Sample records for micellar phosphatidylinositol dispersed

  1. Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate

    Moens, Pierre D J; Bagatolli, Luis A


    its interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] (P.J. Lu, W.R. Shieh, S.G. Rhee, H.L. Yin, C.S. Chen, Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity, Biochemistry 35 (1996) 14027......-14034). To date, profilin's interaction with polyphosphoinositides (PPI) has only been studied in micelles or small vesicles. Profilin binds with high affinity to small clusters of PI(4,5)P(2) molecules. In this work, we investigated the interactions of profilin with sub-micellar concentrations of PI(4,5)P(2......) and PI(3,4,5)P(3). Fluorescence anisotropy was used to determine the relevant dissociation constants for binding of sub-micellar concentrations of fluorescently labeled PPI lipids to profilin and we show that these are significantly different from those determined for profilin interaction with micelles...

  2. Characteristics of the norepinephrine-stimulated phosphatidylinositol turnover in rat pineal cell dispersions

    Hauser, G.; Smith, T.L.


    Dispersed rat pineal cells can be used for the study of the phosphatidylinositol effect. The response to ( - )-norepinephrine of the incorporation of 32Pi into phospholipids is linear with time and cell concentration, stereospecific, and mediated through alpha-1-adrenergic receptors. Na+ in the incubation medium is obligatory for labeling of phosphatidylinositol and phosphatidylcholine by 32P. In the absence of K+, incorporation of 32P is drastically lowered and no stimulation by norepinephrine occurs. Rb+ can replace K+. Omission of Ca2+ or substitution with Sr2+ preferentially lowers incorporation of radioactivity into phosphatidylcholine. Mg2+ is not required for basal or stimulated labeling.

  3. Micellar nanotubes dispersed electrokinetic chromatography for the simultaneous determination of antibiotics in bovine milk.

    Springer, Valeria H; Lista, Adriana G


    A method to determine four antibiotics for veterinary use (ciprofloxacin, enrofloxacin, florfenicol, and chloramphenicol) of different families (fluoroquinolones and amphenicols) in bovine milk was developed. The determination of the analytes was carried out using micellar electrokinetic capillary chromatography (MEKC) with a common sodium borate-SDS buffer solution containing single-walled carbon nanotubes (SWCNTs). In this way, a great improvement in the electrophoretic resolution and the separation efficiency was achieved compared to MEKC. An online reverse electrode polarity-stacking mode (REPSM) was carried out to enhance sensitivity. This step was performed in only 2 min and it allowed a stacked percentage of 103. That means that all the amount of injected analytes is effectively stacked. When this stacking procedure was combined with an off-line preconcentration step, based on SPE, analytes could be detected in lower concentration than the established maximum residue limits (MRLs). The LODs for the four compounds were between 6.8 and 13.8 μg L(-1) and the RSD values were between 1.1% and 6.6%. The whole method was applied to spiked real samples with acceptable precision and satisfactory recoveries.

  4. Estrogenic compounds determination in water samples by dispersive liquid-liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry.

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Fanali, Salvatore; Rodríguez-Delgado, Miguel Ángel


    In this work, a group of 12 estrogenic compounds, i.e., four natural sexual hormones (estrone, 17β-estradiol, 17α-estradiol and estriol), an exoestrogen (17α-ethynylestradiol), a synthetic stilbene (dienestrol), a mycotoxin (zearalenone) and some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) have been separated and determined by micellar electrokinetic chromatography (MEKC) coupled to electrospray ion trap mass spectrometry. For this purpose, a background electrolyte containing an aqueous solution of 45 mM of perfluorooctanoic acid (PFOA) adjusted to pH 9.0 with an ammonia solution, as MS friendly surfactant, and methanol (10% (v/v)), as organic modifier, was used. To further increase the sensitivity, normal stacking mode was applied by injecting the sample dissolved in an aqueous solution of 11.5mM of ammonium PFO (APFO) at pH 9.0 containing 10% (v/v) of methanol for 25s. Dispersive liquid-liquid microextraction, using 110 μL of chloroform and 500 μL of acetonitrile as extraction and dispersion solvents, respectively, was employed to extract and preconcentrate the target analytes from different types of environmental water samples (mineral, run-off and wastewater) containing 30% (w/v) NaCl and adjusted to pH 3.0 with 1M HCl. The limits of detection achieved were in the range 0.04-1.10 μg/L. The whole method was validated in terms of linearity, precision, recovery and matrix effect for each type of water, showing determination coefficients higher than 0.992 for matrix-matched calibration and absolute recoveries in the range 43-91%.

  5. Micellar dispersions with tolerance for extreme water hardness for use in petroleum recovery

    Braden, W.B. Jr.; Flourny, K.H.


    A thickened, miscible flooding medium useful for displacing petroleum in subterranean reservoirs is described. The medium consists of a dispersion of light hydrocarbons, an aqueous fluid, and a surfactant system. This aqueous fluid may have from 1,500 to 12,000 ppm polyvalent ions present, such as calcium and magnesium. The surfactant system is comprised of an aqueous solution of an anionic surfactant such as a water-soluble salt of an alkyl or an alkylaryl sulfonate, for example sodium dodecylbenzene sulfonate, plus a water-soluble salt of an alkyl or alkylaryl polyethoxylated sulfate anionic surfactant, such as sodium dodecyl polyethoxy sulfate, plus a nonionic surfactant such as a fatty acid diethanolamide, a polyethoxylated aliphetic alcohol, or a polyethoxylated alkyl phenol. A method is described for recovering petroleum from subterranean reservoirs using the described thickened fluid. (8 claims)

  6. A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.

    Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan


    A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them.

  7. Bimodal lipid substrate dependence of phosphatidylinositol kinase.

    Ganong, B R


    Phosphatidylinositol (PI) kinase activity was solubilized from rat liver microsomes and partially purified by chromatography on hydroxyapatite and Reactive Green 19-Superose. Examination of the ATP dependence using a mixed micellar assay gave a Km of 120 microM. The dependence of reaction rate on PI was more complicated. PI kinase bound a large amount of Triton X-100, and as expected for a micelle-associated enzyme utilizing a micelle-associated lipid substrate, the reaction rate was dependent on the micellar mole fraction, PI/(PI + Triton X-100), with a Km of 0.02 (unitless). Activity showed an additional dependence on bulk PI concentration at high micelle dilution. These results demonstrated two kinetically distinguishable steps leading to formation of a productive PI/enzyme(/ATP) complex. The rate of the first step, which probably represents exchange of PI from the bulk micellar pool into enzyme-containing micelles, depends on bulk PI concentration. The rate of the second step, association of PI with enzyme within a single micelle, depends on the micellar mole fraction of PI. Depression of the apparent Vmax at low ionic strength suggested that electrostatic repulsion between negatively charged PI/Triton X-100 mixed micelles inhibits PI exchange, consistent with a model in which intermicellar PI exchange depends on micellar collisions.

  8. Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography.

    Wei, Jin-Chao; Hu, Ji; Cao, Ji-Liang; Wan, Jian-Bo; He, Cheng-Wei; Hu, Yuan-Jia; Hu, Hao; Li, Peng


    A simple, rapid, and sensitive method using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) combined with sweeping micellar electrokinetic chromatography (sweeping-MEKC) has been developed for the determination of nine organophosphorus pesticides (chlorfenvinphos, parathion, quinalphos, fenitrothion, azinphos-ethyl, parathion-methyl, fensulfothion, methidathion, and paraoxon). The important parameters that affect the UA-DLLME and sweeping efficiency were investigated. Under the optimized conditions, the proposed method provided 779.0-6203.5-fold enrichment of the nine pesticides compared to the normal MEKC method. The limits of detection ranged from 0.002 to 0.008 mg kg(-1). The relative standard deviations of the peak area ranged from 1.2 to 6.5%, indicating the good repeatability of the method. Finally, the developed UA-DLLME-sweeping-MEKC method has been successfully applied to the analysis of the investigated pesticides in several medicinal plants, including Lycium chinense, Dioscorea opposite, Codonopsis pilosula, and Panax ginseng, indicating that this method is suitable for the determination of trace pesticide residues in real samples with complex matrices.

  9. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.

    Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing


    An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r(2) ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dispersive liquid-liquid microextraction for the determination of phenols by acetonitrile stacking coupled with sweeping-micellar electrokinetic chromatography with large-volume injection.

    He, Hui; Liu, Shuhui; Meng, Zhaofu; Hu, Shibing


    The current routes to couple dispersive liquid-liquid microextraction (DLLME) with capillary electrophoresis (CE) are evaporation of water immiscible extractants and backextraction of analytes. The former is not applicable to extractants with high boiling points, the latter being effective only for acidic or basic analytes, both of which limit the further application of DLLME-CE. In this study, with 1-octanol as a model DLLME extractant and six phenols as model analytes, a novel method based on acetonitrile stacking and sweeping is proposed to accomplish large-volume injection of 1-octanol diluted with a solvent-saline mixture before micellar electrokinetic chromatography. Brij-35 and β-cyclodextrin were employed as pseudostationary phases for sweeping and also for improving the compatibility of sample zone and aqueous running buffer. A short solvent-saline plug was used to offset the adverse effect of the water immiscible extractant on focusing efficiency. The key parameters affecting separation and concentration were systematically optimized; the effect of Brij-35 and 1-octanol on focusing mechanism was discussed. Under the optimized conditions, with ∼ 30-fold concentration enrichment by DLLME, the diluted extractant (8×) was then injected into the capillary with a length of 21 cm (42% of the total length), which yielded the overall improvements in sensitivity of 170-460. Limits of detection and qualification ranged from 0.2 to 1.0 ng/mL and 1.0 to 3.4 g/mL, respectively. Acceptable repeatability lower than 3.0% for migration time and 9.0% for peak areas were obtained. The developed method was successfully applied for analysis of the phenol pollutants in real water samples.

  11. Novel cation selective exhaustive injection-sweeping procedure for 5-nitroimidazole determination in waters by micellar electrokinetic chromatography using dispersive liquid-liquid microextraction.

    Hernández-Mesa, Maykel; Airado-Rodríguez, Diego; Cruces-Blanco, Carmen; García-Campaña, Ana M


    A novel method consisting of cation-selective exhaustive injection and sweeping (CSEI-sweeping) as on-line preconcentration followed by a micellar electrokinetic chromatography (MEKC) separation has been developed for the determination of 5-nitroimidazoles (5-NDZ) in environmental waters. Moreover, dispersive liquid-liquid microextraction (DLLME) has been proposed for first time as sample treatment technique prior to CSEI-sweeping-MEKC. DLLME was applied to 5mL of sample. Dibromomethane (1156μL) and 2-butanol (1363μL) were employed as extractant and dispersive solvents, respectively. Salting-out effect was achieved by the addition of 16% (w/v) NaCl to the samples. After DLLME and organic solvent evaporation, the residue was redissolved in a low conductivity solvent (5mM phosphoric acid with 5% of methanol) and electrokinetically injected at 9.8kV for 632s in a bare fused-silica capillary (57.2cm, 50μm I.D.). Prior to the injection, the capillary was rinsed with 50mM phosphate buffer pH 2.5, followed by a plug of a higher conductivity buffer (100mM phosphate pH 2.5, 50mbar, 264s) and a plug of water (50mbar, 2s). Separation was carried out applying -30kV at 20°C in 44mM phosphate buffer pH 2.5, containing 8% tetrahydrofuran and 123mM sodium dodecyl sulfate. Analytical signals were monitored at 276nm. Validation was performed in river and well waters, obtaining satisfactory results in terms of linearity, precision (% RSD generally lower than 10%) and trueness (recoveries higher than 70% in almost all cases). LODs ranged from 0.61 to 2.44ng/mL. The combination of this microextraction technique with the proposed capillary electrophoresis methodology supposes a simple, sensitive and cheap alternative for 5-NDZ analyses, in accordance with the aims of green chemistry.

  12. Plant phosphatidylinositol 3-kinase

    Lee, Y.; Munnik, T.; Lee, Y.; Munnik, T.


    Phosphatidylinositol 3-kinase (PI3K) phosphorylates the D-3 position of phosphoinositides. In Arabidopsis, only one PI3K exists, which belongs to the class-III PI3K subfamily which makes phosphatidylinositol 3-phosphate (PtdIns3P). The single AtPI3K gene is essential for survival, since loss of its

  13. Plant phosphatidylinositol 3-kinase

    Lee, Y.; Munnik, T.; Munnik, T.


    Phosphatidylinositol 3-kinase (PI3K) phosphorylates the D-3 position of phosphoinositides. In Arabidopsis, only one PI3K exists, which belongs to the class-III PI3K subfamily which makes phosphatidylinositol 3-phosphate (PtdIns3P). The single AtPI3K gene is essential for survival, since loss of its

  14. Enhanced Micellar Catalysis LDRD.

    Betty, Rita G.; Tucker, Mark D; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael


    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  15. Micellar Electrokinetic Chromatography

    Bald, Edward; Kubalczyk, Paweł

    Since the introduction of micellar electrokinetic chromatography by Terabe, several authors have paid attention to the fundamental characteristics of this separation method. In this chapter the theoretical and practical aspects of resolution optimization, as well as the effect of different separation parameters on the migration behavior are discussed. These among others include fundamentals of separation, retention factor and resolution equation, efficiency, selectivity, and various surfactants and additives. Initial conditions for method development and instrumental approaches such as mass spectrometry detection are also mentioned covering the proposals for overcoming the difficulties arising from the coupling micellar electrokinetic chromatography with mass spectrometry detection.

  16. Micellar liquid chromatography

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.


    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  17. A micellar solution

    Jewulski, J.


    The subject of the invention is a micellar solution used in oil extraction when flooding a deposit and washing out the critical zone. It contains ethanolamine salt of alkylobenzolsulfonic acid (10 to 56 percent by mass), higher alcohol (4 to 56 percent) an organic solvent and water (2.4 to 57.2 percent) and is distinguished by the fact that an amyl alcohol of the third series is used as the higher alcohol, while oil in a volume of 19 to 71 percent or gasoline in a volume of 6 to 16 percent) is used as the solvent.

  18. Dispersal

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.


    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  19. Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate.

    Walsh, J P; Caldwell, K K; Majerus, P W


    We have synthesized phosphatidylinositol 3-phosphate from phosphatidylinositol 4-phosphate by using diisopropylcarbodiimide to promote migration of the 4-phosphate via a cyclic phosphodiester intermediate. The product was isolated by a thin-layer chromatographic method that depends on the ability of phosphatidylinositol 4-phosphate, but not phosphatidylinositol 3-phosphate, to form complexes with boric acid. The final yield of the procedure was 8% phosphatidylinositol 3-phosphate, which was a...

  20. Hydrogels with micellar hydrophobic (nanodomains

    Miloslav ePekař


    Full Text Available Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  1. Micellar systems: Novel family for drug carriers

    Rana, Meenakshi; Chowdhury, Papia


    Micellar systems have attracted a great deal of interest, especially in the field of biomedical sciences. The paper deals with the encapsulation behavior of Pyrrole-2-carboxyldehyde (PCL) an anti-cancer drug in different micellar systems. The inculsion capability of PCL is verified experimentally (UV-Vis, Photoluminescence and Raman spectroscopy) in polymer matrix. Two-micellar systems sodium dodecyl sulfate (SDS) and Polysorbate 80 (TWEEN 80) have been studied with a poorly water soluble PCL. The present work provides the effects of biocompatible organic PCL molecule entrap in micellar system in polymer phase due to its vast applicability in drug industry.

  2. Phosphatidylinositol 3-kinase in myogenesis.

    Kaliman, P; Zorzano, A


    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc.

  3. Micellar electrokinetic chromatography on microchips.

    Kitagawa, Fumihiko; Otsuka, Koji


    This review highlights the methodological and instrumental developments in microchip micellar EKC (MCMEKC) from 1995. The combination of higher separation efficiencies in micellar EKC (MEKC) with high-speed separation in microchip electrophoresis (MCE) should provide high-throughput and high-performance analytical systems. The chip-based separation technique has received considerable attention due to its integration ability without any connector. This advantage allows the development of a multidimensional separation system. Several types of 2-D separation microchips are described in the review. Since complicated channel configurations can easily be fabricated on planar substrates, various sample manipulations can be carried out prior to MCMEKC separations. For example, mixing for on-chip reactions, on-line sample preconcentration, on-chip assay, etc., have been integrated on MEKC microchips. The application of on-line sample preconcentration to MCMEKC can provide not only sensitivity enhancement but also the elucidation of the preconcentration mechanism due to the visualization ability of MCE. The characteristics of these sample manipulations on MEKC microchips are presented in this review. The scope of applications in MCMEKC covers mainly biogenic compounds such as amino acids, peptides, proteins, biogenic amines, DNA, and oestrogens. This review provides a comprehensive table listing the applications in MCMEKC in relation to detection methods.

  4. Pressure-induced melting of micellar crystal

    Mortensen, K.; Schwahn, D.; Janssen, S.


    Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  5. Capillary Separation: Micellar Electrokinetic Chromatography

    Terabe, Shigeru


    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  6. Catalysis in micellar and macromoleular systems

    Fendler, Janos


    Catalysis in Micellar and Macromolecular Systems provides a comprehensive monograph on the catalyses elicited by aqueous and nonaqueous micelles, synthetic and naturally occurring polymers, and phase-transfer catalysts. It delineates the principles involved in designing appropriate catalytic systems throughout. Additionally, an attempt has been made to tabulate the available data exhaustively. The book discusses the preparation and purification of surfactants; the physical and chemical properties of surfactants and micelles; solubilization in aqueous micellar systems; and the principles of

  7. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt.

    D'Orazio, Giovanni; Asensio-Ramos, María; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel; Fanali, Salvatore


    In this work, the suitability of a methodology based on dispersive liquid-liquid microextraction (DLLME) has been evaluated for the extraction of four endoestrogens (estriol, 17α-estradiol, 17β-estradiol, and estrone), an exoestrogen (17α-etynylestradiol), and a mycotoxin (zearalenone), together with some of their major metabolites (2-methoxyestradiol, α-zearalanol, β-zearalanol, α-zearalenol, and β-zearalenol) from different types of milk (whole and skimmed cow milk and semiskimmed goat milk) and whole natural yogurt. The methodology includes a previous protein precipitation with acidified ACN and a defatting step with n-hexane. Separation of the analytes, determination, and quantification were developed by MEKC coupled to ESI-MS using a BGE containing an aqueous solution of ammonium perfluorooctanoate as MS friendly surfactant. Calibration, precision, and accuracy studies of the described DLLME-MEKC-MS/MS method were evaluated obtaining a good linearity and LODs in the low micrograms per liter range.

  8. Combined cloud point-solid phase extraction by dispersion of TiO₂ nanoparticles in micellar media followed by semi-microvolume UV-vis spectrophotometric detection of zinc.

    Pourreza, Nahid; Naghdi, Tina


    A new approach is presented in this paper by using dispersed TiO2 nanoparticles (TiO2-NPs) in a combined cloud point and solid phase extraction for the efficient preconcentration and determination of Zn(2+) in various samples. In this method Zn(2+) ions are adsorbed on TiO2-NPs and transferred into surfactant rich phase. Subsequently the Zn(2+) ions are desorbed from TiO2-NPs by a dithizone solution via forming a color complex which could be detected colorimetrically. The influence of chemical variables such as pH of the sample solution, electrolyte, amount of TiO2-NPs, type and volume of the eluent on the extraction system was studied. The calibration graph was linear in the range of 0.5-90.0 µg L(-1) of Zn(2+) (r=0.9996). An enrichment factor of 80 was achieved and the limit of detection for Zn(2+) was 0.33 µg L(-1). The relative standard deviation (RSD) for eight replicate measurements of 10 µg L(-1) and 60 µg L(-1) of Zn(2+) was 1.8% and 1.5% respectively. The proposed method was successfully applied to the quantitative determination of Zn(2+) in tap water, powder milk and Zinc sulfate tablet with satisfactory results.

  9. Percolation and Critical Phenomena of AN Attractive Micellar System

    Mallamace, F.; Chen, S. H.; Gambadauro, P.; Lombardo, D.; Faraone, A.; Tartaglia, P.

    In this work we study an attractive micellar system for which the percolation curve terminates near the critical point. We have studied such an intriguing situation by means of scattering (elastic and dynamical) and viscoelasticity experiments. Obtained data are accounted by considering in a proper way the fractal clustering processes typical of percolating systems and the related scaling concepts. We observe that the main role in the system structure and dynamics it is played by the cluster's partial screening of hydrodynamic interaction. This behaves on approaching the percolation threshold dramatic effects on the system rheological properties and on the density decay relaxations. The measured correlation functions assume a stretched exponential form and the system becomes strongly viscoelastic. The overall behavior of the measured dynamical and structural parameters indicates, that in the present micellar system, the clustering process originates dilute, poly-disperse and swelling structures. Finally, this originates an interesting situation observed in the present experiment. As it has been previously, proposed by A. Coniglio et al., percolation clusters can be considered to be "Ising clusters" with the same properties as the Fisher's critical droplets. Therefore at the critical point the percolation connectedness length (ξp) can be assumed as the diverging correlation length (ξp ≡ ξ) and the mean cluster size diverges as the susceptibility.

  10. Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography.

    Chicharro, Manuel; Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio


    This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-dichlorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).

  11. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Boura, Evzen, E-mail:; Nencka, Radim, E-mail:


    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  12. Hydrogels with Micellar Hydrophobic (Nano)Domains

    Pekař, Miloslav


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  13. Hydrogels with micellar hydrophobic (nano)domains

    Miloslav ePekař


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  14. Hydrogels with micellar hydrophobic (nano)domains

    Pekař, Miloslav


    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  15. The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery.

    Payyappilly, Sanal Sebastian; Dhara, Santanu; Chattopadhyay, Santanu


    A new method is developed for preparation of amphiphilic block copolymer micellar nanoparticles and investigated as a delivery system for celecoxib, a hydrophobic model drug. Biodegradable block copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were synthesized by ring opening copolymerization and characterized thoroughly using FTIR, (1)H NMR and GPC. The block copolymer was dispersed in distilled water at 60 °C and then it was chilled in an ice bath for the preparation of the micellar nanoparticles. Polymers self-assembled to form micellar nanoparticles (HR-TEM, DLS and DSC. The cytotoxicity of the polymer micellar nanoparticles was investigated against HaCaT cell lines. The study of celecoxib release from the micellar nanoparticles was carried out to assess their suitability as a drug delivery vehicle. Addition of the drug to the system at low temperature is an added advantage of this method compared to the other temperature assisted nanoparticle preparation techniques. In a nutshell, polymer micellar nanoparticles prepared using the heat-chill method are believed to be promising for the controlled drug release system of labile drugs, which degrade in toxic organic solvents and at higher temperatures.

  16. Micellar Enzymology for Thermal, pH, and Solvent Stability.

    Minteer, Shelley D


    This chapter describes methods for enzyme stabilization using micellar solutions. Micellar solutions have been shown to increase the thermal stability, as well as the pH and solvent tolerance of enzymes. This field is traditionally referred to as micellar enzymology. This chapter details the use of ionic and nonionic micelles for the stabilization of polyphenol oxidase, lipase, and catalase, although this method could be used with any enzymatic system or enzyme cascade system.

  17. Glassy states in attractive micellar systems

    Mallamace, F.; Broccio, M.; Faraone, A.; Chen, W. R.; Chen, S.-H.


    Recent mode coupling theory (MCT) calculations show that in attractive colloids one may observe a new type of glass originating from clustering effects, as a result of the attractive interaction. This happens in addition to the known glass-forming mechanism due to cage effects in the hard sphere system. MCT also indicates that, within a certain volume fraction range, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass re-entrance and the glass-to-glass transitions possible. Here we present experimental evidence and details on this complex phase behavior in a three-block copolymer micellar system.

  18. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

    Hofgaard, Johannes P; Banach, Kathrin; Mollerup, Sarah


    Changes in the lipid composition of cardiac myocytes have been reported during cardiac hypertrophy, cardiomyopathy, and infarction. Because a recent study indicates a relation between low phosphatidylinositol-bisphosphate (PIP(2)) levels and reduced intercellular coupling, we tested the hypothesi...

  19. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism.

    Baron, C B; Cunningham, M.; Strauss, J F; Coburn, R F


    Cholinergic contraction of canine trachealis muscle, a contraction that primarily utilizes membrane potential-independent mechanisms for activating contractile proteins (pharmacomechanical coupling), is associated with a decline in the phosphatidylinositol pool, an increase in the phosphatidic acid and diacylglycerol pools, and an increased incorporation of 32PO4 into phosphatidylinositol. We found that these changes occur during development of the contraction and during maintenance of tensio...

  20. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism.

    Baron, C B; Cunningham, M; Strauss, J F; Coburn, R F


    Cholinergic contraction of canine trachealis muscle, a contraction that primarily utilizes membrane potential-independent mechanisms for activating contractile proteins (pharmacomechanical coupling), is associated with a decline in the phosphatidylinositol pool, an increase in the phosphatidic acid and diacylglycerol pools, and an increased incorporation of 32PO4 into phosphatidylinositol. We found that these changes occur during development of the contraction and during maintenance of tensio...

  1. Dynamics of Lipid Transfer by Phosphatidylinositol Transfer Proteins in Cells

    Shadan, S.; Holic, R; Carvou, N.; Ee, P.; Li, M.; Murray-Rust, J.; Cockcroft, S


    Of many lipid transfer proteins identified, all have been implicated in essential cellular processes, but the activity of none has been demonstrated in intact cells. Among these, phosphatidylinositol transfer proteins (PITP) are of particular interest as they can bind to and transfer phosphatidylinositol (PtdIns) - the precursor of important signalling molecules, phosphoinositides - and because they have essential functions in neuronal development (PITP alpha) and cytokinesis (PITP beta). Str...

  2. Solubilization of microsomal-associated phosphatidylinositol synthase from germinating soybeans.

    Robinson, M L; Carman, G M


    CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A variety of solubilization agents were examined for their ability to release phosphatidylinositol synthase activity from the microsome fraction. The most effective agent to solubilize the enzyme was the nonionic detergent Brij W-1. A 2.1-fold increase in specific activity was achieved using 1% Brij W-1 with 69% activity solubilized.Maximal solubilization of phosphatidylinositol synthase was completely dependent on Brij W-1 (1%), potassium ions (0.3 m), and manganese ions (0.5 mm). Solubilization of the enzyme was not affected by the protein concentration of microsomes between 3 to 20 milligrams per milliliter. Solubilization was not affected by the pH of solubilization buffer between 6.5 to 8.5. To our knowledge, this is the first phospholipid biosynthetic enzyme solubilized from plant membranes. The Brij W-1-solubilized phosphatidylinositol synthase remained at the top of a glycerol gradient, whereas the membrane-associated enzyme sedimented to the bottom of the gradient. Maximal activity of the Brij W-1-solubilized phosphatidylinositol synthase was dependent on manganese (5 mm) or magnesium (30 mm) ions, and Triton X-100 (3.6 mm) at pH 8.0 with Tris-HCl buffer. The apparent K(m) values for CDP-diacylglycerol and myo-inositol for the solubilized enzyme was 0.1 mm and 46 mum, respectively. Solubilized phosphatidylinositol synthase activity was thermally inactivated at temperatures above 30 degrees C.

  3. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf


    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substituti

  4. Small-angle neutron scattering from micellar solutions

    V K Aswal; P S Goyal


    Micellar solutions are the suspension of the colloidal aggregates of the surfactant molecules in aqueous solutions. The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as temperature, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the study of micellar solutions with some of our recent results.

  5. Biochemical and biological functions of class I phosphatidylinositol transfer proteins.

    Cockcroft, Shamshad; Carvou, Nicolas


    Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.

  6. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie;


    In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either...... phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify...... as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol....

  7. Micellar control of the photooxidation pathways of 10-methyl phenothiazine: electron versus energy transfer mechanisms.

    Manju, Thankamoniamma; Manoj, Narayanapillai; López Gejo, Juan; Braun, André M; Oliveros, Esther


    10-Methyl phenothiazine (MPS) was chosen as a model compound to investigate the effects of compartmentalisation and of charged interfaces on the primary mechanisms involved in the phototoxic reactions related to phenothiazine drugs. Two most important pathways resulting from the interaction of the triplet excited state of MPS ((3)MPS*) with molecular oxygen ((3)O2) have to be considered: (i) energy transfer producing singlet oxygen ((1)O2) and (ii) electron transfer generating the superoxide anion (O2˙(-)) and the radical cation (MPS˙(+)). The quantum yields of (1)O2 production by MPS solubilized in the dispersed pseudo-phase of aqueous micellar systems were found to be similar to those determined in solvents of various polarities, regardless of the anionic or cationic nature of the surfactant (SDS or CTAC). However, micellar compartmentalisation and surfactant charge affect considerably both the sensitized and the self-sensitized photooxidation of MPS. The formation of 10-methyl phenothiazine sulfoxide (MPSO), produced by the reaction of MPS with (1)O2, proceeds at a higher rate in SDS micelles than in neat polar solvents. This result may be explained by the protonation of the zwitterionic intermediate Z (MPS(+)OO(-)) at the micellar interface to yield the corresponding cation C (MPS(+)OOH) that is stabilized in the negatively charged micelles and reacts much faster with MPS than Z to yield MPSO. The electron transfer reaction from (3)MPS* to O2 yielding MPS˙(+) and O2˙(-) is also enhanced in SDS micelles, as back electron transfer (BET) is prevented by ejection of O2˙(-) to the aqueous bulk phase and stabilization of MPS˙(+) in the anionic micelles. The size of the SDS micelles modulates the relative contribution of each pathway (formation of MPSO or MPS˙(+)) to the overall conversion of MPS to its oxidation products. Photooxidation of MPS in cationic micelles is a very slow process, as the formation of neither C nor MPS˙(+) is favoured in positively

  8. Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier.

    Thomas, David P; Foley, Joe P


    Micellar liquid chromatography (MLC) remains hindered by reduced chromatographic efficiency compared to reversed phase liquid chromatography (RPLC) using hydro-organic mobile phases. The reduced efficiency has been partially explained by the adsorption of surfactant monomers onto the stationary phase, resulting in a slow mass transfer of the analyte within the interfacial region of the mobile phase and stationary phase. Using an array of 12 columns, the effects of various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, superficially porous and perfluorinated, were evaluated to determine their impact on efficiency in MLC. Additionally, each stationary phase was evaluated using 1-propanol and 1-butanol as separate micellar mobile phase alcohol additives, with several columns also evaluated using 1-pentanol. A simplified equation for calculation of A' and C' terms from reduced plate height (h) versus reduced velocity (nu) plots was used to compare the efficiency data obtained with the different columns and mobile phases. Analyte diffusion coefficients needed for the h versus nu plots were determined by the Taylor-Aris dispersion technique. The use of a short alkyl chain, wide-pore silica column, specifically, Nucleosil C4, 1000A, was shown to have the most improved efficiency when using a micellar mobile phase compared to a hydro-organic mobile phase for all columns evaluated. The use of 1-propanol was also shown to provide improved efficiency over 1-butanol or 1-pentanol in most cases. In a second series of experiments, column temperatures were varied from 40 to 70 degrees C to determine the effect of temperature on efficiency for a subset of the stationary phases. Efficiency improvements ranging from 9% for a Chromegabond C8 column to 58% for a Zorbax ODS column were observed over the temperature range. Based on these observed improvements, higher column temperatures may often yield significant gains in column

  9. Micellar Copolymerization:the State of the Arts

    FENG Yu-jun


    Over the past two decades, hydrophobically modified water-soluble polymers (HMWSPs),particularly hydrophobically associating polyacrylamides (HAPAMs), have attracted increased interest owing to their practical and fundamental importance[1]. This system usually consists of a hydrophilic backbone with a small proportion (generally less than 2 mol %) of hydrophobic pendent groups. When dissolved in aqueous solutions, the apolar moieties tend to exclude water and are held together by intra- and intermolecular hydrophobic associations. This leads to a transitional network structure that induces a substantial increase in solution viscosity. Such viscosity-building ability is further elevated upon adding salt or increasing temperature due to the enhanced polarity.Additionally, the dynamic associating junctions can be ruptured upon high shear stress, but re-formed when the force ceases. All these unique properties enable HAPAMs attractiveness to various industrial uses in which the control of fluid theology is required.However, it is a great challenge to synthesize HAPAMs since acrylamide and hydrophobic comonomers are mutually incompatible. After attempts using heterogeneous, inverse emulsion,microemulsion, and precipitation copolymerization processes, the commonly accepted method is micellar free radical copolymerization in which an appropriate surfactant is used to solubilize the hydrophobic comonomer[2].In this paper, the sate of the arts for micellar copolymerization is comprehensively reviewed:1. the mechanism of micellar copolymerization;2. parameters affecting micellar copolymerization, including:(1) nature and level of hydrophobic comonomer;(2) nature and content of surfactant used;(3) initiator and temperature.3. structural characteristics of HAPAMs prepared via micellar copolymerization;4. properties of HAPAMs prepared via micellar copolymerization:(1) dilute solution properties;(2) semi-dilute solution properties.5. applications of micellar copolymerization

  10. Phosphatidylinositol transfer protein alpha and its role in neurodegeneration

    Bunte, H.


    Selective neuronal loss is a prominent feature in neurodegenerative disorders. Recently, a link between neurodegeneration and a deficiency in the protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it is of importance that fibroblasts overexpressin

  11. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád


    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  12. Flow-induced structured phase in nonionic micellar solutions.

    Cardiel, Joshua J; Tonggu, Lige; de la Iglesia, Pablo; Zhao, Ya; Pozzo, Danilo C; Wang, Liguo; Shen, Amy Q


    In this work, we consider the flow of a nonionic micellar solution (precursor) through an array of microposts, with focus on its microstructural and rheological evolution. The precursor contains polyoxyethylene(20) sorbitan monooleate (Tween-80) and cosurfactant monolaurin (ML). An irreversible flow-induced structured phase (NI-FISP) emerges after the nonionic precursor flows through the hexagonal micropost arrays, when subjected to strain rates ~10(4) s(-1) and strain ~10(3). NI-FISP consists of close-looped micellar bundles and multiconnected micellar networks as evidenced by transmission electron microscopy (TEM) and cryo-electron microscopy (cryo-EM). We also conduct small-angle neutron scattering (SANS) measurements in both precursor and NI-FISP to illustrate the structural transition. We propose a potential mechanism for the NI-FISP formation that relies on the micropost arrays and the flow kinematics in the microdevice to induce entropic fluctuations in the micellar solution. Finally, we show that the rheological variation from a viscous precursor solution to a viscoelastic micellar structured phase is associated with the structural evolution from the precursor to NI-FISP.

  13. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Árpád Gyéresi


    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  14. Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis

    LIU QiFa; LU Ming; WEI Wei


    The chloromethylation reaction of 2-chloroethylbenzene was performed successfully by micellar catalysis in the biphasic oil/water system.The effects of anionic,cationic and non-ionic surfactants on the reaction were compared.The mechanism of chloromethyiation reaction and the mechanism of micellar catalysis were investigated.The results show that the micellar catalysis is an effective way to realize the chloromethylation of 2-chloroethylbenzene,and the cationic surfactant shows the most effectiveness.The longer the hydrophobic chain of the cationic surfactant is,the better the catalysis effect will be,and the addition of inorganic electrolyte into the aqueous phase can markedly promote the catalysis effect.

  15. Micellar kinetics of a fluorosurfactant through stopped-flow NMR.

    Yushmanov, Pavel V; Furó, István; Stilbs, Peter


    19F NMR chemical shifts and transverse relaxation times T2 were measured as a function of time after quick stopped-flow dilution of aqueous solutions of sodium perfluorooctanoate (NaPFO) with water. Different initial concentrations of micellar solution and different proportions of mixing were tested. Previous stopped-flow studies by time-resolved small-angle X-ray scattering (TR-SAXS) detection indicated a slow (approximately 10 s) micellar relaxation kinetics in NaPFO solutions. In contrast, no evidence of any comparable slow (>100 ms) relaxation process was found in our NMR studies. Possible artifacts of stopped-flow experiments are discussed as well as differences between NMR and SAXS detection methods. Upper bounds on the relative weight of a slow relaxation process are given within existing kinetic theories of micellar dissolution.

  16. Formation and properties of reverse micellar cubic liquid crystals and derived emulsions.

    Rodríguez-Abreu, Carlos; Shrestha, Lok Kumar; Varade, Dharmesh; Aramaki, Kenji; Maestro, Alicia; Quintela, Arturo López; Solans, Conxita


    The structure of the reverse micellar cubic (I2) liquid crystal and the adjacent micellar phase in amphiphilic block copolymer/water/oil systems has been studied by small-angle X-ray scattering (SAXS), rheometry, and differential scanning calorimetry (DSC). Upon addition of water to the copolymer/oil mixture, spherical micelles are formed and grow in size until a disorder-order transition takes place, which is related to a sudden increase in the viscosity and shear modulus. The transition is driven by the packing of the spherical micelles into a Fd3m cubic lattice. The single-phase I2 liquid crystals show gel-like behavior and elastic moduli higher than 104 Pa, as determined by oscillatory measurements. Further addition of water induces phase separation, and it is found that reverse water-in-oil emulsions with high internal phase ratio and stabilized by I2 liquid crystals can be prepared in the two-phase region. Contrary to liquid-liquid emulsions, both the elastic modulus and the viscosity decrease with the fraction of dispersed water, due to a decrease in the crystalline fraction in the sample, although the reverse emulsions remain gel-like even at high volume fractions of the dispersed phase. A temperature induced order-disorder transition can be detected by calorimetry and rheometry. Upon heating the I2 liquid crystals, two thermal events associated with small enthalpy values were detected: one endothermic, related to the "melting" of the liquid crystal, and the other exothermic, attributed to phase separation. The melting of the liquid crystal is associated with a sudden drop in viscosity and shear moduli. Results are relevant for understanding the formation of cubic-phase-based reverse emulsions and for their application as templates for the synthesis of structured materials.

  17. Micellar liquid chromatography of terephthalic acid impurities.

    Richardson, Ashley E; McPherson, Shakeela D; Fasciano, Jennifer M; Pauls, Richard E; Danielson, Neil D


    The production of terephthalic acid (TPA) by oxidation of p-xylene is an important industrial process because high purity TPA is required for the synthesis of polyethylene terephthalate, the primary polymer used to make plastic beverage bottles. Few separation methods have been published that aim to separate TPA from eight major aromatic acid impurities. This work describes a "green" micellar liquid chromatography (MLC) method using a C18 column (100×2.1mm, 3.5μm), an acidic 1% sodium dodecyl sulfate (SDS) mobile phase, and a simple step flow rate gradient to separate TPA and eight impurities in less than 20min. The resulting chromatogram shows excellent peak shape and baseline resolution of all nine acids, in which there are two sets of isomers. Partition coefficients and equilibrium constants have been calculated for the two sets of isomers by plotting the reciprocal of the retention factor versus micelle concentration. Quantitation of the nine analytes in an actual industrial TPA sample is possible. Limits of detection for all nine acids range from 0.180 to 1.53ppm (2.16-19.3 pmoles) and limits of quantitation range from 0.549 to 3.45ppm (6.48-43.0 pmoles). In addition, the method was tested on two other reversed phase C18 columns of similar dimensions and particle diameter from different companies. Neither column showed quite the same peak resolution as the original column, however slight modifications to the mobile phase could improve the separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates

    Himmel, Bettina; Nagel, Georg


    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP2) activates human CFTR, resulting in ATP responsiveness of PIP2-treated CFTR. ...

  19. Ordering fluctuations in a shear-banding wormlike micellar system

    Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.;


    We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...


    The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The...

  1. Use of a fluorosurfactant in micellar electrokinetic capillary chromatography.

    de Ridder, R; Damin, F; Reijenga, J; Chiari, M


    A fluorosurfactant, the anionic N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]glycine potassium salt, trade name FC-129 [CAS 2991-51-7] was investigated for possible application in micellar electrokinetic capillary chromatography (MEKC). The surfactant was characterized with conductometric titration and test sample mixtures were investigated in MEKC systems, and compared with sodium dodecylsulphate. An increased efficiency and interesting selectivity differences were observed.

  2. Analysis of Some Biogenic Amines by Micellar Liquid Chromatography

    Irena Malinowska


    Full Text Available Micellar liquid chromatography (MLC with the use of high performance liquid chromatography (HPLC was used to determine some physicochemical parameters of six biogenic amines: adrenaline, dopamine, octopamine, histamine, 2-phenylethylamine, and tyramine. In this paper, an influence of surfactant’s concentration and pH of the micellar mobile phase on the retention of the tested substances was examined. To determine the influence of surfactant’s concentration on the retention of the tested amines, buffered solutions (at pH 7.4 of ionic surfactant—sodium dodecyl sulfate SDS (at different concentrations with acetonitrile as an organic modifier (0.8/0.2 v/v were used as the micellar mobile phases. To determine the influence of pH of the micellar mobile phase on the retention, mobile phases contained buffered solutions (at different pH values of sodium dodecyl sulfate SDS (at 0.1 M with acetonitrile (0.8/0.2 v/v. The inverse of value of retention factor (1/ versus concentration of micelles ( relationships were examined. Other physicochemical parameters of solutes such as an association constant analyte—micelle (ma—and partition coefficient of analyte between stationary phase and water (hydrophobicity descriptor (swΦ were determined by the use of Foley’s equation.

  3. Phosphatidylinositol 4,5-bisphosphate formation in rabbit skeletal and heart muscle membranes.

    Varsányi, M; Messer, M; Brandt, N R; Heilmeyer, L M


    Incubation of rabbit skeletal muscle microsomes or isolated triads with gamma 32P-ATP/Mg2+ in the absence and in the presence of added phosphatidylinositol resulted in the formation of phosphatidylinositol 4-phosphate catalyzed by phosphatidylinositol kinase. When phosphatidylinositol 4-phosphate was added as exogenous substrate, phosphatidylinositol 4,5-bisphosphate was also formed demonstrating the presence of a membrane bound phosphatidylinositol 4-phosphate kinase. Triads were broken mechanically in a French press and separated on a continuous sucrose gradient. Incubation of these fractions with gamma 32P-ATP/Mg2+ resulted in a rapid labeling of phospholipid in a membrane fraction banding between transverse tubules and the terminal cisternae. Partial triad breakage and triad reformation experiments indicated that this phosphatidylinositol kinase was associated with T-tubules. When exogenous phosphatidylinositol 4-phosphate was employed as substrate phosphatidylinositol 4,5-bisphosphate and phosphatidic acid were formed, indicating the presence of all the enzymes of the polyphosphoinositide signaling system in this special membrane fraction. In contrast, heart muscle microsomes or plasma membranes can catalyze this reaction sequence from endogenous formed phosphatidylinositol 4-phosphate.

  4. Photodegradation in Micellar Aqueous Solutions of Erythrosin Esters Derivatives.

    Herculano, Leandro Silva; Lukasievicz, Gustavo Vinicius Bassi; Sehn, Elizandra; Caetano, Wilker; Pellosi, Diogo Silva; Hioka, Noboru; Astrath, Nelson Guilherme Castelli; Malacarne, Luis Carlos


    Strong light absorption and high levels of singlet oxygen production indicate erythrosin B as a viable candidate as a photosensitizer in photodynamic therapy or photodynamic inactivation of microorganisms. Under light irradiation, erythrosin B undergoes a photobleaching process that can decrease the production of singlet oxygen. In this paper, we use thermal lens spectroscopy to investigate photobleaching in micellar solutions of erythrosin ester derivatives: methyl, butyl, and decyl esters in low concentrations of non-ionic micellar aqueous solutions. Using a previously developed thermal lens model, it was possible to determine the photobleaching rate and fluorescence quantum efficiency for dye-micelle solutions. The results suggest that photobleaching is related to the intensity of the dye-micelle interaction and demonstrate that the thermal lens technique can be used as a sensitive tool for quantitative measurement of photochemical properties in very diluted solutions.

  5. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.


    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  6. 分散液液微萃取-反相液液微萃取-扫集-胶束电动色谱法测定红酒中的3种氯酚类物质%Determination of three chlorophenols in red wine by sweeping-micellar electrokinetic chromatography coupled with dispersive liquid-liquid microextraction and reversed phase liquid-liquid microextraction

    孙建芝; 贺晖; 刘书慧


    A method of dispersive liquid-liquid microextraction( DLLME)and reversed phase liquid-liquid microextraction(RP-LLME)procedures coupled with sweeping-micellar electroki-netic chromatography( sweeping-MEKC)was established to extract and determine the three chlorophenols( CPs)including pentachlorophenol( PCP),2,4,6-trichlorophenol( TCP)and 2,4-dichlorophenol( DCP) in red wine. The influences of the parameters of two extraction steps and the electrophoresis conditions were investigated. The optimum extraction conditions were as follows:for DLLME,3. 5 mL red wine sample(pH 3. 0,120 g / L NaCl),300 μL hexane (extraction solvent),extraction for 3 min,centrifugation for 3 min at 5000r / min;for RP-LLME,25 μL 0. 16 mol / L NaOH solution,extraction for 2 min,centrifugation for 2 min at 5000r / min. The optimum running buffer( pH 2. 3)was an aqueous solution containing 25 mmol / L NaH 2 PO 4 ,100 mmol / L sodium dodecyl sulfate( SDS)and 30% ( v / v)acetonitrile. The opti-mum on-line concentration conditions were as follows:sample matrix,80 mmol / L NaH 2PO 4;hydrodynamic injection of 20 s at 20. 67 kPa(3 psi). Under the optimum conditions,the excel-lent linearity was obtained over the range of 0. 5-100 μg / L(r≥0. 991 0)for PCP and TCP,and 1. 5-80 μg / L( r≥0. 985 1)for DCP. The limits of detection( S / N = 3)were in the range of 0. 035-0. 114 μg / L. The average recoveries were in the range of 75. 2% -104. 7% with the rela-tive standard deviations(RSDs)not more than 6. 17% . The results indicated that the proposed method may find wide applications for the determination of trace CPs in various sample matri-xes and other weak acidic organic contaminants.%建立了分散液液微萃取(DLLME)-反相液液微萃取(RP-LLME)-扫集-胶束电动色谱富集模型,并用于红酒中五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)3种氯酚的测定。实验考察了两步微萃取的萃取参数对氯酚萃取率的影响和样品

  7. Flow-induced gelation of living (micellar) polymers

    Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam


    The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.

  8. Phosphatidylcholine embedded micellar systems: enhanced permeability through rat skin.

    Spernath, Aviram; Aserin, Abraham; Sintov, Amnon C; Garti, Nissim


    Micellar and microemulsion systems are excellent potential vehicles for delivery of drugs because of their high solubilization capacity and improved transmembrane bioavailability. Mixtures of propylene glycol (PG) and nonionic surfactants with sodium diclofenac (DFC) were prepared in the presence of phosphatidylcholine (PC) as transmembrane transport enhancers. Fully dilutable systems with maximum DFC solubilization capacity (SC) at pH 7 are presented. It was demonstrated that the concentrates underwent phase transitions from reverse micelles to swollen reverse micelles and, via the bicontinuous transitional mesophase, into inverted O/W microstructures. The SC decreases as a function of dilution. DFC transdermal penetration using rat skin in vitro correlated with SC, water content, effect of phospholipid content, presence of an oil phase, and ethanol. Skin penetration from the inverted bicontinuous mesophase and the skin penetration from the O/W-like microstructure were higher than that measured from the W/O-like droplets, especially when the micellar system containing the nonionic surfactant, sugar ester L-1695, and hexaglycerol laurate. PC embedded within the micelle interface significantly increased the penetration flux across the skin compared to micellar systems without the embedded PC at their interface. Moreover, the combination of PC with HECO40 improved the permeation rate (P) and shortened the lag-time (T(L)).

  9. P53 Mutations Change Phosphatidylinositol Acyl Chain Composition

    Adam Naguib


    Full Text Available Phosphatidylinositol phosphate (PIP second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head-group phosphorylation, changes in phosphatidylinositol (PI lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass-spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach, we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-kinase activity but is instead linked to p53.

  10. Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells.

    Shadan, Sadaf; Holic, Roman; Carvou, Nicolas; Ee, Patrick; Li, Michelle; Murray-Rust, Judith; Cockcroft, Shamshad


    Of many lipid transfer proteins identified, all have been implicated in essential cellular processes, but the activity of none has been demonstrated in intact cells. Among these, phosphatidylinositol transfer proteins (PITP) are of particular interest as they can bind to and transfer phosphatidylinositol (PtdIns)--the precursor of important signalling molecules, phosphoinositides--and because they have essential functions in neuronal development (PITPalpha) and cytokinesis (PITPbeta). Structural analysis indicates that, in the cytosol, PITPs are in a 'closed' conformation completely shielding the lipid within them. But during lipid exchange at the membrane, they must transiently 'open'. To study PITP dynamics in intact cells, we chemically targeted their C95 residue that, although non-essential for lipid transfer, is buried within the phospholipid-binding cavity, and so, its chemical modification prevents PtdIns binding because of steric hindrance. This treatment resulted in entrapment of open conformation PITPs at the membrane and inactivation of the cytosolic pool of PITPs within few minutes. PITP isoforms were differentially inactivated with the dynamics of PITPbeta faster than PITPalpha. We identify two tryptophan residues essential for membrane docking of PITPs.

  11. Effect of high pressure--low temperature treatments on structural characteristics of whey proteins and micellar caseins.

    Baier, Daniel; Purschke, Benedict; Schmitt, Christophe; Rawel, Harshadrai M; Knorr, Dietrich


    In this study, structural changes in micellar caseins and whey proteins due to high pressure--low temperature treatments (HPLT) were investigated and compared to changes caused by high pressure treatments at room temperature. Whey protein isolate (WPI) solutions as well as micellar casein (MC) dispersions and mixtures were treated at 500 MPa (pH 7.0 and 5.8) at room temperature, -15 °C and -35 °C. Surface hydrophobicity and accessible thiol groups remained nearly unchanged after HPLT treatments whereas HP treatments at room temperature caused an unfolding of the WPI, resulting in an increase in surface hydrophobicity and exposure of the thiol groups. For HPLT treatments, distinct changes in the secondary structure (increase in the amount of β-sheets) were observed while the tertiary structure remained unchanged. Large flocs, stabilized by hydrophobic interactions and hydrogen bonds, were formed in casein containing samples due to HPLT treatments. Depending on the pH and the applied HPLT treatment parameters, these interactions differed significantly from the interactions determined in native micelles.

  12. Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms.

    Delage, Elise; Puyaubert, Juliette; Zachowski, Alain; Ruelland, Eric


    Phosphoinositides are minor constituents of eukaryotic membranes but participate in a wide range of cellular processes. The most abundant and best characterized phosphoinositide species are phosphatidylinositol 4,5-bisphosphate (PI(4,5)P₂) and its main precursor, phosphatidylinositol 4-phosphate (PI4P). PI4P and PI(4,5)P₂ regulate various structural and developmental functions but are also centrally involved in a plethora of signal transduction pathways in all eukaryotic models. They are not only precursors of second messengers but also directly interact with many protein effectors, thus regulating their localisation and/or activity. Furthermore, the discovery of independent PI(4,5)P₂ signalling functions in the nucleus of mammalian cells have open a new perspective in the field. Striking similarities between mammalian, yeast and higher plant phosphoinositide signalling are noticeable, revealing early appearance and evolutionary conservation of this intracellular language. However, major differences have also been highlighted over the years, suggesting that organisms may have evolved different PI4P and PI(4,5)P₂ functions over the course of eukaryotic diversification. Comparative studies of the different eukaryotic models is thus crucial for a comprehensive view of this fascinating signalling system. The present review aims to emphasize convergences and divergences between eukaryotic kingdoms in the mechanisms underlying PI4P and PI(4,5)P₂ roles in signal transduction, in response to extracellular stimuli.

  13. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C


    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  14. Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells

    Olsen, Hervør L; Hoy, Marianne; Zhang, Wei;


    on phosphatidylinositol 4-kinase (PI 4-kinase) activity and that inhibition of this enzyme suppresses glucose-stimulated insulin secretion. Intracellular application of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] stimulated exocytosis by promoting the priming of secretory...

  15. Dynamic fluorescence quenching of quinine sulfate dication by chloride ion in ionic and neutral micellar environments

    Joshi, Sunita; Varma Y, Tej Varma; Pant, Debi D.


    Fluorescence quenching of Quinine sulfate dication (QSD) by chloride-ion (Cl-) in micellar environments of anionic, sodium dodecyl sulfate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX-100) in aqueous phase has been investigated by time-resolved and steady- state fluorescence measurements. The quenching follows linear Stern-Volmer relation in micellar solutions and is dynamic in nature.

  16. Effects of divalent ions on displacement of oil from porous media by micellar solutions

    Mobarak, S.A.M.


    Micellar solutions are currently being investigated by a number of oil companies and research institutes as potential candidates for tertiary oil recovery processes. Micellar solutions can be used in either secondary or tertiary recovery operations. The process is being tested in some fields, but the results are inconclusive. In general, the limited field trials indicate that micellar solutions do not work as effectively as predicted from laboratory data. This research was to investigate the effect of presence of calcium ions in formation water on oil recovery using micellar solutions. Adsorption of surfactant on sand grain surfaces as a function of calcium ions concentrations also was investigated. A series of laboratory experiments was conducted in which oil was displaced from porous media by micellar solution (Amoco Floodaid 131) driven by viscous water and plain water, respectively. Based on the experimental results, micellar solutions proved to be very effective in displacing oil from porous media. The recovery of oil from porous media by micellar solution in the presence of calcium ions in formation water was improved when ethylene diamene tetracetic acid was added to the micellar solution. (Longer abstract available)

  17. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Jun LI; Zhuo Bin YUAN


    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  18. Analysis of anthraquinones in Rumex crispus by micellar electrokinetic chromatography.

    Başkan, Selda; Daut-Ozdemir, Ayşe; Günaydin, Keriman; Erim, F Bedia


    A micellar electrochromatographic method was performed for the analysis of the pharmaceutically important anthraquinones from the root of Rumex crispus. The separation of 1,5-dihydroxy-3-methylanthraquinone (1); 1,3,5-trihydroxy-6-hydroxymethylanthraquinone (2); 1,5-dihydroxy-3-methoxy-7-methylanthraquinone (3) was achieved in 6min using a running buffer containing 10mmol/l sodium borate, 50mmol/l sodium dodecylsulfate, and 25% acetonitrile at pH 10.6. The method is simple, rapid, and reproducible.

  19. Determination of polymer log D distributions by micellar and microemulsion electrokinetic chromatography.

    Jin, Xiaoyun; Leclercq, Laurent; Cottet, Hervé


    The characterization of the hydrophobicity of polymer compounds in solution remains a challenging issue of importance, especially for biomedical or pharmaceutical applications. To our knowledge, there is no data of polymer hydrophobicity (log D) in the literature. In this work, for the first time, the log D distributions of cationic polymers were characterized using micellar or microemulsion electrokinetic chromatography at physiological pH. The log D distributions of the polymer samples were obtained from the electrophoretic/chromatographic retardation of the polymer derivatives in presence of neutral micelles (or neutral microemulsion), using small cationic molecules for calibration. Separating electrolytes were based on a TRIS–chloride buffer containing a neutral surfactant (polyoxyethyleneglycoldodecyl ether) for the formation of micelles (in water) or microemulsion (in water/n-pentanol mixture).The log D distributions obtained at pH 7.4 using this method were in good agreement with the chemical structures of cationic polypeptides: poly(lys, phe) 1:1 > poly(lys, tyr) 1:1 > poly(lys, trp) 4:1 > poly(lys, ser)3:1 > poly(l-lysine), where x:y represents the molar ratio of each amino acid in the copolymer. Weight average octanol–water log D values and the dispersion of the log D distribution were also defined and determined for each polymer sample.

  20. Role of spacer lengths of gemini surfactants in the synthesis of silver nanorods in micellar media.

    Bhattacharya, Santanu; Biswas, Joydeep


    In this work, we have prepared Ag-nanorods using biscationic gemini surfactant micelles as the media by a seed-mediated wet synthesis method. Towards this end, we first synthesized Ag-nanoseeds of diameter ~7 nm stabilized by trisodium citrate (as the capping agent). Then these Ag-nanoseeds were used to synthesize Ag-nanorods of different aspect ratios. With decreasing Ag-nanoseed concentration, the aspect ratios of the Ag-nanorods stabilized by these gemini surfactants increased gradually. Various Ag-nanoseeds and Ag-nanospecies were characterized using UV-Vis spectroscopy (to know the surface plasmon bands), transmission electron microscopy (to find out their particle sizes and distribution), energy-dispersive X-ray spectroscopy and X-ray diffraction. When we used micelles derived from gemini surfactants of shorter spacer -(CH(2))(n)- (n = 2 or 4) to stabilize the Ag-nanorods, the λ(max) of the longitudinal band shifted more towards the blue region compared to that of the gemini surfactant micelles with a longer spacer -(CH(2))(n)- (n = 5, 12) at a given amount of the Ag-nanoseed solution. So, the growth of Ag-nanorods in the gemini micellar solutions depends on the spacer-chain length of gemini surfactants employed.

  1. Two-phase aqueous micellar systems: an alternative method for protein purification

    Rangel-Yagui C. O.


    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  2. Worming Their Way into Shape: Toroidal Formations in Micellar Solutions

    Cardiel Rivera, Joshua J.; Tonggu, Lige; Dohnalkova, Alice; de la Iglesia, Pablo; Pozzo, Danilo C.; Shen, Amy


    We report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenicelectron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 105 s^1. In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB. Electron microscopy images reveal a variety of nTMB morphologies and provide the size distribution of the nTMB. Small-angle neutron scattering indicates the underlying microstructural transition from wormlike micelles to nTMB. We also show that other flow-induced approaches such as sonication can induce and control the emergence of onion-like and nTMB structures, which may provide a useful tool for nanotemplating.

  3. The use of micellar solutions for novel separation techniques

    Roberts, Bruce Lynn [Univ. of Oklahoma, Norman, OK (United States)


    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  4. Conductivity measurements in a shear-banding wormlike micellar system.

    Photinos, Panos J; López-González, M R; Hoven, Corey V; Callaghan, Paul T


    Shear banding in the cetylpyridinium chloride/sodium salicylate micellar system is investigated using electrical conductivity measurements parallel to the velocity and parallel to the vorticity in a cylindrical Couette cell. The measurements show that the conductivity parallel to the velocity (vorticity) increases (decreases) monotonically with applied shear rate. The shear-induced anisotropy is over one order of magnitude lower than the anisotropy of the N(c) nematic phase. The steady-state conductivity measurements indicate that the anisotropy of the shear induced low-viscosity (high shear rate) phase is not significantly larger than the anisotropy of the high viscosity (low shear rate) phase. We estimate that the micelles in the shear induced low viscosity band are relatively short, with a characteristic length to diameter ratio of 5-15. The relaxation behavior following the onset of shear is markedly different above and below the first critical value γ1, in agreement with results obtained by other methods. The transient measurements show that the overall anisotropy of the sample decreases as the steady state is approached, i.e., the micellar length/the degree of order decrease.

  5. The use of micellar solutions for novel separation techniques

    Roberts, B.L.


    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.

  6. MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates

    Yves Dondelinger


    Full Text Available Although mixed lineage kinase domain-like (MLKL protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5P and PI(4,5P2 specifically inhibits tumor necrosis factor (TNF-mediated necroptosis but not apoptosis.

  7. Phosphatidylinositol 3-Kinase and Antiestrogen Resistance in Breast Cancer

    Miller, Todd W.; Balko, Justin M.; Arteaga, Carlos L.


    Although antiestrogen therapies targeting estrogen receptor (ER) α signaling prevent disease recurrence in the majority of patients with hormone-dependent breast cancer, a significant fraction of patients exhibit de novo or acquired resistance. Currently, the only accepted mechanism linked with endocrine resistance is amplification or overexpression of the ERBB2 (human epidermal growth factor receptor 2 [HER2]) proto-oncogene. Experimental and clinical evidence suggests that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway, the most frequently mutated pathway in breast cancer, promotes antiestrogen resistance. PI3K is a major signaling hub downstream of HER2 and other receptor tyrosine kinases. PI3K activates several molecules involved in cell-cycle progression and survival, and in ER-positive breast cancer cells, it promotes estrogen-dependent and -independent ER transcriptional activity. Preclinical tumor models of antiestrogen-resistant breast cancer often remain sensitive to estrogens and PI3K inhibition, suggesting that simultaneous targeting of the PI3K and ER pathways may be most effective. Herein, we review alterations in the PI3K pathway associated with resistance to endocrine therapy, the state of clinical development of PI3K inhibitors, and strategies for the clinical investigation of such drugs in hormone receptor–positive breast cancer. PMID:22010023

  8. Utilization of micellar electrokinetic chromatography-tandem mass spectrometry employed volatile micellar phase in the analysis of cathinone designer drugs.

    Švidrnoch, Martin; Lněníčková, Ludmila; Válka, Ivo; Ondra, Peter; Maier, Vítězslav


    A micellar electrokinetic chromatography method with tandem mass spectrometry has been developed for the selective separation, identification and determination of twelve new designer drugs from the group of synthetic cathinones. Ammonium salt of perfluorooctanoic acid at various concentrations as a volatile background electrolyte (BGE) to create micellar phase was studied for separation of selected synthetic cathinones with direct tandem mass spectrometry without significant loss of detection sensitivity. The optimized BGE contained 100 mM perfluorooctanoic acid with 200 mM ammonium hydroxide providing acceptable resolution of studied drugs in the MEKC step. In order to minimize interferences with matrix components and to preconcentrate target analytes, solid phase extraction was introduced as a clean-up step. The method was linear in the concentration range of 10-5000 ng mL(-1) and the limits of detection were in the range of 10-78 ng mL(-1). The method was demonstrated to be specific, sensitive, and reliable for the systematic toxicological analysis of these derivatives in urine samples.

  9. Phosphatidylinositol phosphodiesterase (phospholipase C) activity in the pineal gland: characterization and photoneural regulation

    Ho, A.K.; Klein, D.C.


    Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous (/sup 3/H)phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of (/sup 3/H)phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that (/sup 3/H)phosphatidylinositol 4-phosphate is a better substrate than (/sup 3/H)phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.

  10. A theory of phase separation in asphaltene-micellar solutions

    Pacheco Sanchez, Juan H. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)


    A theory of phase separation in micellar solutions of asphaltene in aromatic hydrocarbons was reported in this paper, based on both the approach of the phase behavior of amphiphile/water micelles, and the self-association of asphaltene in aromatic core. Several experimental techniques have been used by different investigators showing the existence of some kind of critical micellar concentration (CMC) on asphaltenes in aromatic solutions. So, at least asphaltene-monomer and asphaltene-micellar phases are experimentally demonstrated facts. These two phases are the main purpose in this report on a theoretical model. Some results show the temperature versus asphaltene concentration phase diagram. The phase diagram is examined against the limited critical micelle concentration data for asphaltenes-in-toluene systems. Such phase diagram is also qualitatively examined against an experimental demonstration of phase separation. The asphaltene-micelle growth depends on the parameter K responsible for the shape and size of it. At the same time, parameter K depends on both the number of asphaltene-monomer associated in the asphaltene-micelle, and the chemical potentials in the interior and in the periphery of the micelle. An expression for getting the number of asphaltene-monomers self-associated in the asphaltene-micelle was obtained. [Spanish] Se reporta una teoria de separacion de fases en soluciones micelares de asfalteno en hidrocarburos aromaticos, basada tanto en la conducta de fase de micelas formadas por anififilos en agua como en la autoasociacion de asfaltenos en nucleos aromaticos. Se han usado diversas tecnicas experimentales por diferentes investigadores que demuestran la existancia de algun tipo de concentracion micelar critica (CMC) de soluciones de asfaltenos en aromaticos. Entonces, al menos las fases de asfalteno-monomerico y de asfalteno-micelar son hechos experimentalmente demostrados. Esta dos fases son el principal proposito de este reporte en un modelo

  11. Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum).

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Failla, Mark L


    The high diversity of carotenoids and chlorophylls in foods contrasts with the reduced number of pigments that typically are investigated in micellarization studies. In this study, pepper samples (raw and heat-treated) contained 68 individual pigments, but only 38 of them were micellarized after in vitro digestion. The micellarization of pigments was majorly determined by the interaction effect of processing style (food matrix effect) and fat type (saturated and unsaturated). The highest micellarization was observed with raw peppers. Unsaturated fat increased the micellarization of carotenoid esters, while the impact of fat on the micellarization of free carotenoids seemed to be dependent on pigment structure. The micellarization efficiency was diminished as the esterification level of carotenoids increased. The type of fatty acid moiety and the polarity of the carotenoids modulated their micellarization. Chlorophylls were transformed into pheophytins by heat-processing and digestion, with the pheophytins being stable under gastrointestinal conditions. Micellarization of pheophytins was improved by fat.

  12. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.


    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  13. Application of micellar liquid chromatography for the determination of antitumoral and antiretroviral drugs in plasma.

    Peris-Vicente, Juan; Casas-Breva, Inmaculada; Roca-Genovés, Pasqual; Esteve-Romero, Josep


    In micellar liquid chromatography, the mobile phase is made of a surfactant and, eventually, an alcohol. This article describes several methods to measure the concentration of antitumoral and antiretroviral drugs in plasma, utilizing micellar liquid chromatography. Samples can be injected after dilution with a micellar solution and filtration, because proteins and other endogenous compounds are solubilized in micellar medium. We will discuss the following optimized parameters: dilution ratio, type of column, detection conditions and mobile phase composition. This article will also cover the validation performed following the International Conference on Harmonization guidelines and the results reported in the literature, indicating that the methods are useful for the routine analysis of plasma samples for clinical purposes.


    Although surfactants have received considerable attention as a potential means for enhancing the recovery of organic compounds from the subsurface, only limited information is available regarding the micellar solubilization of common groundwater contaminants by nonionic surfactan...

  15. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Pardon K. Kuipa


    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  16. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek


    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  17. Micellar electrokinetic chromatography (MEKC) separation of furanonaphthoquinones from Tabebuia impetiginosa.

    Koyama, J; Morita, I; Kino, A; Tagahara, K


    The separation of nine furanonaphthoquinones by micellar electrokinetic chromatography (MEKC) is described. The running electrolytes used in this method were 0.03 M sodium dodecyl sulphate (SDS) in 0.09 M borate buffer (pH 9) containing 10% methanol, with an applied voltage of 20 kV. Application of this technique in the determination of the main furanonaphthoquinones, 5-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, and 2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione, of Tabebuia impetiginosa is demonstrated in this paper.

  18. Separation of bisbenzylisoquinoline alkaloids by micellar electrokinetic chromatography.

    Kuo, Ching-Hua; Sun, Shao-Wen


    The micellar electrokinetic chromatographic (MEKC) separation of seven bisbenzylisoquinoline alkaloids has been developed. The effects of various separating factors were studied. Optimum separation was achieved using a buffer (pH 9.2) of 20 mM sodium borate and 20 mM sodium dihydrogen phosphate buffer containing 55 mM sodium cholate; the optimum voltage and injection time were 21 kV and 0.05 min, respectively. Highest peak efficiency was obtained when the analytes were dissolved in 10 mM sodium dodecyl sulphate as sample matrix for injection. The elution order of the bisbenzylisoquinoline alkaloids was related to their lipophilicity. The resolution, run time and detection limits of the MEKC method were compared with those of an HPLC method developed previously.

  19. SANS study of three-layer micellar particles

    Plestil, J; Kuklin, A I; Cubitt, R


    Three-layer nanoparticles were prepared by polymerization of methyl methacrylate (MMA) in aqueous micellar solutions of poly(methyl methacrylate)-block-poly(methacrylic acid) (PMMA-b-PMA) and polystyrene-block-poly(methacrylic acid) (PS-b-PMA). The resulting polymer forms a layer on the core surface of the original micelles. SANS curves were fitted using an ellipsoidal (PMMA/PMMA/PMA) or spherical (PS/PMMA/PMA) model for the particle core. The particle size (for the presented series of the PMMA/PMMA/PMA particles, the core semiaxes ranged from 87 to 187 A and the axis ratio was about 6) can be finely tuned by variation of monomer concentration. Time-resolved SANS experiments were carried out to describe the growth of the PS/PMMA/PMA particles during polymerization. (orig.)

  20. Effect of Micelle Composition on Acidic Drugs Separation Behavior by Micellar Electrokinetic Capillary Chromatography


    Micellar electrokinetic capillary chromatography (MECC) separation of four acidic drugs similar in structure was studied. Both anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Tween 20 were used to form single micelles and mixed micelles as pseudostationary phases. The effects of the composition of micellar solution on retention behaviors were studied. The results indicate that there is markedly different selectivity among SDS, Tween 20 and the mixed micelles systems.

  1. Separation of Six Pyridoncarboylxic Acid Derivatives by Micellar and Microemulsion Electrokinetic Chromatography


    Micellar and microemulsion electrokinetic chromatography (MEKC & MEEKC) separation of six closely structural pyridoncarboylxic acid derivatives were studied and compared. Both anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant hexadecyl-trimethyl ammonium bromide (CTAB) were used to form micellar and microemulsion as pseudostation phases, respectively. The effects of the separation conditions on retention time and selectivity were studied. Good resolutions were obtained in selected systems, indicating that there is markably different selectivity between SDS and CTAB systems.

  2. Solubility limits and phase diagrams for fatty alcohols in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions.

    Tzocheva, Sylvia S; Danov, Krassimir D; Kralchevsky, Peter A; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P


    By analysis of experimental data, a quantitative theoretical interpretation of the solubility limit of medium- and long-chain fatty alcohols in micellar solutions of water-soluble surfactants is presented. A general picture of the phase behavior of the investigated systems is given in the form of phase diagrams. The limited solubility of the fatty alcohols in the micelles of conventional surfactants is explained with the precipitation of their monomers in the bulk, rather than with micelle phase separation. The long chain fatty alcohols (with n=14, 16 and 18 carbon atoms) exhibit an ideal mixing in the micelles of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) at temperatures of 25, 30, 35 and 40 °C. Deviations from ideality are observed for the alcohols of shorter chain (n=10 and 12), which can be explained by a mismatch with the longer chains of the surfactant molecules. Using the determined thermodynamic parameters of the systems, their phase diagrams are constructed. Such a diagram consists of four domains, viz. mixed micelles; coexistent micelles and precipitate (dispersed crystallites or droplets); precipitate without micelles, and molecular solution. The four boundary lines intersect in a quadruple point, Q. For ionic surfactants (like SLES), a detailed theory for calculating the boundary lines of the phase diagrams is developed and verified against data for the positions of the kinks in surface tension isotherms. The theory takes into account the electrostatic interactions in the micellar solutions and the effect of counterion binding. The results can be useful for a quantitative interpretation and prediction of the phase behavior of mixed solutions of two (or more) surfactants, one of them being water soluble and forming micelles, whereas the other one has a limited water solubility, but readily forms mixed micelles with the former surfactant.

  3. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Jemmerson, R.; Low, M.G.


    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  4. Targeting type Iγ phosphatidylinositol phosphate kinase inhibits breast cancer metastasis.

    Chen, C; Wang, X; Xiong, X; Liu, Q; Huang, Y; Xu, Q; Hu, J; Ge, G; Ling, K


    Most deaths from breast cancer are caused by metastasis, a complex behavior of cancer cells involving migration, invasion, survival and microenvironment manipulation. Type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) regulates focal adhesion assembly and its phosphorylation at Y639 is critical for cell migration induced by EGF. However, the role of this lipid kinase in tumor metastasis remains unclear. Here we report that PIPKIγ is vital for breast cancer metastasis. Y639 of PIPKIγ can be phosphorylated by stimulation of EGF and hepatocyte growth factor (HGF), two promoting factors for breast cancer progression. Histological analysis revealed elevated Y639 phosphorylation of PIPKIγ in invasive ductal carcinoma lesions and suggested a positive correlation with tumor grade. Orthotopically transplanted PIPKIγ-depleted breast cancer cells showed substantially reduced growth and metastasis, as well as suppressed expression of multiple genes related to cell migration and microenvironment manipulation. Re-expression of wild-type PIPKIγ in PIPKIγ-depleted cells restored tumor growth and metastasis, reinforcing the importance of PIPKIγ in breast cancer progression. Y639-to-F or a kinase-dead mutant of PIPKIγ could not recover the diminished metastasis in PIPKIγ-depleted cancer cells, suggesting that Y639 phosphorylation and lipid kinase activity are both required for development of metastasis. Further analysis with in vitro assays indicated that depleting PIPKIγ inhibited cell proliferation, MMP9 secretion and cell migration and invasion, lending molecular mechanisms for the eliminated cancer progression. These results suggest that PIPKIγ, downstream of EGF and/or HGF receptor, participates in breast cancer progression from multiple aspects and deserves further studies to explore its potential as a therapeutic target.

  5. Jet A fuel recovery using micellar flooding: Design and implementation.

    Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G


    Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work.

  6. Regulation of the PIS1-encoded Phosphatidylinositol Synthase in Saccharomyces cerevisiae by Zinc*

    Han, Seung-Hee; Han, Gil-Soo; Iwanyshyn, Wendy M.; Carman, George M.


    In the yeast Saccharomyces cerevisiae, the mineral zinc is essential for growth and metabolism. Depletion of zinc from the growth medium of wild type cells results in changes in phospholipid metabolism including an increase in phosphatidylinositol content (Iwanyshyn, W.M., Han, G.-S., and Carman, G.M. (2004) J. Biol. Chem. 279, 21976–21983). We examined the effects of zinc depletion on the regulation of the PIS1-encoded phosphatidylinositol synthase, the enzyme that catalyzes the formation of phosphatidylinositol from CDP-diacylglycerol and inositol. Phosphatidylinositol synthase activity increased when zinc was depleted from the growth medium. Analysis of a zrt1Δ zrt2Δ mutant defective in plasma membrane zinc transport indicated that the cytoplasmic levels of zinc were responsible for the regulation of phosphatidylinositol synthase. PIS1 mRNA, its encoded protein Pis1p, and the β-galactosidase activity driven by the PPIS1-lacZ reporter gene were elevated in zinc-depleted cells. This indicated that the increase in phosphatidylinositol synthase activity was due to a transcriptional mechanism. The zinc-mediated induction of the PPIS1-lacZ reporter gene, Pis1p, and phosphatidylinositol synthase activity was lost in zap1Δ mutant cells. These data indicated that the regulation of PIS1 gene expression by zinc depletion was mediated by the zinc-regulated transcription factor Zap1p. Direct interaction between GST-Zap1p687–880 and a putative UASZRE in the PIS1 promoter was demonstrated by electrophoretic mobility shift assays. Mutations in the UASZRE in the PIS1 promoter abolished the GST-Zap1p687–880-DNA interaction in vitro and abolished the zinc-mediated regulation of the PIS1 gene in vivo. This work advances understanding of phospholipid synthesis regulation by zinc and the transcription control of the PIS1 gene. PMID:15980062

  7. Bell Creek field micellar-polymer pilot demonstration. Third annual report, October 1978-September 1979

    Goldburg, A.


    Gary Energy Corporation is conducting a DOE Demonstration Pilot to determine if micellar-polymer flooding is an economically feasible technique to enhance oil recovery from the Bell Creek Field, Powder River County, southeastern Montana. The pilot is a contained 40-acre 5-spot located in a representative watered-out portion of Unit A Reservoir. The pay is sandstone with an average net pay of 6.4 feet, air permeability of 1050 md, and water TDS of 4000 ppM. The current average remaining oil saturation in the 40-acre pilot area is estimated to be 28%. The pilot has four injectors (Wells MPP-1, MPP-2, MPP-3, and MPP-4) and one producer (Well 12-1). The overall micellar-polymer oil recovery is estimated at 47% of the remaining oil at the initiation of the micellar-polymer flood. In the third contract year (October 1978 to September 1979), all tasks including the initiation of soluble oil/micellar injection were completed. Test site development included completion of: (1) radioactive tracer survey and analysis, (2) core analysis, (3) pressure pulse tests and analysis, (4) reservoir description, and (5) test site facilities. Based on test site development data, soluble oil/micellar formulation was finalized and mathematical simulation work by Intercomp completed. The preflush injection phase of the demonstration program was completed, and the soluble oil/micellar injection was initiated at the end of the contract year. The pilot demonstration project has progressed as scheduled.

  8. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography.

    Boichenko, Alexander P; Kulikov, Artem U; Loginova, Lidia P; Iwashchenko, Anna L


    The possibilities of isocratic separation of 2,4-dinitrophenyl derivatives of 12 amino acids that considerably differ in hydrophobicity by micellar mobile phases with different organic modifiers have been discussed. For the first time aliphatic carboxylic acids have been used as modifiers of micellar eluent in micellar liquid chromatography with C18 columns. Elution strength of hybrid micellar phases on the basis of sodium dodecylsulfate and aliphatic carboxylic acids increases in sequence: aceticacid. The effect of sodium dodecylsulfate micelles on aliphatic carboxylic acids has been characterized by their micellar-induced shifts of ionization constants. The use of aliphatic carboxylic acids as modifiers of SDS micellar eluents provides better overall resolution of 2,4-dinitrophenyl-amino acids in comparison with aliphatic alcohols.

  9. Direct Injection of Seawater for the Analysis of Nitroaromatic Explosives and their Degradation Products by Micellar Electrokinetic Chromatography


    micellar electrokinetic chromatography Braden C. Giordanoa,∗, Dean S. Burgib, Greg E. Collinsa a Uanited States Naval Research Laboratory, Chemistry...threats to our coastal regions. Micellar electrokinetic chromatography (MEKC) has been demonstrated to be a useful analytical tool in the anal- ysis of...injection of seawater for the analysis of nitroaromatic explosives and their degradation products by micellar electrokinetic chromatography 5a. CONTRACT

  10. Analysis of Phosphatidylinositol 3,4,5-Trisphosphates of PTEN Expression on Mammalian Cells

    Nusrat Jahan


    Full Text Available The goal of this study is to find an experimental condition which enables us to perform enzymatic studies on the cellular behavior of PTEN (phosphatase and tensine homolog through identification of molecular species of phosphatidylinositol 3,4,5- trisphosphates and their quantitative analysis in a mammalian cell line using mass spectrometry. We initially exployed a two-step extraction process using HCl for extraction of phosphatidylinositol 3,4,5-trisphosphates from two mammalian cell lines and further analyzed the extracted phosphatidylinositol 3,4,5-trisphosphates using tandem mass spectrometry for the identification of them. We finally quantified the concentration of phosphatidylinositol 3,4,5-trisphosphates using internal standard calibration. From these observation, we found that HEK 293-T cells is a good model to examine the enzymatic behavior of PTEN in a cell, and the minimum amount of phosphatidylinositol 3,4,5-trisphosphates is more than 50 pmol for quantification in a mass spectrometer. These results suggest that the well-optimized experimental conditions are required for the investigation of the cellular PTEN in terms of the catalytic mechanism and further for the detailed identification of cellular substrates

  11. Dispersion Forces

    Buhmann, Stefan Yoshi


    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  12. Thermal-lensing measurement of particle thermophoresis in aqueous dispersions

    Rusconi, Roberto; Isa, Lucio; Piazza, Roberto


    We show that thermophoresis (particle drift driven by thermal gradients) in aqueous solutions can be measured by using an all-optical thermal-lensing setup, where a temperature gradient is set by a near-infrared laser beam with no need of light-absorbing dyes. After discussing the principles of the method, we study by numerical simulation the nature and extent of parasitic thermal-convection effects, and we describe an optical setup designed to limit them. We finally present preliminary results on thermophoresis in micellar solutions and colloidal dispersions.

  13. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of T cell activation

    Loretta eTuosto


    Full Text Available Phosphatidylinositol 4,5-biphosphate kinases (PIP5K are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2. PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen presenting cells (APC, spatial organization of the immunological synapse (IS, and costimulation. Moreover, PIP2 serves also as a precursor for the second messengers inositol triphosphate (IP3, diacylglycerol (DAG and phosphatidylinositol 3,4,5-triphosphate (PIP3, which are essential for the activation of signalling pathways regulating cytokine production, cell cycle progression, survival, metabolism and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.

  14. Characterization and classification of pseudo-stationary phases in micellar electrokinetic chromatography using chemometric methods.

    Fu, Cexiong; Khaledi, Morteza G


    Two types of chemometric methods, principal component analysis (PCA) and cluster analysis, are employed to characterize and classify a total of 70 pseudostationary phases (54 distinct systems and 16 decoy systems) in micellar electrokinetic chromatography (MEKC). PCA excels at removing redundant information for micellar phase characterization and retaining principal determinants for phase classification. While PCA is useful in the characterization of micelle selectivities, it is ineffective in defining the grouping of micellar phases. Hierarchical clustering yields a complete dendrogram of cluster structures but provides only limited cluster characterizations. The combination of these two chemometric methods leads to a comprehensive interpretation of the micellar phase classification. Moreover, the k-means analysis can further discern subtle differences among those closely located micellar phases. All three chemometric methods result in similar classifications with respect to the similarities and differences of the 70 micelle systems investigated. These systems are categorized into 3 major clusters: fluoro-surfactants represent cluster I, identified as strong hydrogen bond donors and dipolar but weak hydrogen bond acceptors. Cluster II includes sulfonated acrylamide/acrylate copolymers and surfactants with trimethylammonium head groups, characterized by strong hydrophobicity (v) and weak hydrogen bond acidity (b). The last cluster consists of two subclusters: clusters III and IV. Cluster III includes siloxane-based polymeric micelles, exhibiting weak hydrophobicity and medium hydrogen bond acidity and basicity (a), and the cluster IV micellar systems are characterized by their strong hydrophobicity and medium hydrogen bond acidity and basicity but rather weak dipolarity. Cluster III differs from cluster IV by its slightly weaker hydrophobicity and hydrogen bond donating capability. The classification by chemometric methods is in good agreement with the

  15. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad


    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein β (PITPβ), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPβ at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPβ protein expression in HeLa cells. Depletion of PITPβ leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPβ but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the ER. PMID:20332109

  16. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum.

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad


    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein beta (PITPbeta), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPbeta at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPbeta protein expression in HeLa cells. Depletion of PITPbeta leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPbeta but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the ER.

  17. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity

    Kort, de E.J.P.; Minor, M.; Snoeren, T.A.L.; Hooijdonk, van A.C.M.; Linden, van der E.


    There is general consensus that calcium chelators enhance heat stability in milk. However, they increase the heat stability to considerably different extents. For this reason, the effect of various calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein

  18. Effect of calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutions: The role of calcium-ion activity and micellar integrity

    Kort, de E.J.P.; Minor, M.; Snoeren, T.A.L.; Hooijdonk, van A.C.M.; Linden, van der E.


    There is general consensus that calcium chelators enhance heat stability in milk. However, they increase the heat stability to considerably different extents. For this reason, the effect of various calcium chelators on heat coagulation and heat-induced changes of concentrated micellar casein solutio

  19. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria.

    Korduláková, Jana; Gilleron, Martine; Mikusova, Katarína; Puzo, Germain; Brennan, Patrick J; Gicquel, Brigitte; Jackson, Mary


    We examined the function of the pimA (Rv2610c) gene, located in the vicinity of the phosphatidylinositol synthase gene in the genomes of Mycobacterium tuberculosis and Mycobacterium smegmatis, which encodes a putative mannosyltransferase involved in the early steps of phosphatidylinositol mannoside synthesis. A cell-free assay was developed in which membranes from M. smegmatis overexpressing the pimA gene incorporate mannose from GDP-[(14)C]Man into di- and tri-acylated phosphatidylinositol mono-mannosides. Moreover, crude extracts from Escherichia coli producing a recombinant PimA protein synthesized diacylated phosphatidylinositol mono-mannoside from GDP-[(14)C]Man and bovine phosphatidylinositol. To determine whether PimA is an essential enzyme of mycobacteria, we constructed a pimA conditional mutant of M. smegmatis. The ability of this mutant to synthesize the PimA mannosyltransferase was dependent on the presence of a functional copy of the pimA gene carried on a temperature-sensitive rescue plasmid. We demonstrate here that the pimA mutant is unable to grow at the higher temperature at which the rescue plasmid is lost. Thus, the synthesis of phosphatidylinositol mono-mannosides and derived higher phosphatidylinositol mannosides in M. smegmatis appears to be dependent on PimA and essential for growth. This work provides the first direct evidence of the essentiality of phosphatidylinositol mannosides for the growth of mycobacteria.

  20. Quantification of Lipophilicity of 1,2,4-Triazoles Using Micellar Chromatography.

    Janicka, Małgorzata; Stępnik, Katarzyna; Pachuta-Stec, Anna


    High-performance liquid chromatography (HPLC), over-pressured-layer chromatography (OPLC) and thin-layer chromatography (TLC) techniques with micellar mobile phases were proposed to evaluate the lipophilicity of 21 newly synthesized 1,2,4-triazoles, compounds of potential importance in medicine or agriculture as fungicides. Micellar parameters log k(m) were compared with extrapolated R(M0) values determined from reversed-phase (RP) TLC experimental data obtained on RP-8 stationary phases as well as with log P values (Alog Ps, AClog P, Alog P, Mlog P, KowWin, xlog P2 and xlog P3) calculated from molecular structures of solutes tested. The results obtained by applying principal component analysis (PCA) and linear regression showed considerable similarity between partition and retention parameters as alternative lipophilicity descriptors, and indicated micellar chromatography as a suitable technique to study lipophilic properties of organic substances. In micellar HPLC, RP-8e column (Purospher) was applied, whereas in OPLC and TLC, RP-CN plates were applied, which was the novelty of this study and allowed the use of micellar effluents in planar chromatography measurements.

  1. Effect of mixed micellar lipid on the absorption of cholesterol and vitamin D3 into lymph

    Thompson, Gilbert R.; Ockner, Robert K.; Isselbacher, Kurt J.


    The absorption of endogenous cholesterol, labeled with tracer doses of cholesterol 14C or cholesterol-3H and of near physiological doses of vitamin D3-3H was studied in rats with cannulated intestinal lymphatics. The effects of administering mixed micellar solutions of fatty acid, monoglyceride, and bile salt on the absorption of these labeled sterols was determined. It was observed that the specific activity of free cholesterol and the amounts of vitamin D3 appearing in lymph were significantly increased during the intraduodenal administration of mixed micellar solutions of either linoleic or palmitic acid, in contrast to control rats receiving a micellar solution of taurocholate. These increases were related linearly to the lymph triglyceride level. In addition it was observed that when the linoleic acid solution was administered there was a more marked increase in the ratio of the specific activities of free and esterified cholesterol in lymph than with either the palmitic acid or taurocholate solutions. Additional studies in rats with intact lymphatics showed that the uptake of labeled cholesterol and vitamin D3 from the intestinal lumen into the wall was similar whether the sterols were administered in taurocholate or in mixed micellar solution. These findings suggest that mixed micellar lipid increased the rate of appearance of labeled free cholesterol and vitamin D3 in lymph by enhancing their transport out of the intestinal mucosa, rather than by an effect on uptake. PMID:4303790

  2. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    Goldburg, A.; Price, H.


    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  3. Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of Trinitrotoluene in Mixtures of Other Nitroaromatic Compounds


    ABSTRACT Chemometric Deconvolution of Continuous Electrokinetic Injection Micellar Electrokinetic Chromatography Data for the Quantitation of...Unclassified Unlimited Unclassified Unlimited 13 Braden C. Giordano (202) 404-6320 Micellar electrokinetic chromatography Nitroaromatic explosives...Capillary electrophoresis DNT – Dinitrotoluene EOF – Electroosmotic flow MEKC – Micellar electrokinetic chromatography PLS – Partial least squares regression TNT – Trinitrotoluene 11

  4. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.

    Andreev, Vasily A; Victorov, Alexey I


    We develop an analytical molecular-thermodynamic model for the aggregation free energy of branching portions of wormlike ionic micelles in 1:1 salt solution. The junction of three cylindrical aggregates is represented by a combination of pieces of the torus and bilayer. A geometry-dependent analytical solution is obtained for the linearized Poisson-Boltzmann equation. This analytical solution is applicable to saddle-like structures and reduces to the solutions known previously for planar, cylindrical, and spherical aggregates. For micellar junctions, our new analytical solution is in excellent agreement with numerical results over the range of parameters typical of ionic surfactant systems with branching micelles. Our model correctly predicts the sequence of stable aggregate morphologies, including a narrow bicontinuous zone, in dependence of hydrocarbon tail length, head size, and solution salinity. For predicting properties of a spatial network of wormlike micelles, our aggregation free energy is used in the Zilman-Safran theory. Our predictions are compared with experimental data for branching micelles of ionic surfactants.

  5. Glass and percolation transitions in dense attractive micellar system

    Mallamace, F.; Beneduci, R.; Gambadauro, P.; Lombardo, D.; Chen, S. H.


    In this work, we study a copolymer-micellar system characterized by clustering processes due to a short-range attractive interaction. This originates a percolation process and a new type of kinetic glass transition. We have studied these intriguing dynamical situations by means of an extensive set of light scattering and viscoelasticity experiments. Obtained data, in both the phenomena, are accounted for by considering in a proper way fractal clustering processes and the related scaling concepts. Near the percolation line the main role in the system structure and dynamics is played by the cluster's partial screening of hydrodynamic interaction, that behaves, on approaching the percolation threshold, dramatic effects on the rheological properties and on the density decay relaxations. The ergodic-nonergodic transition line (glass transition) is studied in terms of the intermediate scattering functions (ISF) in the frame of the mode coupling theory. The measured ISF gives evidence of a logarithmic decay on the density fluctuation followed by a power law behavior. This latter phenomenon is the signature of a high-order glass transition of the A3 type (cusp-like singularity).

  6. Micellar electrokinetic chromatography of organic and peroxide-based explosives.

    Johns, Cameron; Hutchinson, Joseph P; Guijt, Rosanne M; Hilder, Emily F; Haddad, Paul R; Macka, Mirek; Nesterenko, Pavel N; Gaudry, Adam J; Dicinoski, Greg W; Breadmore, Michael C


    CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25°C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m(-1)) and high sensitivity (LOD typically less than 0.5 mg L(-1); around 1-1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25°C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L(-1) (or 31.2-304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.

  7. Crystallization in Micellar Cores: confinement effects and dynamics

    Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration

    It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard

  8. Simultaneous micellar LC determination of lidocaine and tolperisone.

    Youngvises, Napaporn; Liawruangrath, Boonsom; Liawruangrath, Saisunee


    A micellar liquid chromatography (MLC) procedure was developed for the simultaneous separation and determination of lidocaine hydrochloride (LD HCl) and tolperisone hydrochloride (TP HCl) using a short-column C18 (12.5 mm x 4.6 mm, 5 microm), sodium dodecyl sulfate (SDS) with a small amount of isopropanol, and diode array detector. The optimum conditions for the simultaneous determination of both drugs were 0.075 mol l(-1) SDS-7.5% (v/v) isopropanol with a flow rate of 0.7 ml min(-1) and detection at 210 nm. The LOD (2S/N) of LD HCl was 0.73 ng 20 microl(-1), whereas that of TP HCl was 1.43 ng 20 microl(-1). The calibration curves for LD HCl and TP HCl were linear over the ranges 0.125-500 microg ml(-1) (r(2)=0.9999) and 1.00-500 microg ml(-1) (r(2)=0.9997), respectively. The %recoveries of both drugs were in the range 98-103% and the %RSD values were less than 2. The proposed method has been successfully applied to the simultaneous determination of TP HCl and LD HCl in various pharmaceutical preparations.

  9. PH-triggered micellar membrane for controlled release microchips

    Yang, Xiaoqiang


    A pH-responsive membrane based on polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer was developed on a model glass microchip as a promising controlled polymer delivery system. The PS-b-P4VP copolymer assembles into spherical and/or worm-like micelles with styrene block cores and pyridine coronas in selective solvents. The self-assembled worm-like morphology exhibited pH-responsive behaviour due to the protonation of the P4VP block at low pH and it\\'s deprotonation at high pH and thus constituting a switchable "off/on" system. Doxorubicin (Dox) was used as cargo to test the PS-b-P4VP membrane. Luminescence experiments indicated that the membrane was able to store Dox molecules within its micellar structure at neutral pH and then release them as soon as the pH was raised to 8.0. The performance of the cast membrane was predictable and most importantly reproducible. The physiochemical and biological properties were also investigated carefully in terms of morphology, cell viability and cell uptake. This journal is © The Royal Society of Chemistry.

  10. Dispersion Modeling.

    Budiansky, Stephen


    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  11. Chemical dispersants

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  12. Chemical dispersants

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  13. Drug-resistant phosphatidylinositol 3-kinase: guidance for the preemptive strike.

    Vogt, Peter K


    In this issue of Cancer Cell, Zunder et al. (2008) describe surprising findings from investigating inhibitor-resistant mutations in the affinity pocket of p110 alpha of phosphatidylinositol 3-kinase (PI3K). Information on these critical residues provides a road map for generating novel PI3K inhibitors that can overcome the anticipated resistance mutations.

  14. Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold

    Bogaart, G. van den; Meyenberg, K.; Diederichsen, U.; Jahn, R.


    Synaptotagmin-1 is the main Ca(2+) sensor of neuronal exocytosis. It binds to both Ca(2+) and the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), but the precise cooperativity of this binding is still poorly understood. Here, we used microscale thermophoresis to quantify the coo

  15. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.


    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and prematu

  16. Spatial Regulation of Golgi Phosphatidylinositol-4-Phosphate is Required for Enzyme Localization and Glycosylation Fidelity

    Cheong, Fei Ying; Sharma, Vandana; Blagoveshchenskaya, Anastasia; Oorschot, Viola M. J.; Brankatschk, Ben; Klumperman, Judith; Freeze, Hudson H.; Mayinger, Peter


    The enrichment of phosphatidylinositol-4-phosphate (PI(4)P) at the trans Golgi network (TGN) is instrumental for proper protein and lipid sorting, yet how the restricted distribution of PI(4)P is achieved remains unknown. Here, we show that lipid phosphatase Suppressor of actin mutations 1 (SAC1) is

  17. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H


    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosp

  18. The magnetoviscous effect of micellar solutions doped with water based ferrofluids

    Arantes, Fabiana R., E-mail: [Institute of Physics, University of Sao Paulo (Brazil); Institute of Fluid Mechanics, Technische Universität Dresden (Germany); Odenbach, Stefan, E-mail: [Institute of Fluid Mechanics, Technische Universität Dresden (Germany)


    This work presents a magnetorheological study of micellar solutions of potassium laurate and water doped with magnetite nanoparticles, accompanied by auxiliary dynamic light scattering measurements. An increase in the viscosity of the samples under applied field was observed and, furthermore, a considerable magnetoviscous effect was revealed even at magnetic particles' concentrations as low as 0.005–0.01 vol%. This indicates that the rheological behavior of the micelles is changed by the interaction of the magnetic particles with the applied field, leading to different microscopic arrangements in the micellar solutions. - Highlights: • We study the magnetorheological behavior of micellar solutions doped with ferrofluids. • We observe an increase in the viscosity of the samples under an applied field. • We find a large magnetoviscous effect even at low magnetic particles' concentration. • Interaction of particles with the field changes the micelles' rheological behavior.

  19. Use of micellar liquid chromatography to analyze darunavir, ritonavir, emtricitabine, and tenofovir in plasma.

    Peris-Vicente, Juan; Villarreal-Traver, Mónica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep


    Danuravir, ritonavir, emtricitabine, and tenofovir are together prescribed against AIDS as a highly active antiretroviral therapy regimen. Micellar liquid chromatography has been applied to determine these four antiretroviral drugs in plasma. The sample preparation is shortened to the dilution of the sample in a micellar solution, filtration, and injection. Clean-up steps are avoided, due to the solubilization of plasma matrix in micellar media. The drugs were analyzed in 0.995), accuracy (89.3-103.2%), precision (<8.2%) and robustness (<7.5%). Real plasma sample from patients taking this therapy were analyzed. This is the first paper showing the simultaneous detection of this four drugs. Therefore, the methodology was proven useful for the routine analysis of these samples in a hospital laboratory for clinical purposes.

  20. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    Palmer, Christopher P.


    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  1. Wheat alkylresorcinols reduce micellar solubility of cholesterol in vitro and increase cholesterol excretion in mice.

    Horikawa, Kazumasa; Hashimoto, Chiaki; Kikuchi, Yosuke; Makita, Miki; Fukudome, Shin-Ichi; Okita, Kimiko; Wada, Naoyuki; Oishi, Katsutaka


    Epidemiological studies have shown that the consumption of whole grains can reduce risk for metabolic disorders. We recently showed that chronic supplementation with wheat alkylresorcinols (ARs) prevents glucose intolerance and insulin resistance with hepatic lipid accumulation induced in mice by a high-fat high-sucrose diet (HFHSD). This study examines the effects of ARs on the micellar solubility of cholesterol in vitro, as well as the effects of transient AR supplementation on faecal lipid excretion and plasma lipid levels in mice. We found that ARs formed bile micelles with taurocholate independently of phospholipids, and dose-dependently decreased the micellar solubility of cholesterol in a biliary micelle model. Transient AR supplementation with HFHSD increased faecal cholesterol and triglyceride contents and decreased plasma cholesterol concentrations. These suggest that one underlying mechanism through which ARs suppress diet-induced obesity is by interfering with the micellar cholesterol solubilisation in the digestive tract, which subsequently decreases cholesterol absorption.

  2. Effective solubilization of chalcones in micellar phase: Conductivity and voltammetric study

    Ahmed, Safeer; Khan, Gul Tiaz; Shah, Syed Sakhawat


    The solubilization of four chalcones, between aqueous and micellar phases of ionic surfactants (SDS and CTAB), was investigated by conductivity and cyclic voltammetry (CV) techniques. From conductivity data, a decrease in the critical micellar concentration (CMC) of the surfactants, in presence of the chalcones was ascribed to the decreased charge density over the surfactants. The results were seconded by thermodynamic parameters including degree of ionization (α), counter ion binding (β), and standard Gibbs free energy of micellization (Δ G {m/○}). The added surfactant decreased the peak current of the oxidized chalcone and shifted the peak potential either positively (in presence of SDS) or negatively (in presence of CTAB). The effect is rationalized as chalcone-surfactant interaction and quantitated as binding constant ( K b) assorting values from 8.78 to 552.97 M-1. The preferred solubilization of the chalcones in the micellar phase has been inferred.

  3. Regulation of the PIS1-encoded phosphatidylinositol synthase in Saccharomyces cerevisiae by zinc.

    Han, Seung-Hee; Han, Gil-Soo; Iwanyshyn, Wendy M; Carman, George M


    In the yeast Saccharomyces cerevisiae, the mineral zinc is essential for growth and metabolism. Depletion of zinc from the growth medium of wild type cells results in changes in phospholipid metabolism, including an increase in phosphatidylinositol content (Iwanyshyn, W. M., Han, G.-S., and Carman, G. M. (2004) J. Biol. Chem. 279, 21976-21983). We examined the effects of zinc depletion on the regulation of the PIS1-encoded phosphatidylinositol synthase, the enzyme that catalyzes the formation of phosphatidylinositol from CDP-diacylglycerol and inositol. Phosphatidylinositol synthase activity increased when zinc was depleted from the growth medium. Analysis of a zrt1Delta zrt2Delta mutant defective in plasma membrane zinc transport indicated that the cytoplasmic levels of zinc were responsible for the regulation of phosphatidylinositol synthase. PIS1 mRNA, its encoded protein Pis1p, and the beta-galactosidase activity driven by the P(PIS1)-lacZ reporter gene were elevated in zinc-depleted cells. This indicated that the increase in phosphatidylinositol synthase activity was the result of a transcriptional mechanism. The zinc-mediated induction of the P(PIS1)-lacZ reporter gene, Pis1p, and phosphatidylinositol synthase activity was lost in zap1Delta mutant cells. These data indicated that the regulation of PIS1 gene expression by zinc depletion was mediated by the zinc-regulated transcription factor Zap1p. Direct interaction between glutathione S-transferase (GST)-Zap1p(687-880) and a putative upstream activating sequence (UAS) zinc-responsive element in the PIS1 promoter was demonstrated by electrophoretic mobility shift assays. Mutations in the UAS zinc-responsive element in the PIS1 promoter abolished the GST-Zap1p(687-880)-DNA interaction in vitro and abolished the zinc-mediated regulation of the PIS1 gene in vivo. This work advances understanding of phospholipid synthesis regulation by zinc and the transcription control of the PIS1 gene.

  4. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle


    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  5. Protonation of 5, 10, 15, 20-Tetra(4-hydroxyphenyl)-porphyrin in SDS Micellar Solution

    Xiao Hong ZHAO; Yun Hong ZHANG


    An amphiphilic porphyrin, 5, 10, 15, 20-tetra(4-hydroxyphenyl)-porphyrin (P) was solubilized in SDS micellar solutions. By taking advantage of protonation property of pyridine groups of amphiphilic porphyrin and the UV-Vis spectral sensitivity of Soret band and Q bands to the microenvironment of the porphyrin moiety, two-step protonation was studied in detail by means of UV-Vis spectroscopy. The free base, monocation and dication were described in detail in SDS micellar solution. The possibility of microphase transition was proposed to relate to the observation of two isosbestic points.

  6. Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration


    To separate zinc ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used with sodium dodecyl sulfate(SDS) as surfactant. The formation of micellar and the adsorption mechanism were investigated, including the influence of the ratio of SDS to zinc ions on the micelle quantity, the micelle ratio, the gross adsorptive capacity, the rejection of zinc ions and the adsorption isotherm law. The results show that the rejection rate of zinc ions reaches 97% and the adsorption of zinc ions on SDS conforms to the Langmuir adsorption isotherm and the adsorption is a chemical adsorption process.

  7. Brownian Dynamics Simulation of Microstructures and Elongational Viscosities of Micellar Surfactant Solution

    WEI Jin-Jia; KAWAGUCHI Yasuo; YU Bo; LI Feng-Chen


    @@ Brownian dynamics simulation is conducted for a dilute surfactant solution under a steady uniaxial elongational flow.A new inter-cluster potential is used for the interaction among surfactant micelles to determine the micellar network structures in the surfactant solution.The micellar network is successfully simulated.It is formed at low elongation rates and destroyed by high elongation rates.The computed elongational viscosities show elongation-thinning characteristics.The relationship between the elongational viscosities and the microstructure of the surfactant solution is revealed.

  8. El Dorado Micellar-Polymer demonstration project. First annual report, January 1974-June 1975

    Coffman, C.L.; Rosenwald, G.W. (ed.); Miller, R.J. (ed.)


    Progress made in the implementation of a project designed to determine the economic feasibility of improved oil recovery using micellar-polymer processes and to determine the associated benefits and problems of each system tested is reported. The project allows a side-by-side comparison of two distinct micellar-polymer processes in the same abandoned field so that the reservoir conditions for the two floods are as nearly alike as possible. Results are reported for test wells drilled to obtain reservoir data, field injectivity and interference tests, and performance predictions. Engineering operations are summarized. (JSR)

  9. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks

    Javanbakht, Gina; Goual, Lamia


    Surfactant-enhanced aquifer remediation is often performed to overcome the capillary forces that keep residual NAPL phases trapped within contaminated aquifers. The surfactant selection and displacement mechanism usually depend on the nature of NAPL constituents. For example, micellar solubilization is often used to cleanup DNAPLs from aquifers whereas mobilization is desirable in aquifers contaminated by LNAPLs. Although the majority of crude oils are LNAPLs, they often contain heavy organic macromolecules such as asphaltenes that are classified as DNAPLs. Asphaltenes contain surface-active components that tend to adsorb on rocks, altering their wettability. Previous studies revealed that surfactants that formed Winsor type III microemulsions could promote both mobilization and solubilization. However the extent by which these two mechanisms occur is still unclear, particularly in oil-contaminated aquifers. In this study we investigated the remediation of oil-contaminated aquifers using an environmentally friendly surfactant such as n-Dodecyl β-D-maltoside. Focus was given on asphaltenes to better understand the mechanisms of surfactant cleanup. Through phase behavior, spontaneous imbibition, dynamic interfacial tension and contact angle measurements, we showed that microemulsions formed by this surfactant are able to mobilize bulk NAPL (containing 9 wt.% asphaltenes) in the porous rock and solubilize DNAPL (i.e., 4-6 wt.% adsorbed asphaltenes) from the rock surface. Spontaneous imbibition tests, in particular, indicated that the ratio of mobilized to solubilized NAPL is about 6:1. Furthermore, aging the cores in NAPL beyond 3 days allowed for more NAPL to be trapped in the large pores of the rock but did not alter the amount of asphaltenes adsorbed on the mineral surface.

  10. Dielectric model and theoretical analysis of cationic reverse micellar solutions in CTAB/isooctane/n-hexanol/water systems.

    Yang, Likun; Zhao, Kongshuang


    Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.

  11. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F


    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  12. Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1

    Bridges, Dave; Ma, Jing-Tyan; Park, Sujin; Inoki, Ken; Weisman, Lois S.; Saltiel, Alan R.


    The kinase complex mechanistic target of rapamycin 1 (mTORC1) plays an important role in controlling growth and metabolism. We report here that the stepwise formation of phosphatidylinositol 3-phosphate (PI(3)P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) regulates the cell type–specific activation and localization of mTORC1. PI(3)P formation depends on the class II phosphatidylinositol 3-kinase (PI3K) PI3K-C2α, as well as the class III PI3K Vps34, while PI(3,5)P2 requires the phosp...

  13. Determination of selected synthetic cannabinoids and their metabolites by micellar electrokinetic chromatography--mass spectrometry employing perfluoroheptanoic acid-based micellar phase.

    Švidrnoch, Martin; Přibylka, Adam; Maier, Vítězslav


    Perfluoroheptanoic acid was employed as a volatile micellar phase in background electrolyte for micellar electrokinetic chromatography-tandem mass spectrometry separation and determination of 15 selected naphthoyl- and phenylacetylindole- synthetic cannabinoids and main metabolites derived from JWH-018, JWH-019, JWH-073, JWH-200 and JWH-250. The influence of concentration of perfluoroheptanoic acid in background electrolytes on the separation was studied as well as the influence of perfluoroheptanoic acid on mass spectrometry detection. The background electrolyte consisted of 75 mM perfluoroheptanoic acid, 150 mM ammonium hydroxide pH 9.2 with 10% (v/v) propane-2-ol allowed micellar electrokinetic chromatography separation together with mass spectrometry identification of the studied parent synthetic cannabinoids and their metabolites. The limits of detection of studied synthetic cannabinoids and metabolites were in the range from 0.9 ng/mL for JWH-073 to 3.0 ng/mL for JWH-200 employing liquid-liquid extraction. The developed method was applied on the separation and identification of studied analytes after liquid-liquid extraction of spiked urine and serum samples to demonstrate the potential of the method applicability for forensic and toxicological purposes.

  14. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications.

    Lu, Y; McMahon, D J; Metzger, L E; Kommineni, A; Vollmer, A H


    Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient of protein-fortified food, is a gel at cold temperature. It contains ~17 to 21% casein, with most serum proteins and lactose removed by microfiltration and diafiltration, and it is then further concentrated using vacuum evaporation. The HC-MCC can be stored frozen, and our objective was to determine the conditions needed to obtain complete solubility of thawed HC-MCC in water and to understand its gelation upon cooling. Dispersibility (ability to pass through a 250-µm mesh sieve), suspendability (percentage of protein not sedimented at 80 × g within 5min), and solubility (percentage of protein not sedimented at 20,000 × g within 5min) were measured at 4, 12, or 20°C after various mixing conditions. Gelation upon cooling from 50 to 5°C was monitored based on storage (G') and loss (G'') moduli. The gelled HC-MCC was also examined by transmission electron microscopy. Thawed HC-MCC was added to water to reach a protein concentration of 3% and mixed using high shear (7,500rpm) for 1min or low shear (800rpm) for 30min at 4, 12, 20, or 50°C and at pH 6.4 to 7.2. The HC-MCC completely dispersed at 50°C, or at ≤20°C followed by overnight storage at 4°C. Suspendability at 50°C was ~90% whereas mixing at ≤20°C followed by overnight storage resulted in only ~57% suspendability. Solubility followed a similar trend with ~83% at 50°C and only ~29% at ≤20°C. Mixing HC-MCC with 60mM trisodium citrate increased dispersibility to 99% and suspendability and solubility to 81% at 20°C. Cold-gelling temperature, defined as the temperature at which G'=G'' when cooling from 50 to 5°C, was positively correlated with protein level in HC-MCC. Gelation occurred at 38, 28, and 7°C with 23, 20, and 17% of protein, respectively. Gelation was reversible upon heating, although after a second cooling cycle the HC-MCC gel had lower G'. In micrographs of gelled HC-MCC, the casein micelles were

  15. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on t

  16. A new insight on the dynamics of sodium dodecyl sulfate aqueous micellar solutions by dielectric spectroscopy.

    Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C


    Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.

  17. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.

    Anderton, Grant I; Bangerter, Alyssa S; Davis, Tyson C; Feng, Zhiyuan; Furtak, Aric J; Larsen, Jared O; Scroggin, Triniti L; Heemstra, Jennifer M


    Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents.

  18. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  19. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on

  20. [Solubilization of nitrobenzene in micellar solutions of Tween 80 and inorganic salts].

    Li, Sui; Zhao, Yong-sheng; Xu, Wei; Dai, Ning


    The solubilization of nitrobenzene by a nonionic surfactant Tween 80 was investigated at 10 degrees C. Experimental results indicated that the solubility of nitrobenzene in water was greatly enhanced by Tween 80 at surfactant concentration above CMC(critical micelle concentration) and a linear relationship was obtained between surfactant concentration and nitrobenzene concentration from the solubility curve. The molar solubilization ratio (MSR) value was 5.093 and IgKm was 3.499. The solubilization was attributed to the ethoxylation group in Tween 80 micellar. Effect of four inorganic salts such as NaCl, KCl, CaCl2 , MgCl2 on water solubilities of nitrobenzene in Tween 80 micellar solutions was also investigated by a matrix of batch experiments. Mix the Tween 80-inorganic salts at the total mass ratios of 2:1, 5:1 and 10:1. The results show that the inorganic salts at a high concentration( > or = 500 mg x L(-1)) can enhance the solubilization capacities of Tween 80 micellar solution and increase the value of MSR and IgKm . Because of the salting-out effect between the micellar of Tween 80 and inorganic salts, the volume of micelle turns bigger, which may provide larger solubility volume for nitrobenzene. The mixture of nonionic surfactant and inorganic salts can be used in subsurface remediation as a flushing solution.

  1. Deracemization of bilirubin as the marker of the chirality of micellar aggregates.

    Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna


    The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities.

  2. A kinetic study of 1,3-dipolar cycloadditions in micellar media

    Rispens, T; Engberts, JBFN


    The kinetics of the 1,3-dipolar cycloadditions (DC) of benzonitrile oxide with a series of N-substituted maleimides in micellar media have been investigated. Surfactants studied include anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide, and a series of nonionic alkyl poly(ethyl

  3. The Nature of the Micellar Stern Region As Studied by Reaction Kinetics. 2

    Buurma, Niklaas J.; Serena, Paola; Blandamer, Michael J.; Engberts, Jan B.F.N.


    The nature of rate-retarding effects of cationic micelles on the water-catalyzed hydrolyses of a series of para-substituted 1-benzoyl-1,2,4-triazoles (1a-f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2) has been studied using kinetic methods. A comparison is drawn between medium effects in the micellar

  4. The Mobile Phase Motion in Ascending Micellar Thin-Layer Chromatography with Normal-Phase Plates

    Boichenko, Alexander P.; Makhno, Iryna V.; Renkevich, Anton Yu.; Loginova, Lidia P.


    The physical chemical characteristics (surface tension and viscosity) of micellar mobile phases based on the cationic surfactant cetylpiridinium chloride and additives of alcohols (ethanol, 1-propanol, 1-butanol, 1-pentanol) have been obtained in this work. The effect of mobile phase properties on t

  5. El Dorado Micellar-Polymer Demonstration Project third annual report, June 1976--August 1977

    Rosenwald, G.W.; Miller, R.J.; Vairogs, J. (eds.)


    The primary objectives of this project are to determine the economic feasibility of improved oil recovery using two micellar-polymer processes and to determine the associated benefits and problems of each process. The El Dorado Demonstration Project is designed to allow a side-by-side comparison of two distinct micellar-polymer processes in the same field so that the reservoir conditions for the two floods are as nearly alike as possible. Selection of sulfonates and polymers for both patterns was completed. Salinity changes in produced fluids and in observation well samples have shown that breakthrough of preflush (or preflood) has occurred at some wells in both patterns. Observation well sampling and logging data showed that preflush arrived earlier at the observation wells in the north pattern than the south pattern. Injectivities of the micellar system designed for the south pattern and components of that system were tested in three monitoring wells. Similarly, extensive injectivity testing of the surfactant and polymer slugs designed for the north pattern was conducted using two monitoring wells. Recommended preflush volumes for the south pattern were revised to reflect corrections in reservoir data (primarily due to the lack of the upper zone at well MP-213). Reservoir pressure forecasts of the superposition-of-line-sources simulator were compared with observed monitoring well pressures. Injection of the chemical preflush for the south pattern began on June 20, 1976. The micellar fluid injection began in the south pattern on March 22, 1977. (LK)

  6. Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study

    Marie Stiborova


    Full Text Available The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated form to generate covalent adducts analogous to those formed by free ellipticine. The 32P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide-block-poly(allyl glycidyl ether (PAGE-PEO block copolymer, P 119 nanoparticles to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.

  7. First example of a lipophilic porphyrin-cardanol hybrid embedded in a cardanol-based micellar nanodispersion.

    Bloise, Ermelinda; Carbone, Luigi; Colafemmina, Giuseppe; D'Accolti, Lucia; Mazzetto, Selma Elaine; Vasapollo, Giuseppe; Mele, Giuseppe


    Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid) has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a "green" micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable "functional" molecules, has been produced.

  8. Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems.

    Aramaki, Kenji; Iemoto, Suzuka; Ikeda, Naoaki; Saito, Keitaro


    We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.

  9. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilization and functional activation in fluoride-treated neutrophils.

    English, D.; Debono, D J; Gabig, T G


    Sodium fluoride (20 mM) effected rapid hydrolysis of phosphatidylinositol bisphosphate (PIP2) in human neutrophils. Intracellular free Ca2+ levels increased after PIP2 hydrolysis but before respiratory burst activation. Both the increase in intracellular free Ca2+ levels and the extent of functional activation were dependent on the availability of extracellular Ca2+. The rate of F(-)-stimulated PIP2 hydrolysis, however, was not affected when the rise in cytosolic Ca2+ was severely limited by ...

  10. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins.

    Jae-Sook Park

    Full Text Available The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s. While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4P levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4P in membranes. To determine whether VPS13A affects PtdIns(4P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.

  11. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals

    Audigier, S.M.P.; Wang, J.K.T.; Greengard, P.


    Synaptosomes, purified from rat cerebral cortex, were prelabeled with (/sup 3/H)inositol to study phosphatidylinositol turnover in nerve terminals. Labeled synaptosomes were either depolarized with 40 mM K/sup +/ or exposed to carbamoylcholine (carbachol). K/sup +/ depolarization increased the level of inositol phosphates in a time-dependent manner. The inositol bisphosphate level also increased rapidly, but its elevated level was sustained during continued depolarization. The elevated level of inositol bisphosphate was reversed upon repolarization of the synaptosomes. The level of inositol monophosphate increased slowly to 120-130% of control. These effects of K/sup +/ depolarization depended on the presence of Ca/sup 2 +/ in the incubation medium. Carbachol stimulated the turnover of phosphatidylinositol in a dose- and time-dependent manner. The level of inositol bisphosphate increased to 210% of control, and this maximal response was seen from 15 to 60 min. Accumulation of inositol monophosphate was larger than that of inositol bisphosphate, but its time course was slower. Atropine and pirenzepine inhibited the carbachol effect with high affinities. These data show that both Ca/sup 2 +/ influx and M/sub 1/ muscarinic receptor activation stimulate phospholipase C activity in synaptosomes, suggesting that phosphatidylinositol turnover may be involved in regulating neurotransmitter release from nerve terminals.

  12. Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease.

    Michell, Robert H


    The last couple of decades have seen an extraordinary transformation in our knowledge and understanding of the multifarious biological roles of inositol phospholipids. Herein, I briefly consider two topics. The first is the role that recently acquired biochemical and genomic information - especially from archaeons - has played in illuminating the possible evolutionary origins of the biological employment of inositol in lipids, and some questions that these studies raise about the 'classical' biosynthetic route to phosphatidylinositol. The second is the growing recognition of the importance in eukaryotic cells of phosphatidylinositol 3,5-bisphosphate. Phosphatidylinositol 3,5-bisphosphate only entered our phosphoinositide consciousness quite recently, but it is speedily gathering a plethora of roles in diverse cellular processes and diseases thereof. These include: control of endolysosomal vesicular trafficking and of the activity of ion channels and pumps in the endolysosomal compartment; control of constitutive and stimulated protein traffic to and from plasma membrane subdomains; control of the nutrient and stress-sensing target of rapamycin complex 1 pathway (TORC1); and regulation of key genes in some central metabolic pathways.

  13. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    WANG Qing; ZHANG Tao


    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl- 1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA,activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1,4, 5-trisphosphate (IP3) but not PKC.

  14. Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers.

    Fasciano, Jennifer M; Danielson, Neil D


    Micellar liquid chromatography (MLC) has been used primarily for the separation of neutral analytes of varying polarities, most commonly phenols and polyaromatic hydrocarbons, but does not seem to have been used to study aromatic hydroxy acids in detail. We have studied the separation of hydroxybenzoic acid mixtures, including monohydroxybenzoic and dihydroxybenzoic acid positional isomers by MLC. Sodium dodecylsulfate (SDS) is investigated as the modifying surfactant on a C18 ultra-high performance liquid chromatography (UHPLC) column (100 × 2.1mm, 1.8 μm). The addition of only SDS (no organic solvent) to the mobile phase reduced the influence of hydrophobic interactions while improving the retention times, resolution, and peak shapes, even at concentrations below the critical micellization concentration (CMC). The UHPLC separation of 7 hydroxybenzoic acids, including 6 dihydroxybenzoic acid positional isomers and one trihydroxybenzoic acid, is achieved with high efficiency using 0.1% SDS in 1.84 mM sulfuric acid (pH 2.43) mobile phase, in less than 6 min with a flow rate of 0.3 mL min(-1), and in less than four min with a flow rate of 0.7 mL min(-1). Six monohydroxybenzoic acid isomers are also effectively separated by MLC, using a 0.5% SDS mobile phase modifier, in less than 20 min with a flow rate of 0.3 mL min(-1), and in less than 14 min with a flow rate of 0.7 mL min(-1). The 3 phthalic acid isomers could be separated using a similar mobile phase and flow rates in less than 6 and 4 min. Solute-micelle equilibrium constants and partition coefficients are calculated for 6 monohydroxybenzoic acids based on a plot of MLC retention factor vs. mobile phase micelle concentration. All aromatic acid isomers studied can be classified as binding solutes in the MLC retention mechanism. Less effective separations are observed with shorter chain surfactants, leading to higher retention times and poor peak shapes. It is concluded that increasing chain length led to more


    Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...

  16. Penn Grade Micellar Displacement Project. Third annual report, June 1977--June 1978. [Lawry project in Bradford field

    Danielson, H.H.; Paynter, W.T.; Ondrusek, P.S.; Finalle, L.L.


    During third year operations of the jointly funded Penn Grade Micellar Displacement Project, the plant facilities were completed for the 24-acre test designated Phase II. The transient testing program and the pre-flush brine and micellar slug injection stages were all completed. Biopolymer injection was initiated. This report details the development, testing, and operations of Phase II, as well as plans for continuing the test.

  17. Thermodynamic analysis of unimer-micelle and sphere-to-rod micellar transitions of aqueous solutions of sodium dodecylbenzenesulfonate


    Temperature dependence of specific conductivity of sodium dodecylbenzenesulfonate (NaDBS) aqueous solutions was analyzed. Two breaks on the plot appeared for all temperature, which suggest two micellar transitions. This has been corroborated by surface tension measurements. The first transition concentration occurs at the critical micelle concentration (CMC), whilst the second critical concentration (so-called transition micellar concentration, TMC) is due to a sphere-to-rod micelles transiti...

  18. Conformational transition and mass transfer in extraction of proteins by AOT--alcohol--isooctane reverse micellar systems.

    Hong, D P; Lee, S S; Kuboi, R


    We examined quantitatively the effect of alcohols on protein and reverse micellar structure. We used circular dichroism (CD) to compare the effects of various alcohols on the protein structure, and percolation phenomena to evaluate the effects of various alcohols on reverse micellar structure. Upon the addition of alcohols to the bulk aqueous phase, proteins were denatured significantly, depending on the alcohol species and concentration, suggesting that use of alcohol directly to the stripping solution is not effective in back-extraction processes of proteins. In the present study, a new method, a small amount of alcohol is added to the surfactant-organic solution to improve the back-extraction behaviors of proteins. Practically, in the back-extraction process, the alcohols suppressing the cluster formation of reverse micelles (high value of beta1), remarkably improved the back-extraction behavior of proteins. In addition, the same alcohol molecules showed a positive effect on the rate and fraction of protein back-extraction. From a result of the CD measurement of the back-extracted proteins, it was known that the alcohols added to reverse micellar solution allowed the proteins to back-extract safely without causing structural changes. These results show that the values of beta(t), defined by the variation of percolation processes, and the back-extraction behaviors of proteins have a good relationship, suggesting that the back-extraction processes were controlled by the micellar-micellar and protein-micellar interactions.

  19. Dispersed Indeterminacy

    Fayngold, Moses


    A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...

  20. Pseudo Peak Phenomena in Micellar Electrokinetic Capillary Chromatography by Using Ionic Surfactant


    The origin of pseudo peak was studied by means of micellar electrokinetic capillary chromatography with cetyltrimethylaminium bromide as the pseudo stationary phase. It has been pointed that two peaks may appear for one component under certain conditions. Experiments showed that the relative areas of the two peaks of analyte depended on the time and the temperature of reaction between analyte and surfactant, and the concentration of surfactant in the sample solution. It means that the interaction between the analyte and the surfactant is a slow process, and a stable substance can be produced from the interaction. It is the substance and the analyte that may lead to the formation of two peaks. The fast interaction mechanism between the solute and the micellar should be queried from the experiment result.

  1. Study of Micellar-Enhanced Ultrafiltration. Progress report, March 1, 1985-February 28, 1986

    Scamehorn, J.F.; Christian, S.D.


    The feasibility of Micellar-Enhanced Ultrafiltration (MEUF) to remove dissolved organics from water has been established. One of the first tasks was to determine the best surfactant to use in MEUF for various situations. From a thorough analysis of the properties and characteristics of a variety of surfactants, combined with preliminary runs with several surfactants, cationic surfactants were determined to be the best surfactant for general use in MEUF. Further, cetylpyridinium chloride was identifid as a near-optimum surfactant in most applications. Therefore, all further studies reported used this surfactant. Elimination of surfactant type as a variable permits more detailed investigation of other important variables. A major effort has been made to develop techniques for measuring the extent of solubilization of organic solutes by aqueous micellar systems. An important accomplishment during the past year has been the development of the so-called semi-equilibrium dealysis (SED) technique for studying solubilization.

  2. Pseudo Peak Phenomena in Micellar Electrokinetic Capillary Chromatography by Using Ionic Surfactant

    CHENGuan-hua; YANGGeng-liang; TIANYi-ling; CHENYi


    The origin of pseudo peak was studied by means of micellar electrokinetic capillary chromatography with cetyltrimethylaminium bormide as the pseudo stationary phase.It has been pointed that two peaks may appear for one component under certain conditions.Experiments showed that the relative areas of the two peaks of analyte depended on the time and the temperature of reaction between analyte and surfactant,and the concentration of surfactant in the sample solution.It means that the interaction between the analyte and the surfactant is a slow process,and a stable substance can be produced from the interaction.It is the substance and the analyte that may lead to the formation of two peaks.The fast interaction mechanism between the solute and the micellar should be queried from the experiment result.

  3. A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency.

    Hou, Jie; Shang, Jincai; Jiao, Chengbin; Jiang, Peiyue; Xiao, Huijie; Luo, Lan; Liu, Tongjun


    A core cross-linked polymeric micellar cisplatin(IV) conjugate prodrug is prepared by attaching the cisplatin(IV) to mPEG-b-PLL biodegradable copolymers to form micellar nanoparticles that can disintegrate to release the active anticancer agent cisplatin(II) in a mild reducing environment. Moreover, in vitro studies show that this cisplatin(IV) conjugate prodrug displays enhanced cytotoxicity against HepG2 cancer cells compared with cisplatin(II). Further studies demonstrate that the high cellular uptake and platinum-DNA adduct of this cisplatin(IV) conjugate prodrug can induce more cancer-cell apoptosis than cisplatin(II), which is responsible for its enhanced anticancer activity.

  4. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes

    Ashok K Ganguli; Tokeer Ahmad; Padam R Arya; Pika Jha


    Current interest in the properties of materials having grains in the nanometer regime has led to the investigation of the size-dependent properties of various dielectric and magnetic materials. We discuss two chemical methods, namely the reverse-micellar route and the polymeric citrate precursor route used to obtain homogeneous and monophasic nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3, PbZrO3 etc. In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route. These nanorods on decomposition provide a facile route to the synthesis of transition metal oxide nanoparticles. We discuss the size dependence of the dielectric and magnetic properties in some of the above oxides.

  5. Structural micellar transition for fluorinated and hydrogenated sodium carboxylates induced by solubilization of benzyl alcohol.

    González-Pérez, Alfredo; Ruso, Juan M; Prieto, Gerardo; Sarmiento, Félix


    The solubility of benzyl alcohol in micellar solutions of sodium octanoate and sodium perfluorooctanoate was studied. From the isotherms of specific conductivity versus molality at different alcohol concentrations, the critical micelle concentration and the degree of ionization of the micelles were determined. The cmc linearly decreases upon increasing the amount of benzyl alcohol present in aqueous solutions with two distinct slopes. This phenomenon was interpreted as a clustering of alcohol molecules above a critical point, around 0.1 mol kg(-1). Attending to the equivalent conductivity versus square root of molality, the presence of a second micellar structure for the fluorinated compound was assumed. The thermodynamic parameters associated with the process of micellization were estimated by applying Motomura's model for binary surfactant mixtures, modified by Pérez-Villar et al. (Colloid Polym. Sci 1990, 268, 965) for the case of alcohol-surfactant solutions. A comparison of the hydrogenated and fluorinated compounds was carried out and discussed.

  6. Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids.

    Łuczak, Justyna; Jungnickel, Christian; Markiewicz, Marta; Hupka, Jan


    Water-soluble ionic liquids may be considered analogues to cationic surfactants with a corresponding surface activity and ability to create organized structures in aqueous solutions. For the first time, the enhanced solubility of the aromatic hydrocarbons, benzene, toluene, and xylene, in aqueous micellar systems of 1-alkyl-3-methylimidazolium chlorides was investigated. Above a critical micelle concentration, a gradual increase in the concentration of aromatic hydrocarbons in the miceller solution was observed. This phenomenon was followed by means of the molar solubilization ratio, the micellar/water partition coefficient, and the number of solubilizate molecules per IL micelle. The molar solubilization ratio for ionic liquid micelles was found to be significantly higher when compared to that of ionic surfactants of similar chain length. The incorporation of the hydrocarbon into the micelle affects also an increase of the aggregation number.

  7. Mixed-micellar proliposomal systems for enhanced oral delivery of progesterone.

    Potluri, Praveen; Betageri, Guru V


    The objective of our study was to develop a mixed-micellar proliposomal formulation of poorly water-soluble drug progesterone and evaluate the dissolution profile and membrane transport. Several formulations of proliposomes were prepared by mixing different concentrations of lipid, progesterone, polysorbate 80, and microcrystalline cellulose. The mixed-micellar formulation of drug:dimyristoyl-phosphatidycholine:polysorbate 80 (1:20:3.3) exhibited the maximum dissolution (75.27%), while pure progesterone resulted in low dissolution. The above formulation showed a 4-fold increase in transport in Caco-2 cells and a 6-fold increase in transport across the everted rat intestinal sac experiments compared with control. Proliposomal formulations enhance the extent of dissolution and membrane transport of progesterone and serve as ideal carriers for oral delivery of drugs with low water solubility.

  8. Penn Grade Micellar Displacement project. First annual report, June 1975--June 1976

    Danielson, H.H.; Paynter, W.T.; Midkiff, F.R.; Finalle, L.L.


    The main objective of the Penn Grade-ERDA Micellar Displacement Project is to assess and hopefully, demonstrate the feasibility of commercial application of the micellar-polymer process for tertiary oil recovery from a rather large, but relatively ''tight'' section of the Bradford Third Sand. The initial phase of this project involves pertinent core and field injectivity measurements from a freshly drilled well, as a basis for assessing the feasibility of a small demonstration test flood to be performed under Phase II. This report details the work done and results obtained under Phase I (Injectivity Test) completed during the first year of the project. These results, having indicated that the pattern test envisaged under Phase II is indeed feasible, work is now in progress to carry the project to the pattern test phase, in pursuit of project goals.

  9. Interfacial properties of nonionic micellar agregates as a function of temperatures and concentrations

    Falconi, L; Briganti, G; D'Arrigo, G; Falconi, Luca; Maccarini, Marco; Briganti, Giuseppe; Arrigo, Giovanni D'


    By means of density, dielectric spectroscopy and sound velocity measurements we perform a systematic study on the polyoxyethylene $C_{12}E_{6}$ nonionic surfactant solutions as a function of temperature and concentration. Both density and sound velocity data, at about $34^{\\circ}C$, coincide with the value obtained for pure water. Above this temperature the density is lower than the water density whereas below it is greater, the opposite happens for the compressibility. Combining results from these different techniques we tempt a very detailed description of the evolution of the micellar interfacial properties with temperature. It is well known that nonionic surfactant solutions dehydrate, growing temperature. Our results indicate that this process is associated with a continuous change in the polymer conformation and in the local density of the micellar interface.

  10. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail:


    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  11. Micellar properties and surface activity of some bolaform drugs in aqueous solution.

    Attwood, D; Natarajan, R


    The micellar properties of a series of dicationic drugs with structures resembling those of the bolaform electrolytes have been examined using light scattering, surface tension and conductivity techniques. The compounds investigated included, demecarium bromide, ambenonium chloride, dequalinium acetate, distigmine bromide and chlorhexidine acetate. Demecarium and dequalinium formed micelles at critical concentrations of 9 x 10(-3) and 4 x 10(-3) mol kg-1 respectively. No significant association of chlorhexidine acetate could be detected, contrary to previous reports.

  12. Applying Theoretical Approach for Predicting the Selective Calcium Channel Blockers Pharmacological Parameter by Biopartitioning Micellar Chromatography

    WANG Su-Min; YANG Geng-Liang; LI Zhi-Wei; LIU Hai-Yan; GUO Hui-Juan


    The usefulness of biopartitioning micellar chromatography (BMC) for predicting oral drug acute toxicity and apparent bioavailability was demonstrated. A logarithmic model (an LD50 model) and the second order polynomial models (apparent bioavailability model) have been obtained using the retention data of the selective calcium channel blockers to predict pharmacological properties of compounds. The use of BMC is simple, reproducible and can provide key information about the acute toxicity and transport properties of new compounds during the drug discovery process.

  13. Studies of Micellar Electrokinetic Chromatography as an Analytical Technique in Pharmaceutical Analysis - an Industrial Perspective

    Stubberud, Karin


    Studies have been performed to evaluate the use of micellar electrokinetic chromatography (MEKC), one mode of capillary electrophoresis (CE), as an analytical technique in industrial pharmaceutical analysis. The potential for using chemometrics for the optimisation of MEKC methods has also been studied as well as the possibilities of coupling MEKC with mass spectrometry (MS). Two methods were developed, one for the determination of ibuprofen and codeine and another for pilocarpine, together ...

  14. Stratification of a Foam Film Formed from a Nonionic Micellar Solution: Experiments and Modeling.

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh


    Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.

  15. Conditions for and characteristics of nonaqueous micellar solutions and microemulsions with ionic liquids

    Zech, Oliver; Kunz, Werner


    Research on nonaqueous microemulsions containing ionic liquids as polar and/or apolar phase, respectively, is growing at a fast rate. One key property of ionic liquids that highlights their potential and their diversification compared to water is their wide liquid temperature range. In this emerging-area review article we survey recent developments in the field of nonaqueous micellar solutions and microemulsions containing ionic liquids in general with a strong emphasis on the effect of tempe...

  16. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Anne-Sophie eLeprince


    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  17. Dye-sensitized photo-oxidation of amino acids in reversed micellar membrane mimetic system

    刘剑波; 张复实; 赵瑜; 赵福群; 唐应武; 宋心琦


    The photochemistry of a novel photosensitizer H[TBC(O’Pr)4P(OH)],and the photo-oxidation of amino acids sensitized by H[TBC(OiPr)4P(OH)] have been investigated in the AOT/H2O/toluene reversed micellar system.Absorption and fluorescence measurements indicate that H[TBC(O’Pr)4P(OH)] can interact with the re versed micelles by adsorption to the micellar surface,resulting in the disaggregation of the sensitizer and the enhance ment of its photoactivity.In micellar solutions,H[TBC(O’Pr)4P(OH)] can efficiently photo-generate O2(Type Ⅱ mechanism) and O2(Type Ⅰ mechanism) as shown by stationary photolysis and ESR spin-trapping techniques Amino acids dissolved in water pools of reversed micelles can be photo-oxidized via Type Ⅱ mechanism as sensitized by H[TBC(O’Pr)4P(OH)].The photo-oxidation of tryptophan follows the first-order kinetics,while that of tyrosine is much slower.Kinetic studies of the photodynamic behavior in this microheterogeneous system shows that the micro-heterogeneity can alter the mechani

  18. Isocratic and gradient elution in micellar liquid chromatography with Brij-35.

    Peris-García, Ester; Ortiz-Bolsico, Casandra; Baeza-Baeza, Juan José; García-Alvarez-Coque, María Celia


    Polyoxyethylene(23)lauryl ether (known as Brij-35) is a nonionic surfactant, which has been considered as an alternative to the extensively used in micellar liquid chromatography anionic surfactant sodium lauryl (dodecyl) sulfate, for the analysis of drugs and other types of compounds. Brij-35 is the most suitable nonionic surfactant for micellar liquid chromatography, owing to its commercial availability, low cost, low toxicity, high cloud temperature, and low background absorbance. However, it has had minor use. In this work, we gather and discuss some results obtained in our laboratory with several β-blockers, sulfonamides, and flavonoids, concerning the use of Brij-35 as mobile phase modifier in the isocratic and gradient modes. The chromatographic performance for purely micellar eluents (with only surfactant) and hybrid eluents (with surfactant and acetonitrile) is compared. Brij-35 increases the polarity of the alkyl-bonded stationary phase and its polyoxyethylene chain with the hydroxyl end group allows hydrogen-bond interactions, especially for phenolic compounds. This offers the possibility of using aqueous solutions of Brij-35 as mobile phases with sufficiently short retention times. The use of gradients of acetonitrile to keep the concentration of Brij-35 constant is another interesting strategy that yields a significant reduction in the peak widths, which guarantee high resolution.

  19. Simultaneous isocratic separation of phenolic acids and flavonoids using micellar liquid chromatography.

    Hadjmohammadi, Mohammad Reza; Nazari, S Saman S J


    The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro-organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro-organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1-propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.

  20. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R


    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector.

  1. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    Ryu, Chang; Park, Han Jin


    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  2. Structural investigation of viscoelastic micellar water/CTAB/NaNO3 solutions

    K Kuperkar; L Abezgauz; D Danino; G Verma; P A Hassan; V K Aswal; D Varade; P Bahadur


    A highly viscoelastic worm-like micellar solution is formed in hexa-decyltrimethylammonium bromide (CTAB) in the presence of sodium nitrate (NaNO3). A gradual increase in micellar length with increasing NaNO3 was assumed from the rheological measurements where the zero-shear viscosity (0) versus NaNO3 concentration curve exhibits a maximum. However, upon increase in temperature, the viscosity decreases. Changes in the structural parameters of the micelles with addition of NaNO3 were inferred from small angle neutron scattering measurements (SANS). The intensity of scattered neutrons in the low region was found to increase with increasing NaNO3 concentration. This suggests an increase in the size of the micelles and/or decrease of intermicellar interaction with increasing salt concentration. Analysis of the SANS data using prolate ellipsoidal structure and Yukawa form of interaction potential between mi-celles indicate that addition of NaNO3 leads to a decrease in the surface charge of the ellipsoidal micelles which induces micellar growth. Cryo-TEM measurements support the presence of thread-like micelles in CTAB and NaNO3.

  3. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment.

    Kahraman, Emine; Özhan, Gül; Özsoy, Yıldız; Güngör, Sevgi


    The aim of this work was to optimize polymeric nano-sized micellar carriers of the anti-acne compound benzoyl peroxide (BPO) and to examine the ability of these carriers to deposit into hair follicles with the objective of improving skin delivery of BPO. BPO loaded polymeric micelles composed of Pluronic(®) F127 were prepared by the thin film hydration method and characterized in terms of size, loading capacity, morphology and physical stability. The optimized micelle formulation was then selected for skin delivery studies. The penetration of BPO loaded micellar carriers into skin and skin appendages across full thickness porcine skin was examined in vitro. Confocal microscopy images confirmed the penetration of Nile Red into hair follicles, which was loaded into micellar carriers as a model fluorescent compound. The relative safety of the polymeric micelles was evaluated with the MTT viability test using mouse embryonic fibroblasts. The results indicated that nano-sized polymeric micelles of BPO composed of Pluronic(®) F127 offer a potential approach to enhance skin delivery of BPO and that targeting of micelles into hair follicles may be an effective and safe acne treatment.

  4. Bell Creek Field micellar-polymer pilot demonstration. Fourth annual report, October 1979-September 1980

    Goldburg, A.


    The pilot is a contained 40-acre 5-spot located in a representative watered-out portion of the Unit A Reservoir. The pay is sandstone with an average net pay of 6.4 feet, air permeability of 1050 md, and water TDS of 2500 ppM. The average remaining oil saturation in the 40-acre pilot area was estimated to be 28% at the start of chemical injection. The Pilot has four injectors (Wells MPP-1, MPP-2, MPP-3, and MPP-4) and one producer (Well 12-1). The overall micellar-polymer oil recovery is estimated at 47% of the remaining oil at the initiation of the micellar-polymer flood. In the fourth contract year, micellar slug injection was completed and injection of the graded mobility buffer began. A second radioactive/chemical tracer test was begun at the start of the polymer phase. A delay of approximately one year was experienced during the reservoir description phase. Otherwise, the project has remained on schedule.

  5. Bell Creek Fiel micellar-polymer pilot demonstration first annual report, July 1976--September 1977


    A Pilot Demonstration is being conducted to determine whether micellar-polymer flooding is an economically feasible technique for enhanced oil recovery from the Muddy Sand Unit ''A'' Reservoir of the Bell Creek Field, Powder River and Carter Counties, Montana. During the first year of this project extensive reservoir studies, site and pattern selection, design and selection of an optimal micellar-polymer system, water flood history matching and preliminary process simulations by numerical models, and development of pilot injection and production wells were completed. The major effort during the first contract year was the design for the Bell Creek pilot of two optimal micellar-polymer processes--one oil-external and one water-external; and the concomitant development of a Selection Methodology by which to decide upon the more suitable process by means of a standard set of laboratory experiments and numerical simulations. This effort was completed. The oil-external design was selected for Bell Creek application based upon its superior performance in the standard test series and simulations. The advantages of the Bell Creek oil-external design appear to be better recovery performance, mobility control, and protection against divalent ions. 30 tables, 41 figs.

  6. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank


    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  7. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang


    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  8. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand


    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel.

  9. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F. (Institut National de la Recheche Medicale, Villeneuve d' Ascq (France))


    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with {sup 3}H-fatty acids, ({sup 3}H)ethanolamine, and ({sup 3}H)carbohydrates. Treatment of {sup 3}H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment.

  10. Seed dispersal in fens

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai


    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  11. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions.

    Tang, Xueming; Zou, Weizhong; Koenig, Peter H; McConaughy, Shawn D; Weaver, Mike R; Eike, David M; Schmidt, Michael J; Larson, Ronald G


    We link micellar structures to their rheological properties for two surfactant body-wash formulations at various concentrations of salts and perfume raw materials (PRMs) using molecular simulations and micellar-scale modeling, as well as traditional surfactant packing arguments. The two body washes, namely, BW-1EO and BW-3EO, are composed of sodium lauryl ethylene glycol ether sulfate (SLEnS, where n is the average number of ethylene glycol repeat units), cocamidopropyl betaine (CAPB), ACCORD (which is a mixture of six PRMs), and NaCl salt. BW-3EO is an SLE3S-based body wash, whereas BW-1EO is an SLE1S-based body wash. Additional PRMs are also added into the body washes. The effects of temperature, salt, and added PRMs on micellar lengths, breakage times, end-cap free energies, and other properties are obtained from fits of the rheological data to predictions of the "Pointer Algorithm" [ Zou , W. ; Larson , R.G. J. Rheol. 2014 , 58 , 1 - 41 ], which is a simulation method based on the Cates model of micellar dynamics. Changes in these micellar properties are interpreted using the Israelachvili surfactant packing argument. From coarse-grained molecular simulations, we infer how salt modifies the micellar properties by changing the packing between the surfactant head groups, with the micellar radius remaining nearly constant. PRMs do so by partitioning to different locations within the micelles according to their octanol/water partition coefficient POW and chemical structures, adjusting the packing of the head and/or tail groups, and by changing the micelle radius, in the case of a large hydrophobic PRM. We find that relatively hydrophilic PRMs with log POW 4, are isolated deep inside the micelle, separating from the tails and swelling the radius of the micelle, leading to shorter micelles and much lower viscosities, leading eventually to swollen-droplet micelles.

  12. Estratégias de pré-concentração em eletroforese capilar: parte 2. Manipulação da velocidade da fase dispersa/secundária Preconcentration strategies in capillary electrophoresis: part 2. Manipulation of the disperse/secondary velocity

    Maria de Lourdes L. de Moraes


    Full Text Available This work describes CE preconcentration strategies based on the effect of manipulation of the disperse/secondary velocity. Introduced by Terabe et al. in 1984, micellar electrokinetic chromatography is a powerful separation approach that increases the usage of electrokinetic phenomena for the separation of nonionic compounds. The main disadvantage of MEKC is the low concentration sensitivity associated with the limited optical path length for on-capillary photometric detection and the limited volume of sample solution that can be injected. This paper compiles on-line concentration strategies for neutral analytes by sample stacking and sweeping in micellar electrokinetic chromatography.

  13. Isotype-specific inhibition of the phosphatidylinositol-3-kinase pathway in hematologic malignancies

    Castillo JJ


    Full Text Available Jorge J Castillo,1 Meera Iyengar,2 Benjamin Kuritzky,2 Kenneth D Bishop2 1Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, 2Division of Hematology and Oncology, Rhode Island Hospital, Providence, RI, USA Abstract: In the last decade, the advent of biological targeted therapies has revolutionized the management of several types of cancer, especially in the realm of hematologic malignancies. One of these pathways, and the center of this review, is the phosphatidylinositol-3-kinase (PI3K pathway. The PI3K pathway seems to play an important role in the pathogenesis and survival advantage in hematologic malignancies, such as leukemia, lymphoma, and myeloma. The objectives of the present review, hence, are to describe the current knowledge on the PI3K pathway and its isoforms, and to summarize preclinical and clinical studies using PI3K inhibitors, focusing on the advances made in hematologic malignancies. Keywords: phosphatidylinositol-3-kinase pathway, inhibitors, leukemia, lymphoma, myeloma

  14. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion.

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan; Yang, Chonglin


    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion.

  15. Tumor phosphatidylinositol-3-kinase signaling and development of metastatic disease in locally advanced rectal cancer.

    Anne Hansen Ree

    Full Text Available BACKGROUND: Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease. PATIENTS AND METHODS: Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival. RESULTS: Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up. CONCLUSION: High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity.

  16. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy.

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming


    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.

  17. Simultaneous Separation of Eight Benzodiazepines in Human Urine Using Field-Amplified Sample Stacking Micellar Electrokinetic Chromatography.

    Oledzka, Ilona; Kulińska, Zofia; Prahl, Adam; Baczek, Tomasz


    A novel approach for the simultaneous quantification of eight benzodiazepines (BZDs) using dispersive liquid-liquid microextraction (DLLME) and field-amplified sample stacking (FASS) combined with micellar electrokinetic chromatography (MEKC) was investigated and evaluated in the context of precision, accuracy, sensitivity, linearity, detection and limits of quantification (LOQ). The absolute recovery rates of BZDs were above 90.65%. The limits of detection (LOD) were 20 ng/mL for chlordiazepoxide, estazolam, temazepam and midazolam, and 30 ng/mL for clonazepam, lorazepam, lormetazepam and medazepam, while the LOQ was set at 50 ng/mL for chlordiazepoxide, estazolam, temazepam and midazolam, and 100 ng/mL for clonazepam, lorazepam, lormetazepam and medazepam. Linearity was confirmed in the range of 50-2,000 ng/mL for chlordiazepoxide, estazolam, temazepam and midazolam, and 100-2,000 ng/mL for clonazepam, lorazepam, lormetazepam and medazepam, with a correlation coefficient greater than 0.9987 for all analytes. The elaborated procedure meets all the requirements of analytical methods. During the extraction procedure, a mixture of 1 mL of ethanol and 500 µL of dichloromethane, used as the disperser and extraction solvent, respectively, was rapidly injected into 3 mL of a urine sample. A significant improvement in sensitivity was achieved when DLLME was used to extract BZDs from the urine sample and FASS as an on-line preconcentration technique was developed. For the best separation of analytes, the running buffer was composed of 30 mM SDS, 10 mM sodium tetraborate and 15% methanol (pH 8.8), whereas a sample buffer was composed of 10 mM SDS and 2 mM sodium tetraborate. Moreover, a fused-silica capillary [inner diameter (i.d.) of 75 µm and length of 50 cm], photodiode array detection, pneumatic injection for 15 s and a voltage of 23 kV were applied. The applicability of the method has been confirmed for the analysis of BZD in urine samples collected from patients who

  18. Study of monoprotic acid-base equilibria in aqueous micellar solutions of nonionic surfactants using spectrophotometry and chemometrics.

    Babamoradi, Hamid; Abdollahi, Hamid


    Many studies have shown the distribution of solutes between aqueous phase and micellar pseudo-phase in aqueous micellar solutions. However, spectrophotometric studies of acid-base equilibria in these media do not confirm such distribution because of the collinearity between concentrations of chemical species in the two phases. The collinearity causes the number of detected species to be equal to the number of species in a homogenous solution that automatically misinterpreted as homogeneity of micellar solutions, therefore the collinearity is often neglected. This interpretation is in contradiction to the distribution theory in micellar media that must be avoided. Acid-base equilibrium of an indicator was studied in aqueous micellar solutions of a nonionic surfactant to address the collinearity using UV/Visible spectrophotometry. Simultaneous analysis (matrix augmentation) of the equilibrium and solvation data was applied to eliminate the collinearity from the equilibrium data. A model was then suggested for the equilibrium that was fitted to the augmented data to estimate distribution coefficients of the species between the two phases. Moreover, complete resolution of concentration and spectral profiles of species in each phase was achieved.

  19. Mutual stimulation by phosphatidylinositol-4-phosphate and myelin basic protein of their phosphorylation by the kinases solubilized from rat brain myelin

    Deshmukh, D.S.; Kuizon, S.; Brockerhoff, H.


    Myelin basic protein and phosphatidylinositol-4-phosphate are phosphorylated in vitro by ATP and solubilized rat brain myelin. When both substrates are present together, the rate of phosphorylation of each is increased about eight-fold. It appears likely that the phosphate turnover of myelin basic protein and of phosphatidylinositol-4-phosphate are coupled in vivo.


    Sandhiya Jatwani et al.


    Full Text Available Solubility is an important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Among all newly discovered chemical entities most of the drugs are lipophillic and fail to reach market due to their poor water solubility. The solubility behavior remains one of the most challenging aspect informational development. Hence various techniques are used for the improvement of solubility of poorly water soluble drugs which include micronization, chemical modification, pH adjustment, solid dispersion, complexation, co-solvency micellar solubilization, hydrotrophy etc. Of all these approaches solid dispersion have attracted tremendous interest as an efficient means of improving the dissolution rate and hence the bioavailability to arrange of hydrophobic drugs. This article reviews the various preparation techniques and types of solid dispersion based on molecular arrangement. Finally some of the practical aspects have also been considered for the preparation of dispersions.

  1. GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence.

    Hua, Chenlei; Meijer, Harold J G; de Keijzer, Jeroen; Zhao, Wei; Wang, Yuanchao; Govers, Francine


    For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P. infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P. infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection.

  2. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    Giuseppe Vasapollo


    Full Text Available Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a “green” micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable “functional” molecules, has been produced.

  3. Quantitation of antihistamines in pharmaceutical preparations by liquid chromatography with a micellar mobile phase of sodium dodecyl sulfate and pentanol.

    Gil-Agustí, M; Monferrer-Pons, L; Esteve-Romero, J; García-Alvarez-Coque, M C


    A reversed-phase liquid chromatographic procedure with a micellar mobile phase of sodium dodecyl sulfate (SDS), containing a small amount of pentanol, was developed for the control of 7 antihistamines of diverse action in pharmaceutical preparations (tablets, capsules, powders, solutions, and syrups): azatadine, carbinoxamine, cyclizine, cyproheptadine, diphenhydramine, doxylamine, and tripelennamine. The retention times of the drugs were <9 min with a mobile phase of 0.15M SDS-6% (v/v) pentanol. The recoveries with respect to the declared compositions were in the range of 93-110%, and the intra- and interday repeatabilities and interday reproducibility were <1.2%. The results were similar to those obtained with a conventional 60 + 40 (v/v) methanol-water mixture, with the advantage of reduced toxicity, flammability, environmental impact, and cost of the micellar-pentanol solutions. The lower risk of evaporation of the organic solvent dissolved in the micellar solutions also increased the stability of the mobile phase.

  4. Effect of the salt-induced micellar microstructure on the nonlinear shear flow behavior of ionic cetylpyridinium chloride surfactant solutions

    Gaudino, D.; Pasquino, R.; Kriegs, H.; Szekely, N.; Pyckhout-Hintzen, W.; Lettinga, M. P.; Grizzuti, N.


    The shear flow dynamics of linear and branched wormlike micellar systems based on cetylpyridinium chloride and sodium salicylate in brine solution is investigated through rheometric and scattering techniques. In particular, the flow and the structural flow response are explored via velocimetry measurements and rheological and rheometric small-angle neutron scattering (SANS) experiments, respectively. Although all micellar solutions display a similar shear thinning behavior in the nonlinear regime, the experimental results show that shear banding sets in only when the micelle contour length L ¯ is sufficiently long, independent of the nature of the micellar connections (either linear or branched micelles). Using rheometric SANS, we observe that the shear banding systems both show very similar orientational ordering as a function of Weissenberg number, while the short branched micelles manifest an unexpected increase of ordering at very low Weissenberg numbers. This suggests the presence of an additional flow-induced relaxation process that is peculiar for branched systems.

  5. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    Quirino, Joselito P; Kato, Masaru


    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  6. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    Mingjie Wei


    Full Text Available Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores.

  7. Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction.

    Nandini, K E; Rastogi, Navin K


    The extraction of lactoperoxidase (EC from whey was studied using single step reverse micelles-assisted extraction and compared with reverse micellar extraction. The reverse micelles-assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25-fold, respectively. Whereas reverse micelles-assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39-fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles also evidenced that higher purification was obtained in reverse micelles-assisted extraction as compared of reverse micellar extracted lactoperoxidase.

  8. Heterogeneity of the calcium-dependent phosphatidylinositol phosphodiesterase in rat brain

    Hirasawa, Keisuke; Irvine, Robin F.; Dawson, Rex M. C.


    1. The Ca2+-dependent phosphatidylinositol phosphodiesterase (phospholipase C-type) from the cytosolic supernatant of rat brain was active against exogenous [32P]-phosphatidylinositol from pH5.0 to pH8.5. However, the activity in the range pH7.0–8.5 could not be recovered after precipitation with (NH4)2SO4; most of the enzyme activity was recovered in the 30–50% fraction and showed a single sharp pH optimum at 5.5. 2. The cytosolic supernatant was analysed by isoelectric focusing on acrylamide gels, and assay at pH5.5. Four peaks of phosphodiesterase activity were found at pI ranges 7.4–7.2, 6.0–5.8, 4.8–4.4 and 4.2–3.8. 3. The cytosolic supernatant was also applied to a chromatofocusing column, and again assayed at pH5.5. Four peaks were eluted: minor, but consistent, activity at the beginning of the elution with a pI of near 7.2 or above; a second peak at pH6.0–5.85; a third broad peak with a wide range pH5.3–4.2; and a fourth peak, which was eluted by washing the column with 1m-NaCl, suggesting an isoenzyme with a pI below 4.0 (supported by the result of the isoelectric focusing). 4. If all the chromatofocusing fractions were assayed at pH7.0 or 8.0 (at 1mm-Ca2+), only a single sharp peak was detected, with a pI of 4.6–4.8. This peak disappeared on (NH4)2SO4 fractionation (30–50%) of the cytosolic supernatant, whereas the four peaks with activity at pH5.5 were virtually unaffected. 5. The four activities (assayed at pH5.5) separated by chromatofocusing produced inositol 1:2-cyclic monophosphate, inositol 1-monophosphate and diacylglycerol as enzymic products. 6. We conclude that the Ca2+-dependent phosphatidylinositol phosphodiesterase exhibits considerable heterogeneity, both with respect to pH optima of activity, and its isoelectric properties. ImagesFig. 2. PMID:6291509

  9. Optical properties and inclusion of an organic fluorophore in organized media of micellar solutions and beta-cyclodextrin

    El-Sayed, Yusif S.


    In this study, we prepared a new chalcone compound (3-(4'-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPPP) and examined its characterization and photophysical properties such as singlet absorption, molar absorptivity, fluorescence spectra, and fluorescence quantum yield (ϕf). DEAPPP dye exhibited a large red shift in both absorption and emission spectra as solvent polarity increases, indicating a large change in dipole moment of molecule upon excitation. Also, the fluorescence quantum yield was solvent dependent. The absorption and fluorescence emission spectral properties of DEAPPP have been investigated in organized media of aqueous micellar and β-cyclodextrin (CD) solutions. While the absorption spectra were less sensitive to the nature of the added surfactant or CD, the characteristics of the intramolecular charge transfer (ICT) fluorescence were highly sensitive to the properties of the medium. The ICT maximum was strongly blue-shifted with a great enhancement in the fluorescence quantum yield on adding micellar or CD. This indicated that the solubilization of DEAPPP increased in the micellar core and an inclusion complex with β-CD was formed. The critical micelle concentration (CMC) as well as the polarity of the micellar core of sodium dodecyl sulfate (SDS), Cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) have been determined. The CMC values were in good agreement with the reported values while the polarity was lower indicating that DEAPPP molecules were incorporated in the micellar core not at the micellar interface. The binding constants of DEAPPP: micelles or DEAPPP: CD complexes have been also determined.

  10. Analysis of catechins in Theobroma cacao beans by cyclodextrin-modified micellar electrokinetic chromatography.

    Gotti, Roberto; Furlanetto, Sandra; Pinzauti, Sergio; Cavrini, Vanni


    A micellar electrokinetic chromatography (MEKC) method was developed for the quantitation of polyphenols (+)-catechin and (-)-epicatechin (catechin monomers) and the methylxanthine theobromine in Theobroma cacao beans. Owing to the poor stability of catechin monomers in alkaline conditions, a 50 mM Britton-Robinson buffer at a pH 2.50 was preferred as the background electrolyte. Under these conditions, the addition of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) at a concentration of 12 mM to the SDS micellar solution (90 mM), resulted in a cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) endowed with two peculiar advantages compare to the conventional MEKC: (i) strong improvement of separation of the most important phytomarkers of T. cacao and (ii) enantioselectivity toward (+/-)-catechin. In particular, separation of methylxanthines (theobromine and caffeine), procyanidin dimers B1 and B2, and catechins (epicatechin and catechin) was obtained simultaneously to the enantioseparation of racemic catechin within 10min. The enantioselectivity of the method makes it suitable in evaluation of possible epimerisation at the C-2 position of epicatechin monomer potentially occurring during heat processing and storage of T. cacao beans. The extraction procedure of the phytomarkers from the beans was approached using ultrasonic bath under mild conditions optimized by a multivariate strategy. The method was validated for robustness, selectivity, sensitivity, linearity, range, accuracy and precision and it was applied to T. cacao beans from different countries; interestingly, the native enantiomer (+)-catechin was found in the beans whereas, for the first time we reported that in chocolate, predominantly (-)-catechin is present, probably yielded by epimerisation of (-)-epicatechin occurred during the manufacture of chocolate.

  11. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF)

    Zhang, Wenxiang [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guohe, E-mail: [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Wei, Jia [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 (Canada); Li, Huiqin; Zheng, Rubing; Zhou, Ya [MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)


    Highlights: Black-Right-Pointing-Pointer Gemini surfactant micellar enhanced ultrafiltration was used to remove phenol. Black-Right-Pointing-Pointer The effect of different hydrophilic head groups of surfactant was analyzed. Black-Right-Pointing-Pointer SEM, ATR-FTIR and mercury porosimeter were applied to elucidate membrane fouling. Black-Right-Pointing-Pointer Gemini surfactant had superior performance in comparing with conventional surfactant. - Abstract: Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L{sub m}) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated

  12. DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system.

    Ghirlando, R; Wachtel, E J; Arad, T; Minsky, A


    Evidence for a conceptually novel DNA packaging process is presented. X-ray scattering, electron microscopy, and circular dichroism measurements indicate that in the presence of positively charged micellar aggregates and flexible anionic polymers, such as negatively charged polypeptides or single-stranded RNA species, a complex is formed in which DNA molecules are partially embedded within a micellar scaffold and partially condensed into highly packed chiral structures. Based on studies of micelle-DNA and micelle-flexible anionic polymer systems, as well as on the known effects of a high charge density upon the micellar organization, a DNA packaging model is proposed. According to this model, the DNA induces the elongation of the micelles into rodlike aggregates, forming a closely packed matrix in which the DNA molecules are immobilized. In contrast, the flexible anionic polymers stabilize clusters of spherical micelles which are proposed to effect a capping of the rodlike micelles, thus arresting their elongation and creating surfactant-free segments of the DNA that are able to converge and collapse. Thus, unlike other in vitro DNA packaging systems, in which condensation follows encounters between charge-neutralized DNA molecules, a prepackaging phase where the DNA is immobilized within a matrix is proposed in this case. Cellular and nuclear membranes have been implicated in DNA packaging processes in vivo, and negatively charged polyelectrolytes were shown to be involved in the processes. These observations, combined with the basic tenets of the DNA condensation system described here, allow for the progression to the study of more elaborate model systems and thus might lead to insights into the nature and roles of the intricate in vivo DNA-membrane complexes.

  13. Micellar bolaform and omega-carboxylate phosphatidylcholines as substrates for phospholipases.

    Lewis, K A; Soltys, C E; Yu, K; Roberts, M F


    A series of mixed-chain diacyl-PCs which contain an omega-COOH on the sn-2 chain [1-Cx-2-Cy-(COOH)-PC] and bolaform (1-Cx-2,2'-Cy-1'-Cx-PC) phosphatidylcholines were synthesized and examined as substrates for phospholipase A2 (Naja naja naja) and C (Bacillus cereus). There is very little detectable phospholipase A2 activity toward pure micellar 1-acyl-2-acyl-(omega-COOH) species. In addition, when these same omega-COOH species are present at concentrations above their CMCs, they are potent inhibitors of phospholipase A2 hydrolysis of other micellar lipids. In contrast, phospholipase C hydrolysis of the same 1-acyl-2-acyl-omega-COOH)-PC species proceeds with rates comparable to that of diheptanoyl-PC. The bolaform lipids, which are tethered through a common sn-2 acyl chain, (e.g., 1-C8-2,2'-C12-1'-C8-PC) display quite different kinetic results. Under limiting Ca2+ conditions (100 microM) all the available sn-2 acyl bonds of the dimer are hydrolyzed. However, at high Ca2+ concentrations (1-10 mM) the reaction curves have a biphasic nature, characterized by an initial burst of activity followed by much slower rate. This is consistent with only the micellar 1-acyl-2-acyl-(omega-COOH)-PC produced in situ from phospholipase A2 hydrolysis of the dimer acting as an inhibitor of subsequent phospholipase A2 activity. Phospholipase C hydrolysis of the PC dimer and the sn-2 omega-COOH PC is rapid, with both available glycerophosphate groups cleaved at presumably the same rate. These results are discussed in terms of the unique physical properties (as measured by NMR and fluorescence experiments) of these phospholipids.

  14. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E


    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  15. Synthesis of anti-tumour phosphatidylinositol analogues from glucose by the use of ring-closing olefin metathesis

    Andresen, Thomas Lars; Skytte, Dorthe M.; Madsen, Robert


    -closing metathesis to afford the key conduritol B intermediate 7. This can trifurcate to form three different benzyl-protected myo-inositol headgroups 4-6, which after phosphorylation and attachment of the glycerolipid part give phosphatidylinositols 1-3. Preliminary biological testing against human colon...

  16. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    Abd-El-Haliem, Ahmed; Vossen, J.H.; Zeijl, van Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, M.F.; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, M.H.A.J.


    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs

  17. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    Abd-el-Haliem, A.M.; Vossen, J.H.; van Zeijl, A.; Dezhsetan, S.; Testerink, C.; Seidl, M.F.; Beck, M.; Strutt, J.; Robatzek, S.; Joosten, M.H.A.J.


    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs

  18. Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity

    Oh, E S; Woods, A; Lim, S T;


    Phosphatidylinositol 4,5-bisphosphate (PIP2) is involved in the organization of the actin cytoskeleton by regulating actin-associated proteins. The transmembrane heparan sulfate proteoglycan syndecan-4 also plays a critical role in protein kinase C (PKC) signaling in the formation of focal...

  19. Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection.

    Terrado-Campos, David; Tayeb-Cherif, Khaled; Peris-Vicente, Juan; Carda-Broch, Samuel; Esteve-Romero, Josep


    A method was developed for the determination of oxolinic acid, danofloxacin, ciprofloxacin and enrofloxacin by micellar liquid chromatography - fluorescence detection in commercial porcine and bovine meat. The samples were ultrasonicated in a micellar solution, free of organic solvent, to extract the analytes, and the supernatant was directly injected. The quinolones were resolved in 0.9998), trueness (89.3-105.1%), precision (<8.3%), decision limit (<12% over the maximum residue limit), detection capability (<21% over the maximum residue limit), ruggedness (<5.6%) and stability. The procedure was rapid, eco-friendly, safe and easy-to-handle.

  20. A mode coupling theory analysis of viscoelasticity near the kinetic glass transition of a copolymer micellar system

    Mallamace, Francesco [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tartaglia, Piero [Dipartimento di Fisica, INFM and Statistical Mechanics and Complexity Center, Universita di Roma La Sapienza, I-00185 Rome (Italy); Chen W R [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Faraone, Antonio [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chen, S H [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)


    We report a set of viscoelastic measurements in concentrated aqueous solutions of a copolymer micellar system with short-range inter-micellar attractive interactions, a colloidal system characterized, in different regions of the composition-temperature phase diagram, by the existence of a percolation line (PT) and a kinetic glass transition (KGT). Both these transitions cause dramatic changes in the system viscoelasticity. Whereas the observed variations of the shear moduli at the PT are described in terms of percolation models, for the structural arrest at the KGT we investigate the frequency-dependent shear modulus behaviours by using a mode coupling theory (MCT) approach.

  1. Viscoelastic processes in non-ergodic states (percolation and glass transitions) of attractive micellar systems

    Mallamace, F.; Broccio, M.; Tartaglia, P.; Chen, W. R.; Faraone, A.; Chen, S. H.


    We report a set of viscoelastic measurements in aqueous solutions of a copolymer micellar system with attractive interactions, a system characterized by a percolation line (PT), and a structural arrest (SA) in the particle diffusion motions of a kinetic glass transition (KGT). We observe, in both transitions, dramatic variations in both the elastic (or storage G‧( ω)) and loss components ( G″( ω)) of the shear moduli. At the PT, rheological data are characterized by a scaling behavior, whereas at the SA G‧ and G″ develop a plateau and a marked minimum, respectively. These behaviors are described in the frame of percolation models and mode coupling theory (MCT).

  2. Micellar-polymer joint demonstration project, Wilmington Field, California. Third annual report, June 1978-July 1979

    Staub, H.L.


    The micellar-polymer demonstration project to be conducted - through the design phase - in the HXa sand of Wilmington Field is proceeding satisfactorily but has fallen behind schedule. Results of some core floods were unsatisfactory. The recovery efficiencies were much lower than those achieved using the laboratory sample cosurfactant final design slug. Nearly six months of reformulating and additional core testing were required to finally achieve satisfactory laboratory results. Other laboratory tests were performed to optimize the polymer buffer for size and concentration. Other reservoir and reservoir fluid problems have been encountered in production and injection operations during the pre-flush period.

  3. An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution

    Griffiths, I. M.


    Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.

  4. Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir.

    Indulkar, Anura S; Mo, Huaping; Gao, Yi; Raina, Shweta A; Zhang, Geoff G Z; Taylor, Lynne S


    The goals of this study were to determine: 1) the impact of surfactants on the "amorphous solubility"; 2) the thermodynamic supersaturation in the presence of surfactant micelles; 3) the mechanism of solute solubilization by surfactant micelles in supersaturated solutions. The crystalline and amorphous solubility of atazanavir was determined in the presence of varying concentrations of micellar sodium dodecyl sulfate (SDS). Flux measurements, using a side-by-side diffusion cell, were employed to determine the free and micellar-bound drug concentrations. The solubilization mechanism as a function of atazanavir concentration was probed using fluorescence spectroscopy. Pulsed gradient spin-echo proton nuclear magnetic resonance (PGSE-NMR) spectroscopy was used to determine the change in micelle size with a change in drug concentration. Changes in the micelle/water partition coefficient, K m/w , as a function of atazanavir concentration led to erroneous estimates of the supersaturation when using concentration ratios. In contrast, determining the free drug concentration using flux measurements enabled improved determination of the thermodynamic supersaturation in the presence of micelles. Fluorescence spectroscopic studies suggested that K m/w changed based on the location of atazanavir solubilization which in turn changed with concentration. Thus, at a concentration equivalent to the crystalline solubility, atazanavir is solubilized by adsorption at the micelle corona, whereas in highly supersaturated solutions it is also solubilized in the micellar core. This difference in solubilization mechanism can lead to a breakdown in the prediction of amorphous solubility in the presence of SDS as well as challenges with determining supersaturation. PGSE-NMR suggested that the size of the SDS micelle is not impacted at the crystalline solubility of the drug but increases when the drug concentration reaches the amorphous solubility, in agreement with the proposed changes in

  5. Application of micellar electrokinetic capillary chromatography for routine analysis of different materials

    Injac Rade


    Full Text Available Micellar electrokinetic capillary chromatography (MEKC has become a popular mode among the several capillary electro-migration techniques. Most drug analysis can be performed by using MEKC because of its wide applicability. Separation of very complex mixtures, determination of drugs in the biological materials, etc., can be successfully achieved by MEKC. This review surveys typical applications of MEKC analysis. Recent advances in MEKC, especially with solid-phase extraction and large-volume sample stacking, are described. Modes of electrokinetic chromatography including MEKC, a separation theory of MEKC, environmental friendly analysis, and selectivity manipulation in MEKC are also briefly mentioned.

  6. Features of the micellar solubility of metal-containing surfactants in hydrocarbons

    Fedorov, A.B.; Zdobnova, O.L.; Zaichenko, L.P.; Proskuryakov, V.A.


    Metal-containing surfactants (SF) are now widely used as different additives to oils and fuels. The micellar solubility of a series of individual metal-containing SF and widely used additives was investigated as a function of the structure and polarity of the additive, type of hydrocarbon solvent, and presence of water in this study. Individual decyl benzenesulfonates (DBS) of different metals and samples of surfactant additives for oils of the alkylphenolate (VNII NP-370), sulfonate (PMSA, PMSya, S-150, S-300, Lubrizol 58, SB-3, PMSya (bariated), alkylsalicylate (ASK, MASK), and dialkyldithiophosphate (DF-11, VNII NP-354) types were investigated.

  7. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    冯莺; 隋家贤; 赵季若; 陈欣方


    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  8. Effect of acidity of drugs on the prediction of human oral absorption by biopartitioning micellar chromatography


    Biopartitioning micellar chromatography(BMC)is a potentially high throughput and low cost alternative for in vitro prediction of drug absorption,which can mimic the drug partitioning process in biological systems.In this paper,a data set of 56 compounds representing acidic,basic,neutral and amphoteric drugs from various structure classes with human oral absorption(HOA)data available were employed to show the effect of acidity of drugs in oral absorption prediction.HOA was reciprocally correlated to the nega...

  9. Quantitative determination of amygdalin epimers by cyclodextrin-modified micellar electrokinetic chromatography.

    Isoza, T; Matano, Y; Yamamoto, K; Kosaka, N; Tani, T


    A new capillary electrophoresis method was developed for the quantitative determination of the amygdalin epimers, amygdalin and neoamygdalin, which are biologically significant constituents in the crude drugs, namely Persicae Semen and Armeniacae Semen. The effects of surfactants, additives and other analytical parameters were studied. As a result, the resolution of two epimers was performed by cyclodextrin-modified micellar electrokinetic chromatography with a buffer containing alpha-cyclodextrin and sodium deoxycholate. By the application of this method, a simple, fast and simultaneous quantitative determinations of amygdalin epimers in the crude drugs (Persicae Semen and Armeniacae Semen) and the Chinese herbal prescriptions (Keishi-bukuryo-gan and Mao-to) were achieved.

  10. Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition

    Bilkova, Eva; Pleskot, Roman; Rissanen, Sami


    The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact...... phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI......(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH...

  11. Role of Phosphatidylinositol-3-Kinase Pathway in Head and Neck Squamous Cell Carcinoma

    Li Du


    Full Text Available Activation of the phosphatidylinositol-3-kinase (PI3K pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC. A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field.

  12. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO


    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  13. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells

    Ji Yeon Lim


    Full Text Available Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR. Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.

  14. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons.

    Bobkov, Yuriy V; Pezier, Adeline; Corey, Elizabeth A; Ache, Barry W


    Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.

  15. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection.

    Lu, Shan; Chen, Linlin; Tao, Kai; Sun, Nannan; Wu, Yuren; Lu, Xiaoxue; Wang, Yuanchao; Dou, Daolong


    RxLR effectors produced by Phytophthora pathogens have been proposed to bind to phosphatidylinositol 3-phosphate (PtdIns(3)P) to mediate their translocation into host cells and/or to increase their stability in planta. Since the levels of PtdIns(3)P in plants are low, we examined whether Phytophthora species may produce PtdIns(3)P to promote infection. We observed that PtdIns(3)P-specific GFP biosensors could bind to P. parasitica and P. sojae hyphae during infection of Nicotiana benthamiana leaves transiently secreting the biosensors, suggesting that the hyphae exposed PtdIns(3)P on their plasma membrane and/or secreted PtdIns(3)P. Silencing of the phosphatidylinositol 3-kinases (PI3K) genes, treatment with LY294002, or expression of PtdIns(3)P-binding proteins by P. sojae reduced the virulence of the pathogen on soybean, indicating that pathogen-synthesized PtdIns(3)P was required for full virulence. Secretion of PtdIns(3)P-binding proteins or of a PI3P-5-kinase by N. benthamiana leaves significantly increased the level of resistance to infection by P. parasitica and P. capsici. Together, our results support the hypothesis that Phytophthora species produce external PtdIns(3)P to aid in infection, such as to promote entry of RxLR effectors into host cells. Our results derived from P. sojae RxLR effector Avr1b confirm that both the N-terminus and the C-terminus of this effector can bind PtdIns(3)P.

  16. Inhibition of phosphatidylinositol-specific phospholipase C: studies on synthetic substrates, inhibitors and a synthetic enzyme.

    Vizitiu, D; Kriste, A G; Campbell, A S; Thatcher, G R


    Enzyme inhibition studies on phosphatidylinositol-specific phospholipase C (PI-PLC) from B. Cereus were performed in order to gain an understanding of the mechanism of the PI-PLC family of enzymes and to aid inhibitor design. Inhibition studies on two synthetic cyclic phosphonate analogues (1,2) of inositol cyclic-1:2-monophosphate (cIP), glycerol-2-phosphate and vanadate were performed using natural phosphatidylinositol (PI) substrate in Triton X100 co-micelles and an NMR assay. Further inhibition studies on PI-PLC from B. Cereus were performed using a chromogenic, synthetic PI analogue (DPG-PI), an HPLC assay and Aerosol-OT (AOT), phytic acid and vanadate as inhibitors. For purposes of comparison, a model PI-PLC enzyme system was developed employing a synthetic Cu(II)-metallomicelle and a further synthetic PI analogue (IPP-PI). The studies employing natural PI substrate in Triton X100 co-micelles and synthetic DPG-PI in the absence of surfactant indicate three classes of PI-PLC inhibitors: (1) active-site directed inhibitors (e.g. 1,2); (2) water-soluble polyanions (e.g. tetravanadate, phytic acid); (3) surfactant anions (e.g. AOT). Three modes of molecular recognition are indicated to be important: (1) active site molecular recognition; (2) recognition at an anion-recognition site which may be the active site, and; (3) interfacial (or hydrophobic) recognition which may be exploited to increase affinity for the anion-recognition site in anionic surfactants such as AOT. The most potent inhibition of PI-PLC was observed by tetravanadate and AOT. The metallomicelle model system was observed to mimic PI-PLC in reproducing transesterification of the PI analogue substrate to yield cIP as product and in showing inhibition by phytic acid and AOT.

  17. Dispersing powders in liquids

    Nelson, RD


    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  18. A universal concept for stacking neutral analytes in micellar capillary electrophoresis.

    Palmer, J; Munro, N J; Landers, J P


    Unlike recent studies that have depended on manipulation of separation buffer parameters to facilitate stacking of neutral analytes in micellar capillary electrophoresis (MCE) mode, we have developed a method of stacking based simply on manipulation of the sample matrix. Many solutions for sample stacking in MCE are based on strict control of pH, micelle type, electroosmotic flow (EOF) rate, and separation-mode polarity. However, a universal solution to sample stacking in MCE should allow for free manipulation of separation buffer parameters without substantially affecting separation of analytes. Analogous to sample stacking in capillary zone electrophoresis by invoking field amplification of charged analytes in a low-conductivity sample matrix, the proposed method utilizes a high-conductivity sample matrix to transfer field amplification from the sample zone to the separation buffer. This causes the micellar carrier in the separation buffer to stack before it enters the sample zone. Neutral analytes moving out of the sample zone with EOF are efficiently concentrated at the micelle front. Micelle stacking is induced by simply adding salt to the sample matrix to increase the conductivity 2-3-fold higher than the separation buffer. This solution allows free optimization of separation buffer parameters such as micelle concentration, organic modifiers, and pH, providing a method that may complement virtually any existing MCE protocol without restricting the separation method.

  19. Micellarization and intestinal cell uptake of beta-carotene and lutein from drumstick (Moringa oleifera) leaves.

    Pullakhandam, Raghu; Failla, Mark L


    The leaves and pods of the drumstick tree are used as food and medicine in some Asian and African countries. Although relatively high concentrations of beta-carotene and lutein have been reported in the leaves, the bioavailability of these carotenoids from this source is unknown. We have analyzed the digestive stability and bioaccessibility of carotenoids in fresh and lyophilized drumstick leaves using the coupled in vitro digestion/Caco-2 cell model. Beta-carotene and lutein were stable during simulated gastric and small intestinal digestion. The efficiency of micellarization of lutein during the small intestinal phase of digestion exceeded that of beta-carotene. Addition of peanut oil (5% vol/wt) to the test food increased micellarization of both carotenoids, and particularly beta-carotene. Caco-2 cells accumulated beta-carotene and lutein from micelles generated during digestion of drumstick leaves in a time- and concentration-dependent manner. The relatively high bioaccessibility of beta-carotene and lutein from drumstick leaves ingested with oil supports the potential use of this plant food for improving vitamin A nutrition and perhaps delaying the onset of some degenerative diseases such as cataracts.

  20. Indirect detection by semiconductor laser-induced fluorometry in micellar electrokinetic chromatography

    Kaneta, Takashi; Imasaka, Totaro


    Indirect fluorescence detection of electrically neutral compounds separated by micellar electrokinetic chromatography is performed using a semiconductor laser as an exciting light source. Oxazine 750 is used as a visualizing agent of which absorption maximum is near 680 nm. A surfactant, tetradecyltrimethylammonium chloride, is used to form micelles and to prevent adsorption of oxazine 750 with a positive charge on the capillary wall negatively charged. This surfactant coats on the capillary wall so that oxazine 750 is repulsed electrically on the capillary wall. In this technique, some aromatic compounds with relatively polar functional groups, such as aniline and nitrobenzene, could be separated and detected, while nonpolar compounds such as benzene and toluene can not be detected. The range of the detection limit is from 4.2 X 10-4 to 1.6 X 10-3 M (S/N equals 3) for the aromatic compounds. The detection mechanism is based on enhancement of the fluorescence intensity in the micellar solution and on exclusion of the fluorophore attached at the hydrophilic moiety of the micelle by a hydrophilic sample.

  1. A micellar liquid chromatography method for the quantification of abacavir, lamivudine and raltegravir in plasma.

    Peris-Vicente, Juan; Villareal-Traver, Mónica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep


    An analytical methodology based on micellar liquid chromatography has been developed to quantify abacavir, lamivudine and raltegravir in plasma. These three antiretroviral drugs are prescribed as a set in highly active antiretroviral therapy to acquired immunodeficiency syndrome patients. The experimental procedure consists in the dilution of the sample in micellar media, followed by filtration and, without cleanup step. The analytes were resolved in less than 30min using a mobile phase of 0.05M sodium dodecyl sulphate at pH 7, running at 1mLmin(-1) under isocratic mode at room temperature through a C18 column (125×4.6mm, 5μm particle size). The UV detection wavelength was set at 260nm. The method was successfully validated following the requirements of ICH guidelines in terms of: linear range (0.25-2.5μgmL(-1)), linearity (r(2)>0.990), intra- and interday precision (<6.8%) and accuracy (92.3-104.2%) and robustness (<7.1%). To the extent of our knowledge, this is the first published method to quantify these three drugs in plasma. Several blood samples from AIDS patients taking this HAART set provided by a local hospital were analyzed with satisfactory results.

  2. A concise review of applications of micellar liquid chromatography to study biologically active compounds.

    Stępnik, Katarzyna E


    The features of micellar systems are outstanding compared with conventional RP-LC ones. Therefore, the unique properties of micellar chromatography (MLC) are widely recognized. In this short review the applicability of MLC as an in vitro method for the determination of biological activity is discussed. For this purpose many specific examples of MLC applications supported by the theoretical backgrounds of the cited biological activity areas as well as the factors affecting them are presented. This study collects and organizes the most important references of bioactivity determination which were created both recently and in the past, using the MLC method. Although there are many papers on the MLC there is no literature review focused particularly on its applicability in the study of biological activity of various compounds. This work can be treated as a significant review of so far published papers which particularly emphasizes the importance of MLC as in vitro method for determination of bioactivity of different compounds. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Micellar LC Separation of Sesquiterpenic Acids and Their Determination in Valeriana officinalis L. Root and Extracts

    Artem U. Kulikov


    Full Text Available A simple micellar liquid chromatography (MLC method was developed and validated according to ICH Guidelines for the determination of sesquiterpenic acids (valerenic, hydroxyvalerenic, and acetoxyvalerenic acids in root and rhizome extract from Valeriana officinalis L. and valerian dry hydroalcoholic extract. Samples were analyzed on Nucleosil C18 column (150mm×4.6mm, 5 μm using an isocratic mobile phase which consisted of Brij 35 (5% (w/v aqueous solution; pH 2.3±0.1 by phosphoric acid and 1-butanol (6% (v/v; UV detection was at 220 nm. Micellar mobile phase using allows to fully separate valerenic acids within 25 minutes. Linearity for hydroxyvalerenic, acetoxyvalerenic, and valerenic acids was 1.9–27.9, 4.2–63.0, and 6.1–91·3 μg.mL−1, and limit of detection was 0.14, 0.037, and 0.09 μg·mL−1, respectively. Intraday and interday precisions were not less than 2% for all investigated compounds. The proposed method was found to be reproducible and convenient for quantitative analysis of sesquiterpenic acids in valerian root and related preparations.

  4. Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF).

    Zhang, Wenxiang; Huang, Guohe; Wei, Jia; Li, Huiqin; Zheng, Rubing; Zhou, Ya


    Comprehensive studies were conducted on the phenol wastewater ultrafiltration (UF) with the help of various concentrations of cationic Gemini surfactant (N1-dodecyl-N1,N1,N2,N2-tetramethyl-N2-octylethane-1,2-diaminium bromide, CG), conventional cationic surfactant (dodecyl trimethyl ammonium bromide, DTAB), anionic surfactant (sodium dodecyl sulfate, SDS) and nonionic surfactant ((dodecyloxy)polyethoxyethanol, Brij35). A flat sheet module with polyethersulfone (PES) membrane was employed in this investigation. The effects of feed concentration (phenol and surfactant) on the retention of phenol and surfactant, permeate flux and membrane fouling by micelles were evaluated. The distribution coefficient (D), the loading of the micelles (L(m)) and the equilibrium distribution constant (K) were also utilized to estimate the micellar-enhanced ultrafiltration ability for phenol. Scanning electron microscope (SEM), Fourier transform infrared spectrometer with attenuated total reflectance accessory (ATR-FTIR) and mercury porosimeter were applied to analyze membrane surface morphology, membrane material characteristics and membrane fouling for the original and fouled membranes. Based on the above analysis, the performance of the selected Gemini surfactant was proved superior in the following aspects: retention of phenol/surfactant (peak value is 95.8% for phenol retention), permeate flux and membrane fouling with respect to other conventional surfactants possessing equal alkyl chain length. These results demonstrated that CG surfactant with exceptional structure has favorable prospects in the treatment of phenol wastewater by the micellar-enhanced ultrafiltration. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain.

    Qadeer, A; Zaman, M; Khan, R H


    Papain, a cysteine protease isolated from the latex of Carica papaya, is known to undergo irreversible thermal unfolding. In this study, we found that thermal unfolding of papain is accompanied by a simultaneous self-assembly process where this protein is observed to aggregate above 50°C. The extent of aggregation increased with increasing protein concentration from 3-40 µM. The aggregation was confirmed by enhanced turbidity, light scattering intensity, 1-anilino-8-naphthalene sulfonate (ANS) fluorescence intensity and by transmission electron microscopy. Furthermore, we noted that post-micellar concentration of sodium dodecyl sulfate (SDS) remarkably suppresses the thermal aggregation of papain. Far-UV circular dichroism studies revealed that SDS significantly enhances α-helical content of the protein and also tends to prevent its unfolding, and thus inhibits aggregation. Additionally, papain showed maximal activity at 65°C in neutral buffer. However, in the presence of 6 mM SDS (above its critical micellar concentration), the enzyme lost activity by about 10-fold. Thus, promoting the helical propensity of the protein does not appear to be a suitable strategy to overcome the aggregation related problems of industrially important proteins such as papain, which are not only required to be protected against aggregation but also need to remain functionally active in the presence of aggregation inhibitors.

  6. Chromatographic performance of large-pore versus small-pore columns in micellar liquid chromatography.

    McCormick, Timothy J; Foley, Joe P; Lloyd, David K


    Micellar liquid chromatography (MLC) is useful in bioanalysis because proteinaceous biofluids can be directly injected onto the column. The technique has been limited in part because of the apparently weak eluting power of micellar mobile phases. It has recently been shown [Anal. Chem. 72 (2000) 294] that this may be overcome by the use of large pore size stationary phases. In this work, large-pore (1000 A) C(18) stationary phases were evaluated relative to conventional small-pore (100 A) C(18) stationary phases for the direct sample injection of drugs in plasma. Furthermore, the difference between the large and small pore phases in gradient elution separations of mixtures of widely varying hydrophobicities was investigated. Large-pore stationary phases were found to be very effective for eluting moderately to highly hydrophobic compounds such as ibuprofen, crotamiton, propranolol, and dodecanophenone, which were highly retained on the small-pore stationary phases typically used in MLC. The advantages of direct introduction of biological samples (drugs in plasma) and rapid column re-equilibration after gradient elution in MLC were maintained with large-pore phases. Finally, recoveries, precision, linearity, and detection limits for the determination of quinidine and DPC 961 in spiked bovine plasma were somewhat better using MLC with wide pore phases.

  7. Aliphatic carboxylic acids and alcohols as efficiency and elution strength enhancers in micellar liquid chromatography.

    Boichenko, Alexander P; Berthod, Alain


    Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01-0.7mL/min flow rate range studied. Temperature effects were also studied constructing the classical van't Hoff plots. The slight curvature of the plots in the 25-70 degrees C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.

  8. Use of micellar mobile phases for the chromatographic determination of clorazepate, diazepam, and diltiazem in pharmaceuticals.

    Gil-Agustí, M; Carda-Broch, S; García-Alvarez-Coque, M C; Esteve-Romero, J


    An ODS-2 column, a micellar mobile phase of high elution strength containing 0.1M sodium dodecyl sulfate and 3% (v/v) butanol, and ultraviolet detection at 230 nm are used for the determination of either of two benzodiazepines (clorazepate and diazepam) and a benzothiazepine (diltiazem) in pharmaceuticals. The procedure is shown to be competitive against conventional chromatography with methanol-water mobile phases, especially for diltiazem. The composition of the micellar mobile phase is selected using a predictive strategy based on an accurate retention model and assisted by computer simulation. Calibration graphs are linear at least in the 2.5 to 20 microg/mL, 4 to 20 microg/mL, and 5 to 40 microg/mL ranges for clorazepate, diazepam, and diltiazem, respectively. The intra- and interday repeatabilities (%) are clorazepate (1.7, 5.2), diazepam (0.43, 3.7), and diltiazem (0.36, 3.1). Limits of detection are well below the concentrations of the drugs found in the commercial pharmaceutical preparations analyzed. The drug contents evaluated with the proposed procedure are compared with the declared contents given by the manufacturers. The achieved percentages of label claim are usually between 95 and 104%.

  9. Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method

    Gao Y


    Full Text Available Abstract FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L10 FePt was achieved for samples annealed at temperatures above 700 °C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM and dc-demagnetization (DCD remanence curves and Kelly–Henkel plots (ΔM measurement. The ΔM measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media.

  10. Bending energetics of tablet-shaped micelles: a novel approach to rationalize micellar systems.

    Bergström, L Magnus


    A novel approach to rationalize micellar systems is expounded in which the structural behavior of tablet-shaped micelles is theoretically investigated as a function of the three bending elasticity constants: spontaneous curvature (H0), bending rigidity (k(c)), and saddle-splay constant (k(c)). As a result, experimentally accessible micellar properties, such as aggregation number, length-to-width ratio, and polydispersity, may be related to the different bending elasticity constants. It is demonstrated that discrete micelles or connected cylinders form when H0 > 1/4xi, where xi is the thickness of a surfactant monolayer, whereas various bilayer structures are expected to predominate when H0 bending rigidity is lowered, approaching the critical point at k(c) = 0, whereas monodisperse globular micelles (small length-to-width ratio) are expected to be present at large k(c) values. The spontaneous curvature mainly determines the width of tablet-shaped or ribbonlike micelles, or the radius of disklike micelles, whereas the saddle-splay constant primarily influences the size but not the shape of the micelles.

  11. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François


    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dispersion y dinamica poblacional

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  13. Seed dispersal in fens

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai


    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and redu

  14. Solubilization of parabens in aqueous Pluronic solutions: investigating the micellar growth and interaction as a function of paraben composition.

    Khimani, M; Ganguly, R; Aswal, V K; Nath, S; Bahadur, P


    The influence of methyl paraben (MP) and butyl paraben (BP) on the aggregation characteristics of Pluronics in an aqueous medium has been investigated by DLS, SANS, viscometry, and fluorescence measurement techniques. Parabens are extensively used as preservatives in cosmetic, pharmaceutical, and food products. In this paper, we show that their influence on the restructuring and growth of Pluronics micelles vary quite significantly with their aqueous solubility and with the composition of Pluronics. In the case of P105 and P104, MP reduces the sphere-to-rod transition temperature down to room temperature, but BP with significantly less aqueous solubility than MP suppresses such micellar transition and leads to the formation of micellar clusters due to the onset of intermicellar attractive interaction. In the case of more hydrophobic Pluronic P103, on the other hand, both MP and BP are able to induce rapid room temperature sphere-to-rod micellar growth, which is not observed in the presence of water structure making salts like NaCl and Na(3)PO(4). These observations have been attributed to modulation of growth and restructuring processes of the Pluronic micelles arising due to different locations of parabens within the micellar corona as determined by their aqueous solubility and the hydrophobicity of the Pluronics.

  15. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    Bendahl, L; Hansen, S H; Gammelgaard, Bente


    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...

  16. Equipment for the Characterization of Synthetic Bio-hybrid Polymers and Micellar Nanoparticles for Stimuli Responsive Materials


    reactions. These materials couple together synthetic polymers with biopolymers including DNA, peptides and proteins. The project therefore requires a... Synthetic Bio-hybrid Polymers and Micellar Nanoparticles for Stimuli Responsive Materials. The views, opinions and/or findings contained in this...this instrument in terms of fully characterizing biomolecule interactions occurring at the interface of semi- synthetic biopolymer -based nano materials

  17. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    Zhu, Yutian


    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  18. Biochemical and Genetic Evidence for the Presence of Multiple Phosphatidylinositol- and Phosphatidylinositol 4,5-Bisphosphate-Specific Phospholipases C in Tetrahymena▿‡

    Leondaritis, George; Sarri, Theoni; Dafnis, Ioannis; Efstathiou, Antonia; Galanopoulou, Dia


    Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], produce the Ca2+-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca2+. One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca2+, modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P2 levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P3-Ca2+ regulatory axis in ciliates. PMID:21169416

  19. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture : Response to Cell Wall-Degrading Enzymes.

    Tan, Z; Boss, W F


    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation.

  20. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture 1

    Tan, Zheng; Boss, Wendy F.


    Phosphatidylinositol kinase (PI), phosphatidylinositol monophosphate (PIP) kinase, and diacylglycerol (DAG) kinase activities were detected in the cytoskeletal fraction isolated from microsomes and plasma membranes of carrot (Daucus carota L.) cells grown in suspension culture. The lipid kinase activities were associated with the actin filament fraction (F-actin fraction) isolated from the cytoskeleton. The PI and PIP kinase activity in the F-actin fraction significantly increased after cells were treated with Driselase, a mixture of cell wall-degrading enzymes; however, the DAG kinase activity in the F-actin fraction was unaffected by the Driselase treatment. These data indicate that at least one form of PI, PIP, and DAG kinase preferentially associates with actin filaments and/or actin binding proteins and that cytoskeletal-associated PI and PIP kinase activities can change in response to external stimulation. Images Figure 2 PMID:16653250

  1. Colloidal Properties of Aqueous Poly(vinyl acetate)-Borate Dispersions with Short-Chain Glycol Ethers.

    Duncan, Teresa T; Berrie, Barbara H; Weiss, Richard G


    We report the influence of adding five short-chain glycol ethers (SCGEs) on the structure, stability, and viscoelastic properties of aqueous dispersions of partially hydrolyzed poly(vinyl acetate) and borax. The properties of these gel-like materials have been investigated as a function of the structure of the added SCGE both below and above the critical aggregation (or micellar) concentrations using (11) B and (13) C NMR, rheology, and small-angle neutron scattering. The results indicate that the SCGE aggregation behavior is not affected by incorporation into the gel-like network. However, changes in the viscoelasticity and structural properties of the dispersions were detected that can be correlated to the nature of the solvent system. Also, the ability of these materials to clean an unvarnished acrylic paint surface coated with synthetic soil has been evaluated using colorimetery, and the surface of the dispersion after cleaning was visualized with scanning electron microscopy.

  2. Regulation of phosphatidylinositol 4-kinase from the yeast Saccharomyces cerevisiae by CDP-diacylglycerol.

    Nickels, J T; Buxeda, R J; Carman, G M


    Regulation of the 45- and 55-kDa forms of Saccharomyces cerevisiae membrane-associated phosphatidylinositol (PI) 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase) by phospholipids was examined using Triton X-100/phospholipid-mixed micelles. CDP-diacylglycerol and phosphatidylglycerol inhibited 45-kDa PI 4-kinase activity in a dose-dependent manner. Kinetic analyses of the 45-kDa PI 4-kinase showed that phosphatidylglycerol was a competitive inhibitor with respect to PI (Ki = 2 mol %), and CDP-diacylglycerol was a mixed type of inhibitor with respect to PI (Ki = 4 mol %) and MgATP (Ki = 5 mol %). 55-kDa PI 4-kinase activity was not significantly affected by phospholipids. The physiological relevance of CDP-diacylglycerol inhibition of 45-kDa PI 4-kinase activity was examined using plasma membranes from inositol auxotrophic (ino1) cells. Immunoblot analysis showed that 45-kDa PI 4-kinase expression in plasma membranes was not affected by inositol starvation of ino1 cells. However, both 45-kDa PI 4-kinase activity and its product PI 4-phosphate were reduced in plasma membranes from inositol-starved ino1 cells. The CDP-diacylglycerol concentration (9.6 mol %) in plasma membranes of inositol-starved ino1 cells was 12-fold higher than its concentration (0.8 mol %) in plasma membranes of inositol-supplemented cells. Plasma membranes of inositol-starved ino1 cells also had increased levels of phosphatidate, phosphatidylserine, phosphatidylethanolamine, and cardiolipin. However, these phospholipids did not affect pure 45-kDa PI 4-kinase activity. The concentration of CDP-diacylglycerol in plasma membranes of inositol-starved ino1 cells was in the range of the inhibitor constants determined for CDP-diacylglycerol by kinetic analyses using pure 45-kDa PI 4-kinase. These results raised the suggestion that 45-kDa PI 4-kinase activity may be regulated in vivo by CDP-diacylglycerol.

  3. Purification and characterization of the acyltransferase involved in biosynthesis of the major mycobacterial cell envelope glycolipid--monoacylated phosphatidylinositol dimannoside.

    Svetlíková, Zuzana; Baráth, Peter; Jackson, Mary; Korduláková, Jana; Mikušová, Katarína


    Phosphatidylinositol mannosides are essential structural components of the mycobacterial cell envelope. They are implicated in host-pathogen interactions during infection and serve as a basis for biosynthesis of other unique molecules with immunomodulatory properties - mycobacterial lipopolysaccharides lipoarabinomannan and lipomannan. Acyltransferase Rv2611 is involved in one of the initial steps in the assembly of these molecules in Mycobacterium tuberculosis - the attachment of an acyl group to position-6 of the 2-linked mannosyl residue of the phosphatidylinositol mannoside anchor. Although the function of this enzyme was annotated 10 years ago, it has never been completely biochemically characterized due to lack of the pure protein. We have successfully overexpressed and purified MSMEG_2934, the ortholog of Rv2611c from the non-pathogenic model organism Mycobacteriumsmegmatis mc(2)155 using mycobacterial pJAM2 expression system, which allowed confirmation of its in vitro acyltransferase activity, and establishment of its substrate specificity.

  4. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting


    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  5. Analysis of Phosphatidylinositol 3-kinase Activation in the Adipose Tissue of Gestational Diabetes Mellitus Patients and Insulin Resistance

    初永丽; 刘文娟; 崔青; 冯桂姣; 王彦; 姜学强


    The P85 regulatory subunit protein and gene expression and P110 catalylic subunit activity of phosphatidylinositol 3-kinase (PI-3K) were investigated in adipose tissue of patients with gestational diabetes mellitus (GDM) in order to explore the molecular mechanisms of insulin resistance (IR) of GDM. Samples from patients with GDM (n=50), and controls (n=50) were collected. Fasting insulin (FIN) was determined by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Western blot techn...

  6. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    CRISTIANA S.B. SALVATIERRA; REIS,SÍLVIA R.L.; ANA F.M. PESSOA; LETÍCIA M.I. DE SOUZA; Luiz F. Stoppiglia; Veloso, Roberto V; REIS,MARISE A.B.; Everardo M Carneiro; Boschero, Antonio C.; Edson M. Colodel; ARANTES,VANESSA C.; Latorraca, Márcia Q.


    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rats in ...

  7. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats

    CRISTIANA S.B. SALVATIERRA; REIS,SÍLVIA R.L.; ANA F.M. PESSOA; LETÍCIA M.I. DE SOUZA; Luiz F. Stoppiglia; Veloso, Roberto V; REIS,MARISE A.B.; Everardo M Carneiro; Boschero, Antonio C.; Edson M. Colodel; ARANTES,VANESSA C.; Latorraca, Márcia Q.


    The phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways mediate β cell growth, proliferation, survival and death. We investigated whether protein restriction during pregnancy alters islet morphometry or the expression and phosphorylation of several proteins involved in the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. As controls, adult pregnant and non-pregnant rats were fed a normal-protein diet (17%). Pregnant and non-pregnant rat...

  8. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad


    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein β (PITPβ), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPβ at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPβ ...

  9. Differentiation between naproxen, naproxen-protein conjugates, and naproxen-lysine in plasma via micellar electrokinetic capillary chromatography : a new approach in the bioanalysis of drug targeting preparations

    Albrecht, C.; Reichen, J; Visser, Jan; Meijer, D.K F; Thormann, W


    Pharmacotherapy through the targeting of drugs is a promising new approach that requires adequate analytical methods capable of differentiating between the free drug the drug carrier, and metabolites. Using micellar electrokinetic capillary chromatography (MECC), we report the separation of naproxen

  10. Effect of tartarate and citrate based food additives on the micellar properties of sodium dodecylsulfate for prospective use as food emulsifier.

    Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K


    Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier.

  11. [Involvement of phosphatidylinositol-4,5-bisphosphate binding proteins in the generation of contractile oscillations in the Physarum polycephalum plasmodium].

    Matveeva, N B; Beĭlina, S I; Kliueva, A A; Teplov, V A


    Using the Physarum polycephalum, plasmodium, a giant amoeboid cell with the strongly pronounced auto-oscillatory mode of motility, which exhibits regularities of motile behavior common with those of tissue cells and has the same signal systems, the possibility of the participation of phosphatidylinositol-4,5-bisphosphate in the regulation of the contractile activity has been studied. The effect of neomycin as a substrate inhibitor of phospholipase C, which binds with high affinity to phosphatidylinositol-4,5-bisphosphate in the membrane, on force oscillations generated by plasmodial strands under isometric conditions and after the addition of the protein kinase C inhibitors staurosporine, UCN-01, and Ro-318220, separatelyand in combination with the calmodulin inhibitor calmidazolium has been examined. It has been shown that neomycin at pH 7.0 and concentrations of 0.1-5.0 mM stops contractile oscillations for 10-30 min but then they begin to gradually restore; the oscillation period at the initial stage of the restoration is.shorter than it was earlier and then increases due to the elongation of the contraction phase. Analysis of data obtained is in favor of the assumption that the plasmodial membrane contains MARCKS-like proteins and protein kinase C-controlled pools of phosphatidylinositol-4,5-bisphosphate, which can participate in the generation of auto-oscillations observed in the plasmodium.

  12. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues.

    Hideaki Ando

    Full Text Available Phosphatidylinositol phosphate kinases (PIPKs are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5P2, a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα and type IIα (PIPKIIα in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3- cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5P2.

  13. Intracellular Movement of Green Fluorescent Protein–Tagged Phosphatidylinositol 3-Kinase in Response to Growth Factor Receptor Signaling

    Gillham, Helen; Golding, Matthew C.H.M.; Pepperkok, Rainer; Gullick, William J.


    Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein–tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein–tagged fragments of p85 we show that binding to the receptor requires the NH2-terminal part of the protein as well as its SH2 domains. PMID:10459020

  14. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro.

    Boggs, Joan M; Rangaraj, Godha; Dicko, Awa


    Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.

  15. A WASp-binding type II phosphatidylinositol 4-kinase required for actin polymerization-driven endosome motility.

    Chang, Fanny S; Han, Gil-Soo; Carman, George M; Blumer, Kendall J


    Endosomes in yeast have been hypothesized to move through the cytoplasm by the momentum gained after actin polymerization has driven endosome abscision from the plasma membrane. Alternatively, after abscission, ongoing actin polymerization on endosomes could power transport. Here, we tested these hypotheses by showing that the Arp2/3 complex activation domain (WCA) of Las17 (Wiskott-Aldrich syndrome protein [WASp] homologue) fused to an endocytic cargo protein (Ste2) rescued endosome motility in las17DeltaWCA mutants, and that capping actin filament barbed ends inhibited endosome motility but not endocytic internalization. Motility therefore requires continual actin polymerization on endosomes. We also explored how Las17 is regulated. Endosome motility required the Las17-binding protein Lsb6, a type II phosphatidylinositol 4-kinase. Catalytically inactive Lsb6 interacted with Las17 and promoted endosome motility. Lsb6 therefore is a novel regulator of Las17 that mediates endosome motility independent of phosphatidylinositol 4-phosphate synthesis. Mammalian type II phosphatidylinositol 4-kinases may regulate WASp proteins and endosome motility.

  16. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling.

    Sato, Masayuki J; Kuwayama, Hidekazu; van Egmond, Wouter N; Takayama, Airi L K; Takagi, Hiroaki; van Haastert, Peter J M; Yanagida, Toshio; Ueda, Masahiro


    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent pathway is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

  17. Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    Boca, Manila; Distefano, Gianfranco; Boletta, Alessandra; Qian, Feng; Bhunia, Anil K.; Germino, Gregory G.


    Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K β activity in PC-1- expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease. PMID:16452497

  18. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate.

    Nilius, Bernd; Mahieu, Frank; Prenen, Jean; Janssens, Annelies; Owsianik, Grzegorz; Vennekens, Rudi; Voets, Thomas


    Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.

  19. Phosphatidylinositol 3-kinase inhibitor, LY294002, induced senescence-like changes in human diploid fibroblasts

    李淑萍; 张宗玉; 童坦君


    Objective To reveal the role of Phosphatidylinositol 3-kinases (PI3Ks) in regulating human diploid fibroblast (2BS cell) senescence as well as the possible mechanisms involved.Methods Using a PI3Ks specific inhibitor, LY294002, cell cycle, apoptosis, proliferation, senescence association β-galactosidase staining as well as senescence association CKIs, p16 INK4 and p21 Cip1 protein expressions were all measured in the low passages of 2BS cells.Results Both 25 μmol/L and 50 μmol/L concentrations of LY294002 could cause a significant decrease in cells entering into S phase, and this cell cycle of G 1 phase arrest was dose-dependent. Meanwhile, LY294002 contributed to apoptosis, caused 2BS cell growth arrest, and activated senescence association β-galactosidase (P<0.05). In addition, LY294002 could induce time-course expressions of p16 INK4 and p21 Cip1 in 2BS cell lines.Conclusions PI3Ks inhibitor LY294002 could induce senescence-like changes in 2BS cell lines. Two enescence associated CKIs,p16 INK4 and p21 Cip1, might be involved in this senescence phenotype proceeding in 2BS cell lines.

  20. Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth.

    Ghugtyal, Vikram; Garcia-Rodas, Rocio; Seminara, Agnese; Schaub, Sébastien; Bassilana, Martine; Arkowitz, Robert Alan


    The phospholipid phosphatidylinositol-4-phosphate [PI(4)P], generated at the Golgi and plasma membrane, has been implicated in many processes, including membrane traffic, yet its role in cell morphology changes, such as the budding to filamentous growth transition, is unknown. We show that Golgi PI(4)P is required for such a transition in the human pathogenic fungus Candida albicans. Quantitative analyses of membrane traffic revealed that PI(4)P is required for late Golgi and secretory vesicle dynamics and targeting and, as a result, is important for the distribution of a multidrug transporter and hence sensitivity to antifungal drugs. We also observed that plasma membrane PI(4)P, which we show is functionally distinct from Golgi PI(4)P, forms a steep gradient concomitant with filamentous growth, despite uniform plasma membrane PI-4-kinase distribution. Mathematical modeling indicates that local PI(4)P generation and hydrolysis by phosphatases are crucial for this gradient. We conclude that PI(4)P-regulated membrane dynamics are critical for morphology changes.

  1. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction.

    Lewis, Aurélia E; Sommer, Lilly; Arntzen, Magnus Ø; Strahm, Yvan; Morrice, Nicholas A; Divecha, Nullin; D'Santos, Clive S


    Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(X(n= 3-7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.

  2. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas


    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  3. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression.

    Nteeba, J; Ross, J W; Perfield, J W; Keating, A F


    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3 K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: (1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); (2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); (3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and (4) microRNA's 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers.

    Shi, Xiaojun; Kohram, Maryam; Zhuang, Xiaodong; Smith, Adam W


    Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.

  5. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume


    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  6. Phosphatidylinositol 3-kinase mediates the ability of retinol to decrease colorectal cancer cell invasion.

    Lengyel, Jennifer N Griffin; Park, Eun Young; Brunson, Anna R; Pinali, Daniel; Lane, Michelle A


    Previously, we showed that retinol (vitamin A) decreased both colorectal cancer cell invasion and phosphatidylinositol 3-kinase (PI3K) activity through a retinoic acid receptor-independent mechanism. Here, we determined if these phenomena were related by using parental HCT-116 cells that harbor 1 allele of wild-type PI3K and 1 allele of constitutively active (ca) PI3K and 2 mutant HCT-116 cell lines homozygous for caPI3K. In vitro, treatment of parental HCT-116 cells with 10 μM retinol reduced cell invasion whereas treatment of mutant HCT-116 cell lines with retinol did not. Treatment with 10 μM retinol also decreased the activity of matrixmetalloproteinase-9 and increased tissue inhibitor of matrixmetalloproteinase-I levels in parental, but not mutant, HCT-116 cells. Finally, parental or mutant cells were intrasplenically injected into athymic mice consuming diets with or without supplemental vitamin A. As expected, vitamin A supplementation tended (P = 0.18) to reduce the incidence of metastases in mice injected with the parental cell line and consuming the supplemented diet. In contrast, metastatic incidence was not affected (P = 1.00) by vitamin A supplementation in mice injected with mutant cells. These data indicate that the capacity of retinol to inhibit PI3K activity confers its ability to decrease colorectal cancer metastasis.

  7. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung


    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  8. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    Norinne Lacerda-Queiroz

    Full Text Available Experimental cerebral malaria (ECM is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/- and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia and T cell cytotoxicity (Granzyme B expression in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.

  9. Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway.

    Lee, Nayeon; Kim, Inhee; Park, Soojeong; Han, Dasol; Ha, Soobong; Kwon, Mookwang; Kim, Juwan; Byun, Sung-Hyun; Oh, Wonil; Jeon, Hong Bae; Kweon, Dae-Hyuk; Cho, Jae Youl; Yoon, Keejung


    Creatine is a nitrogenous organic acid known to function in adenosine triphosphate (ATP) metabolism. Recent evidence indicates that creatine regulates the differentiation of mesenchymal stem cells (MSCs) in processes such as osteogenesis and myogenesis. In this study, we show that creatine also has a negative regulatory effect on fat cell formation. Creatine inhibits the accumulation of cytoplasmic triglycerides in a dose-dependent manner irrespective of the adipogenic cell models used, including a C3H10T1/2 MSC line, 3T3-L1 preadipocytes, and primary human MSCs. Consistently, a dramatic reduction in mRNA expression of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), glucose transporters, 1 and 4 (Glut1, Glut4), and adipocyte markers, aP2 and adipsin, was observed in the presence of creatine. Creatine appears to exert its inhibitory effects on adipogenesis during early differentiation, but not late differentiation, or proliferation stages through inhibition of the PI3K-Akt-PPARγ signaling pathway. In an in vivo model, administration of creatine into mice resulted in body mass increase without fat accumulation. In summary, our results indicate that creatine downregulates adipogenesis through inhibition of phosphatidylinositol 3-kinase (PI3K) activation and imply the potent therapeutic value of creatine in treating obesity and obesity-related metabolic disorders.

  10. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilization and functional activation in fluoride-treated neutrophils.

    English, D; Debono, D J; Gabig, T G


    Sodium fluoride (20 mM) effected rapid hydrolysis of phosphatidylinositol bisphosphate (PIP2) in human neutrophils. Intracellular free Ca2+ levels increased after PIP2 hydrolysis but before respiratory burst activation. Both the increase in intracellular free Ca2+ levels and the extent of functional activation were dependent on the availability of extracellular Ca2+. The rate of F(-)-stimulated PIP2 hydrolysis, however, was not affected when the rise in cytosolic Ca2+ was severely limited by depletion of extracellular Ca2+. Fluoride caused the specific hydrolysis of PIP2 in isolated neutrophil plasma membranes. This effect occurred in the presence of low levels of available Ca2+ and was accompanied by the release of inositol phosphates. We conclude that PIP2 hydrolysis is an early event in the response of neutrophils to F-. This response is not Ca2+-regulated but may lead to an influx of Ca2+ from the extracellular medium. Activation of a PIP2-specific phospholipase independent of a change in cytosolic free Ca2+ levels may be the initial event in the stimulus-response pathway triggered by fluoride.

  11. Dispersion management with metamaterials

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.


    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  12. Vowel dispersion in Truku

    Chiang, Wen-yu; Chiang, Fang-mei


    This study investigates the dispersion of vowel space in Truku, an endangered Austronesian language in Taiwan. Adaptive Dispersion (Liljencrants and Lindblom, 1972; Lindblom, 1986, 1990) proposes that the distinctive sounds of a language tend to be positioned in phonetic space in a way that maximizes perceptual contrast. For example, languages with large vowel inventories tend to expand the overall acoustic vowel space. Adaptive Dispersion predicts that the distance between the point vowels w...

  13. Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media.

    Ottaviani, G; Wendelspiess, S; Alvarez-Sánchez, R


    This study evaluated if the intrinsic surface properties of compounds are related to the solubility enhancement (SE) typically observed in biorelevant media like fasted state simulated intestinal fluids (FaSSIF). The solubility of 51 chemically diverse compounds was measured in FaSSIF and in phosphate buffer and the surface activity parameters were determined. This study showed that the compound critical micellar concentration parameter (CMC) correlates strongly with the solubility enhancement (SE) observed in FaSSIF compared to phosphate buffer. Thus, the intrinsic capacity of molecules to form micelles is also a determinant for each compound's affinity to the micelles of biorelevant surfactants. CMC correlated better with SE than lipophilicity (logD), especially over the logD range typically covered by drugs (2 media, thereby enhancing oral bioavailability of drug candidates.

  14. Biomedical Evaluation of Cortisol, Cortisone, and Corticosterone along with Testosterone and Epitestosterone Applying Micellar Electrokinetic Chromatography

    Bączek, Tomasz; Olędzka, Ilona; Konieczna, Lucyna; Kowalski, Piotr; Plenis, Alina


    The validated micellar electrokinetic chromatography (MEKC) was proposed for the determination of five steroid hormones in human urine samples. That technique allowed for the separation and quantification of cortisol, cortisone, corticosterone, testosterone, and epitestosterone and was sensitive enough to detect low concentrations of these searched steroids in urine samples at the range of 2–300 ng/mL. The proposed MEKC technique with solid-phase extraction (SPE) procedure was simple, rapid, and has been successfully applied as a routine procedure to analyze steroids in human urine samples. The MEKC method offered a potential in clinical routine practice because of the short analysis time (8 min), low costs, and simultaneous analysis of five endogenous hormones. Due to its simplicity, speed, accuracy, and high recovery, the proposed method could offer a tool to determine steroid hormones as potential biomarkers in biomedical investigations, what was additionally revealed with healthy volunteers. PMID:22536129

  15. Determination of adrenal steroids by microfluidic chip using micellar electrokinetic chromatography.

    Shen, Shuanglong; Li, Yan; Wakida, Shin-ichi; Takeda, Sahori


    This paper describes a sensitive and convenient method to separate progesterone, 17alpha-hydroxy progesterone, cortexolone, hydrocortisone and cortisone, all of which are steroids and have similar structures, using microfluidic chip-based technology with UV detection at 252 nm. We successfully obtained high-speed separation of the five steroids within 70 s in optimized microfluidic controls and micellar electrokinetic chromatography (MEKC) separation conditions. Fairly good linearity with correlation coefficient of over 0.98 from 10 or 20 to 100 mg/l steroid chemicals was obtained. The limits of detection obtained at a signal to noise ratio of 3 were from 3.89 to 7.80 mg/l. The values of the relative standard deviation (RSD) were 0.98-1.34% for repetitive injection (n = 12) and the intraday and interday RSDs were below 6%. The highly stable response reflected the feasibility of this method.


    WANG Erjian; FANG Peiji; FENG Xinde


    A kind of cationic compounds, having benzophenone end group and various length chain (PKT) (BP-CH2N + R2R'·X-, R&R' different chain length alkyl group)were used as photosensitizers. Various BP/TEA systems have been used for study, The efficiency of MMA photopolymerization initiated by them shows PKT > BP in homogeneous water solution and PKT> BP/CTAB in micellar water solution. The results obtained indicate that catalytic effects of PKT type functional micelles are far greater than that of common micelle with the enhancement of polymerization rate over 10 times compared with BP in water solution. The catalytic role,reaction character of PKT, effect of counter ions and retarding effect of oxygen have also been discussed.

  17. Two-peak phenomena and formation origin in micellar electrokinetic capillary chromatography

    陈冠华; 杨更亮; 田益玲; 陈义


    The formation origin of two peaks in micellar electrokinetic capillary chromatography by using cetyltrimethylaminium bromide (or sodium dodecyl sulfate) as pseudo stationary phase is studied. It is pointed out that two peaks may appear for one component in certain conditions. Experiments show that the relative areas of the two peaks of the corresponding component depend on the time and temperature of reaction between the analyte and the surfactant, and the concentration of surfactant in the sample solution. One of the two peaks increase with the increase of surfactant concentration in the sample solution while reverse for another peak. Temperature can accelerate the reaction process. This means that the interaction between analyte and surfactant is a slow process, and a stable substance can be produced from the interaction and leads to the formation of two peaks. The standpoint is confirmed by the infrared and nuclear magnetic resonance spectra of the product from the reaction between cetyltrimethylaminium bromide and m-hydroxyl benzoic acid.

  18. Analysis of pharmaceutical preparations containing antihistamine drugs by micellar liquid chromatography.

    Martínez-Algaba, C; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Sagrado, S; Medina-Hernández, M J


    Rapid chromatographic procedures for analytical quality control of pharmaceutical preparations containing antihistamine drugs, alone or together with other kind of compounds are proposed. The method uses C18 stationary phases and micellar mobile phases of cetyltrimethylammonium bromide (CTAB) with either 1-propanol or 1-butanol as organic modifier. The proposed procedures allow the determination of the antihistamines: brompheniramine, chlorcyclizine, chlorpheniramine, diphenhydramine, doxylamine, flunarizine, hydroxyzine, promethazine, terfenadine, tripelennamine and triprolidine, in addition to caffeine, dextromethorphan, guaifenesin, paracetamol and pyridoxine in different pharmaceutical presentations (tablets, capsules, suppositories, syrups and ointments). The methods require minimum handling sample and are rapid (between 3 and 12 min at 1 mLmin(-1) flow rate) and reproducible (R.S.D. values<5%). Limits of detection are lower than 1 microgmL(-1) and the recoveries of the analytes in the pharmaceutical preparations are in the range 100+/-10%.

  19. Separation of human, bovine, and porcine insulins, three very closely related proteins, by micellar electrokinetic chromatography.

    Lamalle, Caroline; Roland, Diane; Crommen, Jacques; Servais, Anne-Catherine; Fillet, Marianne


    Human, bovine, and porcine insulins are small proteins with very closely related amino acid sequences, which makes their separation challenging. In this study, we took advantage of the high-resolution power of CE, and more particularly of micellar electrokinetic chromatography, to separate those biomolecules. Among several surfactants, perfluorooctanoic acid ammonium salt was selected. Then, using a design of experiments approach, the optimal BGE composition was found to consist of 50 mM ammonium acetate pH 9.0, 65 mM perfluorooctanoic acid ammonium salt, and 4% MeOH. The three insulins could be separated within 12 min with a satisfactory resolution. This method could be useful to detect possible counterfeit pharmaceutical formulations. Indeed, it would be easy to determine if human insulin was replaced by bovine or porcine insulin.

  20. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography.

    Waters, Laura J; Shokry, Dina S; Parkes, Gareth M B


    Understanding intestinal absorption for pharmaceutical compounds is vital to estimate the bioavailability and therefore the in vivo potential of a drug. This study considers the application of micellar liquid chromatography (MLC) to predict passive intestinal absorption with a selection of model compounds. MLC is already known to aid prediction of absorption using simple surfactant systems; however, with this study the focus was on the presence of a more complex, bile salt surfactant, as would be encountered in the in vivo environment. As a result, MLC using a specific bile salt has been confirmed as an ideal in vitro system to predict the intestinal permeability for a wide range of drugs, through the development of a quantitative partition-absorption relationship. MLC offers many benefits including environmental, economic, time-saving and ethical advantages compared with the traditional techniques employed to obtain passive intestinal absorption values. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Biomedical Evaluation of Cortisol, Cortisone, and Corticosterone along with Testosterone and Epitestosterone Applying Micellar Electrokinetic Chromatography

    Tomasz Bączek


    Full Text Available The validated micellar electrokinetic chromatography (MEKC was proposed for the determination of five steroid hormones in human urine samples. That technique allowed for the separation and quantification of cortisol, cortisone, corticosterone, testosterone, and epitestosterone and was sensitive enough to detect low concentrations of these searched steroids in urine samples at the range of 2–300 ng/mL. The proposed MEKC technique with solid-phase extraction (SPE procedure was simple, rapid, and has been successfully applied as a routine procedure to analyze steroids in human urine samples. The MEKC method offered a potential in clinical routine practice because of the short analysis time (8 min, low costs, and simultaneous analysis of five endogenous hormones. Due to its simplicity, speed, accuracy, and high recovery, the proposed method could offer a tool to determine steroid hormones as potential biomarkers in biomedical investigations, what was additionally revealed with healthy volunteers.

  2. Chiral cyclodextrin-modified micellar electrokinetic chromatography and chemometric techniques for green tea samples origin discrimination.

    Pasquini, Benedetta; Orlandini, Serena; Goodarzi, Mohammad; Caprini, Claudia; Gotti, Roberto; Furlanetto, Sandra


    Catechins and methylxanthines were determined in 92 green tea (GT) samples originating from Japan and China by using micellar electrokinetic chromatography with the addition of (2-hydroxypropyl)-β-cyclodextrin. GT samples showed high concentrations of (-)-epigallocatechin gallate and caffeine, with (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epicatechin in relevant content and (+)-catechin, (-)-catechin and theobromine in much lower amounts. The amount of all the considered compounds was higher for Chinese GTs, with the exception of (-)-epicatechin gallate. Pattern recognition methods were applied to discriminate GTs according to geographical origin, which is an important factor to determine quality and reputation of a commercial tea product. Data analysis was performed by principal component analysis and hierarchical cluster analysis as exploratory techniques. Linear discriminant analysis and quadratic discriminant analysis were utilized as discrimination techniques, obtaining a very good rate of correct classification and prediction.

  3. Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in micellar medium

    Subrata Kundu; Sujit Kumar Ghosh; Madhuri Mandal; Tarasankar Pal


    Arsenic can be determined in parts-per-million (ppm) level by absorbance measurement. This method is based on the quantitative colour bleaching of the dye, methylene blue by arsine catalyzed by nanoparticles in micellar medium. The arsine has been generated in situ from sodium arsenate by NaBH4 reduction. The absorbance measurement was carried out at the max of the dye at 660 nm. The calibration graph set-up for three linear dynamic ranges (LDR) are 0–8.63 ppm, 0–1.11 ppm and 0–0.11 ppm and limit of detections (LODs) are 1.3, 0.53 and 0.03 ppm, respectively. This method is simple, sensitive and easy to carry out. It is free from phosphate and silicate interference and applicable to real sample analysis.

  4. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.


    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  5. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    Bukhriakov, Konstantin


    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  6. Determination of catechins in matcha green tea by micellar electrokinetic chromatography.

    Weiss, David J; Anderton, Christopher R


    Catechins in green tea are known to have many beneficial health properties. Recently, it has been suggested that matcha has greater potential health benefits than other green teas. Matcha is a special powdered green tea used in the Japanese tea ceremony. However, there has been no investigation to quantitate the catechin intake from matcha compared to common green teas. We have developed a rapid method of analysis of five catechins and caffeine in matcha using micellar electrokinetic chromatography. Results are presented for water and methanol extractions of matcha compared with water extraction of a popular green tea. Using a mg catechin/g of dry leaf comparison, results indicate that the concentration of epigallocatechin gallate (EGCG) available from drinking matcha is 137 times greater than the amount of EGCG available from China Green Tips green tea, and at least three times higher than the largest literature value for other green teas.

  7. Study of Tea Digitized Chromatographic Fingerprint Spectra Using Micellar Electrokinetic Chromatography

    SONG, Guan-Qun; LIN, Jin-Ming; QU, Feng; DONG, Wen-Ju


    This paper described the principle of digitized chromatographic fingerprint spectrum and established digitized chromatographic fingerprint spectra of ten brands of Chinese famous tea by the micellar electrokinetic chromatography. This work was done using a 25 mmol. L- 1 sodium dodecylsulfate in a 20 mmol· L-1borate (pH 7.0) solution as running buffer, 20 kV applied potential and detection at 280 nm. The chromatographic fingerprint spectra were digitized by the relative retention value (α)and the relative area (Sr), and were analyzed to identify the tea samples. In the absence of the standard samples, the present method was easy setup and inexpensive, and provided the applicable information for the quality assessment of teas.

  8. Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems.

    Masselon, Chloé; Colin, Annie; Olmsted, Peter D


    In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.

  9. Simultaneous determination of four bioactive constituents in Liuwei Dihuang Pills by micellar electrokinetic chromatography.

    Zhao, Xinfeng; Wang, Yue; Sun, Yuqing


    A micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of four bioactive constituents (morroniside, loganin, paeoniflorin and paeonal) in the Chinese patent medicine Liuwei Dihuang Pills is established. A carrier composed of 0.2M boric acid, 0.02 M sodium dodecyl sulfate (SDS) and 5% acetonitrile (pH was adjusted to 10.5 with 0.1 M NaOH) is found to be the most suitable electrolyte for this separation. The four constituents in Liuwei Dihuang Pills can be easily determined within 16 min. Optimization of separation is realized with the univariate approach by studying the effects of four factors relevant to run buffer on migration times.

  10. Fluoride binding in water with the use of micellar nanodevices based on salophen complexes.

    Keymeulen, Flore; De Bernardin, Paolo; Giannicchi, Ilaria; Galantini, Luciano; Bartik, Kristin; Dalla Cort, Antonella


    The use of micelles to transpose lipophilic receptors, such as uranyl-salophen complexes, into an aqueous environment is a valuable and versatile tool. Receptor 1 incorporated into CTABr micelles forms a supramolecular system that exhibits excellent binding properties towards fluoride in water, despite the competition of the aqueous medium. To fully evaluate the potential of micellar nanodevices, we extended our previous study to other types of surfactants and to a uranyl-salophen receptor with a more extended aromatic surface. Paramagnetic relaxation enhancement experiments were used to obtain information on the location of the two receptors within the micelles and complementary information was obtained from dynamic light scattering experiments. With these data it is possible to account for the key factors necessary to obtain an efficient supramolecular device for anion binding in water.

  11. Optimization of the Separation of Quinolines in Micellar Liquid Chromatography by Experimental Design and Regression Models



    The chemometrics approach was applied to the optimization of separation of quinolines in micellar liquid tigated by means of multivariate analysis. The factors considered were the concentration of sodium dodecyl sulfate (SDS), the organic modifier concentration and the length of its alkyl chain, and pH of the mobile phase. The ex-periments were performed according to a face centered cube response surface experimental design. In order to op-timize the separation a Pareto-optimality method was employed. The models were verified, because a good agree-ment was observed between the predicted and experimental values of the chromatographic response function in the optimal condition. The obtained regression models were characterized by both descriptive and predictive ability (R2≥0.97 and R2cv≥0.92) and allowed the chromatographic separation of the quinolines with a good resolution and a total analysis time of 50 min.

  12. Nonequilibrium Fluctuation Relation for Sheared Micellar Gel in a Jammed State

    Majumdar, Sayantan; Sood, A. K.


    We show that the shear rate at a fixed shear stress in a micellar gel in a jammed state exhibits large fluctuations, showing positive and negative values, with the mean shear rate being positive. The resulting probability distribution functions of the global power flux to the system vary from Gaussian to non-Gaussian, depending on the driving stress, and in all cases show similar symmetry properties as predicted by the Gallavotti-Cohen steady state fluctuation relation. The fluctuation relation allows us to determine an effective temperature related to the structural constraints of the jammed state. We have measured the stress dependence of the effective temperature. Further, experiments reveal that the effective temperature and the standard deviation of the shear-rate fluctuations increase with the decrease of the system size.

  13. Analysis of epinephrine, norepinephrine, and dopamine in urine samples of hospital patients by micellar liquid chromatography.

    García Ferrer, Daniel; García García, Aurelio; Peris-Vicente, Juan; Gimeno-Adelantado, José Vicente; Esteve-Romero, Josep


    An analytical method based on micellar liquid chromatography was developed to determine the concentration of three catecholamines (epinephrine, norepinephrine, and dopamine) in urine. The detection of these compounds in urine can be useful to diagnose several diseases, related to stress and sympathoadrenal system dysfunction, using a non-invasive collection procedure. The sample pretreatment was a simple dilution in a micellar solution, filtration, and direct injection, thus avoiding time-consuming and tedious extraction steps. Therefore, there is no need to use an internal standard. The three catecholamines were eluted using a C18 column and a mobile phase of 0.055 M sodium dodecyl sulfate-1.5% methanol buffered at pH 3.8 running at 1.5 mL/min under isocratic mode in less than 25 min. The detection was performed by amperometry applying a constant potential of +0.5 V. The procedure was validated following the guidelines of the European Medicines Agency in terms of the following: calibration range (0.09-5 μg/mL), linearity (r(2) > 0.9995), limit of detection (0.02 μg/mL), within- and between-run accuracy (-6.5 to +8.4%) and precision (<10.2%), dilution integrity, matrix effect, robustness (<8.4), and stability. The obtained values were below those required by the guide. The method was rapid, easy-to-handle, eco-friendly, and safe and provides reliable quantitative data, and is thus useful for routine analysis. The procedure was applied to the analysis of epinephrine, norepinephrine, and dopamine in urine samples from patients of a local hospital.

  14. Electrophoretic concentration and sweeping-micellar electrokinetic chromatography analysis of cationic drugs in water samples.

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P


    Sample preparation by electrophoretic concentration, followed by analysis using sweeping-micellar electrokinetic chromatography, was studied as a green and simple analytical strategy for the trace analysis of cationic drugs in water samples. Electrophoretic concentration was conducted using 50 mmol/L ammonium acetate at pH 5 as acceptor electrolyte. Electrophoretic concentration was performed at 1.0 kV for 50 min and 0.5 kV and 15 min for purified and 10-fold diluted waste water samples, respectively. Sweeping-micellar electrokinetic chromatography was with 100 mmol/L sodium phosphate at pH 2, 100 mmol/L sodium dodecyl sulfate and 27.5%-v/v acetonitrile as separation electrolyte. The separation voltage was -20 kV, UV-detection was at 200 nm, and the acidified concentrate was injected for 36 s at 1 bar (or 72% of the total capillary length, 60 cm). Both purified water and 10-fold diluted waste water exhibited a linear range of two orders of concentration magnitude. The coefficient of determination, and intra- and interday repeatability were 0.991-0.997, 2.5-6.2, and 4.4-9.7%RSD (n=6), respectively, for purified water. The values were 0.991-0.997, 3.4-7.1, and 8.7-9.8%RSD (n=6), correspondingly, for 10-fold diluted waste water. The method detection limit was in the range from 0.04-0.09 to 1.20-6.97 ng/mL for purified and undiluted waste water, respectively.

  15. Micellar-polymer joint demonstration project, Wilmington Field, California. Annual report, 1976--1977

    Wade, J.E.


    Work accomplished under the contract during the first year of operation consisted of Micellar-Polymer laboratory systems design; Test Pattern Model Studies; Drilling and coring injection well FT-1; Pressure Transient Tests of Wells Z-81, Z1-16and FT-1; as well as design and construction of a portion of the surface facilities. Radial core floods conducted by Marathon Research Center using reservoir rock and fluid samples from the Wilmington Field demonstrated that Micellar-Polymer systems showing good recovery efficiency could be made from several different commercially available sulfonates. Residual oil saturations obtained were as low as 7 to 10% pore volume. Sulfonates made from Wilmington crude oil also proved to be effective. Polyacrylamides, both liquid and dry, as well as polysaccharides proved equally effective as a mobility buffer. Test pattern model studies were conducted on seven different arrays of wells. These studies showed that the pattern originally proposed exhibited poor areal sweep efficiency and was seriously affected by waterflood operations in the North Flank of the fault block. An E-W staggered line drive backed-up against the Pier A Fault appeared to be the best pattern studied, assuming the Pier A Fault to be a pressure barrier. Injection well FT-1 was drilled, cored and completed in the Hx/sub a/ sand. Cores were taken using low-solids, polymer drilling fluid and were frozen on site. The frozen cores from the project area will be used in the Phase B laboratory work. Pressure Transient Tests run in Z-81 and Z1-16 indicated the Pier A Fault to be pressure competent. The plant site was located adjacent to a railroad siding near the injection wells. The site was graded and seven 2000 barrel tanks were erected. The tanks were internally plastic coated on site. Mixing, filtering and injection facilities are being installed.

  16. Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs.

    Hevus, Ivan; Modgil, Amit; Daniels, Justin; Kohut, Ananiy; Sun, Chengwen; Stafslien, Shane; Voronov, Andriy


    Strategically designed amphiphilic invertible polymers (AIPs) are capable of (i) self-assembling into invertible micellar assemblies (IMAs) in response to changes in polarity of environment, polymer concentration, and structure, (ii) accommodating (solubilizing) substances that are otherwise insoluble in water, and (iii) inverting their molecular conformation in response to changes in the polarity of the local environment. The unique ability of AIPs to invert the molecular conformation depending on the polarity of the environment can be a decisive factor in establishing the novel stimuli-responsive mechanism of solubilized drug release that is induced just in response to a change in the polarity of the environment. The IMA capability to solubilize lipophilic drugs and deliver and release the cargo molecules by conformational inversion of polymer macromolecules in response to a change of the polarity of the environment was demonstrated by loading IMA with a phytochemical drug, curcumin. It was demonstrated that four sets of micellar vehicles based on different AIPs were capable of delivering the curcumin from water to an organic medium (1-octanol) by means of unique mechanism: AIP conformational inversion in response to changing polarity from polar to nonpolar. The IMAs are shown to be nontoxic against human cells up to a concentration of 10 mg/L. On the other hand, the curcumin-loaded IMAs are cytotoxic to breast carcinoma cells at this concentration, which confirms the potential of IMA-based vehicles in controlled delivery of poorly water-soluble drug candidates and release by means of this novel stimuli-responsive mechanism.

  17. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Souza Santos, Marcela de, E-mail: [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others


    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  18. Seed dispersal in fens

    Middleton, B.; Van Diggelen, R.; Jensen, K.


    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  19. Visualizing Dispersion Interactions

    Gottschalk, Elinor; Venkataraman, Bhawani


    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  20. Visualizing Dispersion Interactions

    Gottschalk, Elinor; Venkataraman, Bhawani


    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  1. Perfect Dispersive Medium

    Gupta, Shulabh


    Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...

  2. Evolution of dispersal distance.

    Durrett, Rick; Remenik, Daniel


    The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287-293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409-435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205-218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.

  3. Solvent blends can control cationic reversed micellar interdroplet interactions. The effect of n-heptane:benzene mixture on BHDC reversed micellar interfacial properties: droplet sizes and micropolarity.

    Agazzi, Federico M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano


    We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (d(App)) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.

  4. Phosphatidylinositol 3-kinase p85 regulatory subunit gene and spinal muscular atrophy disease



    Full Text Available Spinal muscular atrophy (SMA is a frequent neuromuscular disorder caused by motoneuronal apoptosis, as a result of SMN (Survival Motor Neuron protein deficiency. Although the SMA determining gene was identified, the molecular mechanism of the disease is not clearly understood, due to the heterogeneity of clinical manifestations. Trying to complete the molecular describing SMA picture, by identifying potential modulators factors, we investigated the relationship between phosphatidylinositol 3-kinase p85 regulatory subunit gene (PIK3R1 and SMA pathology. As IGF signaling pathway has been reported to play an important role in motoneurons survival and PIK3 is a key element of this cascade signaling, we focused on the relationship between PIK3R1 gene Met326Ile polymorphism and SMA type I, the most severe form of the disease. A total of 80 subjects (40 SMA type I patients and 40 unrelated healthy controls were included in the study. The statistical analyzes performed consequently to the genotyping by mismatch PCR-RFLP method, revealed that Met326Ile polymorphism is not associated with SMA type I disease: ORMet/Met = 0.398 with a p = 0.072 meanwhile ORMet = 0.495, p = 0.063. However, the Cochrane – Armitage test indicated that there is a statistically association trend between the analyzed polymorphism and SMA type I pathology: ORMet = 0.438, p = 0.032. We concluded that additional researches with an increased subjects number and replicates studies in other populations will clarify the investigated relationship and it may contribute to the SMA molecular mechanism understanding.

  5. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Avik Roy

    Full Text Available Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP flow under elevated oxygen pressure. RNS60, but not NS (normal saline, PNS60 (saline containing a comparable level of oxygen without the TCP modification, or RNS10.3 (TCP-modified normal saline without excess oxygen, stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3 kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1 and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD, RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  6. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada


    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.

  7. Phosphatidylinositol 3-kinase pathway regulates sperm viability but not capacitation on boar spermatozoa.

    Aparicio, I M; Bragado, M J; Gil, M C; Garcia-Herreros, M; Gonzalez-Fernandez, L; Tapia, J A; Garcia-Marin, L J


    Phosphatidylinositol 3-kinase (PI3-K) plays an important role in cell survival in somatic cells and recent data pointed out a role for this kinase in sperm capacitation and acrosome reaction (AR). This study was undertaken to evaluate the role of PI3-K pathway on porcine spermatozoa capacitation, AR, and viability using two unrelated PI3-K inhibitors, LY294002 and wortmannin. In boar spermatozoa, we have identified the presence of PDK1, PKB/Akt, and PTEN, three of the main key components of the PI3-K pathway. Incubation of boar sperm in a capacitating medium (TCM) caused a significant increase in the percentage of capacitated (25 +/- 2 to 34 +/- 1% P sperm in basal medium (TBM). Inhibition of PI3-K did affect neither the capacitation status nor AR nor protein p32 tyrosine phosphorylation of boar spermatozoa incubated in TBM or TCM. Boar sperm viability in TBM was significantly decreased by 40 and 20% after pretreatment with LY294002 or wortmannin, respectively. Similar results were observed after incubation of boar spermatozoa in TCM. Treatment of boar spermatozoa with the analog of cAMP, 8Br-cAMP significantly prevented the reduction on sperm viability. Our results provide evidence for an important role of the PI3-K pathway in the regulation of boar sperm viability and suggests that other signaling pathways different from PI3-K must be activated downstream of cAMP to contribute to regulation of sperm viability. Finally, in our conditions the PI3-K pathway seems not related with boar sperm capacitation or AR.

  8. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection.

    Elizabeth A Nelson


    Full Text Available Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve is a lipid kinase involved in endosome maturation that emerged from a haploid genetic screen as being required for Ebola virus (EBOV infection. Here we analyzed the effects of apilimod, a PIKfyve inhibitor that was reported to be well tolerated in humans in phase 2 clinical trials, for its effects on entry and infection of EBOV and Marburg virus (MARV. We first found that apilimod blocks infections by EBOV and MARV in Huh 7, Vero E6 and primary human macrophage cells, with notable potency in the macrophages (IC50, 10 nM. We next observed that similar doses of apilimod block EBOV-glycoprotein-virus like particle (VLP entry and transcription-replication competent VLP infection, suggesting that the primary mode of action of apilimod is as an entry inhibitor, preventing release of the viral genome into the cytoplasm to initiate replication. After providing evidence that the anti-EBOV action of apilimod is via PIKfyve, we showed that it blocks trafficking of EBOV VLPs to endolysosomes containing Niemann-Pick C1 (NPC1, the intracellular receptor for EBOV. Concurrently apilimod caused VLPs to accumulate in early endosome antigen 1-positive endosomes. We did not detect any effects of apilimod on bulk endosome acidification, on the activity of cathepsins B and L, or on cholesterol export from endolysosomes. Hence by antagonizing PIKfyve, apilimod appears to block EBOV trafficking to its site of fusion and entry into the cytoplasm. Given the drug's observed anti-filoviral activity, relatively unexplored mechanism of entry inhibition, and reported tolerability in humans, we propose that apilimod be further explored as part of a therapeutic regimen to treat filoviral infections.

  9. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics.

    Li, Xinran; Wang, Xiang; Zhang, Xiaoli; Zhao, Mingkun; Tsang, Wai Lok; Zhang, Yanling; Yau, Richard Gar Wai; Weisman, Lois S; Xu, Haoxing


    Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phosphoinositide presumed to be localized to endosomes and lysosomes, where it recruits cytoplasmic peripheral proteins and regulates endolysosome-localized membrane channel activity. Cells lacking PI(3,5)P2 exhibit lysosomal trafficking defects, and human mutations in the PI(3,5)P2-metabolizing enzymes cause lysosome-related diseases. The spatial and temporal dynamics of PI(3,5)P2, however, remain unclear due to the lack of a reliable detection method. Of the seven known phosphoinositides, only PI(3,5)P2 binds, in the low nanomolar range, to a cytoplasmic phosphoinositide-interacting domain (ML1N) to activate late endosome and lysosome (LEL)-localized transient receptor potential Mucolipin 1 (TRPML1) channels. Here, we report the generation and characterization of a PI(3,5)P2-specific probe, generated by the fusion of fluorescence tags to the tandem repeats of ML1N. The probe was mainly localized to the membranes of Lamp1-positive compartments, and the localization pattern was dynamically altered by either mutations in the probe, or by genetically or pharmacologically manipulating the cellular levels of PI(3,5)P2. Through the use of time-lapse live-cell imaging, we found that the localization of the PI(3,5)P2 probe was regulated by serum withdrawal/addition, undergoing rapid changes immediately before membrane fusion of two LELs. Our development of a PI(3,5)P2-specific probe may facilitate studies of both intracellular signal transduction and membrane trafficking in the endosomes and lysosomes.

  10. Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling.

    Shi, Anbing; Grant, Barth D


    After endocytosis, a selective endocytic recycling process returns many endocytosed molecules back to the plasma membrane. The RAB-10/Rab10 GTPase is known to be a key recycling regulator for specific cargo molecules. New evidence, focused on C. elegans RAB-10 in polarized epithelia, points to a key role of RAB-10 in the regulation of endosomal phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) levels. In turn, PI(4,5)P2 levels strongly influence the recruitment of many peripheral membrane proteins, including those important for vesicle budding through their membrane bending activities. Part of the effect of RAB-10 on endosomal PI(4,5)P2 is through its newly identified effector CNT-1, a predicted GTPase activating protein (GAP) of the small GTPase ARF-6/Arf6. In mammals PI(4,5)P2 generating enzymes are known Arf6 effectors. In C. elegans we found that RAB-10, CNT-1 and ARF-6 are present on the same endosomes, that RAB-10 recruits CNT-1 to endosomes, and that loss of CNT-1 or RAB-10 leads to overaccumulation of endosomal PI(4,5)P2, presumably via hyperactivation of endosomal ARF-6. In turn this leads to over-recruitment of PI(4,5)P2-dependent membrane-bending proteins RME-1/Ehd and SDPN-1/Syndapin/PACSIN. Conversely, in arf-6 mutants, endosomal PI(4,5)P2 levels were reduced and endosomal recruitment of RME-1 and SDPN-1 failed. This work makes an unexpected link between distinct classes of small GTPases that control endocytic recycling, and provides insight into how this interaction affects endosome function at the level of lipid phosphorylation.

  11. Isolation and functional characterization of the C-terminus of rice phosphatidylinositol 4-kinase in vitro


    A partial rice (Oryza sativa L.) cDNA clone, OsPI4K1c, was isolated through screening of a cDNA library constructed from tillering materials. OsPI4K1c encoded a peptide of 608 amino acids with a calculated molecular mass of 68.4 kDa. The OsPI4K1c peptide shared high homology and possessed the highly conserved domains present in most isolated cloned PI4-kinases, i.e. a lipid kinase unique (LKU) domain and a catalytic (CAT) domain. A region with similarity to pleckstrin homology (PH) domain was present in OsPI4K1c as well. Further comparison with genomic sequences in databases revealed that OsPI4K1c is located at the 3'-end of a putative rice PI 4-kinase coding gene OsPI4K1, and its coding region corresponded to the C-terminal half of OsPI4K1 protein. Twelve exons (49-562 bp in size) and 11 introns (77-974 bp in size) were identified in OsPI4K1c. The recombinant protein expressed in Escherichia coli phosphorylates phosphatidylinositol at the D4 position of the inositol ring. OsPI4K1 transcript levels were detected in a low but constitutive manner in shoot, stem, leaf, spike and root tissues and did not change upon treatment with different hormones, calcium and jasmonic acid (JA). However, treatment with salicylic acid (SA) elevated the mRNA level of the OsPI4K1 gene, which suggested the involvement of OsPI4K1 in wounding responses.

  12. Class IA phosphatidylinositol 3-kinase p110α regulates phagosome maturation.

    Emily P Thi

    Full Text Available Of the various phosphatidylinositol 3- kinases (PI3Ks, only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5P3; however, p110α and PI(3,4,5P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP and homotypic vacuole fusion and protein sorting (HOPs components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.

  13. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J


    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  14. The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity.

    Han, Gil-Soo; Audhya, Anjon; Markley, Daniel J; Emr, Scott D; Carman, George M


    The LSB6 gene product was identified from the Saccharomyces Genome Data Base (locus YJL100W) as a putative member of a novel type II phosphatidylinositol (PI) 4-kinase family. Cell extracts lacking the LSB6 gene had a reduced level of PI 4-kinase activity. In addition, multicopy plasmids containing the LSB6 gene directed the overexpression of PI 4-kinase activity in cell extracts of wild-type cells, in an lsb6Delta mutant, in a pik1(ts) stt4(ts) double mutant, and in an pik1(ts) stt4(ts) lsb6Delta triple mutant. The heterologous expression of the S. cerevisiae LSB6 gene in Escherichia coli resulted in the expression of a protein that possessed PI 4-kinase activity. Although the lsb6Delta mutant did not exhibit a growth phenotype and failed to exhibit a defect in phosphoinositide synthesis in vivo, the overexpression of the LSB6 gene could partially suppress the lethal phenotype of an stt4Delta mutant defective in the type III STT4-encoded PI 4-kinase indicating that Lsb6p functions as a PI 4-kinase in vivo. Lsb6p was localized to the membrane fraction of the cell, and when overexpressed, GFP-tagged Lsb6p was observed on both the plasma membrane and the vacuole membrane. The enzymological properties (pH optimum, dependence on magnesium or manganese as a cofactor, the dependence of activity on Triton X-100, the dependence on the PI surface concentration, and temperature sensitivity) of the LSB6-encoded enzyme were very similar to the membrane-associated 55-kDa PI 4-kinase previously purified from S. cerevisiae.

  15. Spectroscopic Behavior of Some A3B Type Tetrapyrrolic Complexes in Several Organic Solvents and Micellar Media

    Radu Socoteanu


    Full Text Available The paper presents spectral studies of some unsymmetrical A3B tetrapyrrolic, porphyrin-type complexes with Cu(II and Zn(II in different solvents and micellar media aimed at estimating their properties in connection with the living cell. The results indicate that the position of the absorption and emission peaks is mostly influenced by the central metal ion and less by the environmental polarity or the peripheric substituents of the porphyrinic core. The comparison between the overall absorption and emission spectra of the compounds in methanol or cyclohexane vs. direct and reverse Triton X micellar systems, respectively, suggests for all compounds the localization at the interface between the polyethylene oxide chains and the tert-octyl-phenyl etheric residue of the Triton X-100 molecules. These findings could be important when testing the compounds embedded in liposomes or other delivery systems to the targeted cell.

  16. Preparation of TiO2 nanometer thin films with high photocatalytic activity by reverse micellar method


    Two kinds of TiO2 nanometer thin films were prepared on stainless steel by the reverse micellar and sol-gelmethods, respectively. The calcined TiO2 thin films were characterized by X-ray diffraction (XRD), atomic force micros-copy (AFM), BET surface area and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity was evaluated byphotocatalytic decoloration of methyl orange aqueous solution. The results showed that the TiO2 thin films prepared by re-verse micellar method (designated as RM-TiO2 films) showed higher photocatalytic activity than those by sol-gel method(designated as SG-TiO2 films). This is attributed to the fact that the former is composed of smaller monodispersed sphericalparticles with a size of about 15 nm and possesses higher surface areas.

  17. Enantiomeric Separation of Epinephrine and Salbutamol by Micellar Electrokinetic Chromatography Using β-Cyclodextrin as Chiral Additive

    ZHENG,Yan-Peng(郑妍鹏); MO,Jin-Yuan(莫金垣)


    Enantiomeric separations of epinephrine and salbutamol, by means of micellar electrokinetic chromatography (MEKC) employing β-cyclodextrin as chiral additive in ammonium chloride-ammonia solution were investigated.In this system, the analytes migrated with the micellar phase towards the anode and were detected by electrochemistry using gold microelectrode at +0.65 V vs. SCE. The success of the chiral separations is strongly dependent on the concentration of β-CD and SDS, and the optimal concentration is 8 mmol·L-1 and 15 mmol·L-1 respectively.The effects of detection potential, pH value of electrolyte and applied voltage were discussed also. Using the proposed method, baseline separation of the enantiomers could be accomplished in 6 min. Further, an attempt was made to elucidate the plausible mechanism of the chiral recognition.

  18. Can affinity interactions influence the partitioning of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?

    André M. Lopes


    Full Text Available In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.

  19. Enantiomeric Separation of Epinephrine and Salbutamol by Micellar Electrokinetic Chromatography Using β-Cyclodextrin as Chiral Additive

    Yan Peng ZHENG; Jin Yuan MO


    Enantiomeric separation of epinephrine and salbutamol was investigated by micellar electrokinetic chromatography employing β-cyclodextrin as chiral additive in ammonium chloride-ammonia solution. The analytes were detected by electrochemistry using gold microelectrode at +0.65 V versus SCE reference electrode. The effects of detection potential,concentration of β-cyclodextrin, concentration of sodium dodecyl sulfate, pH value of electrolyte and applied voltage were discussed.

  20. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J


    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest.

  1. Impact of selected wastewater constituents on the removal of sulfonamide antibiotics via ultrafiltration and micellar enhanced ultrafiltration.

    Exall, Kirsten; Balakrishnan, Vimal K; Toito, John; McFadyen, Renée


    To better understand the environmental mobility of sulfonamide antibiotics and develop improved processes for their removal during wastewater treatment, stirred cell ultrafiltration (UF) experiments were conducted using both synthetic and real wastewater effluent. The interactions between selected sulfonamides (sulfaguanidine, sulfathiazole and sulfamerazine), solids and dissolved organic matter were systematically explored. The further impact of micellar enhanced ultrafiltration (MEUF), a process in which surfactants are added at micellar concentrations to enhance removal of various trace contaminants from aqueous streams, was then explored by using a cationic surfactant, cetyltrimethylammonium bromide (CTAB). Ultrafiltration of sulfonamides in the absence of other materials generally removed only 15-20% of the antibiotics. The presence of micellar solutions of CTAB generally improved removal of sulfonamides over UF alone, with rejections ranging from 20 to 74%. Environmental solids (sediment) further increased retention of sulfonamides using both UF and MEUF, but the presence of DOM did not influence rejection. Similar trends were observed on UF and MEUF of real effluent samples that had been spiked with the sulfonamides, confirming the environmental relevance of the observed interactions between sulfonamides, surfactant, and wastewater constituents. The results demonstrate that MEUF processes can be designed for the selective removal of such trace contaminants as sulfonamide antibiotics.

  2. Separation and analysis of cis-diol-containing compounds by boronate affinity-assisted micellar electrokinetic chromatography.

    Wang, Heye; Lü, Chenchen; Li, Hengye; Chen, Yang; Zhou, Min; Ouyang, Jian; Liu, Zhen


    Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.

  3. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants.

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing; Chen, Yu-Bo; Shi, Yu-Ting; Li, Rong-Rong


    Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of the hydrolysis kinetics of alpha-naphthyl acetate in micellar systems and the effect of HPMC (catalyst present).

    Werawatganone, Pornpen; Wurster, Dale Eric


    The change in the hexadecyltrimethylammonium bromide (CTAB) critical aggregation concentration (CAC) was studied in the presence of various concentrations and grades of hydroxypropylmethyl cellulose (HPMC) using surface tension measurement (duNoüy ring and Wilhelmy plate) and oil red O solubilization. According to the surface tension methods, the CAC was higher than the CTAB critical micelle concentration (CMC). CAC and CMC were not different when the solubilization method was used. Micellar solutions of CTAB have been found to accelerate the hydrolysis of alpha-naphthyl acetate (alpha-NA) by o-iodosobenzoic acid (IBA), a strong nucleophile. Pseudo-first-order kinetics were utilized for rate constant determination. The observed rate constants for the degradation of alpha-NA in the presence of varying CTAB concentrations with and without HPMC were analyzed according to the pseudophase model. The micellar rate constants and the micellar binding constants for the substrates were obtained. The presence of HPMC retarded the reaction rate, and the rate constant decreased as the polymer concentration increased. However, there was no obvious difference in the observed rate constants among the different grades of HPMC (Methocel E5, Methocel E15, Methocel E50). The decrease in the rate constant was likely due to the polymer-micelle interaction interfering with substrate binding to the CTAB micelles.

  5. Rates of Gravel Dispersion

    Haschenburger, J. K.


    Sediment transfers in gravel-bed rivers involve the three-dimensional dispersion of mixed size sediment. From a kinematics standpoint, few studies are available to inform on the streamwise and vertical rates of sediment dispersion in natural channels. This research uses a gravel tracing program to quantify dispersion rates over 19 flood seasons. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, Canada. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2500 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1989 and 1992 in four generations. To quantify gravel dispersion over distances up to 2.6 km, observations are taken from 11 recoveries. Over 280 floods capable of moving bedload occurred during this period, with five exceeding the estimated bankfull discharge. Streamwise dispersion is quantified by virtual velocity, while dispersion into the streambed is quantified by a vertical burial rate. The temporal trend in streamwise dispersion rates is described by a power function. Initial virtual velocities decline rapidly from around 1.4 m/hr to approach an asymptote value of about 0.2 m/hr. The rapid change corresponds to a significant increase in the proportion of buried tracers due to vertical mixing. Initial burial rates reflect the magnitude of the first flood after tracer deployment and range from 0.07 to 0.46 cm/hr depending on tracer generation. Burial rates converge to about 0.06 cm/hr after the fourth flood season and then gradually decline to about 0.01 cm/hr. Thus, the rate of streamwise dispersion exceeds that of vertical dispersion by three orders of magnitude when the movement of sediment routinely activated by floods is considered.

  6. Dispersive hydrodynamics: Preface

    Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.


    This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.

  7. Supramolecular micellar nanoaggregates based on a novel chitosan/vitamin E succinate copolymer for paclitaxel selective delivery

    Lian H


    Full Text Available He Lian1, Jin Sun1, Yan Ping Yu1, Yan Hua Liu2, Wen Cao1, Yong Jun Wang1, Ying Hua Sun1, Si Ling Wang1, Zhong Gui He11School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Ningxia, People's Republic of ChinaBackground: Nowadays, many cytotoxic anticancer drugs exhibit low solubility and poor tumor selectivity, which means that the drug formulation is very important. For example, in the case of paclitaxel (PTX, Cremophor EL® (BASF, Ludwigshafen, Germany needs to be used as a solubilizer in its clinical formulation (Taxol®, Bristol-Myers Squibb, New York, NY, although it can cause serious side effects. Nanomicellar systems are promising carriers to resolve the above problems, and the polymer chosen is the key element.Methods: In this study, a novel amphiphilic chitosan/vitamin E succinate (CS-VES copolymer was successfully synthesized for self-assembling polymeric micelles. Proton nuclear magnetic resonance spectroscopy and infrared were used to characterize the molecular structure of the copolymer. The PTX-loaded CS-VES polymeric micelles (PTX-micelles were characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry.Results: The critical micelle concentration of CS-VES was about 12.6 µg/mL, with the degree of amino group substitution being 20.4%. PTX-micelles were prepared by a nanoprecipitation/dispersion technique without any surfactant being involved. PTX-micelles exhibited a drug loading as high as 21.37% and an encapsulation efficiency of 81.12%, with a particle size ranging from 326.3 to 380.8 nm and a zeta potential of +20 mV. In vitro release study showed a near zero-order sustained release, with 51.06%, 50.88%, and 44.35% of the PTX in the micelles being released up to 168 hours at three drug loadings of 7.52%, 14.09%, and 21.37%, respectively. The cellular uptake

  8. Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein.

    Kim, Yeun Ju; Guzman-Hernandez, Maria Luisa; Wisniewski, Eva; Echeverria, Nicolas; Balla, Tamas


    Phospholipase C (PLC)-mediated hydrolysis of the limited pool of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] requires replenishment from a larger pool of phosphatidylinositol (PtdIns) via sequential phosphorylation by PtdIns 4-kinases and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinases. Since PtdIns is synthesized in the endoplasmic reticulum (ER) and PtdIns(4,5)P2 is generated in the PM, it has been postulated that PtdIns transfer proteins (PITPs) provide the means for this lipid transfer function. Recent studies identified the large PITP protein, Nir2 as important for PtdIns transfer from the ER to the PM. It was also found that Nir2 was required for the transfer of phosphatidic acid (PtdOH) from the PM to the ER. In Nir2-depleted cells, activation of PLC leads to PtdOH accumulation in the PM and PtdIns synthesis becomes severely impaired. In quiescent cells, Nir2 is localized to the ER via interaction of its FFAT domain with ER-bound VAMP-associated proteins VAP-A and-B. After PLC activation, Nir2 also binds to the PM via interaction of its C-terminal domains with diacylglycerol (DAG) and PtdOH. Through these interactions, Nir2 functions in ER-PM contact zones. Mutations in VAP-B that have been identified in familial forms of amyotrophic lateral sclerosis (ALS or Lou-Gehrig's disease) cause aggregation of the VAP-B protein, which then impairs its binding to several proteins, including Nir2. These findings have shed new lights on the importance of non-vesicular lipid transfer of PtdIns and PtdOH in ER-PM contact zones with a possible link to a devastating human disease.

  9. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M


    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  10. Dispersion forces in methane

    Lekkerkerker, H.N.W.; Coulon, P.; Luyckx, R.


    The coefficients of the R-6 and R-7 terms in the series representation of the dispersion interaction between two methane molecules and between methane and helium, neon and argon are calculated by a variation method.

  11. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M


    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  12. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate

    Lee, D; Oh, E S; Woods, A


    Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a coreceptor with integrins in cell adhesion. It has been suggested to form a ternary signaling complex with protein kinase Calpha and phosphatidylinositol 4,5-bisphosphate (PIP2). Syndecans each have a unique, central, and variable (V......) region in their cytoplasmic domains, and that of syndecan-4 is critical to its interaction with protein kinase C and PIP2. Two oligopeptides corresponding to the variable region (4V) and whole domain (4L) of syndecan-4 cytoplasmic domain were synthesized for nuclear magnetic resonance (NMR) studies. Data...

  13. Fickian dispersion is anomalous

    Cushman, John H.; O'Malley, Dan


    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  14. Pooled Analysis of Phosphatidylinositol 3-kinase Pathway Variants and Risk of Prostate Cancer

    Koutros, Stella; Schumacher, Fredrick R.; Hayes, Richard B.; Ma, Jing; Huang, Wen-Yi; Albanes, Demetrius; Canzian, Federico; Chanock, Stephen J.; Crawford, E. David; Diver, W. Ryan; Feigelson, Heather Spencer; Giovanucci, Edward; Haiman, Christopher A.; Henderson, Brian E.; Hunter, David J.; Kaaks, Rudolf; Kolonel, Laurence N.; Kraft, Peter; Le Marchand, Loïc; Riboli, Elio; Siddiq, Afshan; Stampfer, Mier J.; Stram, Daniel O.; Thomas, Gilles; Travis, Ruth C.; Thun, Michael J.; Yeager, Meredith; Berndt, Sonja I.


    The phosphatidylinositol 3-kinase (PI3K) pathway regulates various cellular processes, including cellular proliferation and intracellular trafficking and may impact prostate carcinogenesis. Thus, we explored the association between single nucleotide polymorphisms (SNPs) in PI3K genes and prostate cancer. Pooled data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium were examined for associations between 89 SNPs in PI3K genes (PIK3C2B, PIK3AP1, PIK3C2A, PIK3CD, and PIK3R3) and prostate cancer risk in 8,309 cases and 9,286 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. SNP rs7556371 in PIK3C2B was significantly associated with prostate cancer risk (ORper allele=1.08 (95% CI: 1.03, 1.14), p-trend = 0.0017) after adjustment for multiple testing (Padj=0.024). Simultaneous adjustment of rs7556371 for nearby SNPs strengthened the association (ORper allele=1.21 (95% CI: 1.09, 1.34); p-trend =0.0003). The adjusted association was stronger for men who were diagnosed before 65 years (ORper allele= 1.47 (95% CI: 1.20, 1.79), p-trend = 0.0001) or had a family history (ORper allele= 1.57 (95% CI: 1.11, 2.23), p-trend = 0.0114), and was strongest in those with both characteristics (ORper allele= 2.31 (95% CI: 1.07, 5.07), p-interaction = 0.005). Increased risks were observed among men in the top tertile of circulating insulin like growth factor-1 (IGF-1) levels (ORper allele= 1.46 (95% CI: 1.04, 2.06), p-trend=0.075). No differences were observed with disease aggressiveness (≥8/stage T3/T4/fatal). In conclusion, we observed a significant association between PIK3C2B and prostate cancer risk, especially for familial, early onset disease, which may be attributable to IGF-dependent PI3K signaling. PMID:20197460

  15. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia (Indonesia)


    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  16. Separation and determination of nimesulide related substances for quality control purposes by micellar electrokinetic chromatography.

    Zacharis, Constantinos K; Tzanavaras, Paraskevas D; Notou, Maria; Zotou, Anastasia; Themelis, Demetrius G


    A micellar electrokinetic chromatography (MEKC) method has been developed and validated for the determination of nimesulide related compounds in pharmaceutical formulations. Electrophoretic separation of six European Pharmacopoeia (EP) impurities (A-F) was performed using a fused silica capillary (L(eff.)=50 cm, L(tot.)=57 cm, 50 microm i.d.) with a background electrolyte (BGE) containing 25 mM borate buffer (pH 9.5), 30 mM sodium dodecyl sulphate and phi=3% (v/v) acetonitrile. The influence of several factors (surfactant and buffer concentration, pH, organic modifier, applied voltage, capillary temperature and injection time) was studied. The method was suitably validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. The calibration curves obtained for the six compounds were linear over the range 5-12 microgml(-1) (0.05-0.12%). The relative standard deviations (s(r)) of intra- and inter-day experiments were less than 5.0%. The detection limits ranged between 0.7 and 1.6 microgml(-1) depending on the impurity. The proposed method was applied successfully to the quantification of nimesulide impurities in its pharmaceutical formulation.

  17. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography

    Stege, Patricia W.; Sombra, Lorena L.; Messina, German A.; Martinez, Luis D. [National University of San Luis, CONICET, INQUISAL, Department of Chemistry, San Luis (Argentina); Silva, Maria F. [Universidad Nacional de Cuyo, Departamento de Biomatematica y Fisicoquimica, Facultad de Ciencias Agrarias, Mendoza (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Buenos Aires (Argentina)


    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10{mu}g L{sup -1} for PNP, 0.20 {mu}g L{sup -1} for PAP, and 0.16{mu}g L{sup -1} for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina. (orig.)

  18. Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Gagnon, David A; Shen, Xiaoning; Arratia, Paulo E


    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex, "structured" fluid using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar solution that is known to be susceptible to shear banding and the formation of local anisotropic structures. Results show that the nonlinearities present in this structured fluid break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead at low De, net motion towards the rod at intermediate De, and no propulsion at high De. At low De, we believe propulsion is caused by an imbalance in the first normal stress differences between the two ends of the particle (...

  19. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    Hadjmohammadi, Mohammadreza; Salary, Mina


    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions.

  20. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Ahmet Gürses


    Full Text Available The aim of this study was the preparation of polyethylene oxide (PEO/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB and their characterisation by X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1 increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites.

  1. On the role of a coumarin derivative for sensing applications: Nucleotide identification using a micellar system.

    Bettoschi, Alexandre; Ceglie, Andrea; Lopez, Francesco; Meli, Valeria; Murgia, Sergio; Tamburro, Manuela; Caltagirone, Claudia; Cuomo, Francesca


    The recognition of nucleotides is of crucial importance because they are the basic constituents of nucleic acids. The present study is focused on the selective interaction between a novel amphiphilic fluorophore containing coumarin and imidazole, CI (1-methyl-3-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-imidazol-3-ium bromide), and different nucleotide-monophosphates (NMPs). It was supposed that the solubilization of the low water soluble CI in a micelle system of hexadecyltrimethylammonium chloride (CTAC) would make the coumarin moiety of CI available to the interaction with the water-soluble NMPs. Changes in CTAC critical micelle concentration suggested that CI strongly interacted with the host cationic surfactant, thus forming a positively charged interface enriched with coumarin able to interact with the anionic NMPs. Steady-state fluorescence quenching revealed that CI/CTAC system was capable of distinguish between purine- and pyrimidine-based nucleotides. A modified Stern-Volmer equation permitted the use of a quenching model that accounted for the possible interactions between the micelles and the nucleotides. The data analysis allowed calculating selective parameters that differentiated according to the type of nucleotide either at 25 or 50°C. Our results established the utility of the novel coumarin derivative fluorophore, supported by the simple and suitable micellar systems, as a tool for DNA sensing applications.

  2. Iron(Ⅱ) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

    HU Xing; LIU Hui; ZOU Guo-lin


    Iron(Ⅱ) tetrasulfophthalocyanine (FeTSPc), as a novel mimetic enzyme of peroxidase, was used in the synthesis of a conducting polyaniline (PANI)/sodium dodecylsulfate (SDS) complex in SDS aqueous micellar solutions. The effects of pH, concentrations of aniline, SDS and H_2O_2, and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH (0.5-4.0) is required to produce the conducting PANI, and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline, SDS and H_2O_2 in feed, and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L, 10 mmol/L, 25 mmol/L, and 15 h. FT-IR spectrum, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.


    Noor Rehman; Abbas Khan; Iram Bibi; Mohammad Siddiq


    The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene) (E39B18) with anionic surfactant sodium dodecyl sulphate (SDS) and cationic surfactant hexadecyltrimethylammonium bromide (CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration (CMC) and thereby the free energy of micellization (AGmic),free energy of adsorption (AGads),surface excess concentration (F) and minimum area per molecule (A).Conductivity measurements were used to determine the critical micelle concentration (CMC),critical aggregation concentration (CAC),polymer saturation point (PSP),degree of ionization (α) and counter ion binding (β).Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks (I1/I13) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number (N),number of binding sites (n) and free energy of binding (AGb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.

  4. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater.

    El-Abbassi, Abdelilah; Khayet, Mohamed; Hafidi, Abdellatif


    Olive mill wastewater (OMW) is an important environmental pollution problem, especially in the Mediterranean, which is the main olive oil production region worldwide. Environmental impact of OMW is related to its high organic load and particularly to the phytotoxic and antibacterial action of its phenolic content. In fact, polyphenols are known as powerful antioxidants with interesting nutritional and pharmaceutical properties. In the present work, the efficiency of OMW Micellar Enhanced Ultrafiltration (MEUF) treatment for removal and concentration of polyphenols was investigated, using an anionic surfactant (Sodium Dodecyl Sulfate salt, SDS) and a hydrophobic poly(vinyldene fluoride) (PVDF) membrane. The effects of the process experimental conditions on the permeate flux were investigated, and the secondary membrane resistance created by SDS molecules was evaluated. The initial fluxes of OMW processing by MEUF using SDS were 25.7 and 44.5 l/m2 h under transmembrane pressures of 3.5 and 4.5 bar, respectively. The rejection rate of polyphenols without using any surfactant ranged from 5 to 28%, whereas, it reached 74% when SDS was used under optimum pH (pH 2). The MEUF provides a slightly colored permeate (about 88% less dark), which requires clearly less chemical oxygen demand (COD) for its oxidation (4.33% of the initial COD). These results showed that MEUF process can efficiently be applied to the treatment of OMW and for the concentration and recovery of polyphenols.

  5. The usage of micellar extraction for analysis of fluvastatin in water and wastewater samples.

    Hryniewicka, Marta; Starczewska, Barbara


    This work illustrates the development of new procedures for the isolation and preconcentration of fluvastatin (FLU) from aqueous solutions. Micellar extraction (ME) combined with high performance liquid chromatography (HPLC-UV) has been successfully applied for this purpose. It was found that the analyte created micelle with anionic sodium dodecylsulfate (SDS) and/or with the binary mixture of surfactants nonionic triton X114 (TX114) and cationic tetra-n-butyloammonium bromide (TBAB). The optimal analytical conditions for the proposed extraction procedures (solution pH, concentration of surfactants, centrifugation time and electrolyte type) were ascertained. The calibration curves were recorded. The linearity ranges for FLU, isolated by SDS and the mixture of TX114/TBAB, were 0.21-28.79 μg mL(-1) and 0.21-16.45 μg mL(-1) with limit of detection (LOD) 0.19 μg mL(-1) and 0.14 μg mL(-1), respectively. The recoveries afforded by the proposed methods were high, approximately 97%. These preconcentration procedures were applied for the isolation of the statin from water and wastewater samples taken from the local rivers and wastewater treatment plants.

  6. Micellar Liquid Chromatographic Determination of Carbaryl and 1-Naphthol in Water, Soil, and Vegetables

    Mei-Liang Chin-Chen


    Full Text Available A liquid chromatographic procedure has been developed for the determination of carbaryl, a phenyl-N-methylcarbamate, and its main metabolite 1-naphthol, using a C18 column (250’mm’ × ’4.6’mm with a micellar mobile phase and fluorescence detection at maximum excitation/emission wavelengths of 225/333’nm, respectively. In the optimization step, surfactants sodium dodecyl sulphate (SDS, Brij-35 and N-cetylpyridinium chloride monohydrate, and organic solvents propanol, butanol, and pentanol were considered. The selected mobile phase was 0.15’M SDS-6% (v/v-pentanol-0.01’M NaH2PO4 buffered at pH 3. Validation studies, according to the ICH Tripartite Guideline, included linearity (r>0.999, limit of detection (5 and 18’ng mL-1, for carbaryl and 1-naphthol, resp., and limit of quantification (15 and 50’ng mL-1, for carbaryl and 1-naphthol, resp., with intra- and interday precisions below 1%, and robustness parameters below 3%. The results show that the procedure was adequate for the routine analysis of these two compounds in water, soil, and vegetables samples.

  7. Influence of ultrasound on chemically induced gelation of micellar casein systems.

    Chandrapala, Jayani; Zisu, Bogdan; Kentish, Sandra; Ashokkumar, Muthupandian


    Gelation is a significant operation in dairy processing. Protein gelation can be affected by several factors such as temperature, pH, or enzyme addition. Recently, the use of ultrasonication has been shown to have a significant impact on the formation of whey protein gels. In this work, the effect of ultrasonication on the gelation of casein systems was investigated. Gels were formed by the addition of 7.6 mm Tetra Sodium Pyro Phosphate (TSPP) to 5 wt% micellar casein (MC) solutions. Sonication at 20 KHz and 31 W for up to 30 min changed the surface hydrophobicity of the proteins, whereas surface charge was unaltered. Sonication before the addition of TSPP formed a firm gel with a fine protein network and low syneresis. Conversely, sonication after TSPP addition led to an inconsistent weak-gel-like structure with high syneresis. Gel strength in both cases increased significantly after short sonication times, while the viscoelastic properties were less affected. Overall, the results showed that ultrasonication can have a significant effect on the final gel properties of casein systems.

  8. Modeling transport effects of perfluorinated and hydrocarbon surfactants in groundwater by using micellar liquid chromatography

    Simmons, Rashad N. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States); McGuffin, Victoria L. [Department of Chemistry and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1322 (United States)], E-mail:


    The effects of hydrocarbon and perfluorinated surfactants, above their critical micelle concentration (CMC), on the transport of neutral environmental pollutants are compared. Reversed-phase micellar liquid chromatography is used to model the groundwater system. The octadecylsilica stationary phase serves to simulate soil particles containing organic matter, whereas the aqueous surfactant mobile phases serve to simulate groundwater containing a surfactant at varying concentrations. Sodium dodecyl sulfate and lithium perfluorooctane sulfonate are used as representatives of the hydrocarbon and perfluorinated surfactants, respectively. Benzene, mono- and perhalogenated benzenes, and polycyclic aromatic hydrocarbons are used as models for environmental pollutants. Transport effects were elucidated from the retention factor, k, and the equilibrium constant per micelle, K{sub eq}, of the model pollutants in the individual surfactants. Based on k values, the transport of the model pollutants increased in both surfactant solutions in comparison to pure water. As the concentration of the surfactants increased, the transport of the pollutants increased as well. Notably, the K{sub eq} values of the pollutants in the perfluorinated surfactant were at least an order of magnitude less than those in the hydrocarbon surfactant. Overall, these results suggest that the presence of a perfluorinated surfactant, above its CMC, increases the transport of pollutants in a groundwater system. However, the perfluorinated surfactant exhibits a lesser transport effect than the hydrocarbon surfactant.

  9. Micellar electrokinetic chromatography method development for simultaneous determination of thiabendazole, carbendazim, and fuberidazole.

    Soliman, Laiel C; Donkor, Kingsley K


    Thiabendazole (TBz), carbendazim (CBz), and fuberidazole (FBz) are systemic benzimidazole-type fungicides used for pre- and post-harvest treatment to control various types of fungal diseases on a variety of crops. Significant levels of these fungicides could alter the composition or flavour of crops, and being possible carcinogens, they could also pose risks for humans and the environment. A mode of capillary electrophoresis called micellar electrokinetic chromatography (MEKC) was investigated for the determination of these three benzimidazole fungicides. The study involved two kinds of surfactants in which several experimental conditions were optimized, i.e., buffer concentration, pH, micelle concentration, and percent organic modifier (methanol). Using the optimum experimental conditions, the fungicides were successfully separated by MEKC. The limits of detection and quantification were in the range of 0.6-0.7 and 2.1-2.5 mg L(-1), respectively, and the calibration curves were linear over the range of 5-60 mg L(-1) for the three fungicides. The potential of the proposed MEKC method was demonstrated by analyzing water samples which were fortified with the fungicides. The proposed method enabled simultaneous determination of the three benzimidazole fungicides and method validation with spiked water samples yielded satisfactory quantitative recoveries for all the three fungicides.

  10. Determination of seven preservatives in cosmetic products by micellar electrokinetic chromatography.

    Huang, Jun-Qiang; Hu, Cho-Chun; Chiu, Tai-Chia


    A micellar electrokinetic chromatography method using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, coupled with UV-Vis detection, was developed for the simultaneous determination of seven preservatives, including methyl-, ethyl-, propyl- and butyl-paraben and phenol, phenoxyethanol and resorcinol. The method involved optimizing the pH of the phosphate buffer and concentrations of CTAB, ethanol and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The preservatives were well separated using optimum conditions and separated within 10 min at a separation voltage of -12.5 kV with the 1.0 mM phosphate buffer (pH 7.0) containing 90 mM CTAB, 25 mM HP-β-CD and 10% (v/v) ethanol. Satisfactory recoveries (84.1-103.0%), migration time (RSD < 3.1%) and peak area (RSD < 4.5%) repeatabilities were achieved. Detection limits of the preservatives were between 0.31 and 1.52 μg mL(-1) (S/N = 3, n = 5). The optimized method was successfully applied to the simultaneous determination of these preservatives in 10 commercial cosmetic products.

  11. Use of micellar liquid chromatography for rapid monitoring of fungicides post harvest applied to citrus wastewater.

    Peris-Vicente, Juan; Marzo-Mas, Ana; Roca-Genovés, Pasqual; Carda-Broch, Samuel; Esteve-Romero, Josep


    A method based on micellar liquid chromatography has been developed to simultaneously monitor four pesticides largely post-harvest applied to citrus: thiabendazole, pyrimethanil, o-phenylphenol and imazalil. Water samples were filtered and directly injected without other treatment, thus avoiding extraction steps. The composition of the mobile phase was optimized using a chemometrical approach to achieve and excellent resolution to 0.07 mol/L SDS/5%, V/V 1-pentanol buffered at pH3. Mobile phase run through a C18 column at 1 mL/min at room temperature. The detection was performing by UV-Visible absorbance using a wavelength program: 0-10 min, 305 nm (for thiabendazole); 10-12; 265 nm (for pyrimethanil) and 12-18, 220 nm (o-phenylphenol and imazalil). The developed method was validated following the guidelines of the US Environmental Protection Agency in terms of: quantitation range, (0.5-4 to 15 μg/mL), linearity (r(2)>0.9995), sensitivity (LOD, 0.18-1.4 μg/mL), precision (<9.2%), trueness (93.9%-103.7%), and ruggedness (<9.9%). It was found that the fungicides remain up to eight days in surface water at outdoor conditions. The method was used to screen the presence of the analytes in several waste water samples, and was proved to be useful in routine analysis.

  12. Sequential micellar electrokinetic chromatography analysis of racemization reaction of alanine enantiomers.

    Fu, Rao; Liu, Lina; Guo, Yingna; Guo, Liping; Yang, Li


    A novel method for online monitoring racemization reaction of alanine (Ala) enantiomers was developed, by combining sequential sample injection and micellar electrokinetic chromatography (MEKC) technique. Various conditions were investigated to optimize the sequential injection, Ala derivatization and MEKC chiral separation of d-/l-Ala. High reproducibility of the sequential MEKC analysis was demonstrated by analyzing the standard Ala samples, with relative standard deviation values (n=20) of 1.35%, 1.98%, and 1.09% for peak height, peak area and migration time, respectively. Ala racemization was automatically monitored every 40s from the beginning to the end of the reaction, by simultaneous detection of the consumption of the substrate enantiomer and the formation of the product enantiomer. The Michaelis constants of the racemization reaction were obtained by the sequential MEKC method, and were in good agreement with those obtained by traditional off-line enzyme assay. Our study indicated that the present sequential MEKC method can perform fast, efficient, accurate and reproducible analysis of racemization reaction of amino acids, which is of great importance for the determination of the activity of racemase and thus understanding its metabolic functions.

  13. Comparison of monolithic capillary electrochromatography and micellar electrokinetic chromatography for the separation of polycyclic aromatic hydrocarbons.

    Salwiński, Aleksander; Delépée, Raphaël


    Atmospheric pollution of anthropic origin is recognized as a major risk factor for health, in particular for respiratory and cardio-vascular systems. Among these pollutants, polycyclic aromatic hydrocarbons (PAHs) are placed on the list of US Environmental Protection Agency (EPA) as 'priority' pollutants and four of them are assigned as potential carcinogens by The International Agency for Research on Cancer (IARC). In the present work two capillary techniques-micellar electrokinetic chromatography (MEKC) and monolithic capillary electrochromatography (CEC)-were compared for the separation of eleven PAHs. Both techniques compared in the present work are fully compatible with every standard apparatus of capillary electrophoresis. For MEKC, enhancement of selectivity and decrease of the separation window of eleven PAHs were obtained with methanol:borate 25 mM (20/80, v/v) running buffer containing 10 mM of hydroxypropylated γ-cyclodextrins with low SDS content (25 mM). In case of CEC, two acrylate-based monolithic stationary phases (MSPs) were evaluated for their application in the separation of eleven PAHs. The best MSP based on butyl acrylate was compared with MEKC in terms of sample capacity, PAHs elution order, LOQ, efficiency and effect of pH. Influence of the hydrophobicity of mobile phase on the PAHs elution order was also studied.

  14. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo


    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument.

  15. A Novel Micellar Electrokinetic Chromatographic Method for Separation of Metal-DDTC Complexes

    Arfana Mallah


    Full Text Available Micellar electrokinetic chromatography (MEKC was examined for the separation and determination of Mo(VI, Cr(VI, Ni(II, Pd(II, and Co(III as diethyl dithiocarbamate (DDTC chelates. The separation was achieved from fused silica capillary (52 cm × 75 m id with effective length 40 cm, background electrolyte (BGE borate buffer pH 9.1 (25 mM, CTAB 30% (100 mM, and 1% butanol in methanol (70 : 30 : 5 v/v/v with applied voltage of −10 kV using reverse polarity. The photodiode array detection was achieved at 225 nm. The linear calibration for each of the element was obtained within 0.16–10 g/mL with a limit of detection (LOD 0.005–0.0167 g/mL. The separation and determination was repeatable with relative standard deviation (RSD within 2.4–3.3% (=4 in terms of migration time and peak height/peak area. The method was applied for the determination of Mo(VI from potatoes and almond, Ni(II from hydrogenated vegetable oil, and Co(III from pharmaceutical preparations with RSD within 3.9%. The results obtained were checked by standard addition and rechecked by atomic absorption spectrometry.

  16. Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues.

    Kubalczyk, Paweł; Borowczyk, Kamila; Chwatko, Grażyna; Głowacki, Rafał


    A new method for the determination of hydrogen sulfide in hen tissues has been developed and validated. For estimation of hydrogen sulfide content, a sample (0.1 g) of hen tissue was treated according to the procedure consisted of some essential steps: simultaneous homogenization of a tissue and derivatization of hydrogen sulfide to its S-quinolinium derivative with 2-chloro-1-methylquinolinium tetrafluoroborate, separation of so-formed derivative by micellar electrokinetic chromatography with sweeping, and detection and quantitation with the use of UV detector set to measure analytical signals at 375 nm. Effective electrophoretic separation was achieved using fused silica capillary (effective length 41.5 cm, 75 μm id) and 0.05 mol/L, pH 8 phosphate buffer with the addition of 0.04 mol/L SDS and 26% ACN. The lower limit of quantification was 0.12 μmol hydrogen sulfide in 1 g of tissue. The calibration curve prepared in tissue homogenate for hydrogen sulfide showed linearity in the range from 0.15 to 2.0 μmol/g, with the coefficient of correlation 0.9978. The relative standard deviation of the points of the calibration curve varied from 8.3 to 3.2% RSD.

  17. Stereospecific micellar electrokinetic chromatography assay of methionine sulfoxide reductase activity employing a multiple layer coated capillary.

    Zhu, Qingfu; El-Mergawy, Rabab G; Heinemann, Stefan H; Schönherr, Roland; Jáč, Pavel; Scriba, Gerhard K E


    A micellar electrokinetic chromatography method for the analysis of the l-methionine sulfoxide diastereomers employing a successive multiple ionic-polymer layer coated fused-silica capillary was developed and validated in order to investigate the stereospecificity of methionine sulfoxide reductases. The capillary coating consisted of a first layer of hexadimethrine and a second layer of dextran sulfate providing a stable strong cathodic EOF and consequently highly repeatable analyte migration times. The methionine sulfoxide diastereomers, methionine as product as well as β-alanine as internal standard were derivatized by dabsyl chloride and separated using a 35 mM sodium phosphate buffer, pH 8.0, containing 25 mM SDS as BGE and a separation voltage of 25 kV. The method was validated in the range of 0.15-2.0 mM with respect to linearity and precision. The LODs of the analytes ranged between 0.04 and 0.10 mM. The assay was subsequently applied to determine the stereospecificity of methionine sulfoxide reductases as well as the enzyme kinetics of human methionine sulfoxide reductase A. Monitoring the decrease of the l-methionine-(S)-sulfoxide Km = 411.8 ± 33.8 μM and Vmax = 307.5 ± 10.8 μM/min were determined.

  18. Simultaneous determination of ten preservatives in ten kinds of foods by micellar electrokinetic chromatography.

    Ding, Xiao-Jing; Xie, Na; Zhao, Shan; Wu, Yu-Chen; Li, Jiang; Wang, Zhi


    An improved micellar electrokinetic capillary chromatography method (MEKC) for the simultaneous determination of ten preservatives in ten different kinds of food samples was reported. An uncoated fused-silica capillary with 50 μm i.d. and 70 cm total length was used. Under the optimized conditions, the linear response was observed in the range of 1.2-200mg/L for the analytes. The limits of detection (LOD, S/N=3) and limits of quantitation (LOQ, S/N=10) ranging from 0.4 to 0.5mg/L and 1.2 to 1.5mg/L, respectively were obtained. The method was used for the determination of sorbic and benzoic acids in two FAPAS® (Food Analysis Performance Assessment Scheme) proficiency test samples (jam and chocolate cake). The results showed that the current method with simple sample pretreatment and small reagent consumption could meet the needs for routine analysis of the ten preservatives in ten types of food products.

  19. Micellar electrokinetic chromatography: a review of methodological and instrumental innovations focusing on practical aspects.

    Silva, Manuel


    This review article addresses recent methodological and instrumental innovations in MEKC with emphasis on practical aspects. Like its predecessors, this review is intended to provide an updated overview covering work on the most salient methodological contributions to enhancing sensitivity and resolution in MEKC-based determinations published over the past two years. The most widespread approaches to enhancing sensitivity, which include improving "classical" online sample concentration techniques, combinations of on- and off-line sample concentration protocols and recent developments are discussed, and so are modifications of existing MEKC systems with various micellar phases, the use of BGE additives (organic modifiers, chiral selectors, gold nanoparticles) and coated capillaries, and the implementation of 2D separations and chemometric methods to enhance resolution. Instrumental approaches such as MS and LIF are also discussed, and proposals for overcoming the problems typically encountered in directly coupling MEKC with MS, and the recent inception of quantum dots with a great potential for LIF detection in MEKC, are also dealt with. Finally, foreseeable developments on potential future directions are also expressed.

  20. LPS-protein aggregation influences protein partitioning in aqueous two-phase micellar systems.

    Lopes, André Moreni; Santos-Ebinuma, Valéria de Carvalho; Novaes, Leticia Celia de Lencastre; Molino, João Vitor Dutra; Barbosa, Leandro Ramos Souza; Pessoa, Adalberto; Rangel-Yagui, Carlota de Oliveira


    Lipopolysaccharide endotoxins (LPS) are the most common pyrogenic substances in recombinant peptides and proteins purified from Gram-negative bacteria, such as Escherichia coli. In this respect, aqueous two-phase micellar systems (ATPMS) have already proven to be a good strategy to purify recombinant proteins of pharmaceutical interest and remove high LPS concentrations. In this paper, we review our recent experimental work in protein partitioning in Triton X-114 ATPMS altogether with some new results and show that LPS-protein aggregation can influence both protein and LPS partitioning. Green fluorescent protein (GFPuv) was employed as a model protein. The ATPMS technology proved to be effective for high loads of LPS removal into the micelle-rich phase (%REM(LPS) > 98 %) while GFPuv partitioned preferentially to the micelle-poor phase (K GFP(uv) system. Nonetheless, ATPMS can still be considered as an efficient strategy for high loads of LPS removal, but being aware that the excluded-volume partitioning theory available might overestimate partition coefficient values due to the presence of protein-LPS aggregation.

  1. Modulating Pluronics micellar rupture with cyclodextrins and drugs: effect of pH and temperature

    Valero, M.; Dreiss, C. A.


    Micelles of the triblock copolymer Pluronic F127 can encapsulate drugs with various chemical structures and their architecture has been studied by small-angle neutron scattering (SANS). Interaction with a derivative of β-cyclodextrin, namely, heptakis(2,6-di-O- methyl)-β-cyclodextrin (DIMEB), induces a complete break-up of the micelles, providing a mechanism for drug release. In the presence of drugs partitioned within the micelles, competitive interactions between polymer, drug and cyclodextrin lead to a modulation of the micellar rupture, depending on the nature of the drug and the exact composition of the ternary system. These interactions can be further adjusted by temperature and pH. While the most widely accepted mechanism for the interaction between Pluronics and cyclodextrins is through polypseudorotaxane (PR) formation, involving the threading of β-CD on the polymer backbone, time-resolved SANS experiments show that de-micellisation takes place in less than 100 ms, thus unambiguously ruling out an inclusion complex between the cyclodextrin and the polymer chains.

  2. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity.

    Zhang, Yingyue; Li, Qi; Welsh, William J; Moghe, Prabhas V; Uhrich, Kathryn E


    Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies.

  3. Development and validation of micellar liquid chromatographic methods for the determination of antibiotics in different matrixes.

    Rambla-Alegre, Maria; Esteve-Romero, Josep; Carda-Broch, Samuel


    Antibiotics are the most important bioactive and chemotherapeutic compounds to be produced by microbiological synthesis, and they have proved their worth in a variety of fields, such as medicinal chemistry, agriculture, and the food industry. Interest in antibiotics has grown in parallel with an increasingly high degree of productivity in the field of analytical applications. Therefore, it is necessary to develop chromatographic procedures capable of determining various drugs simultaneously in the shortest possible time. Micellar liquid chromatography (MLC) is an RP-HPLC technique that offers advantages over conventional HPLC as far as sample preparation, selectivity, and versatility are concerned. Its main advantage is that samples can be injected directly into the chromatographic system with no previous preparation step. This paper mainly focuses on the results of the authors' own recent research and reports the chromatographic conditions for determination of various antibiotics (penicillins, quinolones, and sulfonamides) in different matrixes (pharmaceuticals, biological fluids, and food). The work of other authors on MLC-based antibiotic determination has been included.

  4. LPS removal from an E. coli fermentation broth using aqueous two-phase micellar system.

    Lopes, André M; Magalhães, Pérola O; Mazzola, Priscila G; Rangel-Yagui, Carlota O; de Carvalho, João C M; Penna, Thereza C V; Pessoa, Adalberto


    In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  5. Analysis of carbofuran, carbosulfan, isoprocarb, 3-hydroxycarbofuran, and 3-ketocarbofuran by micellar electrokinetic chromatography.

    Hsu, Chien-Hua; Hu, Cho-Chun; Chiu, Tai-Chia


    We developed an analytical method for the detection and quantitation of five pesticides and some of their metabolites - 3-hydroxycarbofuran, 3-ketocarbofuran, carbofuran, carbosulfan, and isoprocarb - using micellar electrokinetic chromatography coupled with a UV-Vis detector. The optimum separation conditions were 20 mM phosphate buffer (pH 8.0) containing 15 mM sodium dodecyl sulfate. The detection wavelength was set at 200 nm and the applied voltage was 12.5 kV. Under these conditions, baseline separation of five pesticides was achieved in 15 min, and the detection limits (S/N = 3) of 3-hydroxycarbofuran, 3-ketocarbofuran, carbofuran, carbosulfan, and isoprocarb were 0.3, 0.3, 0.3, 4.0, and 0.3 μM, respectively. The linear ranges for 3-hydroxycarbofuran, 3-ketocarbofuran, carbofuran, and isoprocarb were between 1.0 and 50.0 μM and that for carbosulfan was between 10.0 and 100.0 μM, with R(2) larger than 0.995. When applied to the analysis of a carbofuran-spiked rice sample, this approach yielded results with excellent repeatability (3.3%, n = 5), reproducibility (4.5%, n = 5), separation efficiency (>2.1 × 10(4) theoretical plates), and recovery (95.5 ± 1.4%, n = 5).

  6. Analysis of reducing carbohydrates by reductive tryptamine derivatization prior to micellar electrokinetic capillary chromatography.

    Andersen, Keld E; Bjergegaard, Charlotte; Sørensen, Hilmer


    A micellar electrokinetic capillary chromatography method for determination of low molecular weight carbohydrates (dp 1-2) with an unbound carbonyl group as in aldoses or other reducing carbohydrates has been developed. Reductive amination of aldoses on the carbonyl group using tryptamine introduced a chromophor system to the carbohydrates enabling their sensitive UV detection at 220 nm and identification based on the indole group using diode array detection. Twelve carbohydrates including pentoses (d-ribose, l-arabinose, and d-xylose), hexoses (d-glucose, d-mannose, and d-galactose), deoxy sugars (l-rhamnose and l-fucose), uronic acids (d-glucuronic acid and d-galacturonic acid), and disaccharides (cellobiose and melibiose) are included in the study, using d-thyminose (2-deoxy-d-ribose) as the internal standard. Detection of all 12 carbohydrates is performed within 30 min. Linearity with correlation coefficients from 0.9864 to 0.9992 was found in the concentration range of 25-2500 micromol/L for all carbohydrates; the relative standard deviation on the migration times was between 0.27 and 0.80 min, and limits of quantification and limits of determination were in the picomole range.

  7. Quantitative analysis of synthetic dyes in lipstick by micellar electrokinetic capillary chromatography.

    Desiderio, C; Marra, C; Fanali, S


    The separation of synthetic dyes, used as color additives in cosmetics, by micellar electrokinetic capillary chromatography (MEKC) is described in this study. The separation of seven dyes, namely eosine, erythrosine, cyanosine, rhodamine B, orange II, chromotrope FB and tartrazine has been achieved in about 3 min in an untreated fused silica capillary containing as background electrolyte a 25 mM tetraborate/phosphate buffer, pH 8.0, and 30 mM sodium dodecyl sulfate. The electrophoretic method exhibits precision and relatively high sensitivity. A detection limit (LOD, signal/noise = 3) in the range of 5-7.5 X 10(-7) M of standard compounds was recorded. Intra-day repeatability of all the studied dye determinations (8 runs) gave the following results (limit values), % standard deviation: 0.24-1.54% for migration time, 0.99-1.24% for corrected peak areas, 0.99-1.24% for corrected peak area ratio (analyte/internal standard) and 1.56-2.74% for peak areas. The optimized method was successfully applied to the analysis of a lipstick sample where eosine and cyanosine were present.

  8. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands.

    Liu, Chuan-Kun; Li, Chi-Wang; Lin, Ching-Yu


    The effects of the type and concentration of ligands on the removal of Cu by micellar-enhanced ultrafiltration (MEUF) with the help of either anionic or cationic surfactants were investigated. The removal efficiency of copper by anionic surfactant-(SDS-) MEUF depends on the ligand-to-Cu ratio and the ligand-to-Cu complexation constant. At fixed ligand-to-Cu ratio, the Cu removal efficiency decreases in the order of citric acid>NTA>EDTA, which is the reverse order of Cu-ligand complexation constants for these ligands. Increasing SDS-ligand ratios from 12 to 60 at fixed ligand concentration did not improve copper removal efficiency. The cationic surfactant, CPC, enhances Cu removal efficiency in systems with condition of ligand-copper ratios higher than 1.0, where Cu removal is not very efficient using SDS-MEUF process. The Cu removal efficiency with CPC-MEUF depends on both the ligand-to-Cu ratio and the type of ligands.

  9. Estimation of tea catechin levels using micellar electrokinetic chromatography: a quantitative approach.

    Liu, Chao-Ming; Chen, Chung-Yu; Lin, Yang-Wei


    A simple, inexpensive micellar electrokinetic chromatography (MEKC) method with UV detection was used to determine seven catechins and one xanthine (caffeine) in tea. All the compounds were successfully separated (15kV) within a 15-min migration period with a high number of theoretical plates (>8.0×10(4)) in a running buffer (pH 7) containing 10mmoll(-1) sodium tetraborate, 4mmoll(-1) sodium phosphate, and 25mmoll(-1) SDS. The regression lines of all standard catechins were linear within the range of 0.03-4μgml(-1). Green tea infused at 95°C for 10min showed higher levels of catechins (especially epigallocatechin galate, epicatechin gallate, and epicatechin) than tea infused at 80°C. In addition, major differences were observed in the levels of catechins in the first and second infusions (both brewed at 95°C for 10min). Finally, green tea leaves were infused separately with tap water, deionised water, spring water, reverse osmosis water, and distilled water at 95°C, and the catechin content of the infusions was investigated by the proposed method. In the infusion brewed with tap water, catechins appeared to be epimerisation from the epistructure to the nonepistructure. This epimerisation may take place more readily in tap water than in distilled water owing to the complexity of the ions present in tap water.

  10. Extraction of catechins and caffeine from different tealeaves and comparison with micellar electrokinetic chromatography

    SONG Guanqun; LIN Jinming; Qu Feng; C.W.Huie


    This work describes the simultaneous deter- mination of catechins and caffeine in green, black tealeaves and canned tea-drink using micellar electrokinetic chromatography. The catechins analyzed include (+)-catechin, (-)- epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. Using UV absorption method at 280 nm, the limits of detections of catechins and caffeine are 10-6 mol/L, which is suitable for the real sample determination. Using this analytical method, the extraction of these compounds from the tealeaves with hot water is compared under different temperatures. The effects of temperature on the amount of catechins and caffeine extracted are evident, showing that (-)-epigallocatechin gallate is the most easiest to be extracted at 100℃. The stability of catechins and caffeine in stocking solution of tea-drink at 4℃ is also compared on five consecutive days. The contents of catechins and caffeine in green and black teas are discussed and the difference of the content between different tealeaves can provide a reference for the assessment of tea quality.

  11. Kinetics and mechanism of the cutinase-catalyzed transesterification of oils in AOT reversed micellar system.

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S


    The kinetics of the enzymatic transesterification between a mixture of triglycerides (oils) and methanol for biodiesel production in a bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane reversed micellar system, using recombinant cutinase from Fusarium solani pisi as a catalyst, was investigated. In order to describe the results that were obtained, a mechanistic scheme was proposed, based on the literature and on the experimental data. This scheme includes the following reaction steps: the formation of the active enzyme-substrate complex, the addition of an alcohol molecule to the complex followed by the separation of a molecule of the fatty acid alkyl ester and a glycerol moiety, and release of the active enzyme. Enzyme inhibition and deactivation effects due to methanol and glycerol were incorporated in the model. This kinetic model was fitted to the concentration profiles of the fatty acid methyl esters (the components of biodiesel), tri-, di- and monoglycerides, obtained for a 24 h transesterification reaction performed in a stirred batch reactor under different reaction conditions of enzyme and initial substrates concentration.

  12. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann


    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  13. Holistic analysis of seven active ingredients by micellar electrokinetic chromatography from three medicinal herbs composing Shuanghuanglian.

    Zhou, Xian-Jing; Chen, Juan; Li, Ying-Dong; Jin, Ling; Shi, Yan-Ping


    A simple and reliable method has been developed with a new strategy named holistic analysis of multiple constituents to evaluate the quality of the well-known traditional Chinese medicine (TCM) Shuanghuanglian (SHL) oral liquid and soft capsule. Seven main constituents of the medicine, i.e., baicalein, baicalin, chlorogenic acid, wogonin, scutellarin, forsythin and hyperin, were selected as the evaluation markers and analyzed by micellar electrokinetic chromatography. The effects of buffer pH, concentration of electrolyte, organic modifier and applied voltage on migration behavior were studied systematically. The optimum conditions for the separation were achieved in a 12.5 mM borate-10 mM sodium dihydrogen phosphate-10 mM sodium dodecyl sulfate buffer at pH 9.1 containing 10% (v/v) acetonitrile under 15 kV. The analytes were identified by their relative time with regard to para-hydroxybenzoic acid migration time used as an internal standard. The method was validated in terms of linearity, limit of detection and quantification, precision, accuracy and recoveries. The correlation coefficient ranged from 0.9962 to 0.9992. The limits of detection (S/N = 3) were from 0.15 to 3.95 μg mL(-1). Recoveries of seven analytes in the SHL samples ranged from 89.00 to 103.04%. The proposed method was successfully applied for the quality control of complicated TCM SHL.

  14. Micellar-polymer for enhanced oil recovery for Upper Assam Basin

    B.M. Das


    Full Text Available One of the major enhanced oil recovery (EOR processes is chemical flooding especially for the depleted reservoirs. Chemical flooding involves injection of various chemicals like surfactant, alkali, polymer etc. to the aqueous media. Bhogpara and Nahorkatiya are two depleted reservoirs of upper Assam basin where chemical flooding can be done to recover the trapped oil that cannot be recovered by conventional flooding process. Micellar-polymer (MP flooding involves injection of micelle and polymer to the aqueous phase to reduce interfacial tension and polymer is added to control the mobility of the solution, which helps in increasing both displacement and volumetric sweep efficiency and thereby leads to enhanced oil recovery. This work represents the use of black liquor as micelle or surfactant that is a waste product of Nowgong Paper Mills, Jagiroad, Assam, which is more efficient than the synthetic surfactants. The present study examines the effect of MP flooding through the porous media of two depleted oil fields of upper Assam basin i.e. Bhogpara and Nahorkatiya for MP EOR. This work also compares the present MP flood with the earlier work done on surfactant (S flooding. It was experimentally determined that the MP flood is more efficient EOR process for Bhogpara and Nahorkatiya reservoirs. The study will pertain to the comprehensive interfacial tension (IFT study and the displacement mechanism in conventional core samples.

  15. Prostaglandin H synthase kinetics in the two-phase aqueous-micellar system.

    Ponomareva, Olga A; Trushkin, Nikita A; Filimonov, Ivan S; Krivoshey, Alexandr V; Barkhatov, Vladimir I; Mitrofanov, Sergey I; Vrzheshch, Petr V


    Reaction mixture for PGHS (prostaglandin-H-synthase) is a two-phase system including micellar hydrophobic phase and hydrophilic aqueous phase. Reagents added to the mixture are distributed between phases, thus concentrations of reagents dissolved in phases can differ significantly from their overall contents. Using dynamic light scattering we found that the hydrophobic phase produced by tween-20 consists of micelles, which radius (4-5nm) does not depend on either tween-20 overall content (0.1%-1% v/v) or arachidonic acid (AA) addition (10-1000μM) or PGHS addition (1μM). Tween-20 overall content changing from 0.1% to 2% v/v dramatically affected COX kinetic, but accounting AA distribution between phases allowed us to estimate "true" parameters, independent of the tween-20 overall content and the concentration of another substrate: KM(Ox) equals 9.8μM O2 in the aqueous phase or 0.0074bar in the gaseous phase, KM(AA) equals 5400μM AA in the phase of tween-20 micelles and 5400/PμM AA in the aqueous phase (P is the distribution ratio for the AA between the aqueous phase and the hydrophobic phase (P≫1000)). This approach allowed to evaluate PS, the distribution ratio for the AA between the hydrophobic phase and the PGHS active center (PS ~310). This coefficient indicates the AA selectivity toward the cyclooxygenase active center.

  16. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    Marín-Santibáñez, Benjamín M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07738, Col. S. P. Zacatenco, Del. Gustavo A. Madero, Mexico D.F. (Mexico); Pérez-González, José, E-mail: [Laboratorio de Reología y Física de la Matería Blanda, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P.A.L.M. C.P. 07730, Col. S. P. Zacatenco, Del. Gustavo A. Madero, Mexico D.F. (Mexico); Rodríguez-González, Francisco [Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, C.P. 62731, Col. San Isidro, Yautepec, Morelos (Mexico)


    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.

  17. Simultaneous determination of eleven preservatives in cosmetics by micellar electrokinetic chromatography.

    Wang, Ping; Ding, Xiaojing; Li, Yun; Yang, Yuanyuan


    A new method for the simultaneous quantitation of 11 preservatives-imidazolidinyl urea, benzyl alcohol, dehydroacetic acid, sorbic acid, phenoxyethanol, benzoic acid, salicylic acid, and four parabens (methyl, ethyl, propyl, and butyl)-in cosmetics by micellar electrokinetic capillary chromatography was established and validated. The separation was performed using an uncoated fused-silica capillary (50 pm id x 60.2 cm, effective length 50 cm) with a running buffer consisting of 15 mmol/L sodium tetraborate, 60 mmol/L boric acid, and 100 mmol/L sodium dodecyl sulfate. A 1:10 dilution of the running buffer was used as the sample buffer to extract the cosmetic samples. The key factors, such as the concentration and pH of the running and sample buffers, which influence quantitative analysis of the above 11 preservatives in cosmetic samples, were investigated in detail. The linear ranges of the calibration curves for imidazolidinyl urea and the other 10 preservatives were 50-1000 and 10-200 mg/L, respectively. The correlation coefficients of the standard curves were all higher than 0.999. The recoveries at the concentrations studied ranged from 93.0 to 102.7%. RSDs were all less than 5%. The new method with simple sample pretreatment met the needs for routine analysis of the 11 preservatives in cosmetics.

  18. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome.

    Spyridakis, Spyros; Leondaritis, George; Nakos, George; Lekka, Marilena E; Galanopoulou, Dia


    Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS.

  19. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi


    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  20. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    Reidick, Christina [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany); El Magraoui, Fouzi; Meyer, Helmut E. [Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139 (Germany); Stenmark, Harald [Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310 (Norway); Platta, Harald W., E-mail: [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany)


    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  1. Coping with power dispersion?


    The last decades have witnessed a significant shift in policy competences away from central governments in Europe. The reallocation of competences spans over three dimensions: upwards; sideways; and downwards. This collection takes the dispersion of powers as a starting point and seeks to assess...... how the actors involved cope with the new configurations. In this introduction, we discuss the conceptualization of power dispersion and highlight the ways in which the contributions add to this research agenda. We then outline some general conclusions and end by indicating future avenues of research...

  2. Application of Surfactant Micellar Solutions as Extractants and Mobile Phases for TLC-Determination of Purine Bases and Doping Agents in Biological Liquids

    Daria Victorovna Yedamenko


    Full Text Available Separation of caffeine and its metabolites (theophylline and theobromine and doping agents (spironolactone, propranolol, and ephedrine and determination of caffeine in serum sample and propranolol and ephedrine in urine were studied on normal-phase thin layers (“Sorbfil-UV-254”. Aqueous organic solvents and aqueous micellar surfactant solutions were compared as the mobile phases for separation. The acceptable separation of purine bases and doping agents was achieved by micellar Thin Layer Chromatography and normal-phase Thin Layer Chromatography. Anionic surfactant solution with added 1-propanol was the best eluent as for caffeine, theophylline, and theobromine separation, as for doping agents. The best characteristics of caffeine extraction from serum, and propranolol and ephedrine from urine were achieved when micellar eluent based on non-ionic Tween-80 surfactant was used. DOI:

  3. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Balajee, A.S.; Meador, J.A.; Su, Y.


    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  4. Factors that influence the membrane area of a multistage microfiltration process required to produce a micellar casein concentrate.

    Hurt, Emily E; Barbano, David M


    The objective of the work reported in this paper was to develop a theoretical model to determine the effect of type of microfiltration (MF)-process feed, number of stages, and flux on the minimization of the MF membrane area required to produce a 95% serum protein-reduced micellar casein concentrate. The MF feed, number of stages, and flux were all factors that had an effect on the MF membrane area and should be taken into consideration when designing a MF system to produce a 95% serum protein-reduced micellar casein concentrate. Feeding the MF process with a diluted ultrafiltration retentate (DUR) diluted to the protein concentration of skim milk, as opposed to skim milk, reduced the required membrane area by 36% for a 5-stage process. When DUR was the MF feed, feed protein concentration, which depended on the number of MF stages, was optimized. The DUR protein concentration that minimized the required MF membrane area was 2.47, 3.85, 4.77, and 5.41% for a 2-, 3-, 4-, or 5-stage MF process, respectively. For a 5-stage process, increasing the protein concentration of the feed from 3.2 to 5.4% decreased the required MF membrane area by 10%. It was also found that as the number of stages increased from 2 to 5, the required MF membrane area decreased by 39%, when the MF feed was DUR at the optimal feed protein concentration. Finally, increasing the flux from 50 to 60 kg/m(2) per hour decreased the required MF membrane area by 17% when the MF feed was DUR at the optimal MF feed protein concentration. Overall, using DUR as a feed for MF could reduce the amount of MF membrane area required to make a 95% serum protein-reduced micellar casein concentrate.

  5. Stability of an ophthalmic micellar formulation of cyclosporine A in unopened multidose eyedroppers and in simulated use conditions.

    Chennell, P; Delaborde, L; Wasiak, M; Jouannet, M; Feschet-Chassot, E; Chiambaretta, F; Sautou, V


    Cyclosporine A eye drops are used at concentrations ranging from 0.5 to 20mg/mL to treat a variety of ophthalmic diseases. Cyclosporine A formulations at high concentrations are difficult to manufacture because of cyclosporine's lipophilicity, and generally require an oil based vector. In this study, we investigated the physicochemical and microbiological stability of two high concentrations (10mg/mL and 20mg/mL) of an ophthalmic cyclosporine A micellar solution in a low density polyethylene multidose eyedropper, at two conservation conditions (5°C and 25°C), before and with simulated use. Analyses used were the following: visual inspection, cyclosporine quantification by a stability-indicating liquid chromatography method, osmolality and pH measurements and turbidity. A complementary analysis by dynamic light scattering was implemented to evaluate potential particle formation or micelle size change. In the in-use study, cyclosporine quantification was also performed on the drops emitted from the multidose eyedroppers. Our results show that the cyclosporine micellar formulation retains good physicochemical and microbiological stability, as all parameters stayed within acceptable range limits, however a higher variability in cyclosporine concentrations was observed for 20mg/mL units stored at 25°C. The in-use study showed that cyclosporine concentrations in the emitted drops were also within acceptable range limits. The micellar formulation presented in this study can therefore be stored at 5°C or at ≤25°C for up to 6months. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions

    Khan, Humaira; Ahmed, M. Jamaluddin; Bhanger, M. Iqbal


    A very simple, ultra-sensitive and fairly selective new spectrophotometric method has been developed for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in presence of aqueous micellar solutions. The proposed method enabled the determination of lead down to µg l−1 in human blood and urine in aqueous media without resource of any “clean-up” step. The most remarkable point of this method is that the presence of micellar system avoids the prev...

  7. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel


    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk.

  8. Fast relaxation of a hexagonal Poiseuille shear-induced near-surface phase in a threadlike micellar solution.

    Hamilton, W A; Butler, P D; Magid, L J; Han, Z; Slawecki, T M


    The dynamics of near-surface conformations in complex fluids under flow should dramatically affect their rheological properties. We have made the first measurements resolving the decay kinetics of a hexagonal phase induced in a threadlike polyionic micellar system under Poiseuille shear near a quartz surface. Upon cessation of shearing flow, this minimum interference crystalline phase formed within approximately 20 microm of the surface "melts" to a metastable two-dimensional liquid of aligned micelles in approximately 0.7 s. This is some three orders of magnitude shorter than the time required for bulk (Couette) shear-aligned micelles in this system to reach a fully entangled state.

  9. Determination of ephedrine and codeine in human urine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography

    Li Jun Li; Si Guang Li; Hai Yan Li; Zhuo Cai; Hao Cheng


    A sensitive method for the determination of ephedrine and codeine in human urine by capillary electrophoresis (CE) was described. In order to improve the sensitivity, two online concentration techniques including cation-selective exhaustive injection (CSEI) and sweeping micellar electrokinetic chromatography (sweeping-MEKC) were used. Under the optimum conditions, the detection limits (S/N = 3) were 0.10 μg/L for ephedrine and 0.80 μg/L for codeine. This method was successfully applied to real urine sample analysis.

  10. Study of interaction of proflavin with triethylamine in homogeneous and micellar media: Photoinduced electron transfer probed by magnetic field effect

    Chakraborty, Brotati; Basu, Samita


    Interaction of triethylamine (TEA) with cationic proflavin (PF +) in homogeneous and micellar media is studied using absorption spectroscopy, steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis in conjunction with an external magnetic field. The two prime phenomena that have been highlighted in this study are photoinduced electron transfer (PET) and ground-state complex formation. This study shows that it is the medium which determines the reaction pathways to be followed. Magnetic field effect (MFE) helps to elucidate the reaction mechanism involved and this work also highlights the distance dependence factor associated with MFE.

  11. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui


    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa alpha-subunit (p110alpha) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H(2)O(2) stimulates the expression of p110alpha in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton.

  12. Stability-indicating micellar electrokinetic chromatography method for the analysis of sumatriptan succinate in pharmaceutical formulations.

    Al Azzam, Khaldun M; Saad, Bahruddin; Tat, Chai Yuan; Mat, Ishak; Aboul-Enein, Hassan Y


    A micellar electrokinetic chromatography method for the determination of sumatriptan succinate in pharmaceutical formulations was developed. The effects of several factors such as pH, surfactant and buffer concentration, applied voltage, capillary temperature, and injection time were investigated. Separation took about 5 min using phenobarbital as internal standard. The separation was carried out in reversed polarity mode at 20 °C, 26 kV and using hydrodynamic injection for 10s. Separation was achieved using a bare fused-silica capillary 50 μm×40 cm and background electrolyte of 25 mM sodium dihydrogen phosphate-adjusted with concentrated phosphoric acid to pH 2.2, containing 125 mM sodium dodecyl sulfate and detection was at 226 nm. The method was validated with respect to linearity, limits of detection and quantification, accuracy, precision and selectivity. The calibration curve was linear over the range of 100-2000 μg mL(-1). The relative standard deviations of intra-day and inter-day precision for migration time, peak area, corrected peak area, ratio of corrected peak area and ratio of peak area were less than 0.68, 3.48, 3.28, 2.97 and 2.83% and 2.01, 5.50, 4.46, 4.92 and 4.07%, respectively. The proposed method was successfully applied to the determinations of the analyte in tablet. Forced degradation studies were conducted by introducing a sample of sumatriptan succinate standard solution to different forced degradation conditions using neutral (water), basic (0.1 M NaOH), acidic (0.1 M HCl), oxidative (10% H(2)O(2)) and photolytic (exposure to UV light at 254 nm for 2 h). It is concluded that the stability-indicating method for sumatriptan succinate can be used for the analysis of the drug in various samples.

  13. Determination of diuron, terbuthylazine, and terbutryn in wastewater and soil by micellar liquid chromatography.

    Pitarch-Andrés, Susana; Roca-Genovés, Pasqual; Peris-Vicente, Juan; Esteve-Romero, Josep


    An analytical method for the quantification of the herbicides and algaecides diuron, terbuthylazine, and terbutryn in wastewater and soil by micellar liquid chromatography was developed. The sample preparation was expedited to reduce the number of intermediate steps and the use of chemicals. The analytes in soils were recovered by ultrasonication in the mobile phase. The obtained supernatant and the water samples were directly injected, thus avoiding intermediate steps. The chromatographic behavior of the analytes, depending on the surfactant and alcohol was studied, in order to optimize the chromatographic run, by a chemometrical approach. The herbicides were resolved in <16 min using a C18 column and a mobile phase of 0.07 M sodium dodecyl sulfate/6% 1-pentanol phosphate buffered at pH 3, running under isocratic mode at 1 mL/min. The detection absorbance wavelength was set to 240 nm. The method was successfully validated in terms of selectivity, detection limit (0.06 mg/L in water and 0.3 mg/kg in soil), quantitation range (0.2-2 mg/L in water and 1-10 mg/kg in soil), trueness (-6.1 to +5.0%), precision (<9.4%), and ruggedness (<8.3%). The procedure was reliable, practical, easy-to-handle, available, short-time and ecofriendly and useful for routine analysis. Its applicability to real samples was evaluated by analyzing several wastewater, decorative reservoir, and soil samples from agricultural and urban sources.

  14. On structural transitions in a discontinuous micellar cubic phase loaded with sodium diclofenac.

    Efrat, R; Aserin, A; Garti, N


    An intermediate mesophase of lyotropic liquid crystalline structure from the ternary mixtures of glycerol monooleate, water, and ethanol was recently characterized in our lab. This mesophase, termed Q(L), consists of discrete discontinuous micelles arranged in a cubic array. The Q(L) phase can solubilize very significant loads of water-insoluble anti-inflamatory drug sodium diclofenac (Na-DFC). Close examination of the internal structures of the lyotropic liquid structure upon increasing the solubilization loads reveals the existence of three structural transitions controlled by the Na-DFC levels. Up to 0.4 wt% Na-DFC, the Q(L) structure remains intact with some influence on the hydration of the headgroups and on the intermicellar forces. However, at 0.8 to 1.2 wt% Na-DFC, the discontinuous micellar cubic phase is transformed into a more condensed mesophase of a bicontinuous cubic phase. At > or =1.2 wt% Na-DFC, the cubic phase is converted into a lamellar phase (L(alpha)). Within 5.5 to 7.3 wt% Na-DFC the mesophase is progressively transformed into a less ordered lamellar structure. At 12 wt% Na-DFC crystals tend to precipitate out. At low Na-DFC concentrations the drug behaves like a lyotropic or kosmotropic salt and can salt-out the surfactant from its water layer, but at higher levels it behaves like a hydrotropic, chaotropic salt and can salt-in the surfactant. The Na-DFC location and position within the interface as well as its polarization and partial ionization are strongly affected by its solubilization contents and the structure that it is inducing. In the cubic phase the drug is located less close to the hydration layer while once transition occurs it is exposed more to the water layer and the surfactant headgroups.

  15. Mesoscopic simulation of a micellar poly(N-isopropyl acrylamide)-b-(polyethylene oxide) copolymer system

    Bautista-Reyes, Rubén; Soto-Figueroa, César; Vicente, Luis


    In this article we studied the micellar formation of poly(N-isopropyl acrylamide)-b-polyethylene oxide (PNIPAM-b-PEO) copolymers in an aqueous system. From molecular simulations the dependence on temperature of the Flory-Huggins interaction parameter χ for PNIPAM and PEO in water is obtained and compared with available experimental results and values from other theoretical calculations. By means of dissipative particle dynamics (DPD) we then simulated the coil-globule transition for PNIPAM chains in water with a transition temperature of around 305 K. The simulations for PNIPAM-b-PEO copolymers showed that at room temperature the chains are miscible in an aqueous phase but with a temperature increase the system turns into micelles at T  =  305 K. The change in micelle anisotropy due to a different ratio PNIPAM/PEO of chains is also analyzed. What is observed is that for large PEO the large number of dissolved PEO chains gives a large corona size and the micelle is not spherical but obloide and as the number of PNIPAM is increased the micelle acquires a spherical shape. As an important application we considered the system micelle-water/anionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]+[PF6]-). By increasing the temperature of the system from 306 K it is shown that at T  =  345 K there is a transfer of the micelle from water to the ionic liquid phase and this was due to the change in the relative affinity of PEO to water and ionic liquid expressed by the change in χ. All the simulation outcomes are qualitatively consistent with experimental results and thus to our knowledge we give the first set of χ values for the interaction between PNIPAM and water in a wide range of temperature values.

  16. Separation of selected imidazole enantiomers using dual cyclodextrin system in micellar electrokinetic chromatography.

    Wan Ibrahim, Wan Aini; Abd Wahib, Siti Munirah; Hermawan, Dadan; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y


    Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Three easily available and inexpensive cyclodextrins namely 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were evaluated to discriminate the six stereoisomers of the drugs. However, none of the three CDs gave a complete enantioseparation of the drugs. Effective enantioseparation of tioconazole, isoconazole and fenticonazole was achieved using a combination of 35 mM HP-γ-CD and 10 mM DM-β-CD as chiral selectors. The best separation using both HP-γ-CD and DM-β-CD (35 mM:10 mM) as chiral selectors were accomplished in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30 °C with all peaks resolved in less than 15 min with resolutions, Rs 1.90-27.22 and peak efficiencies, N > 180 000. The developed method was linear over the concentration range of 25-200 mg l(-1) (r(2) > 0.998) and the detection limits (S/N = 3) of the three imidazole drugs were found to be 2.7-7.7 mg l(-1). The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine sample and commercial cream formulation of tioconazole and isoconazole with good recovery (93.6-106.2%) and good RSDs ranging from 2.30-6.8%.

  17. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols).

    Diab, C; Winnik, F M; Tribet, C


    The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.

  18. Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products.

    Thogchai, W; Liawruangrath, B


    A simple micellar liquid chromatographic (MLC) procedure for simultaneous determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products was proposed. This method was developed and validated. The chromatographic conditions were also optimized. All analyses were performed at room temperature in an isocratic mode, using a mixture of 1% (v/v) acetonitrile and 0.006 mol L⁻¹ Brij 35 (pH 6.0) as a mobile phase. The flow rate was set at 1.0 mL min⁻¹. The analytical column was a 150 × 3.9 mm Nova-Pak C-18 column. The effluent from the analytical column was monitored by UV detection at 280 nm. Under the optimum conditions, arbutin and hydroquinone could be determined within a concentration range of 2-50 μg mL⁻¹ of arbutin, and hydroquinone was obtained with the regression equations; y = 0.045x + 0.042 (r² = 0.9923) and y = 0.091x + 0.050 (r² = 0.9930) respectively. The limits of detection were found to be 0.51 μg mL⁻¹ and 0.37 μg mL⁻¹ for arbutin and hydroquinone respectively. The proposed MLC method was applied for the determination of arbutin and hydroquinone contents in medicinal plant extracts and commercial cosmetic products. This proposed MLC method is thus suitable for routine analysis of arbutin and hydroquinone in the pharmaceutical formulations, cosmetic products and raw medicinal plant extracts.

  19. Modified micellar electrokinetic chromatography in the analysis of catechins and xanthines in chocolate.

    Gotti, Roberto; Fiori, Jessica; Mancini, Francesca; Cavrini, Vanni


    Modified micellar electrokinetic chromatography (MEKC) analysis of monomeric flavanols (catechin and epicatechin) and methylxanthines (caffeine and theobromine) in chocolate and cocoa was performed by using sodium dodecyl sulfate (SDS) as a principal component of the running buffer. Because of the reported poor stability of catechins in alkaline solutions, acidic conditions (pH 2.5) were chosen and consequently the electroosmotic flow (EOF) was significantly suppressed; this resulted in a fast anodic migration of the analytes partitioned into the SDS micelles. Under these conditions, variations of either pH value in acidic range or SDS concentration, showed to be not suitable to modulate the selectivity. To overcome this limit, use of additives to the SDS-based running buffer was successfully applied and three different systems were optimized for the separation of (+)-catechin, (-)-epicatechin, caffeine, and theobromine in chocolate and cocoa powder samples. In particular, two mixed micelle systems were applied; the first consisted of a mixture of SDS and 3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate (CHAPS) with a composition of 90 mM and 10 mM, respectively; the second was SDS and taurodeoxycholic acid sodium salt (TDC) with a composition of 70 mM and 30 mM, respectively. A further MEKC approach was developed by addition of 10 mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to the SDS solution (90 mM); it provided a useful cyclodextrin(CD)-modified MEKC. By applying the optimized conditions, different separation profiles of the flavanols and methylxanthines were obtained showing interesting potential of these combined systems; their integrated application showed to be useful for the identification of the low level of (+)-catechin in certain real samples. The CD-MEKC approach was validated and applied to the determination of catechins and methylxanthines in aqueous extracts from four different commercial chocolate types (black and milk) and two cocoa

  20. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G


    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.

  1. Micellar-enhanced ultrafiltration membrane (MEUF) of Batik wastewater using Cetylpyridinium chloride surfactant

    Aryanti, Nita; Pramudono, Bambang; Prawira, Christ Nadya P.; Renardi, Rheza; Fatikhatul K. Ika, S.


    In batik production, reactive dyes such as remazol, indigosol, naphtol and rapid are used in the dying process. Batik wastewater contains high level of reactive dyes, wax and sodium salts and is characterized with high Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) as well as high concentration of phenol and Ammonia. Micellar-Enhanced Ultrafiltration Membrane (MEUF) is one of promising technology to separate low molecular weight substances such as dyes. The MEUF process involves combination of ultrafiltration membrane and surfactant at concentration higher than surfactant's Critical Micelle Concentration (CMC). This technique combines high selectivity of reverse osmosis membrane and high flux of ultrafiltration membrane but with lower pressure. Ultrafiltration of batik waste water without surfactant (UF) and with addition of surfactant (MEUF) were studied in order to compare the performance of both systems. The Batik wastewater were obtained from batik industry in Semarang and Surakarta, Central Java, Indonesia. Cetyl Pyridinium Chloride at concentration of 2 and 4 times of its CMC were used. Flatsheet ultrafiltration membrane was made from Polyethersulphone (12% w/w), N-methyl Pyrrolidone (83% w/w) and Polyethylene Glycol (5% w/w). The performance of the UF and MEUF were evaluated based on flux profiles and rejections (COD, TSS, concentration of Ammonia). The results showed that the MEUF had superior performance than the UF. Concentration of COD, TSS, phenol and ammonia were reduced significantly. The rejection of COD were 92.74% and 94.15%. Moreover, the MEUF was capable to reduce the TSS with the rejection of 86.26% and 65%. The concentration of ammonia in permeate were 0.43 ppm and below 0.01 ppm.

  2. Micellar electrokinetic chromatography for the analysis of D-amygdalin and its epimer in apricot kernel.

    Kang, S H; Jung, H; Kim, N; Shin, D H; Chung, D S


    We have developed a simple, rapid and reproducible method for the determination of D-amygdalin and its epimer by using micellar electrokinetic chromatography (MEKC). Separation of D-amygdalin was performed in a 20 mM sodium borate buffer (pH 8.5) containing 300 mM sodium dodecyl sulfate using a bare fused-silica capillary. The eluates were monitored by the absorbance at 210 nm. The applied electric field was 278 V/cm, and the time needed for the separation of D-amygdalin did not exceed 6 min. The calibration curve for D-amygdalin showed excellent linearity in the concentration range of 5-500 microg/ml. The migration time and the corrected peak area show relative standard deviations (n=6) of 0.86% and 1.48%, respectively. The limit of detection (S/N=3) for D-amygdalin was 2 microg/ml. Under acidic and neutral conditions, amygdalin exists only as the D-form; however, under basic conditions, it shows both the D- and L-forms with a concentration ratio of 1:1.3 (D-amygdalin/L-amygdalin). Results of HPLC, UV-Vis spectrophotometry, and mass spectrometry reconfirmed the identification of D-amygdalin and its epimer. The number of theoretical plates of D-amygdalin is about 100,000 in MEKC, which is significantly higher than approximately 8,000 of HPLC. This method has been successfully applied to the determination of amygdalin epimers in various apricot kernel extracts and pharmaceutical products.

  3. Simultaneous determination of paracetamol, caffeine and propyphenazone in ternary mixtures by micellar electrokinetic capillary chromatography.

    Emre, Deniz; Ozaltin, Nuran


    A new micellar electrokinetic capillary chromatographic method has been developed to analyze the pharmaceutical preparations containing ternary combination of paracetamol (PAR), caffeine (CAF) and propyphenazone (PRO). Best results were obtained by using 20mM pH 9.0 borate buffer containing 30mM sodiumdodecylsulphate as the background electrolyte. Diflunisal (DIF) was used as internal standard (IS). The separation was performed through a fused silica capillary (50microm internal diameter, 44cm total length, 35.5cm effective length) at 25 degrees C with the application of 3s of hydrodynamic injection at 50mbar pressure and a potential of 29kV. Detection wavelength was 200nm. Under these conditions, the migration times were found to be 5.174min for PAR, 5.513min for CAF, 7.195min for DIF, and 9.366min for PRO. Linearity ranges for the method were determined as 2-200microgmL(-1) for PAR and CAF and 3-200microgmL(-1) for PRO. Limit of detections were found as 0.6microgmL(-1) for PAR and CAF and 0.8microgmL(-1) for PRO. According to the validation study, the developed method was proved to be accurate, precise, sensitive, specific, rugged and robust. Three pharmaceutical preparations, which are produced by different drug companies in Turkey, were analyzed by the developed method. One of the same preparations was also analyzed by the derivative ratio spectro zero-crossing spectrophotometric method reported in literature. No significant differences were found statistically.

  4. Binding of phospholipids to the phosphatidylinositol transfer protein from bovine brain as studied by steady-state and time-resolved fluorescence spectroscopy

    Paridon, P.A. van; Visser, A.J.W.G.; Wirtz, K.W.A.


    The phosphatidylinositol transfer protein isolated from brain, liver, heart and platelets was found to be present in two subforms which could be distinguished on the basis of the isoelectric points. In this study we have demonstrated that the two subforms isolated from bovine brain are due to the pr

  5. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard


    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein.

  6. The anti-apoptotic MAP kinase pathway is inhibited in NIH3T3 fibroblasts with increased expression of phosphatidylinositol transfer protein β

    Schenning, M.; van Tiel, C.M.; Wirtz, K.W.A.; Snoek, G.T.


    Mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein ß (PI-TPß, SPIß cells) demonstrate a low rate of proliferation and a high sensitivity towards UV-induced apoptosis when compared with wtNIH3T3 cells. In contrast, SPIßS262A cells overexpressing a mutant PI-TPß that la

  7. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance

    Vossen, J.H.; Abd-El-Haliem, A.; Fradin, E.F.; Berg, van den G.C.M.; Ekengren, S.K.; Meijer, H.J.G.; Seifi Abdolabad, A.R.; Bai, Y.; Have, ten A.; Munnik, T.; Thomma, B.P.H.J.; Joosten, M.H.A.J.


    The perception of pathogen-derived elicitors by plants has been suggested to involve phosphatidylinositol-specific phospholipase-C (PI-PLC) signalling. Here we show that PLC isoforms are required for the hypersensitive response (HR) and disease resistance. We characterised the tomato [Solanum

  8. The tomato phosphatidylinositol-phospholipase C2 (SlPLC2) is required for defense gene induction by the fungal elicitor xylanase

    Gonorazky, G.; Ramirez, L.; Abd-El-Haliem, A.; Vossen, J.H.; Lamattina, L.; Have, ten A.; Joosten, M.H.A.J.; Laxalt, A.M.


    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated upon pathogen attack. We have previously shown that the fungal elicitor xylanase rapidly induces nitric oxide (NO), which is

  9. Synthesis of 2-deoxy-2-fluoro-phosphatidylinositol-4,5-bisphosphate and analogues: probes and modulators of the mammalian PI-PLCS.

    Aneja, S G; Ivanova, P T; Aneja, R


    An approach to synthesis of 2-modified phosphatidylinositol-4,5-bisphosphates, which are substrate analogues useful as probes and modulators of the PI-PLC enzyme family, is described and illustrated for the dibutyl-2-deoxy-2-fluoro analogue, a probe designed for delineating substrate and PI-PLC interactions by X-ray crystallography.

  10. Binding of phospholipids to the phosphatidylinositol transfer protein from bovine brain as studied by steady-state and time-resolved fluorescence spectroscopy

    Paridon, P.A. van; Visser, A.J.W.G.; Wirtz, K.W.A.


    The phosphatidylinositol transfer protein isolated from brain, liver, heart and platelets was found to be present in two subforms which could be distinguished on the basis of the isoelectric points. In this study we have demonstrated that the two subforms isolated from bovine brain are due to the

  11. Isolation of cDNA encoding the catalytic site of phosphatidylinositol-specific phospholipase C from Coffea arabica L.

    Sánchez-Cach, Lucila A; Ortiz-García, Matilde M; Minero-García, Yereni; Muñoz-Sánchez, J Armando; Hernández-Sotomayor, SM Teresa; Suárez-Solís, Víctor M


    A cDNA encoding the catalytic site of a phosphatidylinositol-specific phospholipase C (PI-PLC) was isolated from Coffea arabica suspension cells. The cDNA (designated CaPLC) encodes a polypeptide of 308 amino acids, containing the catalytic X and Y domains, and has 99% identity to the soybean gene. Recombinant CaPLC protein was expressed in Escherichia coli, purified, and used to produce a polyclonal antibody. The peptide has a molecular mass of 27 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses. Immunoblots revealed the presence of PLC-like proteins in the tissues of different plant species. PMID:19513191

  12. Effects of ionic liquids on micellar microstructures and separation performance in micellar electrokinetic chromatography%离子液体对胶束电动色谱胶束微结构以及分离效果的影响

    余美娟; 杭栋; 曹玉华


    The effects of ionic liquids on micellar microstructures and separation performance in micellar electrokinetic chromatography ( MEKC ) were investigated. The experimental results showed that the addition of ionic liquids into micellar system would result in a decreased micellar surface charge density, an enlarged size of micelle and a slight enhancement of the polarity in the inner core of micelle. Prednisone , hydrocortisone and prednisolone were analyzed with MEKC to evaluate the separation performance. Hydrocortisone and prednisolone could not be separated in sodium lauryl sulfate ( SDS ) micellar system. However. the three analytes could be baseline separated in the mixed system of ionic liquids and SDS ( 20 mmol/L SDS-10 mmol/L 1-butyl-3-methyl imidazolium tetrafluoroborate-50 mmol/L borax , pH 8.4 ) within 17 min. Notably, the linearities of the three analytes ranged from 2 to 100 mg/L and the detection limits based on the ratio of signal to noise of 3 were 1.0, 1.1 and 1.0 mg/L for prednisone, hydrocortisone and prednisolone, respectively. The method has been used in the analysis of corticosteroids in cosmetic samples. The recoveries for the three analytes were between 95.1% and 117%. This method has the advantages of simple pretreatment, high accuracy, good reproducibility, and can be applied to the quality control of cosmetics.%考察了离子液体对胶束电动色谱胶柬微结构以及分离效果的影响.研究结果表明,离子液体使胶束的表面电荷密度变小、粒径变大及其内核极性增大.以泼尼松、氢化可的松和泼尼松龙为分析对象,氢化可的松与泼尼松龙在十二烷基硫酸钠(SDS)胶束体系中不能实现分离.而在SDS-离子液体混合介质(20 mmol/L SDS-10 mmol/L1-丁基-3-甲基咪唑四氟硼酸盐-50 mmol/L硼砂-硼酸缓冲液,pH 8.4)中,3种物质可在17 min内达到基线分离.各组分在2~100 mg/L范围内呈良好的线性关系,检出限(信噪比为3)分别为1.0、1.1和1

  13. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A


    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.

  14. Cooperative binding of annexin A2 to cholesterol- and phosphatidylinositol-4,5-bisphosphate-containing bilayers.

    Drücker, Patrick; Pejic, Milena; Grill, David; Galla, Hans-Joachim; Gerke, Volker


    Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca(2+)-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.

  15. Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection.

    Kühbacher, Andreas; Dambournet, Daphné; Echard, Arnaud; Cossart, Pascale; Pizarro-Cerdá, Javier


    Listeria monocytogenes is a bacterial pathogen that induces its own entry into a broad range of mammalian cells through interaction of the bacterial surface protein InlB with the cellular receptor Met, promoting an actin polymerization/depolymerization process that leads to pathogen engulfment. Phosphatidylinositol bisphosphate (PI[4,5]P(2)) and trisphosphate (PI[3,4,5]P(3)) are two major phosphoinositide species that function as molecular scaffolds, recruiting cellular effectors that regulate actin dynamics during L. monocytogenes infection. Because the phosphatidylinositol 5'-phosphatase OCRL dephosphorylates PI(4,5)P(2) and to a lesser extent PI(3,4,5)P(3), we investigated whether this phosphatase modulates cell invasion by L. monocytogenes. Inactivation of OCRL by small interfering RNA (siRNA) leads to an increase in the internalization levels of L. monocytogenes in HeLa cells. Interestingly, OCRL depletion does not increase but rather decreases the surface expression of the receptor Met, suggesting that OCRL controls bacterial internalization by modulating signaling cascades downstream of Met. Immuno-fluorescence microscopy reveals that endogenous and overexpressed OCRL are present at L. monocytogenes invasion foci; live-cell imaging additionally shows that actin depolymerization coincides with EGFP-OCRL-a accumulation around invading bacteria. Together, these observations suggest that OCRL promotes actin depolymerization during L. monocytogenes infection; in agreement with this hypothesis, OCRL depletion leads to an increase in actin, PI(4,5)P(2), and PI(3,4,5)P(3) levels at bacterial internalization foci. Furthermore, in cells knocked down for OCRL, transfection of enzymatically active EGFP-OCRL-a (but not of a phosphatase-dead enzyme) decreases the levels of intracellular L. monocytogenes and of actin associated with invading bacteria. These results demonstrate that through its phosphatase activity, OCRL restricts L. monocytogenes invasion by modulating

  16. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana

    XU Xiaojing; CAO Zhixiang; LIU Guoqin; Madan K. Bhattacharrya; REN Dongtao


    A full-length eDNA clone corresponding to a putative phosphatidylinositol-specific phospholipase C (PIPLC) was isolated from Arabidopsis thaliana by screening a cDNA library and using RT-PCR strategy. The cDNA, designated AtPLC6, encodes a putative polypeptide of 578 amino acid residues with a calculated molecular mass of 66251.84 D and a pI of 7.24. The sequence analysis indicates that the polypeptide contains X, Y, EF-hand and C2 domains. The overall structure of putative AtPLC6 protein, like other plant PI-PLCs, is most similar to that of mammalian PLC& The recombinant AtPLC6 protein expressed in E. coli was able to hydrolyze phosphatidylinositol 4,5-biophosphate (PIP2) to generate inositol 1,4,5-trisphate (IP3) and 1,2-diacylglycerol (DAG). The protein hydrolyzes PIP2 in a Ca2+-dependent manner and the optimum concentration of Ca2+ is 10 μmol/L.These results suggested that AtPLC6 gene encodes a genuine PI-PLC. Northern blot analysis showed that the AtPLC6 gene is expressed at low level in all examined tissues, such as roots,stems, leaves, flowers, siliques and seedlings under normal growth conditions. The gene is strongly induced under low temperature and weakly induced under various stresses,such as ABA, high-salt stress and heat. These results suggested that AtPLC6 might be involved in the signal-transduction pathways of cold responses of the plants.

  17. Spatially Dispersed Employee Recovery

    Hvass, Kristian Anders; Torfadóttir, Embla


    Employee recovery addresses either employee well-being or management's practices in aiding employees in recovering themselves following a service failure. This paper surveys the cabin crew at a small, European, low-cost carrier and investigates employees' perceptions of management practices to aid...... personnel achieve service recovery. Employee recovery within service research often focuses on front-line employees that work in a fixed location, however a contribution to the field is made by investigating the recovery of spatially dispersed personnel, such as operational personnel in the transport sector......, who have a work place away from a fixed or central location and have minimal management contact. Results suggest that the support employees receive from management, such as recognition, information sharing, training, and strategic awareness are all important for spatially dispersed front...

  18. Light dispersion in space

    Barbosa, L. C.


    Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.

  19. Disabling Radiological Dispersal Terror

    Hart, M


    Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

  20. Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography.

    De Vrieze, Mike; Lynen, Frédéric; Chen, Kai; Szucs, Roman; Sandra, Pat


    Several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier (BBB) into the central nervous system (CNS). In this article, the performance of a variety of micellar liquid chromatographic (MLC) methods and immobilized artificial membrane (IAM) liquid chromatographic approaches were compared for a set of 45 solutes. MLC measurements were performed on a C18 column with sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij35), or sodium deoxycholate (SDC) as surfactant in the micellar mobile phase. IAM liquid chromatography measurements were performed with Dulbecco's phosphate-buffered saline (DPBS) and methanol as organic modifier in the mobile phase. The corresponding retention and computed descriptor data for each solute were used for construction of models to predict transport across the blood-brain barrier (log BB). All data were correlated with experimental log BB values and the relative performance of the models was studied. SDS-based models proved most suitable for prediction of log BB values, followed closely by a simplified IAM method, in which it could be observed that extrapolation of retention data to 0% modifier in the mobile phase was unnecessary.

  1. [Separation of cefoperazone and its S-isomer and other related substances by micellar electrokinetic capillary chromatography].

    Zhang, Huiwen; Hu, Changqin; Xu, Mingzhe; Li, Yaping; Hang, Taijun


    The separation of cefoperazone, its S-isomer, impurity A and other unknown related substances by micellar electrokinetic capillary chromatography (MECC) using sodium dodecyl sulphate (SDS) as the micellar phase was investigated. The effects of pH, concentration of phosphate buffer solution, SDS micelle concentration, methanol volume fraction, applied voltage and temperature on the separation were studied. It was found that the migration of these compounds was affected by these factors, especially by pH of the solution. The elution, as well as the migration time and separation efficiency of cefoperazone, its S-isomer, impurity A and other related substances changed with the acidity of the solution. The optimized separation conditions consisted of a running buffer of 70 mmol/L sodium phosphate buffer, at pH 6.5, containing 100 mmol/L SDS, with an applied voltage of 15 kV and a temperature of 25 degrees C. An uncoated fused-silica capillary of 51.0 cm x 75 microm (42.5 cm of effective length) was used. The sample was injected into the column by pressure (5 kPa) for 5 s. The detection wavelength was set at 254 nm. Twenty-eight impurities in cefoperazone sodium could be detected. Cefoperazone sodium and the degradation products could be separated well. The method was applied to separate and determine cefoperazone and its related substances successfully.

  2. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Mohammed Hassan


    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  3. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method

    Liu Huanxiang [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Yao Xiaojun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail:; Liu Mancang [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Fan Botao [Universite Paris 7-Denis Diderot, ITODYS 1, rue Guy de la Brosse, 75005 Paris (France)


    Based on calculated molecular descriptors from the solutes' structure alone, the micelle-water partition coefficients of 103 solutes in micellar electrokinetic chromatography (MEKC) were predicted using the heuristic method (HM). At the same time, in order to show the influence of different molecular descriptors on the micelle-water partition of solute and to well understand the retention mechanism in MEKC, HM was used to build several multivariable linear models using different numbers of molecular descriptors. The best 6-parameter model gave the following results: the square of correlation coefficient R {sup 2} was 0.958 and the mean relative error was 3.98%, which proved that the predictive values were in good agreement with the experimental results. From the built model, it can be concluded that the hydrophobic, H-bond, polar interactions of solutes with the micellar and aqueous phases are the main factors that determine their partitioning behavior. In addition, this paper provided a simple, fast and effective method for predicting the retention of the solutes in MEKC from their structures and gave some insight into structural features related to the retention of the solutes.

  4. Complexation of Cu(II) by original tartaric acid-based ligands in nonionic micellar media: thermodynamic study and applications.

    Dupont-Leclercq, Laurence; Giroux, Sébastien; Parant, Stéphane; Khoudour, Leïla; Henry, Bernard; Rubini, Patrice


    The complexation of Cu(II) with original alkylamidotartaric acids (C(x)T) is investigated in homogeneous aqueous medium and in the presence of nonionic micelles of Brij 58 (C16EO20), thanks to various analytical techniques such as NMR self-diffusion experiments, CD and UV-vis spectroscopy, ESI mass spectrometry, pHmetry and micellar-enhanced ultrafiltration (MEUF). First, a complete speciation study proves the formation of dimeric complexes in water and provides their formation constants. Second, a similar study is led in the presence of nonionic micelles. It underlines a modification of the apparent equilibrium constants in micellar medium and demonstrates that the structure of the complexes is slightly modified in the presence of micelles. This thermodynamic and structural study is applied to modelize the evolution of the extraction yields of Cu(II) by the micelles as a function of pH and to identify the complexes extracted in the micelles. The effects of the chain length of the ligand (C3T vs C8T) on the solubilization properties are put into relief and discussed. Anionic species are proved to be more incorporated in the nonionic micelles than the cationic species. The extracting system constituted of octylamidotartaric acid (CsT) solubilized in nonionic micelles of Brij 58 is demonstrated to be very efficient for the extraction of Cu(II) by MEUF, this technique being an interesting green alternative to traditional solvent extraction.

  5. Commercial scale demonstration enhanced oil recovery by micellar-polymer flood. Annual report, October 1979-September 1980

    Howell, J.C.; Snyder, W.O.


    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.4-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5 and 5.0-acre patterns increased from 8.6% and 5.2%, respectively in September 1979, to 11.0% and 5.9% in September 1980. The oil cut performance has consistently exceeded that predicted for the project. This Fourth Annual Report is organized under the following three Work Breakdown Structures: fluid injection; production; and performance monitoring.

  6. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis.

    Tiecco, Matteo; Corte, Laura; Roscini, Luca; Colabella, Claudia; Germani, Raimondo; Cardinali, Gianluigi


    Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis.

  7. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Rui Liu


    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  8. Protolytic properties and complexation of DL-alpha-alanine and DL-alpha-valine and their dipeptides in aqueous and micellar solutions of surfactants

    Chernyshova, O. S.; Boychenko, Oleksandr; Abdulrahman, H.; Loginova, L. P.


    In this work we investigated the effect of the micellar media of anionic (sodium dodecylsulfate, SDS), cationic (cetylpiridinium chloride, CPC) and non-ionic (Brij-35) surfactants on the protolytic properties of amino acids DL-alpha-alanine, DL-alpha-valine and dipeptides L-alpha-alanyl-L-alpha-alan

  9. Monitoring of cefepime in human serum and plasma by micellar electrokinetic capillary chromatography: Improvement of sample preparation and validation by liquid chromatography coupled to mass spectrometry.

    Šestáková, Nela; Theurillat, Regula; Sendi, Parham; Thormann, Wolfgang


    Cefepime monitoring in deproteinized human serum and plasma by micellar electrokinetic capillary chromatography and liquid chromatography coupled to mass spectrometry in presence of other drugs is reported. For micellar electrokinetic capillary chromatography, sample preparation comprised dodecylsulfate protein precipitation at pH 4.5 using an increased buffer concentration compared to that of a previous assay and removal of hydrophobic compounds with dichloromethane. This provided robust conditions for cefepime analysis in the presence of sulfamethoxazole and thus enabled its determination in samples of patients that receive co-trimoxazole. The liquid chromatography assay is based upon use of a column with a pentafluorophenyl-propyl modified and multi-endcapped stationary phase and the coupling to electrospray ionization with a single quadrupole detector. The performances of both assays with multi-level internal calibration were assessed with calibration and control samples and both assays were determined to be robust. Cefepime levels monitored by micellar electrokinetic capillary chromatography in samples from patients that were treated with cefepime only and with cefepime and co-trimoxazole were found to compare well with those obtained by liquid chromatography coupled to mass spectrometry. Cefepime drug levels determined by micellar electrokinetic capillary chromatography could thereby be validated. This article is protected by copyright. All rights reserved.

  10. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.

    Rodenas-Montano, J; Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C


    In micellar liquid chromatography (MLC), chromatographic peaks are more evenly distributed compared to conventional reversed-phase liquid chromatography (RPLC). This is the reason that most procedures are implemented using isocratic elution. However, gradient elution may be still useful in MLC to analyse mixtures of compounds within a wide range of polarities, decreasing the analysis time. Also, it benefits the determination of moderately to low polar compounds in physiological fluids performing direct injection: an initial micellar eluent with a low organic solvent content, or a pure micellar (without surfactant) solution, will provide better protection of the column against the proteins in the physiological fluid, and once the proteins are swept away, the elution strength can be increased using a positive linear gradient of organic solvent to reduce the analysis time. This work aims to encourage analysts to implement gradients of organic solvent in MLC, which is rather simple and allows rapid analytical procedures without pre-treatment or the need of re-equilibration. The implementation of gradient elution is illustrated through the separation of eight basic compounds (β-blockers) in urine samples directly injected into the chromatograph, the most hydrophobic showing large retention in both conventional RPLC and MLC. The use of the DryLab(®) software to optimise gradients of organic solvent with eluents containing a fixed amount of surfactant above the critical micellar concentration is shown to provide satisfactory predictions, and can facilitate greatly the implementation of gradient protocols.

  11. On-line Sweeping Sample Concentration in Micellar Electrokinetic Chromatography with Enhanced Sensitivity for the Determination of Carbamazepine in Human Serum

    Dan Dan HAN; Chun WANG; Zhi WANG; Qiu Hua WU; Xiao Huan ZANG


    A sensitive and simple micellar electrokinetic chromatography (MEKC) method was developed for the determination of antiepileptic drug, carbamazepine (CBZ), using sweeping on-line concentration method with photodiode array detection. Under the optimal conditions, the method has been successfully applied to the analysis of CBZ in human serum.

  12. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut


    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  13. Nozzle for electric dispersion reactor

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.


    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  14. Validity condition of separating dispersion of PCFs into material dispersion and geometrical dispersion

    Wei Wang; Lantian Hou; Zhaolun Liu; Guiyao Zhou


    When using normalized dispersion method for the dispersion design of photonic crystal fibers(PCFs),it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion.However,the error induced by this way of calculation will deteriorate the final results.Taking 5 ps/(km·nm)and 5% as absolute error and relative error limits,respectively,the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm.By using these two criteria together,it is adequate to evaluate the simulatcd dispersion of PCFs when normalized dispersion method is employed.


    Mandeep Singh; S.K. Raghuwanshi


    This work presents a theoretical study of harmonic generation of microwave signals after detection of a modulated optical carrier in cascaded two electro-optic modulators. Dispersion is one of the major limiting factors for microwave generation in microwave photonics. In this paper, we analyze influence of chromatic dispersion, dispersion slope, dispersion curvature on microwave generation using two cascaded MZMs and it has been found that output intensity of photodetector reduces when disper...

  16. Developing a dispersant spraying capability

    Gill, S.D.


    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  17. Dispersion Interactions in Water Clusters.

    Guidez, Emilie B; Gordon, Mark S


    The importance of dispersion forces in water clusters is examined using the effective fragment potential (EFP) method. Since the original EFP1 water potential does not include dispersion, a dispersion correction to the EFP1 potential (EFP1-D) was derived and implemented. The addition of dispersion to the EFP1 potential yields improved geometries for water clusters that contain 2-6 molecules. The importance of the odd E7 contribution to the dispersion energy is investigated. The E7 dispersion term is repulsive for all of the water clusters studied here and can have a magnitude that is as large as half of the E6 value. The E7 term therefore contributes to larger intermolecular distances for the optimized geometries. Inclusion of many-body effects and/or higher order terms may be necessary to further improve dispersion energies and optimized geometries.

  18. Spurious dispersion effects at FLASH

    Prat, Eduard


    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  19. Quantum optical rotatory dispersion

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel


    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  20. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase.

    Bissonnette, Sarah A; Glazier, Christina M; Stewart, Mary Q; Brown, Glenn E; Ellson, Chris D; Yaffe, Michael B


    In response to bacterial infection, the neutrophil NADPH oxidase assembles on phagolysosomes to catalyze the transfer of electrons from NADPH to oxygen, forming superoxide and downstream reactive oxygen species (ROS). The active oxidase is composed of a membrane-bound cytochrome together with three cytosolic phox proteins, p40(phox), p47(phox), and p67(phox), and the small GTPase Rac2, and is regulated through a process involving protein kinase C, MAPK, and phosphatidylinositol 3-kinase. The role of p40(phox) remains less well defined than those of p47(phox) and p67(phox). We investigated the biological role of p40(phox) in differentiated PLB-985 neutrophils, and we show that depletion of endogenous p40(phox) using lentiviral short hairpin RNA reduces ROS production and impairs bacterial killing under conditions where p67(phox) levels remain constant. Biochemical studies using a cytosol-reconstituted permeabilized human neutrophil cores system that recapitulates intracellular oxidase activation revealed that depletion of p40(phox) reduces both the maximal rate and total amount of ROS produced without altering the K(M) value of the oxidase for NADPH. Using a series of mutants, p47PX-p40(phox) chimeras, and deletion constructs, we found that the p40(phox) PX domain has phosphatidylinositol 3-phosphate (PtdIns(3)P)-dependent and -independent functions. Translocation of p67(phox) requires the PX domain but not 3-phosphoinositide binding. Activation of the oxidase by p40(phox), however, requires both PtdIns(3)P binding and an Src homology 3 (SH3) domain competent to bind to poly-Pro ligands. Mutations that disrupt the closed auto-inhibited form of full-length p40(phox) can increase oxidase activity approximately 2.5-fold above that of wild-type p40(phox) but maintain the requirement for PX and SH3 domain function. We present a model where p40(phox) translocates p67(phox) to the region of the cytochrome and subsequently switches the oxidase to an activated state

  1. The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A.

    Simon Reiss


    Full Text Available The lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KIIIα is an essential host factor of hepatitis C virus (HCV replication. PI4KIIIα catalyzes the synthesis of phosphatidylinositol 4-phosphate (PI4P accumulating in HCV replicating cells due to enzyme activation resulting from its interaction with nonstructural protein 5A (NS5A. This study describes the interaction between PI4KIIIα and NS5A and its mechanistic role in viral RNA replication. We mapped the NS5A sequence involved in PI4KIIIα interaction to the carboxyterminal end of domain 1 and identified a highly conserved PI4KIIIα functional interaction site (PFIS encompassing seven amino acids, which are essential for viral RNA replication. Mutations within this region were also impaired in NS5A-PI4KIIIα binding, reduced PI4P levels and altered the morphology of viral replication sites, reminiscent to the phenotype observed by silencing of PI4KIIIα. Interestingly, abrogation of RNA replication caused by mutations in the PFIS correlated with increased levels of hyperphosphorylated NS5A (p58, indicating that PI4KIIIα affects the phosphorylation status of NS5A. RNAi-mediated knockdown of PI4KIIIα or pharmacological ablation of kinase activity led to a relative increase of p58. In contrast, overexpression of enzymatically active PI4KIIIα increased relative abundance of basally phosphorylated NS5A (p56. PI4KIIIα therefore regulates the phosphorylation status of NS5A and viral RNA replication by favoring p56 or repressing p58 synthesis. Replication deficiencies of PFIS mutants in NS5A could not be rescued by increasing PI4P levels, but by supplying functional NS5A, supporting an essential role of PI4KIIIα in HCV replication regulating NS5A phosphorylation, thereby modulating the morphology of viral replication sites. In conclusion, we demonstrate that PI4KIIIα activity affects the NS5A phosphorylation status. Our results highlight the importance of PI4KIIIα in the morphogenesis

  2. QT dispersion and P wave dispersion in patients with fibromyalgia.

    Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Karakaya, Bülent; Dağlı, Mustafa Necati; Koca, Süleyman Serdar


    Fibromyalgia (FM) is a chronic disease characterized by widespread pain. Somatic complaints associated with the cardiovascular system, such as chest pain and palpitations, are frequently seen in FM patients. P and QT dispersions are simple and inexpensive measurements reflecting the regional heterogeneity of atrial and ventricular repolarization, respectively. QT dispersion can cause serious ventricular arrhythmias. The aim of the present study was to evaluate QT dispersion and P wave dispersion in patients with FM. The study involved 48 FM patients who fulfilled the established criteria and 32 healthy controls (HC). A standard 12-lead electrocardiogram was performed on all participants. QT dispersion was defined as the difference between the longest and the shortest QT intervals. Similarly, the differences between the shortest and longest P waves were defined as P wave dispersion. The QT dispersion and corrected QT dispersion were shorter in the FM group compared with the HC group (pdispersion value, there was no significant difference between the FM and HC groups (p=0.088). Longer QT and P wave dispersions are not problems in patients with FM. Therefore, it may be concluded that fibromyalgia does not include an increased risk of atrial and/or ventricular arrhythmias.

  3. SMED - Sulphur MEditerranean Dispersion

    Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro


    Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model

  4. Dispersive transport across interfaces

    Berkowitz, Brian; Adler, Pierre


    Experiments demonstrating asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials have recently been performed. Here, this phenomenon is studied numerically on the pore scale. The flow field is derived by solving the Stokes equation. The dispersive transport is simulated by a large number of particles undergoing random walks under the simultaneous action of convection and diffusion. Two main two-dimensional configurations are studied; each consists of two segments (called coarse and fine) with the same structure, porosity, and length along the main flow, but different characteristic solid/pore sizes. One structure consists of two channels containing cavities of different sizes, and the second of square "grains" of different sizes. At time t=0, a large number of particles is injected (as a pulse) around a given cross-section. The corresponding breakthrough curves (BTCs) are registered as functions of time at six different cross sections. Calculations are made twice; in the first case (CtoF), particles are injected in the coarse side and are transported towards the fine one; in the second one (FtoC), the opposite case is studied. These calculations are performed for various Péclet numbers (Pe). Comparison of the resulting BTCs shows features that are similar to experimental observations, but with qualitative and quantitative differences. The influences of the medium, of the injection and observation planes, and of Pe are detailed and discussed. A BTC for pulse injection can be characterized by its maximum M(t_M) and the time tM at which it occurs. The observed differences for channels bounded by cavities are very small. However for the granular structures, M(t_M) is always larger for FtoC than for CtoF ; tM depends on all the parameters, namely Pe, the size ratio between the large and small grains, the injection and the observation planes. The numerical results are systematically compared with solutions of one

  5. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G


    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action.

  6. Use of spectroscopic technique to develop a reagent for Mo(VI) utilizing micellar effects on complex formation

    Taşcioğlu, Sülin; Kaki, E.; Taşcioğlu, Senay


    Ultraviolet and visible spectral properties of aqueous solutions of molybdenum(VI) (Mo), gallic acid (GA), Lalanine (Ala), and L-Phenylalanine (Phe), and of their binary and ternary solutions were investigated in the absence and presence of anionic, cationic, and nonionic surfactant micelles. Evaluation of the spectra in a comparative way revealed that both Ala and Phe form ternary complexes with Mo and GA. The formation of a quaternary complex between Mo, GA, Phe, and cetyltrimethylammonium bromide at pH 4.5 provided a reagent system with a strikingly high sensitivity (1.2•106 l/(mol•cm)) for use in the spectrophotometric determination of Mo. A mechanism of micellar effects was discussed in terms of the substrate molecular charge and hydrophobicity, and rationalized on the basis of the spectral data obtained above and below the isoelectric pH of the amino acids.

  7. Fast relaxation of a hexagonal Poiseuille shear-induced near-surface phase in a threadlike micellar solution

    Hamilton, W.A. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393 (United States); Butler, P.D.; Slawecki, T.M. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Magid, L.J.; Han, Z. [Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States)


    The dynamics of near-surface conformations in complex fluids under flow should dramatically affect their rheological properties. We have made the first measurements resolving the decay kinetics of a hexagonal phase induced in a threadlike polyionic micellar system under Poiseuille shear near a quartz surface. Upon cessation of shearing flow, this minimum interference crystalline phase formed within {approximately}20 {mu}m of the surface {open_quotes}melts{close_quotes} to a metastable two-dimensional liquid of aligned micelles in {approximately}0.7 s. This is some three orders of magnitude shorter than the time required for bulk (Couette) shear-aligned micelles in this system to reach a fully entangled state. {copyright} {ital 1999} {ital The American Physical Society}

  8. Modification of the murakami retention model in reversed-phase high-performance liquid chromatography for micellar chromatographic separations

    Loginova, L. P.; Boichenko, A. P.; Kulikov, A. Yu.


    A retention model for micellar liquid chromatography was tested based on the data of separation of three benzodiazepins and six β-blockers. The model was obtained by analyzing changes in the microenvironment of a sorbate in transferring from the mobile to stationary phase. It can be used to describe the retention of benzodiazepins, which are neutral under the separation conditions, and the positively charged β-blockers. The calculated model coefficients are indicative of an increase in the number of 1-pentanol molecules and sodium dodecyl sulfate monomers in the microenvironment of the sorbates in transferring from the mobile to stationary phase. The solvation of the positive β-blockers by anionic surfactant monomers was higher than that of neutral benzodiazepins.

  9. Monitoring subcellular biotransformation of N-L-leucyldoxorubicin by micellar electrokinetic capillary chromatography coupled to laser-induced fluorescence detection.

    Satori, Chad P; Meyer, Brandon; Arriaga, Edgar A


    Development of prodrugs is a promising alternative to address cytotoxicity and nonspecificity of common anticancer agents. N-L-leucyldoxorubicin (LeuDox) is a prodrug that is biotransformed to the anticancer drug doxorubicin (Dox) in the extracellular space; however, its biotransformation may also occur intracellularly in endocytic organelles. Such organelle-specific biotransformation is yet to be determined. In this study, magnetically enriched endocytic organelle fractions from human uterine sarcoma cells were treated with LeuDox. Micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF) was used to determine that 10% of LeuDox was biotransformed to Dox, accounting for ~43% of the biotransformation occurring in the post-nuclear fraction. This finding suggests that endocytic organelles also participate in the intracellular biotransformation of LeuDox to Dox.

  10. Determination of triazine herbicide residues in water samples by on-line sweeping concentration in micellar electrokinetic chromatography


    A new method for the determination of atrazine, simazine and prometryn in water samples by on-line sweeping concentration technique in micellar electrokinetic chromatography (MEKC) was developed. Various parameters affecting sample enrichment and separation efficiency were systematically studied. Compared with the conventional MEKC method, up to 60-200-fold improve-merit in concentration sensitivity was achieved in terms of peak height by using this sweeping injection technique. The compound strychnine was used as the internal standard for the improvement of the experimental reproducibility. The limits of detection (S/ N = 3:1) for atrazine, simazine and prometryn were 9, 10 and 0.5 ng mL-1, respectively. This method has been successfully applied to the analysis of atrazine, simazine and prometryn in lake, steam and ground water.

  11. Effect of micellar species on photoinduced hydrogen production with Mg chlorophyll-a from spirulina and colloidal platinum

    Tomonou, Yumiko; Amao, Yutaka [Oita Univ., Dept. of Applied Chemistry, Oita (Japan)


    Effect of micellar species on the photostability of Mg chlorophyll-a and the photoinduced hydrogen production with Mg chlorophyll-a by use of three component system consisting of NADPH, methylviologen and colloidal platinum was investigated. Triton X-100 and CTAB solubilized Mg chlorophyll-a solution were rapidly bleached by irradiation and 50% of Mg chlorophyll-a was degraded in 90 min irradiation. On the other hand, the decay rate of Mg chlorophyll-a concentration in the presence of NADPH was suppressed and the degradation rate was 15% in 90 min irradiation. The effective hydrogen production system was developed using CTAB solubilized Mg chlorophyll-a (2.7 {mu}mol in 4 h), compared with that using Triton X-100 solubilized Mg chlorophyll-a (0.1 {mu}mol in 4 h). (Author)

  12. Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system.

    Lim, Sung-Hwan; Jang, Hyung-Sik; Ha, Jae-Min; Kim, Tae-Hwan; Kwasniewski, Pawel; Narayanan, Theyencheri; Jin, Kyeong Sik; Choi, Sung-Min


    We report a highly ordered intercalated hexagonal binary superlattice of hydrophilically functionalized single-walled carbon nanotubes (p-SWNTs) and surfactant (C12 E5 ) cylindrical micelles. When p-SWNTs (with a diameter slightly larger than that of the C12 E5 cylinders) were added to the hexagonally packed C12 E5 cylindrical-micellar system, p-SWNTs positioned themselves in such a way that the free-volume entropies for both p-SWNTs and C12 E5 cylinders were maximized, thus resulting in the intercalated hexagonal binary superlattice. In this binary superlattice, a hexagonal array of p-SWNTs is embedded in a honeycomb lattice of C12 E5 cylinders. The intercalated hexagonal binary superlattice can be highly aligned in one direction by an oscillatory shear field and remains aligned after the shear is removed.

  13. Determination of the macromolecular dimensions of hydrophobically modified polymers by micellar size exclusion chromatography coupled with multiangle light scattering.

    Dupuis, Guillaume; Rigolini, Julien; Clisson, Gérald; Rousseau, David; Tabary, René; Grassl, Bruno


    The present work demonstrates that the use of a nonionic surfactant in the mobile phase together with light scattering coupled to size exclusion chromatography (SEC) provides an accurate determination of macromolecular dimensions of hydrophobically modified water-soluble polymer and polyelectrolyte, i.e., weight-average molar mass M(w) and polydispersity I(p). This method, called micellar SEC, is based on the dissociation of the aggregates in aqueous solution and the formation of mixed micelles between the surfactant and the polymer hydrophobic groups. The methodology and its application are presented for synthetic sulfonated polyacrylamides (5 and 20 mol %) modified with three hydrophobic alkyl side groups (C8, C12, and C18) and with Triton X-100 as a nonionic surfactant and are discussed according to the associativity of polymers. The results are compared to those obtained by classical SEC in 0.1 M NaNO(3) and by static light scattering in formamide solution.

  14. On the predictions and limitations of the Becker–Döring model for reaction kinetics in micellar surfactant solutions

    Griffiths, I.M.


    We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-Döring theory for re-equilibration of surfactant solutions. © 2011 Elsevier Inc.

  15. Determination of caffeine and associated compounds in food, beverages, natural products, pharmaceuticals, and cosmetics by micellar electrokinetic capillary chromatography.

    Injac, Rade; Srdjenovic, Branislava; Prijatelj, Matevz; Boskovic, Marija; Karljikovic-Rajic, Katarina; Strukelj, Borut


    A method is described for quantitating caffeine, theobromine, theophylline, paracetamol, propyphenazone, acetylsalicylic acid, salicylic acid, and codeine phosphate in corresponding real samples of food, beverages, natural products, pharmaceuticals, and cosmetic preparations by micellar electrokinetic capillary chromatography. The separation is carried out at 25 degrees C and 25 kV, using a 20 mM phosphate buffer (pH 9.0), 80 mM sodium dodecyl sulfate, and 7.5% (v/v) acetonitrile. UV detection is at 210 nm. The method is shown to be specific, accurate (recoveries over the range 98.9-101.2%), linear over the tested range (correlation coefficients>or=0.9993), and precise (relative standard deviation below 2.1%). The method is applied for the quantitative analysis of these compounds in different foods, beverages, natural products, pharmaceuticals, and cosmetic products.

  16. Amplified Dispersive Optical Tomography

    Goda, Keisuke; Jalali, Bahram


    Optical coherence tomography (OCT) has proven to be a powerful technique for studying tissue morphology in ophthalmology, cardiology, and endomicroscopy. Its performance is limited by the fundamental trade-off between the imaging sensitivity and acquisition speed -- a predicament common in virtually all imaging systems. In this paper, we circumvent this limit by using distributed Raman post-amplification of the reflection from the sample. We combine the amplification with simultaneously performed dispersive Fourier transformation, a process that maps the optical spectrum into an easily measured time-domain waveform. The Raman amplification enables measurement of weak signals which are otherwise buried in noise. It extends the depth range without sacrificing the acquisition speed or causing damage to the sample. As proof of concept, single-shot imaging with 15 dB improvement in sensitivity at an axial scan rate of 36.6 MHz is demonstrated.

  17. Natural dispersion revisited.

    Johansen, Øistein; Reed, Mark; Bodsberg, Nils Rune


    This paper presents a new semi-empirical model for oil droplet size distributions generated by single breaking wave events. Empirical data was obtained from laboratory experiments with different crude oils at different stages of weathering. The paper starts with a review of the most commonly used model for natural dispersion, which is followed by a presentation of the laboratory study on oil droplet size distributions formed by breaking waves conducted by SINTEF on behalf of the NOAA/UNH Coastal Response Research Center. The next section presents the theoretical and empirical foundation for the new model. The model is based on dimensional analysis and contains two non-dimensional groups; the Weber and Reynolds number. The model was validated with data from a full scale experimental oil spill conducted in the Haltenbanken area offshore Norway in July 1982, as described in the last section of the paper.

  18. Crucial role of phosphatidylinositol 4-kinase IIIα in development of zebrafish pectoral fin is linked to phosphoinositide 3-kinase and FGF signaling

    MA, HUI; Blake, Trevor; Chitnis, Ajay; Liu, Paul; Balla, Tamas


    Phosphatidylinositol 4-kinases (PI4Ks) catalyze the first committed step in the synthesis of phosphoinositides, important lipid regulators of signaling and trafficking pathways. Here we cloned Pik4a, one of the zebrafish PI4K enzymes, and studied its role(s) in vertebrate development using morpholino oligonucleotide-based gene silencing in zebrafish. Downregulation of Pik4a led to multiple developmental abnormalities, affecting the brain, heart, trunk and most prominen...

  19. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi


    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  20. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent


    CD59, an 18-20-kD complement inhibitor anchored to the membrane via glycosyl phosphatidylinositol (GPI), can induce activation of T cells and neutrophils upon cross-linking with antibody. GPI-anchored molecules cocluster in high mol wt detergent-resistant complexes containing tyrosine kinases that are implicated in the signaling pathway. Exogenous, incorporated GPI-anchored molecules are initially unable to induce activation, presumably because they are not associated with kinases. Here we de...