simultaneous Determination of Ethamsylate and Mefenamic Acid in Presence of Their Main Impurities and Degradation Products.

    Science.gov (United States)

    Ibrahim, Fawzia; Sharaf El-Din, Mohie K; El-Deen, Asmaa Kamal; Shimizu, Kuniyoshi

    2017-01-01

    An eco-friendly sensitive, rapid and less hazardous micellar liquid chromatographic method was developed and validated for the simultaneous analysis of ethamsylate (ETM) and mefenamic acid (MFA) in the presence of hydroquinone (HQ) and 2,3-dimethylaniline (DMA) the main impurities of ETM and MFA, respectively. Good chromatographic separation was attained using Eclipse XDB-C8 column (150 mm × 4.6 mm, 5 μm particle size) adopting UV detection at 300 nm with micellar mobile phase consisting of 0.12 M sodium dodecyl sulfate, 0.3% triethylamine and 15% 2-propanol in 0.02 M orthophosphoric acid (pH 7.0) at 1.0 mL/min. The analytes were well resolved in <6.0 min, ETM (t R = 1.55 min), HQ (t R = 1.95 min), MFA (t R = 4.55 min) and DMA (t R = 5.80 min). Different validation parameters were examined as recommended by international conference on harmonization (ICH) guidelines. The method was linear over the concentration ranges of 0.5-18.0, 0.5-20.0, 0.01-0.5 and 0.02-0.2 µg/mL with limits of detection of 0.118, 0.159, 0.005 and 0.005 µg/mL and limits of quantification of 0.358, 0.482, 0.014 and 0.015 µg/mL for ETM, MFA, HQ and DMA, respectively. The suggested method was successfully applied for the determination of the two drugs in their bulk powder, laboratory-prepared mixtures, single-ingredient and co-formulated tablets. The obtained results were in accordance with those of the comparison method. The method can also detect trace amounts of HQ and DMA as the main impurities of ETM and MFA, respectively, within the BP limit (0.1%) for both impurities. Furthermore, it is a stability-indicating one for the determination of ETM in its pure form, single-component tablet and co-formulated tablets with other drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links

    Directory of Open Access Journals (Sweden)

    Abolmaali SS

    2014-06-01

    Full Text Available Samira Sadat Abolmaali,1 Ali Tamaddon,1,2 Gholamhossein Yousefi,1,2 Katayoun Javidnia,3 Rasoul Dinarvand41Department of Pharmaceutics, Shiraz School of Pharmacy, 2Center for Nanotechnology in Drug Delivery, 3Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 4Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX, approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 µM. The

  20. Diamond structures grown from polymer composite nanofibers

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Martinová, L.; Pokorný, P.

    2013-01-01

    Roč. 5, č. 6 (2013), s. 519-521 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP205/12/0908 Institutional support: RVO:68378271 Keywords : chemical vapour deposition * composite polymer * nanocrystalline diamond * nanofiber sheet * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  2. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  3. Bond strength investigation of two shot moulded polymer

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    This report on the project “Bond strength investigation of two shot moulded polymers” has been submitted for fulfilling the requirements for the course “Experimental Plastic Technology – 42234” at IPL-DTU. Two shot moulding is a classic manufacturing process to combine two different polymers...... in a single product and it is getting more and more importance day by day. One of the biggest challenges of two shot moulding is to achieve a reasonably good bonding between two polymers. The purpose of this project is to investigate the effects of different process, material and machine parameters...... on the bond strength of two shot moulded polymers. For the experiments two engineering polymers (PS and ABS) were used. After all the experimental work, several parameters were found which could effectively control the bond strength of two shot moulded polymers. This report also presents different aspects...

  4. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found......The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...

  5. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  6. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  7. Field-Amplified Sample Injection-Micellar Electrokinetic Chromatography for the Determination of Benzophenones in Food Simulants

    Directory of Open Access Journals (Sweden)

    Cristina Félez

    2015-07-01

    Full Text Available A field-amplified sample injection-micellar electrokinetic chromatography (FASI-MEKC method for the determination of 14 benzophenones (BPs in a food simulant used in migration studies of food packaging materials was developed, allowing almost baseline separation in less than 21 min. The use of a 10 mM sodium dodecyl sulfate (SDS solution as sample matrix was mandatory to achieve FASI enhancement of the analyzed BPs. A 21- to 784-fold sensitivity enhancement was achieved with FASI-MEKC, obtaining limits of detection down to 5.1–68.4 µg/L, with acceptable run-to-run precisions (RSD values lower than 22.3% and accuracy (relative errors lower than 21.0%. Method performance was evaluated by quantifying BPs in the food simulant spiked at 500 µg/L (bellow the established specific migration limit for BP (600 µg/L by EU legislation. For a 95% confidence level, no statistical differences were observed between found and spiked concentrations (probability at the confidence level, p value, of 0.55, showing that the proposed FASI-MEKC method is suitable for the analysis of BPs in food packaging migration studies at the levels established by EU legislation.

  8. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  9. Pressurized liquid extracts from Spirulina platensis microalga. Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography.

    Science.gov (United States)

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Señoráns, Javier

    2004-08-27

    In this work, different extracts from the microalga Spirulina platensis are obtained using pressurized liquid extraction (PLE) and four different solvents (hexane, light petroleum, ethanol and water). Different extraction temperatures (115 and 170 degrees C) were tested using extraction times ranging from 9 to 15 min. The antioxidant activity of the different extracts is determined by means of an in vitro assay using a free radical method. Moreover, a new and fast method is developed using micellar electrokinetic chromatography with diode array detection (MEKC-DAD) to provide a preliminary analysis on the composition of the extracts. This combined application (i.e., in vitro assays plus MEKC-DAD) allowed the fast characterization of the extracts based on their antioxidant activity and the UV-vis spectra of the different compounds found in the extracts. To our knowledge, this work shows for the first time the great possibilities of the combined use of PLE-in vitro assay-MEKC-DAD to investigate natural sources of antioxidants.

  10. Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.

    Science.gov (United States)

    Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko

    2017-09-01

    We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

  11. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging

    Directory of Open Access Journals (Sweden)

    Sushil Raut

    2012-02-01

    Full Text Available Skin aging is an unavoidable aspect of human life. Premature skin aging can result from poor care, environmental pollutants, and ultraviolet radiation exposure. Wrinkles, lines, spots, uneven skin tone, and pigmentation are often indicators of skin aging. One cannot avoid aging but cosmetics and pharmaceutical approaches can minimize and delay the damage. Topical applications of biocompatible and biodegradable vehicles have been explored for delivering anti-aging compounds. Lecithin organogel (LO is an effective vehicle for topical delivery of many bioactive agents used in aging treatment. Lecithin is cell component isolated from soya beans or eggs and purified to show excellent gelation in non-polar solvents when combined with water. LO can form a heat-stable, resistant to microbial growth, visco-elastic, optically transparent, and non-birefringent micellar system. It serves as an organic medium to enhance dermal permeation of poorly permeable drugs by effectively partitioning into the skin. Its ability to dissolve in hydrophilic as well as in lipophilic drugs makes it a dynamic vehicle, which can be explored as a carrier for anti-aging agents.

  12. Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs Mixtures in Underground Contaminated Water in Oman

    Directory of Open Access Journals (Sweden)

    Mohamed Aoudia

    2011-12-01

    Full Text Available In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs in diesel contaminated underground water in Oman (Rustaq, Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb using an edible nonionic surfactant (Tween 80. The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb, the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(apyrene.

  13. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    Science.gov (United States)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  14. Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection.

    Science.gov (United States)

    Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei

    2006-07-07

    A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.

  15. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    Science.gov (United States)

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Macroscopic and microscopic structural integrity in magnetic colloids-cationic micellar solution: Rheology, SANS and magneto-optical study

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajesh, E-mail: rjp@bhavuni.ed [Department of Physics, Bhavnagar University, Bhavnagar 364 022 (India); Upadhyay, R.V., E-mail: rvu.as@ecchanga.ac.i [Charotar Institute of Applied Sciences, Education Campus, Changa 388421, Anand, Gujarat (India); Aswal, V.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Joshi, J.V.; Goyal, P.S. [UGC- DAE Consortium for Scientific Research, Mumbai Centre, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-03-15

    A stable mixture of two colloid system composed of double surfactant coated aqueous nanomagnetic fluid and aqueous micellar solution of cationic micelles of cetyletrymethyl ammonium bromide (CTABr) is prepared as a function of nanomagnetic fluid concentration. This mixed system is analyzed using three techniques such as zero field and field induced viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence measurements. In field induced viscosity measurement it is observed that even 20% magnetic fluid concentration in CTABr aqueous solution shows 75% increase in viscosity compared to pure magnetic fluid. This suggests that in presence of CTABr micelles, a novel magneto rheological effect for low concentration of magnetic fluid is observed. From SANS measurements it is observed that aggregation number and a/b ratio increases with magnetic fluid concentration and magnetic birefringence reveals non-superimpose behavior of normalized field induced retardation. Results of these experiments are compared and indicate zero fields and field induced structural integrity between magnetic particles and soft micelles. - Research Highlights: {yields} This study exhibits zero field and field induced structural integrity between soft micelles and magnetic nanoparticles. {yields} The techniques used are viscosity measurements, Small Angle Neutron Scattering technique and magneto-optical birefringence. {yields} Study is useful for magnetic hyperthermia via micelles, as soft actuators, as an artificial micro-muscles, micro-manipulators, etc.

  17. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Mu, Xiuni; Zhang, Qing; Wang, Renjie; Lv, Junjiang

    2016-11-01

    Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on-line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field-amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15- to 12-fold, the limits of detection of senkirkine and senecionine were 2∼5 μg/L. Senkirkine and senecionine have been detected in alkaloids (c) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction (a) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    Science.gov (United States)

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  19. Magnetic and micellar effects on photoreactions. 1. 13C isotopic enrichment of dibenzyl ketone via photolysis in aqueous detergent solution

    International Nuclear Information System (INIS)

    Turro, N.J.; Chow, M.F.; Chung, C.J.; Kraeutler, B.

    1981-01-01

    The photolysis of dibenzyl ketone (DBK) in homogeneous organic solutions and in micelle-containing detergent solutions has been investigated from the standpoint of determining the extent and location of 13 C enrichment that occurs. In a series of experiments it is established that for incomplete conversions the residual, recovered DBK is enriched in 13 C relative to the initial unphotolyzed DBK. The efficiency of the 13 C/ 12 C separation is shown to be characterized by an isotope enrichment parameter, α, which is independent of the extent of conversion. A combination of mass spectrometry and nuclear magnetic resonance spectroscopy provides support for the primary location of the 13 C enrichment at C-1 (the carbonyl carbon) with a lesser but significant enrichment at C-2 (the methylene carbon). A very small but experimentally distinct enrichment of the aromatic rings is indicated by 13 C NMR analysis. An isomer of DBK, 1-phenyl-4'-methylacetophenone (PMAP) is formed as a minor product of photolysis in micellar solutions. PMAP, like the recovered, residual DBK, is found to be substantially enriched in 13 C relative to the starting DBK. The magnitude of α is found to be significantly influenced by the application of laboratory magnetic fields to the photolysis sample. The latter result, along with the unusually large magnitude of α, suggests that the mechanism involved in isotopic enrichment is not dominated by kinetic mass isotope effects but rather by nuclear magnetic moment and/or magnetic spin isotope effects

  20. Solubilisation des hydrocarbures dans les solutions micellaires Influence de la structure et de la masse moléculaire Solubilization of Hydrocarbons in Micellar Solutions Influence of Structure and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Baviere M.

    2006-11-01

    (paraffines, résines, asphaltènes sur les propriétés interfaciales, d'une part avec le brut de Daqing, pour effectuer des essais complémentaires, d'autre part avec des constituants modèles en solution dans un solvant approprié. Optimizing the formulation of micellar surfactant solutions used for enhanced oil recovery consists in obtaining interfacial tensions that are as low as possible in multiphase systems resulting from the mixing of the injected solution with formation fluids. The solubilization of hydrocarbons by the micellar phases of such systems is linked directly to the interfacial efficiency of surfactants. Indeed, as has been shown by numerous research projects such as the one by Reed and Healy [1], the amount of hydrocarbons solubilized by the surfactant is all the greater as the interfacial tension between the micellar phase and the hydrocarbons is low. This solubilization depends in particular, although to a great extent, on the nature of the hydrocarbons or, for the processes we are concerned with here, of the hydrocarbon mixtures encountered [181. Likewise, the criteria generally used in applying the process to a reservoir may also be fulfilled (temperature, salinity of the water, viscosity of the oil, nature and permeability of the rock, whereas the chemical nature of the oil turns out to be responsible for very mediocre efficiency. Hence this insufficiency of criteria is revealed for relatively heavy oils such as the oil in the Daqing field in China, for which production may still depend on this recovery method, a priori. The solubilization of this oil by the surfactants normally used is extremely reduced and may perhaps even by almost nil. This particularly unfavorable behavior has brought out the need of specifying selection criteria for fields from the standpoint of the nature of the oil, so as to be able to assess the quality of a crude oil and to detect possible difficulties in applying the process-diff iculties linked to the composition of the

  1. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  2. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  3. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  4. Síntese de fotoprotetores e sua imobilização em poli(metacrilato de metilo: um projeto integrado de química orgânica, química de polímeros e fotoquímica Sunscreen synthesis and their immobilisition on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    Directory of Open Access Journals (Sweden)

    Dina Maria B. Murtinho

    2010-01-01

    Full Text Available Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics.

  5. Physically persistent stabilizers by functionalization of polymers

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Habicher, W. D.; Nešpůrek, Stanislav

    2001-01-01

    Roč. 164, - (2001), s. 389-399 ISSN 1022-1360. [Reactive Polymers in Inhomogeneous Systems, in Melts and at Interfaces. Dresden, 16.07.2000-19.07.2000] R&D Projects: GA MŠk ME 184; GA MŠk ME 372; GA AV ČR IAA1050901; GA ČR GA106/98/0700; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : nonvolatile antioxidants * photostabilizers * polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.634, year: 2001

  6. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    Science.gov (United States)

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  7. Report on the FY 1999 international research cooperation project. Development of polymer materials from renewable resources using biocatalyst; 1999 nendo seitai shokubai wo riyoshita saisei kano shigen kara no kobunshi sozai no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D were conducted of saccharide polymer using biocatalyst and polylactic acid using biocatalyst. In the R and D of technology to synthesize polymerizing saccharide ester, the use of ALP901 led to success in acquiring hydrophobic polymerizing saccharide ester and saccharide ester with phenol residue. A study was also made of technology to synthesize polymerizing divinyl ester. In the study of the optimization of enzyme reaction conditions, the optimum temperature of ester exchange was 50 degrees C, and also under much higher temperature, 100 degrees C, the enzyme reaction was found to proceed with. In the study of the synthesis of polylactic acid, it was impossible to obtain polymer in the case of using ester lactate. However, in the case of using lactic acid, polymer was acquired at the numerical average molecular weight of approximately 1,200. In the study of the optimization of enzyme reaction conditions, polymer with high molecular weight was acquired at the enzyme amount of 5-10%. It was found out that the conversion rate exceeds 98% in the case of doing the reaction for more than 3 days at the enzyme amount of 5-10%. (NEDO)

  8. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  9. SANS studies of polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.

    1985-01-01

    Some information provided by the application of small-angle neutron scattering concerning polymer structure is reviewed herein. Information about the polymer structure as examined in H 2 O/D 2 O mixtures is also provided. Examples of results of experiments performed at the National Center for Small-Angle Scattering Research are included

  10. Polymer based tunneling sensor

    Science.gov (United States)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  11. Polymers for Combating Biocorrosion

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-03-01

    Full Text Available Biocorrosion has been considered as big trouble in many industries and marine environments due to causing of great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anticorrosion and antimicrobial properties have been widely accepted as a novel and effective approach to prevent biocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbial corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: (i traditional polymers incorporated with biocides, (ii antibacterial polymers containing quaternary ammonium compounds, and (iii conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting antibacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization, and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  12. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  13. Polymers targeting habitual diseases

    Science.gov (United States)

    The use of polymeric drug conjugates mainly for the treatment for cancer therapy has been addressed, but these polymers also find their way in treatment of various lifestyle disorders like diabetes, hypertension, cardiovascular diseases etc. The focus is being laid to develop biodegradable polymer ...

  14. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  15. Theory of polymer blends

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.

    1989-01-01

    We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs

  16. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  17. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  18. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  19. Applications of micellar enzymology to clean coal technology. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  20. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  1. Tuning the probe location on zwitterionic micellar system with variation of pH and addition of surfactants with different alkyl chains: solvent and rotational relaxation studies.

    Science.gov (United States)

    Banerjee, Chiranjib; Mandal, Sarthak; Ghosh, Surajit; Rao, Vishal Govind; Sarkar, Nilmoni

    2012-09-13

    In this manuscript, we have modulated the location of an anionic probe, Coumarin-343 (C-343) in a zwitterionic (N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB-16)) micellar system by three different approaches. The effect of addition of the surfactant sodium dodecyl sulfate (SDS) and the room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium octylsulfate (EmimOs) and N,N-dimethylethanol hexanoate (DAH), to the micellar solution has been studied. The effect of pH variation has been studied as well using solvent and rotational measurements. Migration of the anionic probe, C-343, from the palisade layer of SB-16 micelle to the bulk water has been observed to varying extents with the addition of SDS and EmimOs. The effect is much more pronounced in the presence of SDS and can be ascribed to the presence of the long alkyl (dodecyl) chain on SDS which can easily orient itself and fuse inside the SB-16 micelle and facilitate the observed migration of the probe molecule. This phenomenon is confirmed by faster solvation and rotational relaxation of the investigated probe molecule. The analogous fusion process is difficult in case of EmimOs and DAH because of their comparatively smaller alkyl (octyl and hexanoate) chain. However, the direction of C-343 migration is reversed with the decrease of pH of the SB-16 micellar medium. An increase in the average solvation and rotational relaxation time of the probe in acidic medium has been observed. Since experimental conditions are maintained such that the probe molecules and the zwitterionic SB-16 micelles remain oppositely charged, the observed results can be attributed to the increased electrostatic interaction (attractive) between them. Temperature dependent study also supports this finding.

  2. Application of Fluorescence Emission for Characterization of Albendazole and Ricobendazole Micellar Systems: Elucidation of the Molecular Mechanism of Drug Solubilization Process.

    Science.gov (United States)

    Priotti, Josefina; Leonardi, Darío; Pico, Guillermo; Lamas, María C

    2018-04-01

    Albendazole (ABZ) and ricobendazole (RBZ) are referred to as class II compounds in the Biopharmaceutical Classification System. These drugs exhibit poor solubility, which profoundly affects their oral bioavailability. Micellar systems are excellent pharmaceutical tools to enhance solubilization and absorption of poorly soluble compounds. Polysorbate 80 (P80), poloxamer 407 (P407), sodium cholate (Na-C), and sodium deoxycholate (Na-DC) have been selected as surfactants to study the solubilization process of these drugs. Fluorescence emission was applied in order to obtain surfactant/fluorophore (S/F) ratio, critical micellar concentration, protection efficiency of micelles, and thermodynamic parameters. Systems were characterized by their size and zeta potential. A blue shift from 350 to 345 nm was observed when ABZ was included in P80, Na-DC, and Na-C micelles, while RBZ showed a slight change in the fluorescence band. P80 showed a significant solubilization capacity: S/F values were 688 for ABZ at pH 4 and 656 for RBZ at pH 6. Additionally, P80 micellar systems presented the smallest size (10 nm) and their size was not affected by pH change. S/F ratio for bile salts was tenfold higher than for the other surfactants. Quenching plots were linear and their constant values (2.17/M for ABZ and 2.29/M for RBZ) decreased with the addition of the surfactants, indicating a protective effect of the micelles. Na-DC showed better protective efficacy for ABZ and RBZ than the other surfactants (constant values 0.54 and 1.57/M, respectively), showing the drug inclusion into the micelles. Entropic parameters were negative in agreement with micelle formation.

  3. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.

    Science.gov (United States)

    Avital, Shlomo; Brumfeld, Vlad; Malkin, Shmuel

    2006-07-01

    To get an insight to the mechanism of the zeaxanthin-dependent non-photochemical quenching in photosystem II of photosynthesis, we probed the interaction of some xanthophylls with excited chlorophyll-a by trapping both pigments in micelles of triton X-100. Optimal distribution of pigments among micelles was obtained by proper control of the micelle concentration, using formamide in the reaction mixture, which varies the micellar aggregation number over three orders of magnitude. The optimal reaction mixture was obtained around 40% (v/v) formamide in 0.2-0.4% (v/v) triton X-100 in water. Zeaxanthin in the micellar solution exhibited initially absorption and circular dichroism spectral features corresponding to a J-type aggregate. The spectrum was transformed over time (half-time values vary-an average characteristic figure is roughly 20 min) to give features representing an H-type aggregate. The isosbestic point in the series of spectral curves favors the supposition of a rather simple reaction between two pure J and H-types dimeric species. Violaxanthin exhibited immediately stable spectral features corresponding to a mixture of J-type and more predominately H-type dimers. Lutein, neoxanthin and beta-carotene did not show any aggregated spectral forms in micelles. The spectral features in micelles were compared to spectra in aqueous acetone, where the assignment to various aggregated types was established previously. The specific tendency of zeaxanthin to form the J-type dimer (or aggregate) could be important for its function in photosynthesis. The abilities of five carotenoids (zeaxanthin, violaxanthin, lutein, neoxanthin and beta-carotene) to quench chlorophyll-a fluorescence were compared. Zeaxanthin, in its two micellar dimeric forms, and beta-carotene were comparable good quenchers of chlorophyll-a fluorescence. Violaxanthin was a much weaker quencher, if at all. Lutein and neoxanthin rather enhanced the fluorescence. The implications to non

  4. Use of micellar casein concentrate for Greek-style yogurt manufacturing: effects on processing and product properties.

    Science.gov (United States)

    Bong, D D; Moraru, C I

    2014-03-01

    The objective of this work was to develop and optimize an alternative make process for Greek-style yogurt (GSY), in which the desired level of protein was reached by fortification with micellar casein concentrate (MCC) obtained from milk by microfiltration. Two MCC preparations with 58 and 88% total protein (MCC-58 and MCC-88) were used to fortify yogurt milk to 9.80% (wt/wt) protein. Strained GSY of similar protein content was used as the control. Yogurt milk bases were inoculated with 0.02% (wt/wt) or 0.04% (wt/wt) direct vat set starter culture and fermented until pH 4.5. The acidification rate was faster for the MCC-fortified GSY than for the control, regardless of the inoculation level, which was attributed to the higher nonprotein nitrogen content in the MCC-fortified milk. Steady shear rate rheological analysis indicated a shear-thinning behavior for all GSY samples, which fitted well with the power law model. Dynamic rheological analysis at 5°C showed a weak frequency dependency of the elastic modulus (G') and viscous modulus (G") for all GSY samples, with G' > G", indicating a weak gel structure. Differences in the magnitude of viscoelastic parameters between the 2 types of GSY were found, with G' of MCC-fortified GSY yogurt. Differences were also noticed in water-holding capacity, which was lower for the MCC-fortified GSY compared with the control, attributed to lower serum protein content in the former. Despite some differences in the physicochemical characteristics of the final product compared with GSY manufactured by straining, the alternative process developed here is a feasible alternative to the traditional GSY make process, with environmental and possibly financial benefits to the dairy industry. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity.

    Science.gov (United States)

    Zhao, Wenrong; Hao, Jingcheng

    2016-09-15

    Colloidal chirality in wormlike micellar systems exclusively originated from achiral species and discussion of the role of secondary assembly of fiber-like aggregates in chirality generation were presented in this paper. Herein, formation of colloidal wormlike micelles for the first time incorporated chirality and redox-responsiveness into one design via noncovalent interaction. A dual-stimuli-responsive gel of wormlike micelles which were designed by employing a dual-responsive cationic surfactant (FTMA) and a strong gelator (AzoNa4) and regulated by redox reaction and host-guest inclusion is presented. Both the redox and host-guest interaction play an important role in regulating the viscosity and supramolecular chirality of gels of the wormlike micelles. The supramolecular chirality and viscosity of the wormlike micelle gels were switched reversibly by exerting chemical redox onto the ferrocenyl groups. For the amphiphile FTMA containing redox-active ferrocenyl group, reversible control of the oxidation state of ferrocenyl groups leads to the charge and hydrophobicity changes of FTMA, therefore change its self-assembly behavior. Of equal interest, β-CD successfully detached the wormlike micelles via the recognition-inclusion behavior with FTMA and invalidate the H-bond and hydrophobic interaction between FTMA and AzoH4. This designed system provides a new strategy to tune the supramolecular chirality of colloidal aggregates and explore the specific packing mode detail within the micelles or the secondary assembly of the inter-micelles. We anticipate this dual-responsive H-bond-directed chiral gel switch could propose a new strategy when researchers designing new, multi-responsive functional gel materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    Science.gov (United States)

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  7. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  8. Micellar HPLC and derivative spectrophotometric methods for the simultaneous determination of fluconazole and tinidazole in pharmaceuticals and biological fluids.

    Science.gov (United States)

    Belal, F; Sharaf El-Din, M K; Eid, M I; El-Gamal, R M

    2014-04-01

    Micellar high-performance liquid chromatography (HPLC) and first-derivative ultraviolet spectrophotometry were used to simultaneously determine fluconazole (FLZ) and tinidazole (TNZ) in combined pharmaceutical dosage forms. The derivative procedure is based on the linear relationship between the drug concentration and the first derivative amplitudes at 220 and 288 nm for FLZ and TNZ, respectively. The calibration graphs were linear in the range of 1.5-9.0 µg/mL for FLZ and 10.0-60.0 µg/mL for TNZ. Furthermore, an HPLC procedure with ultraviolet detection at 210 nm was developed. For the HPLC procedure, good chromatographic separation was achieved using an ODS C18 column (250 × 4.6 mm i.d.). The mobile phase containing 0.15M sodium dodecyl sulphate, 0.3% triethylamine and 12% n-propanol in 0.02M orthophosphoric acid at pH 5.5 was pumped at a flow rate of 1 mL/min. Indapamide was used as an internal standard. The method showed good linearity over the concentration ranges of 1.5-30.0 and 10.0-200.0 µg/mL, with limits of detection of 0.36 and 2.70 µg/mL and limits of quantification of 1.1 and 8.2 µg/mL for FLZ and TNZ, respectively. The suggested methods were successfully applied for the simultaneous analysis of the drugs in their laboratory prepared mixture, co-formulated tablet and single dosage forms. Moreover the second method was also extended to the determination of the drugs in biological fluids.

  9. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    Vitart, X.

    1991-01-01

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified [fr

  10. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427 ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  11. Cationic polymers in water treatment: Part 1: Treatability of water with cationic polymers

    Czech Academy of Sciences Publication Activity Database

    Polasek, P.; Mutl, Silvestr

    2002-01-01

    Roč. 28, č. 1 (2002), s. 69-82 ISSN 0378-4738 R&D Projects: GA AV ČR KSK2067107 Keywords : cationic polymers * treatability * water quality Subject RIV: BK - Fluid Dynamics Impact factor: 0.481, year: 2002

  12. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  13. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  14. SANS studies of polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.

    1984-10-01

    Before small-angle neutron scattering (SANS), chain conformation studies were limited to light and small angle x-ray scattering techniques, usually in dilute solution. SANS from blends of normal and labeled molecules could give direct information on chain conformation in bulk polymers. Water-soluble polymers may be examined in H 2 O/D 2 O mixtures using contrast variation methods to provide further information on polymer structure. This paper reviews some of the information provided by this technique using examples of experiments performed at the National Center for Small-Angle Scattering Research (NCSASR)

  15. Development of Silicate Polymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob

      The development of inorganic polymers is a new promising technology that may be used in many applications. The syntheses of inorganic polymers are normally carried out either by mixing an amorphous material for example silicium dioxide with a mineral base or dissolving metal oxids or metal...... hydroxide in acid and increase pH to saturation of the metal hydroxide. It is assumed that the syntheses of the inorganic polymer are carried out through polymerisation of oligomers (dimer, trimer) which provide the actual unit structures of the three dimensional macromolecular structure. In this work...

  16. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  17. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    respective ground states decide the conformational statistics of the polymer. For semiflexible polymers, the relevant non-dimensional quantity is lp/L, where lp is the persistence length (which is proportional to the bending modulus k) and L is the contour length of the polymer. In the limit, lp/L ≪ 1, the polymer behaves as.

  18. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  19. Fiscal 2000 regional consortium research and development project - regional new technology creation research and development. Practicalization of polymer back light (1st fiscal year); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki shingijutsu soshutsu kenkyu kaihatsu bun'ya seika hokokusho. Polymer back light no jitsuyoka ni kansuru kenkyu (daiichi nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are being exerted to develop technologies for fabricating polyvinyl carbazole thin film, 100 nm or less in average thickness and 400 mm square in area, for the construction of an exothermal sheet utilizing polymer semiconductor light emission diodes. Activities are conducted in the three fields of (1) the development of large area light emission sheets for use in polymer LEDs (light emission diodes), (2) the study of manufacturing technologies, and (3) the study of technologies for testing, analyzing, and evaluating the material. In field (1), a polyvinyl carbazole thin film is fabricated by the use of a low viscosity resin liquid application method, and a film fabrication technique is established for fabricating a thin film on a 400 mm square substrate within {+-}3 nm of film thickness error. In field (2), studies are conducted of an integrated large area thin film application/transportation system, application device mechanisms, and control sequences for application devices. Through studies of technical literature, exhibitions, and research institute meetings in Japan and overseas, it is concluded that the polymer back light is commercially feasible. (NEDO)

  20. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  1. Superabsorbent polymer; Kokyushusei porima

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M. [Sanyo Kasei Kogyo K.K., Tokyo (Japan)

    1996-07-20

    Superabsorbent polymer (SAP) which has the absorbing ability from several hundreds to thousand times of the dead weight possesses many other functions in addition to the absorbing function, and studies on its application to various fields have been carried on very actively. Particularly, about 90% of the demand is for the application to body fluid absorber in the fields of sanitary materials. Basic water absorption mechanism, kinds, production methods, special features and applied cases of superabsorbent polymer are introduced. SAP is structured by loosely bridged water soluble polymer, particularly polymer electrolyte, to provide water unsoluble and water swelling properties. The kinds and production methods of SAP are described. SAP has respiration property in addition to the high water absorbing power and water holding ability. It has carboxyl ions, and has ammonia absorption ability and polyvalent metal ion adsorption ability. Paper diapers, water holding materials for soil, and cold reserving materials are discussed as examples of SAP application. 3 refs., 2 figs., 1 tab.

  2. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  3. Piezoelectricity in polymers

    International Nuclear Information System (INIS)

    Kepler, R.G.; Anderson, R.A.

    1980-01-01

    Piezoelectricity and related properties of polymers are reviewed. After presenting a historical overview of the field, the mathematical basis of piezo- and pyroelectricity is summarized. We show how the experimentally measured quantities are related to the changes in polarization and point out the serious inequlity between direct and converse piezoelectric coefficients in polymers. Theoretical models of the various origins of piezo- and pyroelectricity, which include piezoelectricity due to inhomogeneous material properties and strains, are reviewed. Relaxational effects are also considered. Experimental techniques are examined and the results for different materials are presented. Because of the considerable work in recent years polyimylidene fluoride, this polymer receives the majority of the attention. The numerous applications of piezo-and pyroelectric polymers are mentioned. This article concludes with a discussion of the possible role of piezo- and pyroelectricity in biological system

  4. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  5. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  6. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  7. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent

    Directory of Open Access Journals (Sweden)

    Norma Aidé Cortez-Lemus

    2017-12-01

    Full Text Available A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition–fragmentation chain transfer (RAFT polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam (PNVCL, copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone (PNVCL-co-PNVP and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach, wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880–153,400 g/mol to yield star polymers of different sizes and lower critical solution temperature (LCST values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5–26 mol % were prepared; the hydrophobic segment (PVAc is located at the end of the star arms. Interestingly, when the PVAc content was 5–7 mol %, the hydrodynamic diameter (Dh value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP, form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX showing their potential in the temperature controlled release of this antineoplasic drug. The importance

  8. Assessment of potential increased oil production by polymer-waterflood in northern and southern mid-continent oil fields. Progress report for the quarter ending December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Six tasks are reported on: geological and engineering study of the DOE-Kewanee polymer-augmented waterflood, review of polymer injection program in this field, evaluation of results of polymer-augmented waterflood in this field, review of geological and engineering characteristics of oil fields now in waterflood as candidates for polymer augmentation, review of fields currently under primary production, and determination of ranges of future increased oil production from the polymer-water process in the project area.

  9. Radiation treated propylene polymers

    International Nuclear Information System (INIS)

    Hoffman, W.A. III; Baum, G.A.

    1982-01-01

    A method is provided for imparting improved strength and discoloration resistance to a stabilized propylene polymer that is to be exposed to a sterilizing dose of radiation. From 200 to 400 ppm of a phenolic antioxidant containing an isocyanurate group in its molecular structure, and a thiosynergist in an amount at least 6 times the weight of the antioxidant, are incorporated into the polymer before irradiation

  10. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  11. Radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Charlesby, A.

    1987-01-01

    There are several and quite distinct major fields of interest discussed in this paper. The first deals with the modification of existing polymers either by main-chain scission or by cross-linking; the theories of these patterns of behavior are summarized here, and typical examples of polymers that show these alternative reactions are given. These are not comprehensive to avoid this presentation becoming a catalog of similar patterns of behavior

  12. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2011-01-01

    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  13. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  14. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    Nielsen, Torben D.; Krebs, Frederik C.; Cruickshank, Craig; Foged, Soeren; Thorsen, Jesper

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  15. Novel Schiff base (DBDDP) selective detection of Fe (III): Dispersed in aqueous solution and encapsulated in silica cross-linked micellar nanoparticles in living cell.

    Science.gov (United States)

    Gai, Fangyuan; Yin, Li; Fan, Mengmeng; Li, Ling; Grahn, Johnny; Ao, Yuhui; Yang, Xudong; Wu, Xuming; Liu, Yunling; Huo, Qisheng

    2018-03-15

    This work demonstrated the synthesis of (4E)-4-(4-(diphenylamino)benzylideneamino)-1,2-dihydro-1,5- dimethyl-2-phenylpyrazol-3-one (DBDDP) for Fe (III) detection in aqueous media and in the core of silica cross-linked micellar nanoparticles in living cells. The free DBDDP performed fluorescence enhancement due to Fe (III)-promoted hydrolysis in a mixed aqueous solution, while the DBDDP-doped silica cross-linked micellar nanoparticles (DBDDP-SCMNPs) performed an electron-transfer based fluorescence quenching of Fe (III) in living cells. The quenching fluorescence of DBDDP-SCMNPs and the concentration of Fe (III) exhibited a linear correlation, which was in accordance with the Stern-Volmer equation. Moreover, DBDDP-SCMNPs showed a low limit of detection (LOD) of 0.1 ppm and an excellent selectivity against other metal ions. Due to the good solubility and biocompatibility, DBDDP-SCMNPs could be applied as fluorescence quenching nanosensors in living cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Micellar effect on the sensitivity of spectrophotometric Mo(VI) determination based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate ions

    International Nuclear Information System (INIS)

    Tascioglu, Senay; Sendil, Olcay; Beyreli, Sivekar

    2007-01-01

    In this study effects of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and nonionic (Triton X-100, TX100) micelles on the sensitivity of spectrophotometric molybdenum(VI) (Mo) determination based on the formation of a binary complex with gallic acid (GA) were investigated. Micellar CTAB was found to enhance the formation of Mo-GA complex. SDS micelles exerted an inhibitory effect while TX100 micelles had no effect on the complex formation. By the optimization of experimental conditions, the determination limit of the method suggested in the literature was lowered from 5.2 x 10 -5 to 4.6 x 10 -6 and to 5.7 x 10 -7 M, in the absence and presence of CTAB, respectively. The mechanism of the effect of CTAB was investigated by spectrophotometric titrations and it was concluded that CTAB did not form a ternary complex with Mo and GA. The stoichiometry of the complex, deduced from the results of spectrophotometric titrations, provided evidence for the formation of para-Mo 7 O 4 6- polyanions at pH 4.5, indicating to the formation of a charge transfer complex between these ions and GA in micellar medium

  17. Semi-empirical spectrophotometric (SESp) method for the indirect determination of the ratio of cationic micellar binding constants of counterions X⁻ and Br⁻(K(X)/K(Br)).

    Science.gov (United States)

    Khan, Mohammad Niyaz; Yusof, Nor Saadah Mohd; Razak, Norazizah Abdul

    2013-01-01

    The semi-empirical spectrophotometric (SESp) method, for the indirect determination of ion exchange constants (K(X)(Br)) of ion exchange processes occurring between counterions (X⁻ and Br⁻) at the cationic micellar surface, is described in this article. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphenyl)phthalamate ion (1⁻), which measures the effects of varying concentrations of inert inorganic or organic salt (Na(v)X, v = 1, 2) on absorbance, (A(ob)) at 310 nm, of samples containing constant concentrations of 1⁻, NaOH and cationic micelles. The observed data fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of K(X)(Br) (= K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X and Br⁻). This method gives values of K(X)(Br) for both moderately hydrophobic and hydrophilic X⁻. The values of K(X)(Br), obtained by using this method, are comparable with the corresponding values of K(X)(Br), obtained by the use of semi-empirical kinetic (SEK) method, for different moderately hydrophobic X. The values of K(X)(Br) for X = Cl⁻ and 2,6-Cl₂C6H₃CO₂⁻, obtained by the use of SESp and SEK methods, are similar to those obtained by the use of other different conventional methods.

  18. Micellar effect on metal-ligand complexes of Co(II, Ni(II, Cu(II and Zn(II with citric acid

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Gollapalli

    2009-12-01

    Full Text Available Chemical speciation of citric acid complexes of Co(II, Ni(II, Cu(II and Zn(II was investigated pH-metrically in 0.0-2.5% anionic, cationic and neutral micellar media. The primary alkalimetric data were pruned with SCPHD program. The existence of different binary species was established from modeling studies using the computer program MINIQUAD75. Alkalimetric titrations were carried out in different relative concentrations (M:L:X = 1:2:5, 1:3:5, 1:5:3 of metal (M to citric acid. The selection of best chemical models was based on statistical parameters and residual analysis. The species detected were MLH, ML2, ML2H and ML2H2. The trend in variation of stability constants with change in mole fraction of the medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of micellar media are also presented.

  19. Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application

    International Nuclear Information System (INIS)

    Bhardwaj, Tarun; Bhardwaj, Varun; Sharma, Kundan; Gupta, Abhishek; Cameotra, Swaranjit Singh; Sharma, Poonam

    2014-01-01

    Highlights: • The mixed micellar system was analyzed for sodium dodecyl sulfate and fluconazole. • Early micellization was found with CMC shift towards lower surfactant concentration. • Negative ΔG m o values suggested that the micelle formation is spontaneous and feasible. • Thermo-acoustical parameters revealed the existence of intermolecular interactions within the molecules. - Abstract: Micellar systems hold excellent drug delivery applications due to their capability to solubilize a large number of hydrophobic and hydrophilic molecules. In this present work, the mixed micelle formation between the anionic surfactant sodium dodecyl sulfate (SDS) and the ‘Azole’ derivative antifungal drug fluconazole (FLZ) have been studied at four temperatures in different hydro-ethanolic solutions. The critical micelle concentration (CMC) was determined by specific conductance techniques and the experimental data was used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Early micellization was found with critical micelle concentration shifting towards lower concentration (CMC) than the standard concentration of SDS in water at 25 °C suggesting that drug and the solvent system facilitates the micellization process. In addition, the transport properties were examined by employing controlled approaches likely, apparent molar volume (ϕ v ), apparent molar adiabatic compression (ϕ k ), and isentropic compression (κ s ) of SDS in presence of FLZ. These parameters revealed the existence of intermolecular interactions within the molecules. Therefore, this study would cast light on utilizing surfactant immobilized FLZ system for better topical biological action

  20. Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems.

    Science.gov (United States)

    Vicente, Filipa A; Cardoso, Inês S; Sintra, Tânia E; Lemus, Jesus; Marques, Eduardo F; Ventura, Sónia P M; Coutinho, João A P

    2017-09-21

    Aqueous micellar two-phase systems (AMTPS) hold a large potential for cloud point extraction of biomolecules but are yet poorly studied and characterized, with few phase diagrams reported for these systems, hence limiting their use in extraction processes. This work reports a systematic investigation of the effect of different surface-active ionic liquids (SAILs)-covering a wide range of molecular properties-upon the clouding behavior of three nonionic Tergitol surfactants. Two different effects of the SAILs on the cloud points and mixed micelle size have been observed: ILs with a more hydrophilic character and lower critical packing parameter (CPP formation of smaller micelles and concomitantly increase the cloud points; in contrast, ILs with a more hydrophobic character and higher CPP (CPP ≥ 1) induce significant micellar growth and a decrease in the cloud points. The latter effect is particularly interesting and unusual for it was accepted that cloud point reduction is only induced by inorganic salts. The effects of nonionic surfactant concentration, SAIL concentration, pH, and micelle ζ potential are also studied and rationalized.

  1. Selective micellar electrokinetic chromatographic method for simultaneous determination of some pharmaceutical binary mixtures containing non-steroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Michael E. El-Kommos

    2013-02-01

    Full Text Available A simple and selective micellar electrokinetic chromatographic (MEKC method has been developed for the analysis of five pharmaceutical binary mixtures containing three non-steroidal anti-inflammatory drugs (NSAIDs. The investigated mixtures were Ibuprofen (IP–Paracetamol (PC, Ibuprofen (IP–Chlorzoxazone (CZ, Ibuprofen (IP–Methocarbamol (MC, Ketoprofen (KP–Chlorzoxazone (CZ and Diclofenac sodium (DS–Lidocaine hydrochloride (LC. The separation was run for all mixtures using borate buffer (20 mM, pH 9 containing 15% (v/v methanol and 100 mM sodium dodecyl sulphate (SDS at 15 kV and the components were detected at 214 nm. Different factors affecting the electrophoretic mobility of the seven investigated drugs were studied and optimized. The method was validated according to international conference of harmonization (ICH guidelines and United States pharmacopoeia (USP. The method was applied to the analysis of five pharmaceutical binary mixtures in their dosage forms. The results were compared with other reported high performance liquid chromatographic methods and no significant differences were observed. Keywords: Capillary electrophoresis, Micellar electrokinetic chromatographic method, Non-steroidal anti-inflammatory drugs, Pharmaceutical binary mixtures, Pharmaceutical analysis

  2. A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection.

    Science.gov (United States)

    Esteve-Romero, Josep; Albiol-Chiva, Jaume; Peris-Vicente, Juan

    2016-07-05

    Therapeutic drug monitoring is a common practice in clinical studies. It requires the quantification of drugs in biological fluids. Micellar liquid chromatography (MLC), a well-established branch of Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), has been proven by many researchers as a useful tool for the analysis of these matrices. This review presents several analytical methods, taken from the literature, devoted to the determination of several monitorable drugs in serum and urine by micellar liquid chromatography. The studied groups are: anticonvulsants, antiarrhythmics, tricyclic antidepressants, selective serotonin reuptake inhibitors, analgesics and bronchodilators. We detail the optimization strategy of the sample preparation and the main chromatographic conditions, such as the type of column, mobile phase composition (surfactant, organic solvent and pH), and detection. The finally selected experimental parameters, the validation, and some applications have also been described. In addition, their performances and advantages have been discussed. The main ones were the possibility of direct injection, and the efficient chromatographic elution, in spite of the complexity of the biological fluids. For each substance, the measured concentrations were accurate and precise at their respective therapeutic range. It was found that the MLC-procedures are fast, simple, inexpensive, ecofriendly, safe, selective, enough sensitive and reliable. Therefore, they represent an excellent alternative for the determination of drugs in serum and urine for monitoring purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Conductive polymer composites with carbonic fillers: Shear induced electrical behaviour

    Czech Academy of Sciences Publication Activity Database

    Starý, Zdeněk; Krückel, J.

    2018-01-01

    Roč. 139, 14 March (2018), s. 52-59 ISSN 0032-3861 R&D Projects: GA ČR(CZ) GA17-05654S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer-matrix composites * carbon fibres * electrical properties Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer sci ence Impact factor: 3.684, year: 2016

  4. Microporous conjugated polymers via homopolymerization of 2,5-diethynylthiophene

    Czech Academy of Sciences Publication Activity Database

    Bondarev, D.; Sivkova, Radoslava; Šuly, P.; Polášková, M.; Krejčí, O.; Křikavová, R.; Trávníček, Z.; Zukal, Arnošt; Kubů, Martin; Sedláček, J.

    2017-01-01

    Roč. 92, July (2017), s. 213-219 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-09637S Institutional support: RVO:61389013 ; RVO:61388955 Keywords : thiophene * microporous * catalysis Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UFCH-W) OBOR OECD: Polymer science; Polymer science (UFCH-W) Impact factor: 3.531, year: 2016

  5. The role of the solvent in PMMA gel polymer\

    Czech Academy of Sciences Publication Activity Database

    Vondrák, J.; Musil, M.; Sedlaříková, M.; Kořínek, Radim; Bartušek, Karel; Fedorková, A.

    2016-01-01

    Roč. 2, č. 1 (2016), s. 6-12 E-ISSN 2300-3545 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : gel polymer electrolyte * TGA * NMR spectroscopy * conductivity * sodium polymer electrolyte Subject RIV: BH - Optics, Masers, Lasers https://www.degruyter.com/view/j/eetech.2016.2.issue-1/eetech-2016-0002/eetech-2016-0002.xml

  6. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  7. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-11-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  8. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-01-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  9. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel polymer vectors of Cu-64

    Czech Academy of Sciences Publication Activity Database

    Kozempel, J.; Hrubý, Martin; Nováková, Michaela; Kučka, Jan; Lešetický, L.; Lebeda, Ondřej

    2009-01-01

    Roč. 97, - (2009), s. 747-752 ISSN 0033-8230 R&D Projects: GA AV ČR IAA400480616; GA AV ČR KJB4050408; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10480505 Keywords : copper-64 * polymer * chelating group Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.459, year: 2009

  11. Polymer nanotherapeutics to overcome multidrug resistance

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Kostka, Libor; Sivák, Ladislav; Filippov, Sergey K.; Pechar, Michal; Janoušková, Olga; Šírová, Milada; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 92 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S; GA MZd(CZ) NV16-28600A Institutional support: RVO:61389013 ; RVO:61388971 Keywords : polymer- drug carrier * micelle * controlled drug release Subject RIV: CD - Macromolecular Chemistry

  12. Phototriggered functionalization of hierarchically structured polymer brushes

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Kostina, Nina Yu.; Bruns, M.; Rodriguez-Emmenegger, Cesar; Barner-Kowollik, C.

    2015-01-01

    Roč. 31, č. 21 (2015), s. 5899-5907 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * antifouling * click chemistry Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.993, year: 2015

  13. Thermoresponsive polymer micelles as potential nanosized cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Janoušková, Olga; Ulbrich, Karel; Pola, Robert; Blažková, Jana; Filippov, Sergey K.; Etrych, Tomáš; Pechar, Michal

    2015-01-01

    Roč. 16, č. 8 (2015), s. 2493-2505 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : RAFT polymerization * polymer therapeutics * thermo-responsive micelles Subject RIV: CE - Biochemistry Impact factor: 5.583, year: 2015

  14. Antifouling polymer brushes displaying antithrombogenic surface properties

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, Ognen; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Roč. 17, č. 3 (2016), s. 1179-1185 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * surface characterization * antifouling surfaces Subject RIV: BO - Biophysics Impact factor: 5.246, year: 2016

  15. Investigation of some locally water-soluble natural polymers as circulation loss control agents during oil fields drilling

    Directory of Open Access Journals (Sweden)

    A.M. Alsabagh

    2014-03-01

    Full Text Available Eliminating or controlling lost circulation during drilling process is costly and time-consuming. Polymers play an important role in mud loss control for their viscosity due to their high molecular weight. In this paper, three natural cellulosic polymers (carboxymethyl cellulose, guar gum and potato starch were investigated as lost circulation control material by measuring different filtration parameters such as; spurt loss, fluid loss and permeability plugging tester value according to the American Petroleum Institute (API standard. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 and 300 psi, using 10, 60 and 90 ceramic discs. From the obtained data, it was found that the 0.1% from the carboxymethyl cellulose exhibited the best results in the filtration parameters among 0.3% guar gum and 0.6% potato starch. At the same time the carboxymethyl cellulose (CMC enhanced the rheological properties of the drilling mud better than the two other used natural polymers in the term of gel strength, thixotropy, plastic and apparent viscosity. These results were discussed in the light of the adsorption and micellar formation.

  16. Responsive Amphiphilic Polymers and Membranes for Water Remediation

    National Research Council Canada - National Science Library

    McCormick, Charles

    1998-01-01

    .... The foulant is solubilized within the micellar hydrophobic core and the stream is then passed through a microporous membrane, such that most of the organic solute and surfactant remain in the retentate...

  17. Reverse micellar synthesis, structural characterization and dielectric properties of Sr-doped BaZrO_3 nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Ubaidullah, Mohd; Shahazad, Mohd; Kumar, Dinesh; Al-Hartomy, Omar A.

    2017-01-01

    Sr-doped BaZrO_3 nanoparticles with strontium content varying from 5 to 20 mol % were successfully synthesized by reverse micellar method at 900 °C for the first time. Systematic studies have been carried out to establish the structural and electrical properties of the as prepared nanoparticles. These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy, BET surface area and dielectric measurements. X-ray diffraction analysis showed the formation of monophasic and highly crystalline nanoparticles which could be indexed in cubic BaZrO_3 with contraction of lattice on strontium substitution. A monotonic shift of diffraction pattern towards higher angel confirms the formation of solid solutions of Ba_1_−_xSr_xZrO_3 (0.05 ≤ x ≤ 0.20) which was corroborating well with lattice parameter studies. Transmission electron microscopic studies showed the formation of cubic, spherical and hexagonal nanoparticles with an average grain size of 40–65 nm. Energy dispersive X-ray spectroscopic studies confirmed the presence of dopant (Sr"2"+) in the BaZrO_3 matrix and estimated chemical species corroborate well with the loaded composition. Specific surface area of the solid solution comes out to be in the range of 104–244 m"2 g"-"1. Smallest particle of size 40 nm shows highest surface area 244 m"2 g"-"1 for 20 mol% Sr-doped BaZrO_3. Dielectric and impedance studies were also carried out as a function of frequency and temperature to explore the electrical properties of Sr-doped BaZrO_3. The dielectric constant of Ba_1_−_xSr_xZrO_3 (0.05 ≤ x ≤ 0.20) was found to be in the range of 13–25 for x = 0.05 to x = 0.20 with nearly similar dielectric loss of the order of 0.02. The conductance increases linearly with increase in frequency at room temperature, however the impedance has an inverse effect. - Highlights: • Monophasic nanocrystalline Ba_1_−_xSr_xZrO_3 at low dopant concentration using reverse micelles for the first

  18. Reverse micellar synthesis, structural characterization and dielectric properties of Sr-doped BaZrO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Ubaidullah, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); School of Science and Technology, Glocal University, Mirzapur, Saharanpur, 247121, Uttar Pradesh (India); Shahazad, Mohd [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025 (India); Kumar, Dinesh [Department of Chemistry, Banasthali University, Tonk, Rajasthan, 304022 (India); Al-Hartomy, Omar A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia)

    2017-01-01

    Sr-doped BaZrO{sub 3} nanoparticles with strontium content varying from 5 to 20 mol % were successfully synthesized by reverse micellar method at 900 °C for the first time. Systematic studies have been carried out to establish the structural and electrical properties of the as prepared nanoparticles. These nanoparticles were characterized using powder X-ray diffraction, transmission electron microscopy, BET surface area and dielectric measurements. X-ray diffraction analysis showed the formation of monophasic and highly crystalline nanoparticles which could be indexed in cubic BaZrO{sub 3} with contraction of lattice on strontium substitution. A monotonic shift of diffraction pattern towards higher angel confirms the formation of solid solutions of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) which was corroborating well with lattice parameter studies. Transmission electron microscopic studies showed the formation of cubic, spherical and hexagonal nanoparticles with an average grain size of 40–65 nm. Energy dispersive X-ray spectroscopic studies confirmed the presence of dopant (Sr{sup 2+}) in the BaZrO{sub 3} matrix and estimated chemical species corroborate well with the loaded composition. Specific surface area of the solid solution comes out to be in the range of 104–244 m{sup 2} g{sup -1}. Smallest particle of size 40 nm shows highest surface area 244 m{sup 2} g{sup -1} for 20 mol% Sr-doped BaZrO{sub 3}. Dielectric and impedance studies were also carried out as a function of frequency and temperature to explore the electrical properties of Sr-doped BaZrO{sub 3}. The dielectric constant of Ba{sub 1−x}Sr{sub x}ZrO{sub 3} (0.05 ≤ x ≤ 0.20) was found to be in the range of 13–25 for x = 0.05 to x = 0.20 with nearly similar dielectric loss of the order of 0.02. The conductance increases linearly with increase in frequency at room temperature, however the impedance has an inverse effect. - Highlights: • Monophasic nanocrystalline Ba{sub 1

  19. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy.

    Directory of Open Access Journals (Sweden)

    Marwan Moussa

    Full Text Available To determine the effect of different drug-loaded nanocarriers (micelles and liposomes on delivery and treatment efficacy for radiofrequency ablation (RFA combined with nanodrugs.Fischer 344 rats were used (n = 196. First, single subcutaneous R3230 tumors or normal liver underwent RFA followed by immediate administration of i.v. fluorescent beads (20, 100, and 500 nm, with fluorescent intensity measured at 4-24 hr. Next, to study carrier type on drug efficiency, RFA was combined with micellar (20 nm or liposomal (100 nm preparations of doxorubicin (Dox; targeting HIF-1α or quercetin (Qu; targeting HSP70. Animals received RFA alone, RFA with Lipo-Dox or Mic-Dox (1 mg i.v., 15 min post-RFA, and RFA with Lipo-Qu or Mic-Qu given 24 hr pre- or 15 min post-RFA (0.3 mg i.v.. Tumor coagulation and HIF-1α or HSP70 expression were assessed 24 hr post-RFA. Third, the effect of RFA combined with i.v. Lipo-Dox, Mic-Dox, Lipo-Qu, or Mic-Qu (15 min post-RFA compared to RFA alone on tumor growth and animal endpoint survival was evaluated. Finally, drug uptake was compared between RFA/Lipo-Dox and RFA/Mic-Dox at 4-72 hr.Smaller 20 nm beads had greater deposition and deeper tissue penetration in both tumor (100 nm/500 nm and liver (100 nm (p<0.05. Mic-Dox and Mic-Qu suppressed periablational HIF-1α or HSP70 rim thickness more than liposomal preparations (p<0.05. RFA/Mic-Dox had greater early (4 hr intratumoral doxorubicin, but RFA/Lipo-Dox had progressively higher intratumoral doxorubicin at 24-72 hr post-RFA (p<0.04. No difference in tumor growth and survival was seen between RFA/Lipo-Qu and RFA/Mic-Qu. Yet, RFA/Lipo-Dox led to greater animal endpoint survival compared to RFA/Mic-Dox (p<0.03.With RF ablation, smaller particle micelles have superior penetration and more effective local molecular modulation. However, larger long-circulating liposomal carriers can result in greater intratumoral drug accumulation over time and reduced tumor growth. Accordingly

  20. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation

    Directory of Open Access Journals (Sweden)

    Nakamura I

    2017-02-01

    Full Text Available Iwao Nakamura, Eiji Ichimura, Rika Goda, Hitomi Hayashi, Hiroko Mashiba, Daichi Nagai, Hirofumi Yokoyama, Takeshi Onda, Akira Masuda Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan Abstract: In our previous rodent studies, the paclitaxel (PTX-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE. Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG. Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the

  1. Treatment of aqueous outflows by complexation in micellar media and precipitation with a sol-gel process

    International Nuclear Information System (INIS)

    Lavaud, Cyril

    2013-01-01

    Being able to deal with aqueous outflows from treatment sites in the Hague is a major environmental issue. These outflows are contaminated with organic substances and elements with residual radioactivity. This work deals with the development and optimization of the process of de-polluting, and we aim at removing all pollution from the outflow, and produce a final waste compatible with traditional conditioning matrices in the nuclear area. The separation process consists of two steps: dissolving the pollution in the surfactants micelles, and precipitating a mineral phase via sol-gel transition. Within this thesis, only pollution originating from radionuclides is studied. During the first step, our strategy is to use complexing molecules able to interact with ions and to form mainly solvable complexes at the core of surfactant micelles. Thereafter, the second step consisted to add silica precursor which, after hydrolyse and polycondensation, makes it possible to aggregate those micelles that contain complexes together, and to form a silica phase which precipitates in an in-situ fashion. The goal to de-pollute the outflow was achieved, and the final waste thus produced is a silica powder that contains the micelles and the pollution which, after calcination, is compatible with conditioning matrices such as glass or concrete. A reference system for which the separation process is optimal was defined throughout various studies. This system contains a non-ionic surfactant (P123), an ion that surrogates radionuclides (neodymium), a complexing agent (HDEHP) and a silica precursor (TEOS). Hence, this system was further studied in order to broaden the application scope of the separation process, as well as to understand the mechanisms involved, during the complexation of the ions and the micellar solubilization and during the formation of the silica powder. This study was performed using diffusion, imaging and spectrometry techniques.To conclude, the alternative de

  2. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  3. Polymers for nuclear materials processing

    International Nuclear Information System (INIS)

    Jarvinen, G.; Benicewicz, B.; Duke, J.

    1996-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The use of open-celled microcellular foams as solid sorbents for metal ions and other solutes could provide a revolutionary development in separation science. Macroreticular and gel-bead materials are the current state-of-the-art for solid sorbents to separate metal ions and other solutes from solution. The new polymer materials examined in this effort offer a number of advantages over the older materials that can have a large impact on industrial separations. The advantages include larger usable surface area in contact with the solution, faster sorption kinetics, ability to tailor the uniform cell size to a specific application, and elimination of channeling and packing instability

  4. Fiscal 1993 R and D project for industrial science and technology. Report on results of R and D on silicon-based high polymer material; 1993 nendo keisokei kobunshi zairyo no kenkyu kaihtsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    R and D was conducted on the silicon-based high polymer that are hoped for superior electronic/optical functions and heat/flame-resistant dynamical properties, for the purpose of establishing fundamental technologies such as molecular design, synthesis, material forming and evaluation method, with the fiscal 1993 results summarized. In the synthesis of electrically conductive silicon-based polymeric materials, a concept of indirect doping was presented, revealing that workability and electrically conductive properties were enhanced by additives. In the synthesis of new silicon-based polymeric materials capable of circuit plotting, studies were made on Si-Si bond forming reaction of alkoxydisilanes as well as on the correlation between polysilane skeleton structure and its property. In the synthesis of new silicon-based polymeric materials having for example a light-emitting function, evaluation was made on synthesis and light emitting property concerning the compound that controlled the silicon skeleton structure. In addition, R and D was conducted on the precision synthesis technology of compounds, on which manifestation of photoelectric conversion function was expected. Further, research was done on unsaturated and high coordination organosilicic compound, functionality of silicon-based high polymer, and synthesis/polymerization of silicon monomer. (NEDO)

  5. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  6. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  7. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  8. Supercritical transitiometry of polymers.

    Science.gov (United States)

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  9. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  10. Polymer OLED White Light Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Homer Antoniadis; Vi-En Choong; Stelios Choulis; Brian Cumpston; Rahul Gupta; Mathew Mathai; Michael Moyer; Franky So

    2005-12-19

    OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the major polymer material suppliers to develop the polymer emissive technology. M&D was successful in demonstrating a 7-8 lm/W white light source which was based on fluorescent materials. However, it became apparent that the major gains in efficiency could only be made if phosphorescent materials were utilized. Thus, in order to improve the performance of the resulting devices, the focus of the project shifted towards development of solution-processable phosphorescent light emitting diodes (PHOLEDs) and device architectures. The result is a higher efficiency than the outlined project milestone.

  11. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  12. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  13. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  14. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  15. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  16. Polymer containing functional end groups is base for new polymers

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  17. Investigation of the possibilities for application of NORM into polymer materials

    OpenAIRE

    Srebrenkoska, Vineta

    2016-01-01

    The main aim of the proposed STSM project is to perform: • Comparison of fly ash characteristics (chemical composition, granulometry and density) from different origins: Slovenia and Macedonia. • Characterization of the polymer materials: thermoset and thermoplastic. • Estimate the possibilities for preparing of the composites based on fly ash as NORM material from different origins and polymers. The analyses of the inorganic fillers and organic polymer matrices will be made in or...

  18. Raw and renewable polymers

    CSIR Research Space (South Africa)

    Joseph, S

    2010-01-01

    Full Text Available in the permeability of the membrane and HO H3C H3C H2C H2C HO OH NH NH OH O OC C n O O O O Fig. 4 Structure of Chitin Raw and Renewable Polymers promoting internal osmotic imbalances. This results in leaching of electrolytes and proteins. 2... is often lost. In most cases this denaturation is not reversible. R-CH-COOH NH2 w Amino acid H2N COOHR a Amino acid Fig. 5 Structure of amino acid Raw and Renewable Polymers The solubilities of proteins vary considerably based on compositions...

  19. Delocalization in polymer models

    CERN Document Server

    Jitomirskaya, S Yu; Stolz, G

    2003-01-01

    A polymer model is a one-dimensional Schroedinger operator composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. Although the random models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers, the spreading of an initially localized wave packet is here proven to be at least diffusive for every configuration.

  20. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  1. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  2. Polymers and colloids

    International Nuclear Information System (INIS)

    Schurtenberger, P.

    1996-01-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs

  3. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  4. Ballistic nanoindentation of polymers

    Science.gov (United States)

    Gotsmann, B.; Rothuizen, H.; Duerig, U.

    2008-09-01

    Indentation of a sharp (20 nm) cantilevered silicon tip into a polymer (SU8) surface is analyzed experimentally and through finite-element simulations. A rate effect on the microsecond scale that eases indentation is found, in contrast to the commonly observed hardening at high strain rates. The observed rate effect is discussed in terms of adiabatic heating and inertial force overshoot. The estimated magnitude of adiabatic heating is marginal, but the force overshoot itself is large enough to explain the data. The data imply that topographic patterning of a polymer at megahertz rates is feasible.

  5. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  6. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  7. Bioenergy/Biotechnology projects

    Energy Technology Data Exchange (ETDEWEB)

    Napper, Stan [Louisiana Tech Univ., Ruston, LA (United States); Palmer, James [Louisiana Tech Univ., Ruston, LA (United States); Wilson, Chester [Louisiana Tech Univ., Ruston, LA (United States); Guilbeau, Eric [Louisiana Tech Univ., Ruston, LA (United States); Allouche, Erez [Louisiana Tech Univ., Ruston, LA (United States)

    2012-06-30

    This report describes the progress of five different projects. The first is an enzyme immobilization study of cellulase to reduce costs of the cellulosic ethanol process. High reusability and use of substrates applicable to large scale production were focus areas for this study. The second project was the development of nanostructured catalysts for conversion of syngas to diesel. Cobalt nanowire catalyst was used in Fischer-Tropsch synthesis. The third project describes work on developing a microfluidic calorimeter to measure reaction rates of enzymes. The fourth project uses inorganic polymer binders that have the advantage of a lower carbon footprint than Portland cement while also providing excellent performance in elevated temperature, high corrosion resistance, high compressive and tensile strengths, and rapid strength gains. The fifth project investigates the potential of turbines in drop structures (such as sewer lines in tall buildings) to recover energy.

  8. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  9. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  10. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  11. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively i...

  12. New polymers for phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1981-01-01

    The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.

  13. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  14. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  15. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  16. On-line identification of lysergic acid diethylamide (LSD) in tablets using a combination of a sweeping technique and micellar electrokinetic chromatography/77 K fluorescence spectroscopy.

    Science.gov (United States)

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2003-03-01

    This work describes a novel method for the accurate determination of lysergic acid diethylamide (LSD) in tablets. A technique involving sweeping-micellar electrokinetic chromatography (MEKC) was used for the initial on-line concentration and separation, after which a cryogenic molecular fluorescence experiment was performed at 77 K. Using this approach, not only the separation of LSD from the tablet extract was achieved, but on-line spectra were readily distinguishable and could be unambiguously assigned. The results are in agreement with analyses by gas chromatography-mass spectrometry (GC-MS). Thus, this method, which was found to be accurate, sensitive and rapid, has the potential for use as a reliable complementary method to GC-MS in such analyses.

  17. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India); Patil, S.R. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India)], E-mail: srp_fsl@rediffmail.com

    2008-03-15

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R{sub 0}) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B{sub 2} directly from pharmaceutical tablets.

  18. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    Science.gov (United States)

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  19. [Methods quantitative for determination of water-soluble vitamins in premixes and fortified food products by micellar electrokinetic chromatography on short end of the capillary].

    Science.gov (United States)

    Bogachuk, M N; Bessonov, V V; Perederiaev, O I

    2011-01-01

    It was purposed new technique by micellar electrokinetic chromatography on short end of the capillary (capillary electrophoresis system Agilent 3D CE, DAD, quartz capillary HPCE stndrd cap 56 cm, 50 microm, 50 mM borate buffer pH=9,3, 100 mM sodium dodecil sulfate) for simultaneous determination of water-soluble vitamins (B1, B2, B6, B12, PP, B5, B9, C, B8) in fortified food products and premixes. It was observed on 6 samples of vitamin premixes and 28 samples of fortified food products using this technique. Our findings are consistent with the results of research on certain vitamins, conducted by other methods. The developed technique can be used in analysis of water-soluble vitamins in premixes and fortified food products.

  20. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  1. Characterization of healable polymers

    Science.gov (United States)

    Nielsen, C.; Weizman, Or; Nemat-Nasser, Sia

    2010-04-01

    Materials with an internal mechanism for damage repair would be valuable in isolated environments where access is difficult or impossible. Current work is focused on characterizing neat polymers with reformable cross-linking bonds. These bonds are thermally reversible, the result of a Diels-Alder cycloaddition between furan and maleimide monomers. Candidate polymers are examined using modulated differential scanning calorimetry (DSC) to confirm the presence of reversible bonding. One polymer, 2MEP3FT, was expected to have these bonds, but none were observed. A second polymer, 2MEP4FS, with a modified furan monomer does exhibit reversible bonding. Further DSC testing and dynamic mechanical thermal analyses (DMA) are conducted to determine material properties such as glass transition temperature, storage modulus and quality of the polymerization. Healing efficiency is established using the double cleavage drilled compression (DCDC) fracture test. A column of material with a central hole is subjected to axial compression, driving cracks up and down the sample. After unloading, the cracks are healed, and the sample is retested. Comparing the results gives a quantitative evaluation of healing.

  2. Knots in polymers

    Indian Academy of Sciences (India)

    Abstract. Knots and topological entanglements play an important role in the statistical mechanics of polymers. While topological entanglement is a global property, it is possible to study the size of a knotted region both numerically and analytically. It can be shown that long-range repulsive interactions, as well as entropy ...

  3. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  4. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  5. BEAM applications to polymer materials

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1994-01-01

    Recently papers about beam applications to polymers have been increasing rapidly both in the fundamental and applied fields. Fairly large number of papers have been published in the fundamental aspects of radiation effects of beam applications to polymers such as pulse radiolysis and high density electronic excitation effects. A number of papers have been published in the more applied aspects of beam applications to polymers such as radiation processing and curing. The present paper describes recent beam applications to polymers. 1. Radiation Effects on Polymers; Radiation effects on polymers have been studied for more than 40 years. Most of work on radiation effects on polymers has been carried out by using high energy photon (gamma-ray) and electron beams, since polymers are sensitive to any kinds of ionizing radiation. Even non-ionizing radiation such as ultraviolet and visible light excites electronic excited states of polymers and then photo-chemical reactions of polymers are induced from the electronic excited states. Studies on radiation effects of other ionizing radiation on polymers have not been so popular for a long time. Recently application of new radiation such as ion beams to polymers have been worthy of remark in fields of advanced science and technology, since new radiation beams induce different radiation effects from those induced by high energy gamma-rays and electrons. 2. Beam Applications of Polymers; Recent progress in beam applications to polymers such as radiation processing and curing, x-ray and electron beam microlithography, and applications of new beams such as ion beams to polymers has been reviewed. (author)

  6. Conducting polymer colloids, hydrogels, and cryogels: common start to various destinations

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja

    2018-01-01

    Roč. 296, č. 5 (2018), s. 989-994 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * colloidal dispersion Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.723, year: 2016

  7. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Mrlík, M.; Plachý, T.; Trchová, Miroslava; Kovářová, Jana; Li, Yu

    2017-01-01

    Roč. 120, November (2017), s. 30-37 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : molybdenum sulfide * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.151, year: 2016

  8. Thermoresponsive polymer nanoparticles co-deliver RSV F trimers with a TLR-7/8 adjuvant

    Czech Academy of Sciences Publication Activity Database

    Francica, J. R.; Lynn, G. M.; Laga, Richard; Joyce, M. G.; Ruckwardt, T. J.; Morabito, K. M.; Chen, M.; Chaudhuri, R.; Zhang, B.; Sastry, M.; Druz, A.; Ko, K.; Choe, M.; Pechar, Michal; Georgiev, I. S.; Kueltzo, L. A.; Seymour, L. W.; Mascola, J. R.; Kwong, P. D.; Graham, B. S.; Seder, R. A.

    2016-01-01

    Roč. 27, č. 10 (2016), s. 2372-2385 ISSN 1043-1802 R&D Projects: GA ČR(CZ) GJ16-14957Y; GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : thermoresponsive polymers * polymer vaccines * toll-like receptor agonists Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.818, year: 2016

  9. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  10. Determination of the quaternary structural states of bovine casein by small-angle X-ray scattering: submicellar and micellar forms

    International Nuclear Information System (INIS)

    Kumosinski, T.F.; Pessen, H.; Farrell, H.M. Jr.; Brumberger, H.

    1988-01-01

    Whole casein occurs in milk as a spherical colloidal complex of protein and salts called the casein micelle, with approximate average radii of 650 A as determined by electron microscopy. Removal of Ca2+ is thought to result in dissociation into smaller noncolloidal protein complexes called submicelles. Hydrodynamic and light scattering studies on whole casein submicelles suggest that they are predominantly spherical particles with a hydrophobic core. To investigate whether the integrity of a hydrophobically stabilized submicellar structure is preserved in the electrostatically stabilized colloidal micellar structure, small-angle X-ray scattering (SAXS) experiments were undertaken on whole casein from bovine milk under submicellar and micellar conditions. All SAXS results showed multiple Gaussian character and could be analyzed best by nonlinear regression in place of the customary Guinier plot. Analysis of the SAXS data for submicellar casein showed two Gaussian components which could be interpreted in terms of a particle with two concentric regions of different electron density, designated as a compact core and a loose shell, respectively. The submicelle was found to have an average molecular weight of 285,000 +/- 14,600 and a mass fraction of higher electron density core, k, of 0.212 +/- 0.028. The radius of gyration of the core, RC, was 37.98 +/- 0.01 A with an electron density difference, delta rho C, of 0.0148 +/- 0.0014 e-/A3, while the loose region had values of RL = 88.2 +/- 0.8 A with delta rho L = 0.0091 +/- 0.0003 e-/A3. Calculated distance distribution functions and normalized scattering curves also were consistent with an overall spherical particle with a concentric spherical inner core of higher electron density. (Abstract Truncated)

  11. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  12. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  13. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  14. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Šírová, Milada; Horková, Veronika; Etrych, Tomáš; Chytil, Petr; Říhová, Blanka; Studenovský, Martin

    2017-01-01

    Roč. 25, 9-10 (2017), s. 796-808 ISSN 1061-186X R&D Projects: GA ČR(CZ) GA14-12742S; GA MZd(CZ) NV16-28600A Institutional support: RVO:61388971 ; RVO:61389013 Keywords : Drug delivery * HPMA copolymers * enhanced EPR effect Subject RIV: EE - Microbiology, Virology; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Microbiology; Polymer science (UMCH-V) Impact factor: 3.068, year: 2016

  15. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  16. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  17. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  18. Research and development project in fiscal 1988 for fundamental technologies for next generation industries. Achievement report on research and development on high-efficiency polymer separating film materials; 1988 nendo kokoritsu kobunshi bunrimaku zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    In order to achieve improvements in efficiency and energy conservation in the separating processes used in the chemical industries, research and development has been performed on liquid separating films, air separating films, and their related technologies. This paper summarizes the achievement in fiscal 1988. In the research of high-level molecule recognizing film in the air selecting and separating films, researches were made on the elementary technologies for the mechanism of reaction of O{sub 2} carrier with O{sub 2}, reversible reactivity of CO carrier with CO, and carrier fixation. In the research of high-density metallic complex fixing thin films, investigations were made on the oxygen affinity and temperature characteristics of active type CoVPH complex involved in carrier transportation in the polymeric complex interface film. In the research of high-function complex films, development was performed on a new carrier that can be dispersed stably and finely without making association even under high concentrations. Conditions for compounding into hollow fibers were discussed, and the film forming conditions for composite films having no pinholes were discovered. With regard to the liquid selecting and separating films, researches were made on the alcohol condensing film, water-polar organics separating fluorine-based polymer film, structural control on water selective permeation film, and water-acetic acid separating film. (NEDO)

  19. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on high-efficiency polymer separating film materials; 1989 nendo kokoritsu kobunshi bunrimaku zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to improve efficiency and energy conservation in separation processes used in the chemical industry, researches have been performed on high-efficiency liquid separating film and air separating film materials. This paper summarizes the achievements in fiscal 1989. With regard to molecule recognizing films, researches were made on oxygen and carbon monoxide carriers, and on the elementary technology for fabricating the carrier films. In the research of metal complex fixing thin films, discussions were given on causes for deactivation in complex films. In the research of high-functional complex films, discussions were given on the structure of polymer ligand/carrier complex system solid films, and on oxygen adsorption and desorption properties. Solid film structures were selected that suit the oxygen separating films. In the research of alcohol condensation films, discussions were given on polydimethylsiloxane constituent that shows ethanol selectivity and permeability, and a multi-phase system polymeric film composed of one other constituent. In the research of water-acetic acid separating films, the basic performance of polyurea film was discussed, and evaluation was given by means of a durability test. In the research of particle separation method utilizing liquid films, a prototype continuous particle separating device was fabricated. (NEDO)

  20. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  2. DEVELOPMENT OF A LOW COST CAMERA FOR AGING ACCELERATED POLYMERS

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Duarte Felisbino

    2018-03-01

    Full Text Available The objective of this paper is to describe the design, construction and testing of a low cost chamber for accelerated aging of polymers that meets a low and high ultraviolet radiation cycle on the test specimens in accordance with ASTM G154. The methodology was based on the survey of the standards related to the tests of accelerated aging of polymers and of the existing equipment, providing the subsidies for the development of the project, which was validated by the construction and evaluation of its performance. The camera control is performed by an Arduino-based electronic system and uses commercially available components that meet project specifications. The equipment met the requirements for both the specifications and the low cost and will integrate the laboratories of the University of Mogi das Cruzes (UMC, Villa-Lobos campus, to carry out tests on polymer materials.

  3. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  4. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  5. Advances in Biomagnetic Interfacing Concepts Derived from Polymer-Magnetic Particle Complexes

    National Research Council Canada - National Science Library

    Riffle, Judy S

    2005-01-01

    Our research on the development and characterization of magnetic nanoparticle-polymer complexes for tile project period 6/1/03-12/31/04 has yielded approximately 10-nm diameter cobalt particles coated...

  6. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  7. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  8. Polymer Physics Prize Talk

    Science.gov (United States)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  9. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  10. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  11. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  12. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  13. Dynamics of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, U [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik

    1996-11-01

    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs.

  14. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    thermal gravimetry analysis (TGA)............... 12 2.6 Photoluminescence (PL) spectroscopy... gravimetry analysis (TGA) Thermal analysis of polymer films has been accomplished by TGA and DSC methods with the aid of Perkin-Elmer Series 7 Analysers...The MEH-PPV/acceptor films were prepared by spin-casting of the resulting mixture (with or without precipitate ) on glass substrates of diameter 23 mm

  15. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  16. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  17. Mechanoresponsive Healing Polymers

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor)

    2018-01-01

    Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.

  18. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  19. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  20. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.